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ABSTRACT 

PERFORMANCE-ROBUST DYNAMIC FEEDBACK CONTROL OF LIPSCHITZ 

NONLINEAR SYSTEMS  

 

 

 

W. Alexander Baker Jr. 

 

Marquette University, 2016 

 This dissertation addresses the dynamic control of nonlinear systems with finite energy 

noise in the state and measurement equations. Regional eigenvalue assignment (REA) is used to 

ensure that the state estimate error is driven to zero significantly faster than the state itself. 

Moreover, the controller is designed for the resulting closed loop system to achieve any one of a 

set of general performance criteria (GPC). 

 The nonlinear model is assumed to have a Lipschitz nonlinearity both in the state and 

measurement equations. By using the norm bound of the nonlinearity, the controller is designed 

to be robust against all nonlinearities satisfying the norm-bound. A Luenberger-type nonlinear 

observer is used to estimate the system state, which is not directly measurable. 

 The choice of the eigenvalue locations for the linear part of the system is based on the 

transient response specifications and the separation of the controller dynamics from the observer 

dynamics. Furthermore, the GPC are incorporated to achieve performance requirements such as 

H2, H∞, etc. The advantage of using GPC is it allows the designer flexibility in choosing a 

performance objective to tune the system.  

 The design problem introduced in this dissertation uses various mathematical techniques 

to derive LMI conditions for the controller and observer design using REA, GPC, and the bounds 

on the Lipschitz nonlinearities. All work will be demonstrated in both continuous- and discrete-

time. Illustrative examples in both time domains are given to demonstrate the proposed design 

procedure. Multiple numerical approaches are also presented and compared in simulations for 

ease of use, applicability, and conservatism.  
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Chapter 1  

Introduction 

 Modern control theory can broadly be summarized as the use of state-space 

models to control individual states of a system. The methods for achieving stabilization 

and control of the modeled system are output feedback and state feedback. When learning 

modern control theory, the emphasis is on controlling noiseless linear systems with 

measurable states. In the real world, however, most systems are nonlinear, have states 

which are not known or measurable, and have some level of external noise acting on the 

system. Therefore, the goal of controller design is to stabilize the system while also 

accommodating the effects of the noise and nonlinearities. Given that all the states may 

not be measurable, it is also important to be able to design an estimator or an observer 

that can quickly estimate the state while also maintaining the desired performance for the 

closed loop system. Designers have used many techniques to achieve these design goals 

while maintaining a specific set of performance objectives. 

 The goal of this dissertation is to improve on existing techniques by developing a 

set of feasibility conditions which are necessary to design a state estimate feedback 

controller for systems with analytic nonlinearities that satisfy the Lipschitz condition. The 

controller-observer system will meet specific performance criteria such as H2 or strict 

passivity, as well as achieve a desired transient response. This is done by combining 

known control techniques using linear matrix inequalities (LMIs). To understand the path 

of this research, it is useful to look back at where, in the body of research, various aspects 

of this research have been developed prior to this dissertation. 
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1.1 Historical Context 

In this section, a brief examination at the origin of specific control techniques will 

be given. From the first linear matrix inequality problem in control theory to the 

development of the regional eigenvalue assignment (REA) inequality definition, this 

dissertation follows in the path of many great minds and builds upon the solid foundation 

of brilliant mathematicians and engineers. 

1.1.1 Linear Matrix Inequalities (LMIs) 

The LMI has been used in control system theory for over 120 years. In 1890, 

Aleksandr Lyapunov published what is now known as the Lyapunov Stability Theorem. 

It stated that a continuous-time system, represented as a first order differential equation, 

is stable if and only if there exists a positive definite matrix P such that  

𝐴𝑇𝑃 + 𝑃𝐴 < 0 

where A represents the closed loop system. At the time, solving such LMIs was 

computationally challenging, so Lyapunov developed a method of turning the inequality 

into an equation by solving for a positive definite, symmetric matrix, Q, to solve for P 

explicitly. During the Cold War, while the United States and the West were developing 

the Dynamic Programming and Pontryagin Maximum Principle, the Soviet Union started 

applying Lyapunov’s inequality to solving real world control problems. Back then, the 

inequalities that resulted from the design process had to be solved by hand. In the 1960s, 

noted scholars such as Yanukovych, Popov, and Kalman all described methods of 

simplifying the LMIs down to various criteria. Yakubovich [1] [2]was instrumental in 
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solving the inequality constraints of automatic control problems. This directly led to the 

observation that certain LMIs could also be solved using an Algebraic Riccati Equation 

(ARE). Soon after, certain optimal control problems were being solved using LMIs. In 

the 1980s, computing had developed to the point where LMIs could be solved using a 

computer instead of by hand [3]. Since then, LMI techniques have been used for a variety 

of controller design techniques. 

1.1.2 Performance Criteria 

In designing controllers, it is desirable to achieve certain performance criteria. 

This dissertation will describe LMI methods for achieving various performance criteria. 

To that end, a brief history of the study of each performance criteria will be given. 

Asymptotic stability is the most basic performance criterion. The idea that the 

energy of the system must uniformly converge to zero over time comes directly from the 

previously mentioned Lyapunov stability theory. As it is the most basic of the 

performance criteria, all control systems are expected to at least meet this performance 

criterion. 

The H2 performance has been a staple of modern control design since the Cold 

War era. Over time, three distinct methods of designing H2 controllers have been 

developed: a transfer function solution based on solving Diophantine equations (linear 

polynomial matrix equation), a Wiener-Hopf analytic solution (partial differential 

equations), and a state-space solution [4]. Originally used for the Linear Quadratic 

Gaussian (LQG) problem, the goal of H2 control is to minimize the cost of the control 



4 

 

based on the parameter deemed most important. In the state-space formulation, this takes 

the form of specified states in the form of the performance output. 

 Study of H∞ performance began in the early 1980s as a method of reducing the 

sensitivity of systems via feedback control [5]. The H∞ performance criteria optimizes the 

systems in such a way that for a given performance output or target, the ratio of the norm 

of the output to the noise is minimized, thereby minimizing the effect of the noise. 

The concept of passivity was introduced by Youla [6] in 1959. At the time, the 

definition was subject to some mathematical interpretation, as seen in Newcomb [7]. 

However, the definition of passivity was formally clarified in 1972 [8], reconciling the 

differences between the Youla definition and the Newcomb definition.  By 1981, there 

were three different interpretations of what passivity meant. The first interpretation came 

from a thermodynamic point of view. The second interpretation was from a transfer 

function viewpoint that was applied to state-space. The third point of view is the view 

most commonly used in control application, the internal energy point of view.  This 

interpretation says that a system is passive if the only energy in the system was supplied 

to the system from the outside. In other words, the supplied energy must be positive 

semidefinite. It was determined that all 3 interpretations, while different, were in fact 

equivalent [9].  

1.1.3 Regional Eigenvalue Assignment 

LMI techniques have been used in assigning eigenvalues of a closed loop linear 

system to specific regions of the complex plane. Regional eigenvalue assignment uses 

modified Lyapunov equations and other mathematical equations which are associated 
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with regions in the complex plane. In 1989, a paper by Furuta and Kim used a modified 

discrete-time Lyapunov Equation to define a circular boundary. Based on the assumption 

that Q is positive definite, they showed that a valid placement of the eigenvalues would 

be within the circular region [10]. Other regional shapes, such as vertical strips and cones 

can also be defined using LMIs. In general, regional eigenvalue assignment is D-space 

formulation, meaning the region is a closed space, D. If all the eigenvalues of a closed 

loop system are all located within region D, then the system is considered D-stable. The 

region is independent of a specific time domain. The LMI formulation for REA has been 

shown to be valid in the design of controllers in both continuous-time and discrete-time 

using state-feedback [11] [12] and output feedback control [13]. However, unlike most 

conventional methods of controller design, D-stability does not guarantee asymptotic 

stability. 

REA has also been applied to the design of observers for linear systems where the 

states are not measurable [14]. REA has also been used specifically for robust nonlinear 

control [15] [16]. Controllers designed using REA have been tuned to have specific 

performance criteria, which will be discussed in more detail in the next section. 

Over time, many of the concepts introduced in this section have been integrated 

collectively into controller designs. Many researchers have examined methods of using 

REA to design robust controllers via output feedback [17] and state feedback [18]. REA 

has also been applied to H2 [19] and H∞ control [13]. Systems with vanishing 

nonlinearities have applied REA to the linear component of the system in both 

continuous-time [15] and discrete-time [7]. 
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1.2 The General Performance Criteria Framework 

A general performance criteria (GPC) framework was developed [20] by taking 

advantage of the similarities of the forms of the various performance criteria. The 

general performance criteria are built into a basic Lyapunov inequality with additional 

terms that are tuned to satisfy one of the previously mentioned performance criterion 

when integrated in continuous-time or summed over time in discrete-time. The GPC has 

been used to design resilient observers for linear continuous-time [21] and discrete-time 

[20] systems. The GPC has also been used for nonlinear systems in continuous-time [22] 

and discrete-time [23]. Resilient controllers [24] and robust feedback controllers [25] 

have also been achieved using the GPC. Recently, the GPC has been applied to the 

analysis of resilient dynamic feedback control for linear systems [26] and the design of 

resilient dynamic feedback control for nonlinear systems [27]. 

1.3 Outline of Dissertation 

Why is this control design procedure being made? In a word, flexibility. The first 

goal is to have the flexibility to accommodate a variety of different nonlinearities that 

satisfy a specific Lipschitz bound. The second goal is to have the flexibility to choose a 

desirable performance criteria. The third goal is to have the flexibility to determine 

specific transient properties for the closed loop system. The last goal is to have the 

flexibility to achieve the previously mentioned goals within a single LMI framework 

without knowledge of the system state.  
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This dissertation will be formatted in the following way. In Chapter 2, a more in-

depth explanation of the general performance criteria will be given. This will include a 

detailed derivation of each performance criterion within the GPC framework. The 

application of the GPC, based on previous work, will be given for both controller design 

and observer design.  This will be demonstrated in both continuous-time and discrete-

time. Lastly, the application of regional eigenvalue assignment in the design of 

controllers and observers will be examined. 

In Chapter 3, the main results of this dissertation will be presented. This work 

includes the design of dynamic feedback controllers for both linear and nonlinear systems 

using the GPC framework together with REA in both continuous-time and discrete-time. 

Specific LMI techniques will be used to formulate the main results, presented as matrix 

inequalities, on which the analysis and design will be based. 

Chapter 4 will show four methods of applying the main results to design a dynamic 

feedback controller. Again, LMIs are the cornerstone of each design procedure. 

Simulation data will be used to illustrate each method. The results produced by each 

method will be compared and analyzed.  

The dissertation will then conclude in Chapter 5 with a summary of the work 

presented and will briefly describe potential areas of future work that can be explored. 

This chapter will explore the limitations of the design procedures and suggest paths 

forward to address these limitations. 
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1.4 Notation and Lemmas 

The following notations will be used throughout the dissertation. 

A > 0: A is a positive definite matrix 

nx R  : n-dimensional vector with real elements 

xT: Transpose of a matrix x 

x : the first derivative, with respect to time, of x 

||x||: The Euclidean norm of x = (xT x)1/2 

|a|:  the absolute value of scalar a. 

m nA R   :  m x n matrix with real elements. 

A-1: Inverse of matrix A, 

Im: Identity matrix of dimension m 

∗: represents the element or submatrix that need to be added to make the 

matrix symmetric. 

Lemma 1a: The Schur Complement [28] (For English, see [29]) 

For a matrix inequality in the form  

 

where 

1 0TA BC B 
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0C   

Then the matrix inequality is equivalent to  

0
T

A B

B C

 
 

 

 

Lemma 1b: The Schur Complement alternate form 

For a matrix inequality in the form  

1 0TC B A B   

where 

0A   

Then the matrix inequality is equivalent to  

0
T

A B

B C

 
 

 

 

Lemma 2: The S-Procedure [30]  

There exists a τ>0 such that 

( ) 0T A B     

if and only if for a nonzero , A and B satisfy the following inequalities, 

0T A    and 0T B     
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Chapter 2  

Theoretical and Mathematical Backgrounds 

Before the main results of the research are presented, the more relevant works in 

literature that form the basis for the derivation and design procedure in this dissertation 

will be examined in closer detail. The use of the general performance criteria for linear 

continuous-time and discrete-time systems will be reviewed. The goal of using general 

performance criteria (GPC) is to have a framework for which various stability-based 

criteria can be achieved in the design and analysis of control systems. Some special cases 

of the general performance criteria will be discussed in detail and examples of designs for 

controllers and observers using the general performance criteria will be shown.  

In addition, Regional Eigenvalue Assignment (REA) for linear systems will be 

examined. REA is a way to localize the eigenvalues of a closed loop system within an 

enclosed region of the complex plane. In both continuous-time and discrete-time, REA is 

useful in designing systems to have certain properties unique to specific regions of the 

complex plane, such as natural frequency, percent overshoot, and settling time. This 

Chapter will illustrate the use of REA in controller design and observer design.  

The GPC and REA can both be expressed in the form of a Linear Matrix 

Inequality (LMI). However, most systems are nonlinear. Many of the nonlinearities in 

systems satisfy the Lipschitz property, which can also be expressed in LMI form. 

Therefore, these nonlinearities have norm bounds related to the Lipschitz property. This 

chapter will discuss the technique of applying the norm bound of the system to an LMI 

based design of controllers satisfying certain performance criteria. The main results of 
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this dissertation, presented in Chapter 3, will be derived from the three techniques 

highlighted in this chapter. 

2.1 The general performance criteria for continuous-time systems 

Let us consider the following linear continuous-time system, represented with 

state, measurement, and performance output equations 

x Ax Bu Fw                (2.1) 

y Cx Du Gw                     (2.2) 

z zz C x D w               (2.3) 

where x ϵ ℝn is the state of the system, y ϵ ℝp is the output, and w ϵ ℝw is finite-energy 

(L2) disturbance. The system is assumed to be controllable and observable. In order to 

satisfy any of the performance criteria that can come from the general performance 

criteria framework, there must exist a symmetric positive definite matrix, P, such that for 

the Lyapunov energy function, 

TV x Px            (2.4)     

the general performance objective, 

0T T TV z z w w z w      
   (2.5) 

is satisfied [25]. This inequality guarantees the energy of the system decays over time 

while the performance satisfies the following inequality  

2 2

0 0 0

f f fT T T

Tz wdt z dt w dt           (2.6) 
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The general performance criteria can be applied to achieve any of a set of 

performance objectives. This framework is used to give the designer the flexibility to 

alter performance goals without having to completely redesign the controller. In the next 

few sections, the performance objectives for systems with and without noise will be 

shown. 

2.1.1 Non-noisy Cases 

Assuming the system has no noise (w=0), inequality (2.5) reduces to 

0TV z z               (2.7) 

Through the GPC framework, a controller for a linear system modeled without noise can 

be designed specifically for two performance objectives: simple asymptotic stability and 

the H2 performance.  

2.1.1.1 Asymptotic Stability 

The case where δ=0 for a system without noise is known as asymptotic stability. 

The definition of asymptotic stability is that for any initial condition, the system energy 

will continuously go to zero. Inequality (2.7) is further reduced to 

0V       (2.8) 

In other words 

lim ( ) 0
t

x t


         (2.9) 

The LMI that provides a feasible asymptotically stable result is  

0TA P PA         (2.10) 
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This LMI can be used to analyze control systems. If the closed loop system 

satisfies this LMI, it will be asymptotically stable. However, this LMI can also be used to 

design asymptotically stable controllers. 

Asymptotic stability represents the most basic performance criterion to be 

satisfied in control systems. The use of the LMI for analysis and design also works for 

the more advance performance criteria discussed throughout the rest of this chapter.  

2.1.1.2 The H2 Performance Criterion 

A system that exhibits H2 performance satisfies the inequality [31] 

2 21
max

0

( ) ( ) (0)

t

z d P x


       (2.11) 

where the value for δ is a positive scalar. For the system defined in equations (2.1) -(2.3), 

where w=0, inequality (2.7) can be expanded 

 0T T

z zA P PA C C              (2.12) 

Similar to the asymptotic stability case, the analysis and design of continuous-time H2 

controllers or observers can be achieved using (2.12). 

2.1.2 Noisy Cases 

Given the system described in (2.1) -(2.3) with non-zero noise (w≠0), it follows 

that (2.5) can be expanded 

( ) ( ) ( ) ( )

( ) 0

T T T

z z z z

T T

z z

Ax Fw Px x P Ax Fw C x D w C x D w

w w C x D w w



 

      

   
  (2.13) 
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This inequality can be expressed in a block matrix form 

2

2 2

0
( )

T T T T

T T z z z z z

T T T T

z z z z z z z

xA P PA C C PF C D C
x w

wF P D C C D D I D D



 

 

  

        
                

  (2.14) 

This matrix inequality is linear in P and therefore can be used to design and analyze 

control systems to satisfy various performance criteria. 

2.1.2.1 The H∞ Performance Criterion 

The H∞ performance criterion is achieved when the output to noise ratio is 

bounded. Another way of expressing this is with the inequality 

2 2

0 0

( ) ( )

t t

z d w d               (2.15) 

In terms of the general performance criteria framework, inequality (2.15) implies that 

δ=1, γ=0, and ε<0. From (2.13), 

( ) ( ) ( ) ( ) 0T T T T

z z z zAx Fw Px x P Ax Fw C x D w C x D w w w           (2.16) 

Similar to the way (2.10) can be used to design and analyze asymptotically stable control 

systems, (2.16) can be used for the analysis and design of H∞ controllers or observers. 

2.1.2.2 Strict Passivity 

The strict passivity performance criterion [8] is achieved when 

0

( ) ( ) 0

t

Tz w d         (2.17) 
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In terms of the general performance criteria framework, inequality (2.17) implies that 

δ=0, γ=1, and ε=0. From (2.13), 

( ) ( ) ( ) 0T T T

z zAx Fw Px x P Ax Fw C x D w w         (2.18) 

This inequality is used for the analysis and design of strict passivity controllers. 

2.1.2.3 Input Strict Passivity 

The input strict passivity performance criterion is achieved when 

2

0 0

( ) ( ) ( )

t t

Tz w d w d           (2.19) 

In terms of the general performance criteria framework, inequality (2.19) implies that 

δ=0, γ=1, and ε>0. From (2.13), 

( ) ( ) ( ) 0T T T T

z zAx Fw Px x P Ax Fw w w C x D w w          (2.20) 

This inequality is used for the analysis and design of input strict passivity controllers or 

observers. 

2.1.2.4 Output Strict Passivity 

The output strict passivity performance criterion is achieved when 

2

0 0

( ) ( ) ( )

t t

Tz w d z d          (2.21) 

In terms of the general performance criteria framework, inequality (2.21) implies that 

δ>0, γ=1, and ε=0. From (2.13), 
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( ) ( ) ( ) ( ) ( ) 0T T T T

z z z z z zAx Fw Px x P Ax Fw C x D w C x D w C x D w w             (2.22) 

This inequality is used for the analysis and design of output strict passivity controllers or 

observers. 

2.1.2.5 Very Strict Passivity 

The very strict passivity is the most general of the general performance criteria. It 

is achieved when 

2 2

0 0 0

( ) ( ) ( ) ( )

t t t

Tz w d w d z d               (2.23) 

In terms of the general performance criteria framework, inequality (2.23) implies that 

δ>0, γ=1, and ε>0. From (2.13), 

( ) ( ) ( ) ( )

( ) 0

T T T

z z z z

T T

z z

Ax Fw Px x P Ax Fw C x D w C x D w

w w C x D w w





      

   
  (2.24) 

This inequality is used for the analysis and design of very strict passivity 

controllers or observers. It should be noted that in general, γ is set equal to zero or one 

because any other value can be normalized by dividing both sides of inequality (2.13) by 

the value of γ. As previously stated, these performance criteria can be used in the design 

of controllers and observers. 

2.1.3 Design Application 

The goal of the design procedure to determine the controller and/or observer gains 

necessary to achieve the desired performance for a closed loop system using LMI 
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techniques. In this section, the process of using the general performance criteria to find 

the gains for the design of continuous-time observers and controllers will be discussed. 

2.1.3.1 Observer Design [22] 

In order to design the observer to have any of the general performance criteria, a 

Luenberger-type observer is designed. The state estimate dynamics are 

ˆ ˆ ˆ( )x Ax Bu L y Cx Du         (2.25) 

where x̂  represents the estimate of the state. Since the estimation error is defined as  

ˆe x x       (2.26) 

the state estimation error dynamics are defined as 

( )oe A e F LG w        (2.27) 

where the closed loop observer matrix is 

oA A LC                (2.28) 

with the observer gain defined by L and A is the open-loop system matrix. The GPC can 

be applied to the observer design by defining 

T

eV e Pe      (2.29) 

Therefore 

(( ) ( ) ) (( ) ( ) )T T

eV A LC e F LG w Pe e P A LC e F LG w          (2.30) 
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The GPC for the observer design can therefore be defined as 

0T T T

eV z z w w z w           (2.31) 

where z is defined as 

z Cz e Dz w        (2.32) 

Inequality (2.31) can thus be expanded to 

(( ) ( ) ) (( ) ( ) ) ( ) ( )

( ) 0

T T T

z z z z

T T

z z

A LC e F LG w Pe e P A LC e F LG w C e D w C e D w

w w C e D w w



 

          

   

 (2.33) 

 which can be further expanded into the inequality 

2

2 2

( ) ( ( ) )

( ( ) ) ( ( )) 0

T T T T T T T T

z z z z z

T T T T T T

z z z z z z z

e A P C L P PA PLC C C e w F LG P D C C e

e P F LG C D C w w I D D D D w



 



 

         

          
     

 (2.34) 

or in vector matrix form, 

2

2 2

( )
0

( ) ( )

T T T T T T

T T z z z z z

T T T T

z z z z z z z

eA P C L P PA PLC C C P F LG C D C
e w

wF LG P D C C I D D D D



 



 

           
                 

 

(2.35) 

This matrix inequality is not linear due to the multiplication of unknowns P and L. 

This is easily remedied by defining a new variable,  

oY PL      (2.36) 
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Simplifying (2.35) yields a linear matrix inequality. 

2

2 2

0
( )

T T T T T

o o z z o z z z

T T T T T T

o z z z z z z z

A P Y P PA Y C C C PF Y G C D C

F P G Y D C C I D D D D



 



 

         
 

        
  (2.37) 

Since P is a positive definite symmetric matrix, it is invertible. Therefore, when P and Yo 

are found, L can be calculated as 

1

oL P Y      (2.38) 

The observer design will guarantee that the state estimator achieves the desired 

performance criteria.  

2.1.3.2 Controller Design 

The same principle for designing the observer applies to the controller design. To 

find the controller gain, the control input is defined as 

u Kx           (2.39) 

The closed loop system matrix is defined as 

cA A BK       (2.40) 

where K is the controller gain. By doing this, the general performance criteria inequality 

(2.13) becomes 

(( ) ) (( ) ) ( ) ( )

( ) 0

T T T

z z z z

T T

z z

A BK x Fw Px x P A BK x Fw C x D w C x D w

w w C x D w w



 

        

   
 

 (2.41) 
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or in vector matrix form 

2

2 2

0
( )

T T T T T T

T T z z z z z

T T T T

z z z z z z z

xA P K B P PA PBK C C PF C D C
x w

wF P D C C I D D D D



 



 

          
                

 

(2.42) 

This matrix inequality is not linear due to the multiplication of the unknown 

matrices K and P with B. To address this, the matrix is pre-multiplied and post-multiplied 

by  

1 0

0

P

I

 
 
 

      (2.43) 

The resulting matrix inequality is 

1 1 1 1 1 1 1 1

2

1 1

2 2

0
( )

T T T T T T

z z z z z

T T T T

z z z z z z z

P A P K B AP BKP P C C P F P C D P C

F D C P C P I D D D D



 



 

       

 

        
 

       
 

(2.44) 

  By using Lemma 1 to deal with the quadratic term in the (1,1) block and defining Yc as 

1

cY KP       (2.45) 

an LMI in P and Yc is obtained 

1 1 1 1 1

2

1 1

2 2

1

( ) 0 0

0

T T T T T T

c c z z z z

T T T T

z z z z z z z

z

P A Y B AP BY F P C D P C P C

F D C P C P I D D D D

C P I



 



 



    

 



       
 

        
 
 

 (2.46) 
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Therefore P-1 and Yc can be found so that LMI (2.46) is satisfied. The controller gains 

can be calculated based on (2.45) 

cK Y P      (2.47) 

The continuous-time closed loop system designed through this method will satisfy 

any one of the general performance criteria illustrated in this chapter. However, for 

discrete-time systems, the matrices will be different. This is explored in detail in the next 

section. 

2.2 The general performance criteria for discrete-time systems 

Let us now consider the following linear discrete-time system with state, 

measurement, and performance output equations of the form 

1k k k kx Ax Bu Fw        (2.48) 

k k k ky Cx Du Gw             (2.49) 

k z k z kz C x D w       (2.50) 

where xk ϵ ℝn is the state of the system, yk ϵ ℝp is the output, and wk ϵ ℝw is a finite-

energy (l2) disturbance. The system is assumed to be controllable and observable. In 

order to satisfy any of the performance criteria that can come from the general 

performance criteria framework, there must exist a symmetric positive definite matrix, P, 

such that for the Lyapunov energy function, 

T

k k kV x Px ;     (2.51)     

the general performance objective, 
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1 0T T T

k k k k k k k kV V z z w w z w            (2.52) 

is satisfied. This inequality guarantees the system’s energy decays over time in such a 

way that  

22

0 0 0

f f fT T T

T

j j i j

j j j

z w z w  
  

       (2.53) 

The general performance criteria can be applied to many different performance 

objectives. In the following sections, the objectives for systems with and without noise 

will be examined. 

2.2.1 Non-noisy Cases 

Similar to the continuous-time case, when it is assumed that the system has no 

noise (wk=0), inequality (2.52) can be reduced to 

1 0T

k k k kV V z z        (2.54) 

Just like with the continuous-time, the two performance criteria that can be 

designed for a noiseless system are asymptotic stability and the H2 performance. 

2.2.1.1 Asymptotic Stability 

The definition of asymptotic stability is that for any initial condition, the system 

energy will go to zero. In other words, 

lim 0k
k

x


      (2.55) 

Mirroring the case continuous-time case, when δ=0 for a system without noise, the 

energy relationship can be expressed as the following inequality,  
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1 0k kV V        (2.56) 

The inequality can be expressed in the following form 

0TA PA P       (2.57) 

However, unlike the continuous-time, this matrix inequality is not linear. In order to put 

the matrix inequality into a linear form, Lemma 1 is used.  

0
TP A P

PA P

 
 

 
    (2.58) 

This LMI is used in the analysis and design of asymptotically stable discrete-time 

controllers. It should be noted that in order to use LMI techniques to analyze or design 

discrete-time systems using the general performance criteria, the Schur complement will 

be used for every case due the nonlinearity in the Lyapunov inequality. 

2.2.1.2 The H2 Performance Criteria 

A system that exhibits H2 performance satisfies the inequality 

2 21

max 0( )i

i

z P x      (2.59) 

Since the norm of z summed over time, the norm of the initial state, and the max 

eigenvalue of P must be greater than or equal to zero, the value for δ is a positive scalar. 

For the system defined in equations (2.48) - (2.50), where wk=0, inequality (2.52) can be 

expanded 

 0T T

z zA PA P C C           (2.60) 

Using Lemma 1 yields the LMI in P 
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0
T T

z zP C C A P

PA P

 
 

 
    (2.61) 

This LMI will be used in the analysis and design of discrete-time H2 controllers and/or 

observers. 

2.2.2 Noisy Cases 

Given the system described in (2.48) -(2.50) where wk≠0, it follows that (2.52) 

can be expanded 

( ) ( ) ( ) ( )

( ) 0

T T T

k k k k k k z k z k z k z k

T T

k k z k z k k

Ax Fw P Ax Fw x Px C x D w C x D w

w w C x D w w



 

      

   
  (2.62) 

Furthermore, this inequality can be expressed in a block matrix form 

2

2 2

0
( )

T T T T T
kT T z z z z z

k k T T T T T
kz z z z z z z

xP A PA C C A PF C D C
x w

wF PA D C C F PF D D I D D



 

 

  

       
                 

 

 (2.63) 

This matrix inequality forms the basis of the design and analysis of various 

performance criteria for noisy systems. 

2.2.2.1 The H∞ Performance Criteria 

The H∞ performance criteria is achieved when 

2 2

i i

i i

z w        (2.64) 
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In terms of the general performance criteria framework, inequality (2.64) implies that 

δ=1, γ=0, and ε<0. From (2.62), 

( ) ( ) ( ) ( ) 0T T T T

k k k k k k z k z k z k z k k kAx Fw P Ax Fw x Px C x D w C x D w w w          

 (2.65) 

This matrix inequality is used for the analysis and design of H∞ controllers or observers. 

2.2.2.2 Strict Passivity 

The strict passivity performance criterion is achieved when 

0T

i i

i

z w       (2.66) 

In terms of the general performance criteria framework, inequality (2.66) implies that 

δ=0, γ=1, and ε=0. From (2.62), 

( ) ( ) ( ) 0T T T

k k k k k k z k z k kAx Fw P Ax Fw x Px C x D w w         (2.67) 

This matrix inequality is used for the analysis and design of strict passivity controllers or 

observers. 

2.2.2.3 Input Strict Passivity 

The input strict passivity performance criterion is achieved when 

2T

i i i

i i

z w w       (2.68) 
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In terms of the general performance criteria framework, inequality (2.68) implies that 

δ=0, γ=1, and ε>0. From (2.62), 

( ) ( ) ( ) 0T T T T

k k k k k k k k z k z k kAx Fw P Ax Fw x Px w w C x D w w          (2.69) 

This inequality is used for the analysis and design of input strict passivity controllers or 

observers. 

2.2.2.4 Output Strict Passivity 

The output strict passivity performance criterion is achieved when 

2T

i i i

i i

z w z            (2.70) 

In terms of the general performance criteria framework, inequality (2.70) implies that 

δ>0, γ=1, and ε=0. From (2.62), 

( ) ( ) ( ) ( )

( ) 0

T T T

k k k k k k z k z k z k z k

T

z k z k k

Ax Fw P Ax Fw x Px C x D w C x D w

C x D w w

      

  
         (2.71) 

This inequality is used for the analysis and design of output strict passivity controllers or 

observers. 

2.2.2.5 Very Strict Passivity 

The very strict passivity performance criterion is achieved when 

2 2T

i i i i

i i i

z w z w        (2.72) 
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In terms of the general performance criteria framework, inequality (2.72) implies that 

δ>0, γ=1, and ε>0. From (2.62), 

( ) ( ) ( ) ( )

( ) 0

T T T

k k k k k k z k z k z k z k

T T

k k z k z k k

Ax Fw P Ax Fw x Px C x D w C x D w

w w C x D w w





      

   
  (2.73) 

This inequality is used for the analysis and design of very strict passivity 

controllers or observers. The inequalities used in this section are not linear and during the 

design or analysis, they will need to be put into a linear form. As previously stated, these 

performance criteria can be used in the design of controllers and observers. In the next 

section, a closer look at the design procedure will be given. 

2.2.3 Design Application 

Similar to the continuous-time case, in discrete-time the design of the controller 

and/or observer is achieved by finding the appropriate gains to achieve the desired 

performance criterion. This section highlights how the LMI techniques are used to put the 

matrix inequalities into a linear form in such a way that the gains can be determined. 

2.2.3.1 Observer Design [23] 

 In order to design the observer to have any of the general performance criteria, a 

Luenberger-type observer is designed. The state estimate update equation is 

1
ˆ ˆ( )k k k k k kx Ax Bu L y Cx Du          (2.74) 

where ˆ
kx  represents the estimate of the state. Since the estimation error is defined as  

ˆ
k k ke x x       (2.75) 
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the state estimation error update equation is  

1 ( ) ( )k k ke A LC e F LG w         (2.76) 

By applying the general performance criteria inequality to the error dynamics, 

(2.62) becomes 

(( ) ( ) ) (( ) ( ) )

( ) ( ) ( ) 0

T T

k k k k k k

T T T

z k z k z k z k k k z k z k k

A LC e F LG w P A LC e F LG w e Pe

C e D w C e D w w w C e D w w  

       

      
 (2.77) 

 which can be further expanded into the inequality 

2

2

2

( ( ) ( ) ) (( ) ( ) )

(( ) ( ) ) (( ) ( )

( )) 0

T T T T T T T

k z z k k z z z k

T T T T T T

k z z z k k z z

T

z z k

e P A LC P A LC C C e e A LC P F LG C D C w

w F LG P A LC D C C e w F LG P F LG D D

I D D w







 

 



        

        

   

 

 (2.78) 

or in vector matrix form, 

2

2 2

( ) ( )
( ) ( )

0
( ) ( )( ) ( )

( )

T

T T

z z T TT
z z zk k

T TT
k k

z z

T T

z z z z z

A LC P F LG
P A LC P A LC C C

C D Ce e

w wF LG P F LG D DF LG P A LC

D C C I D D



 






 

   
    

     
     
         
 

      

(2.79) 

The inequality is not linear. The first step in putting this into a linear form is to make use 

of the Schur complement. 
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2

2 2

( )

( ) ( ) 0

( ) ( )

T T T T

z z z z z

T T T T

z z z z z z z

P C C C D C A LC P

D C C D D I D D F LG P

P A LC P F LG P



 

 

  

    
 
        
   

  (2.80) 

This matrix inequality is not linear due to the multiplication of unknowns P and L. This is 

easily remedied by defining a new variable,  

oY PL      (2.81) 

This makes (2.80) a linear matrix inequality. 

2

2 2
( ) 0

T T T T T T

z z z z z o

T T T T T T

z z z z z z z o

o o

P C C C D C A P C Y

D C C D D I D D F P G Y

PA Y C PF Y G P



 

 

  

    
 
        
   

  (2.82) 

Since P is a positive definite symmetric matrix, it is invertible. Therefore, when P and Yo 

are found in inequality (2.82), L can be calculated as 

1

oL P Y      (2.83) 

The observer design will guarantee that the state estimate error achieves the desired 

performance criteria.  

2.2.3.2 Controller Design 

The same principle for designing the observer applies to the controller design. To 

find the controller gain, the control input is defined as 

k ku Kx      (2.84) 
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The closed loop system matrix becomes 

cA A BK       (2.85) 

where K is the controller gain. By doing this, the general performance criteria inequality 

(2.62) becomes 

(( ) ) (( ) ) ( ) ( )

( ) 0

T T T

k k k k k k z k z k z k z k

T T

k k z k z k k

A BK x Fw P A BK x Fw x Px C x D w C x D w

w w C x D w w



 

        

   
 

 (2.86) 

which can be further expanded into the inequality 

2

2 2

( ( ) ( ) ) (( ) )

( ( ) ) ( ( )) 0

T T T T T T T

k z z k k z z z k

T T T T T T T

k z z z k k z z z z k

x P A BK P A BK C C x x A BK PF C D C w

w F P A BK D C C x w F PF D D I D D w



 

 

  

       

         

 (2.87) 

or in vector matrix form 

2

2 2

( )( ) ( )

0
( )

( )

TT

T TT

z z zz z kT T

k k
T TT

k
z z

T T

z z z z z

A BK PFP A BK P A BK

C D CC C x
x w

wF PF D DF P A BK

D C C I D D



 





 

    
 

    
      

     
 

      

    (2.88) 

The inequality is not linear. The first step in putting this into a linear form is to 

make use of Lemma 1. 

2

2 2
( ) 0

T T T T T T

z z z z z

T T T T

z z z z z z z

P C C C D C A P K B P

D C C D D I D D F P

PA PBK PF P



 

 

  

    
 
       
  

 (2.89) 
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Since this matrix inequality is not linear due to the multiplication of the unknown 

matrices K and P with B. To address this, the matrix is pre-multiplied and post-multiplied 

by  

1

1

0 0

0 0

0 0

P

I

P





 
 
 
 
 

          (2.90) 

The resulting matrix inequality is 

1 1 1 1 1 1 1

2

1 1

2 2

1 1 1

( ) 0

T T T T T T

z z z z z

T T T T

z z z z z z z

P P C C P P C D P C P A P K B

D C P C P D D I D D F

AP BKP F P



 

 

  

      

 

  

    
 
       
  

 (2.91) 

  By using Lemma 1 to deal with the quadratic term in the (1,1) block and defining Yc as 

1

cY KP       (2.92) 

yields an LMI in P and Yc 

1 1 1 1

2

1

2 2

1 1

1

( )
0

0

0

T T T T T

z c z

T T T

z z z z

c

z z

P P C P A Y B P C

C P I D D F D

AP BY F P

C P D I



 



 

 

   



 



 
 

   
 


 
 
 

  (2.93) 

Therefore, when P-1 and Yc are found so that LMI (2.93) is feasible, the controller gain 

can be calculated based on (2.92) 

cK Y P      (2.94) 
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The discrete-time closed loop system designed through this method will satisfy any one 

of the general performance criteria illustrated in this chapter. 

 The general performance criteria can be used for both continuous-time and 

discrete-time systems to define various stability performance requirements within a single 

framework. The analysis allows for closed loop systems to be tested against the various 

performance criteria. This analysis has been expanded to also test the resilience and 

robustness of those closed loop systems to certain types of perturbations in the system 

and input. This framework is also useful in finding the gains that will allow a controller 

to give an open loop system the desired characteristics of the performance criteria. Table 

2.1 provides a summary of the GPC for both continuous-time systems and discrete-time 

systems. 
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Table 2.1: General Performance Criteria 

Design 

Criteria 

Design 

Parameters 
Continuous-time Discrete-time 

Non-noisy cases (w=0) 

Asymptot

ic 

Stability 

0, 0, 0      lim ( ) 0
t

x t


  lim 0k
k

x


  

H2 

Controlle

r 

1, 0, 0      
2 21

max

0

( ) ( ) (0)

t

z d P x   


  
2 21

max 0( )i

i

z P x   

Noisy Cases (w as a non-zero l2 disturbance) 

H∞ 

Controlle

r 

1, 0, 0      
2 2

0 0

( ) ( )

t t

z d w d        
2 2

i i

i i

z w  
 

Strict 

Passivity 
0, 1, 0      

0

( ) ( ) 0

t

Tz w d     0T

i i

i

z w   

Input 

Strict 

Passivity 

0, 1, 0      
2

0 0

( ) ( ) ( )

t t

T

z w d w d        
2T

i i i

i i

z w w 
 

Output 

Strict 

Passivity 

0, 1, 0    
 

2

0 0

( ) ( ) ( )

t t

Tz w d z d        
2T

i i i

i i

z w z   

Very 

Strict 

Passivity 

0, 1, 0    
 

2

0 0

2

0

( ) ( ) ( )

( )

t t

T

t

z w d w d

z d

     

  





 



 

2

2

T

i i i

i i

i

i

z w z

w









 


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2.3 Regional eigenvalue assignment for linear systems 

Regional eigenvalue assignment (REA) is the technique of placing the eigenvalues 

of a linear system within specific regions of the complex plane. This placement contrasts 

with exact pole placement which is also used in control system design. The size and 

shape of the regions can vary from vertical strips to cones to circles and many more. 

These regions can be used to provide flexibility in the location of the eigenvalues while 

maintaining certain transient properties.  

The regions can be represented using one or more matrix inequalities. Also, the 

regions are independent of the domain. This means the same formula for placing 

eigenvalues in a circle in the continuous-time domain can also be used in the discrete-

time domain. This independent space is known as a D-space. The eigenvalues within the 

defined D-space are considered D-stable. For the purposes of the research presented in 

this thesis, the region defined will be circular. This is because with only a single LMI, an 

upper and lower boundary to the region is established, both in terms of the real part and 

the imaginary components of the eigenvalues. 

To define the REA inequality for a circular region, the Lyapunov equality for 

discrete-time systems is modified. Furuta and Kim were able to shift and scale the 

mathematical definition of the unit circle into a D-space centered at (a,0) with radius r, or 

D (r, a).  This matrix equation for a circular region is, 

2

( ) ( )TA aI A aI Q
P P

r r r

  
      (2.95) 
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where A is the closed loop system matrix, Q is a positive definite matrix, r is a positive 

definite scalar, and a is a scalar. Since Q is positive definite and r is positive, equation 

(2.95) can be rewritten and expressed as a matrix inequality 

2 ( ) ( ) 0Tr P A aI P A aI        (2.96) 

This inequality may be used when calculating the gains of the observer or the controller. 

2.3.1 Linear Observer Design 

The observer design uses (2.96) with the A replaced with Ao.  

2 ( ) ( ) 0T

o o or P A LC a I P A LC a I          (2.97) 

To determine the gains, Lemma 1 is used to linearize the matrix inequality and the 

product of P and L are defined as in (2.36). The resulting LMI is 

2

0
T T T

o o o

o o

r P A P C Y a P

PA Y C a P P

  
 

  

       (2.98) 

Once a P and Yo are found that results in a feasible LMI (2.98), the observer gain 

L is calculated. The observer system, using the calculated L, will place the eigenvalues of 

the observer within a circular region of radius ro and centered at ao. 

2.3.2 Linear Controller Design 

Similarly, the controller design uses (2.96) with Ac substituted for A.  

2 ( ) ( ) 0T

c c cr P A BK a I P A BK a I           (2.99) 
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Lemma 1 is used to obtain an equivalent positive definite matrix 

2

0
T T T

c c

c

r P A P K B P a P

PA PBK a P P

  
 

  

    (2.100) 

Like in the previous sections, the multiplication of K, B and P make the matrix 

inequality nonlinear. To obtain a solvable LMI, inequality (2.100) is pre-and post-

multiplied by 

1

1

0

0

P

P





 
 
 

      (2.101) 

Using the previous definition for Yc, the resulting LMI is 

2 1 1 1

1 1 1
0

T T T

c c c

c c

r P P A Y B a P

AP BY a P P

  

  

  
 

  

    (2.102) 

Once P-1 and Yc are found that results in a feasible solution, the controller gain K 

can be calculated. The closed loop system, using the calculated K, will place the 

eigenvalues of the controller within a circular region of radius rc and centered at ac. 

2.4 Controller Design for Analytic Nonlinear Systems Via LMI Techniques [15] 

The linear model is very useful; however, most real world systems are nonlinear. 

In this section, the design of controllers using LMI techniques will be explored for 

systems with analytic nonlinearities in the system model. 

For continuous-time systems, let’s consider a nonlinear system with state and 

output equations 

( , )x x u Fw            (2.103) 
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( , )y x u Gw             (2.104) 

where x ϵ ℝn is the unknown state of the system, u ϵ ℝm is the input, y ϵ ℝp is the output, 

and w ϵ ℝw is finite-energy (L2) disturbance [13]. It is assumed that the nonlinear system 

is analytic and therefore, the matrices Ω and Ψ have linear parts which can be expressed 

separately from the higher order nonlinear terms. The state and measurement equations 

can thus be represented as, 

( )x Ax Bu f x Fw          (2.105) 

( )y Cx Du g x Gw               (2.106) 

where f and g are the differences between the nonlinear system matrix and the extracted 

linear component, also known as the higher order nonlinear terms. The linear components 

are assumed to be (A, B) controllable and (A, C) observable. These nonlinear terms can 

come in many forms. Some nonlinearities are unbounded and therefore the use of LMI 

techniques are ill suited for designing controllers with these types of nonlinearities. Other 

types can be bounded with respect to a constant or with respect to the state. In this 

dissertation, a specific type of nonlinearity is considered, Lipschitz-type nonlinearities.  

2.4.1 Lipschitz-type nonlinearity 

It is assumed that in the continuous-time and discrete-time domains, the 

nonlinearities, f, and g, are Lipschitz and therefore obey the following conditions: 

(0) 0f       (2.107) 

1 2 1 2( ) ( )f x f x x x                     (2.108) 
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1 2 1 2( ) ( )g x g x x x                   (2.109) 

for any x1 and x2ϵ ℝn. Note that (2.108) and (2.109) are Lipschitz conditions on f(x) and 

g(x), respectively. The constants α and β are linear growth bounds on the nonlinearity, 

also known as Lipschitz constants. From (2.107) and (2.108), it follows that 

( )f x x         (2.110) 

Examples of nonlinearities that satisfy this condition are shown in Figure 2.1. 

 

Figure 2.1: Examples of Lipschitz nonlinearities 
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 Figure 2.1 shows nonlinearities that are bounded by the linear function α|x| where 

α>0. Nonlinear functions that satisfy (2.110) will converge to zero over time. This can 

therefore be considered the region of attraction. While the nonlinearities in Figure 2.1 are 

globally bounded, the results of this dissertation are also valid for locally bounded 

Lipschitz nonlinearities as long at the nonlinearity remain within the region of attraction. 

2.4.2 Continuous-time Controller Design [15] 

To design the controller for the nonlinear system described in (2.104) and (2.105), 

where w is assumed to be zero, the input is defined as 

u Kx      (2.111) 

By doing this, the asymptotic stability condition becomes 

(( ) ( )) (( ) ( )) 0T TA BK x f x Px x P A BK x f x         (2.112) 

this can be expanded into vector matrix form 

( ) 0
( )0

T T T

T T
xA P K B P PA PBK P

x f x
f xP

      
      

  
     (2.113) 

The inequality is not linear. The first step in putting this into a linear form is to 

make use of the bounding conditions on the nonlinearity 

2 2
( )f x x         (2.114) 

or 
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0
( ) 0

0 ( )

T T
I x

x f x
I f x

   
          

     (2.115) 

Since the vectors multiplying the matrices of (2.113) and (2.115) are the same, Lemma 2 

can be used to combine the two expressions into the matrix inequality 

0
T T TA P K B P PA PBK I P

P I





     
 

 

      (2.116) 

As in Section 2.1.3.2, the matrix inequality needs to be pre-and post-multiplied by  

1 0

0

P

I

 
 
 

       (2.117) 

To obtain 

1 1 1 1 2

0
T T TP A P K B AP BKP P I

I I





         
 

 
   (2.118) 

This results in a quadratic term so the Schur complement is used. The resulting LMI is 

1 1 1 1 1

1 1

0 0

0

T T TP A P K B AP BKP I P

I I

P I





    

 

    
 

 
 
 

   (2.119) 

where  

        (2.120) 



41 

 

The continuous-time closed loop system designed through this method will be 

asymptotically stable. It will also be able to accommodate the nonlinearity while 

maintaining the stability criterion. 

2.4.2.1 Discrete-time Controller Design [16] 

Let’s consider a nonlinear discrete-time system with state and output equations, 

1 ( , )k k k kx x u Fw  
    (2.121) 

( , )k k k ky x u Gw  
     (2.122) 

where xk ϵ ℝn is the unknown state of the system, uk ϵ ℝm is the input, yk ϵ ℝp is the 

output, and wk ϵ ℝw   is finite-energy (l2) disturbance. It is again assumed that Ω and Ψ 

are analytic nonlinearities and can be expressed in such a way that the state space model 

is represented as, 

1 ( )k k k k kx Ax Bu f x Fw    
   (2.123) 

( )k k k k ky Cx Du g x Gw            (2.124) 

The pair (A, B) is assumed to be controllable and the pair (A, C) is assumed to be 

observable. It is also assumed that the nonlinearities, f and g, follow the Lipschitz 

conditions similar to those for continuous- time systems.  

In order to design an asymptotically stable controller for the nonlinear system 

described in (2.123) and (2.124) with no noise, the input is defined as 
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k ku Kx      (2.125) 

By doing this, the general performance criteria inequality becomes 

(( ) ( )) (( ) ( )) 0T T

k k k k k kA BK x f x P A BK x f x x Px         (2.126) 

this can be expanded into vector matrix form 

( ) ( ) ( )
0

( ) ( )( )

T T T
k k

k k

x xP A BK P A BK A BK P

f x f xP A BK P

         
    

      
   (2.127) 

The inequality is not linear. The first step in putting this into a linear form is to 

make use of the bounding conditions on the Lipschitz nonlinearity 

2 2
( )k kf x x      (2.128) 

Or 

0
( ) 0

( )0

kT T

k k

k

xI
x f x

f xI

   
         

     (2.129) 

Using Lemma 2 yields the matrix inequality 

( ) ( ) ( )
0

( )

T TP A BK P A BK I A BK P

P A BK I P





      
 

   
   (2.130) 

where ατ = τα. To put this inequality into linear form, Lemma 1 is used. The resulting 

matrix inequality is 
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0 ( )

0 0

( )

TP I A BK P

I P

P A BK P P





  
 

 
  

                 (2.131) 

As in Section 2.2.3.2, the matrix inequality needs to be pre-and post-multiplied by  

1

1

0 0

0 0

0 0

P

I

P





 
 
 
 
 

         (2.132) 

To obtain 

1 2 1

1 1

0

0 0

T TP P P A Y B

I I

AP BY I P





  

 

  
 

 
  

     (2.133) 

This results in a quadratic term so Lemma 1 is used. The resulting LMI is 

1 1 1

1 1

1 1

0

0 0
0

0

0 0

T TP P A Y B P

I I

AP BY I P

P 





  

 

 

 
 
  
 
 
  

      (2.134) 

The discrete-time closed loop system designed through this method is 

asymptotically stable and accommodates the nonlinearity of the system. 

2.5 Summary 

In this chapter, the general performance criteria framework was described for linear 

systems. Its uses in the controller and observer design process were explained. Table 2.1 
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summarizes the various performance objectives that can come from the general 

performance criteria framework.  

The regional eigenvalue assignment LMIs were derived as well. For linear system, 

regional eigenvalue assignment is a method to provide flexibility of eigenvalue locations 

without losing specific transient properties. While many different shaped regions could 

be used, for this dissertation, a circular region is used. 

The use of LMI techniques in the design of controllers for nonlinear systems was 

also examined. By making use of the Lipschitz property of the nonlinearity, a linear 

upper bound can be incorporated into the design of the controller in such a way that all 

nonlinearities that stay within the bound will be accommodated. This was shown to work 

in both continuous-time and discrete-time. 

In the next chapter, the general performance criteria will be used in conjunction 

with the regional eigenvalue assignment to design a state-estimate feedback controller for 

systems with Lipschitz nonlinearities in the system model. This will be derived for 

systems in continuous-time and discrete-time. The dynamic feedback controller will be 

designed to satisfy any of the general performance criteria in the presence of any 

nonlinearity that satisfies the Lipschitz bound. The regional eigenvalue assignment will 

separate eigenvalues of the closed loop linear component of the system from those of the 

linear component of the observer system. This separation will be reflected in the overall 

performance of the dynamic state feedback controller for the whole nonlinear system.  
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Chapter 3  

Dynamic Feedback Controller Design Via The General Performance Criteria 

Framework With Regional Eigenvalue Assignment Constraints 

 

The previous chapter laid the intellectual foundation for using general 

performance criteria (GPC), regional eigenvalue assignment (REA), and Lipschitz 

nonlinearities within a linear matrix inequality (LMI) framework. Moving forward, LMI 

techniques will be used to derive feasibility conditions for a dynamic state-feedback 

controller. The controller will consist of an observer to estimate the unknown states and a 

controller to stabilize the system, which can meet any one of the GPC. In the design of 

this controller, REA will be used to separate the eigenvalues of the observer from the 

eigenvalues of the controller in such a way that the state estimation error will be driven to 

zero much faster than the state. 

To build the derivation up to the goal of applying this technique to nonlinear 

systems, it is advisable to first look at the technique applied to a linear system. This 

chapter will start by deriving the dynamic GPC controller with REA constraints for a 

continuous-time linear system.  The GPC will be applied to nonlinear systems and derive 

the LMI conditions for the design of a controller. The derivation for a feasible nonlinear 

observer that satisfies the GPC also will be developed using LMI techniques. Lastly, the 

main result of this dissertation for continuous-time systems, a GPC LMI for a nonlinear 

dynamic feedback controller, will be derived. In addition to the GPC LMI constraints, the 

REA constraints will also be included to drive the estimation error to zero relatively 

quickly. 
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After the continuous-time main result has been derived, the work will then be 

duplicated for discrete-time systems. While the REA LMIs will not change, the GPC 

LMI will be derived again. To that end, the linear dynamic feedback controller with GPC 

will be derived for discrete-time systems. Afterwards, the derivation for the controller, 

the observer, and the dynamic feedback controller will be derived. The GPC LMI for 

nonlinear dynamic feedback controllers, the discrete-time main result of this dissertation, 

will include the REA constraints to insure the separation of the controller and observer 

eigenvalues. 

3.1 Continuous-time Dynamic Feedback Controller Design 

The GPC controller design that was derived in the previous chapter can also be 

applied to the design of dynamic state-feedback controllers. This type of controller can 

estimate the state and control the system based on the estimate.  Individually, the general 

performance criteria can be applied to the observer and controller. But for the purposes of 

time and design efficiency, applying the GPC to both at the same time is preferable. 

The goal is to derive an LMI that can produce a feasible gain for both the controller 

and observer that satisfies a GPC while accommodating Lipschitz type nonlinearities. But 

first, the LMI that can produce feasible gains while satisfying a GPC for linear systems 

should be derived as a proof of concept for the design process. 

3.1.1 Dynamic Feedback Controller Design for Continuous-time Linear Systems 

Let us consider the following linear continuous-time system,  
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x Ax Bu Fw        (3.1) 

y Cx Du Gw             (3.2) 

where x ϵ ℝn is the state of the system, u ϵ ℝm is the input, y ϵ ℝp is the output, and w ϵ ℝw   

is finite-energy (L2) system noise. 

The nth-order Luenberger observer used in Chapter 2 is used to calculate a state estimate, 

𝑥̂. 

ˆ ˆ ˆ( )x Ax Bu L y Cx Du          (2.25) 

The feedback control, based on the state estimate, is given by 

ˆu Kx      (3.3) 

Theorem 3.1: Given the model of a continuous-time linear system described in (3.1) and 

(3.2) and the dynamic feedback control law given by (3.3), the closed loop system 

satisfies the GPC if the matrix inequality 

1 1 1 2 1 12

0
2 1 2 2 2 22

( )
1 1 2 22 2 2

T T T T TA P P A C C P BK C C P F C D C
c c c c z z c z z c z z z

T T T T T T TK B P C C A P P A C C P F P L G C D C
c z z o o o o z z o o o z z z

T T T T T T T TF P D C C F P G L P D C C I D D D D
c z z z o o z z z z z z z


  


  

  
   

 
       

 
         
 
 
           
 

 (3.4) 

is feasible. 

Proof 
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 The state estimate error defined is the same as (2.26) and therefore has a 

corresponding state estimate error update equation that matches (2.27). Therefore, the 

augmented system can be represented as, 

0

c

o

A BKx x F
w

Ae e F LG

      
       

      
    (3.5) 

where Ao is as defined in (2.28) and Ac is as defined in (2.40). Equation (3.5) can be 

compactly expressed as, 

Hw        (3.6) 

where 

x

e

 
   

        (3.7) 

0

c

o

A BK

A

 
   

                     (3.8) 

F
H

F LG

 
  

        (3.9) 

The performance output is defined as 

z zz C X D w       (3.10) 

where  

 1 2z z zC C C      (3.11) 
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The GPC is revised by using the following Lyapunov energy function 

TV P   ;      (3.12)     

For mathematical simplicity, it is assumed that P is a block diagonal symmetric positive 

definite matrix 

0

0

c

o

P
P

P

 
  
        (3.13) 

Therefore, the GPC becomes 

0T T TV z z w w z w      
    (3.14) 

Using the system defined in (3.6), it follows that 

( ) ( ) ( ) ( )

( ) 0

T T T

z z z z

T T

z z

Hw PX X P Hw C X D w C X D w

w w C X D w w



 

      

   
  (3.15) 

This can be expressed in the matrix inequality 

2

2 2

0
( )

T T T T

T T z z z z z

T T T T

z z z z z z z

XP P C C PH C D C
X w

wH P D C C D D I D D



 

 

  

        
                

    (3.16) 

Expanding (3.16) yields the matrix inequality (3.4).  

 This theorem forms the basis of the general performance criteria design procedure 

for linear dynamic feedback controllers in continuous-time. In Chapter 4, various 

methods of solving inequality (3.4) for design purposes will be examined. 

3.1.2 Continuous-time Nonlinear GPC Controller Design with REA Constraints 
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In Chapter 2, the work of Siljak and Stipanovic allowed for certain types of 

nonlinearities to be accommodated through use of LMI techniques. As a direct expansion 

of that work, the GPC will be incorporated into the design. This time, the L2 noise will 

not be assumed to be zero. 

Theorem 3.2: Given the model of a continuous-time nonlinear system described in 

(2.105) and (2.106), the performance output as defined in (2.3) and the input is defined in 

(2.39), the closed loop system satisfies the GPC for the designed controller if the matrix 

inequality 

1 1 1 1 1 1 1 1

2

1 1

2 2

1

1 1

0 0 0

0 ( ) 0 0 0

0 0 0

0 0 0

T T T T T T

z z z z

T T T T

z z z z z z z

z

P A P K B AP BKP I F P C D P C P C P

I I

F D C P C P I D D D D

C P I

P I



 







 





       

 



 

       
 
 
        
 
 
 
 

 

(3.17) 

where  

        (3.18) 

is feasible. 

Proof 

In order to design the continuous-time GPC controller for the nonlinear system, 

the general performance criteria inequality (3.14) is expanded based on the system model 



51 

 

(( ) ( ) ) (( ) ( ) ) ( ) ( )

( ) 0

T T T

z z z z

T T

z z

A BK x f x Fw Px x P A BK x f x Fw C x D w C x D w

w w C x D w w



 

          

   

  (3.19) 

this can be expanded into vector matrix form. 

2

2 2

( ) 0 0 ( ) 0

0 ( )

T T T T T T

z z z z z

T T T

T T T T

z z z z z z z

A P K B P PA PBK C C P PF C D C x

x f x w P f x

F P D C C I D D D D w



 

 

  

          
         
            

 

(3.20) 

The inequality is not linear and therefore LMI techniques cannot be used. The 

first step in putting this into a linear form is to use the bounding conditions on the 

nonlinearity 

2 2
( )f x x      (3.21) 

or 

0 0

0 0 0

0 0 0

T T T

I x

x w I

w

   
            
      

    (3.22) 

Using the S-procedure yields the matrix inequality 

2

2 2

0 0

0 ( )

T T T T T T

z z z z z

T T T T

z z z z z z z

A P K B P PA PBK C C I P PF C D C

P I

F P D C C I D D D D



 

 



 

         
 

 
        

 

(3.23) 

Like in the previous chapter, the matrix inequality needs to be pre-and post-multiplied by  
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1 0 0

0 0

0 0

P

I

I

 
 
 
 
 

      (3.24) 

To get  

1 1 1 1

1 1

21 1 2

1 1

2 2

0 0

0 ( )

T T T

T T

z z zT

z z

T T T T

z z z z z z z

P A P K B AP BKP
I F P C D P C

P C C P P

I I

F D C P C P I D D D D



 

 



 

   

 

  

 

    
   

  
 

 
       
 
 
 

 (3.25) 

 Expanding (3.25) will produce the result stated in theorem 3.2. The continuous-

time closed loop system designed through this method will satisfy any one of the general 

performance criteria illustrated in this chapter. 

 If a specific circular region is the desired location of the observer eigenvalues, the 

regional eigenvalue assignment will need to be solved simultaneously with (3.17). The 

linear growth bound must be incorporated into the regional eigenvalue assignment LMI 

to guarantee that the nonlinearity will not cause the performance to deviate beyond the 

limits set by the regional assignment.  

Theorem 3.3: Given the model of a continuous-time nonlinear system described in 

(2.105) and (2.106), the performance output as defined in (2.3) and the input is defined in 

(2.39), the closed loop system satisfies the GPC and place the eigenvalues of the linear 

component of the system within a circular region of radius, rc, and centered at ac if the 

matrix inequalities (3.17) and  
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2 1 1 1 1

1 1 1

1 1

0 0

0

T T T

c c c

c c

r P P A Y B a P P

AP BY a P P

P 

   

  

 

  
 

   
 
 

   (3.26) 

are feasible. 

Proof 

The new regional eigenvalue assignment inequality, which considers the 

nonlinearity, is 

2 ( ) ( ) 0T

c c cr P A BK a I P A BK a I I           (3.27) 

After using the Schur Complement, the regional eigenvalue assignment LMI is  

2

0
T T T

c c

c

r P I A P K B P a P

PA PBK a P P

   
 

  

    (3.28) 

As was done previously, the multiplication of K, B and P make the matrix inequality 

nonlinear. To deal with this, inequality (3.28) is pre-and post-multiplied by 

1

1

0

0

P

P





 
 
 

      (3.29) 

Using the previous definition for Yc, the resulting LMI is 

2 1 2 1 1

1 1 1
0

T T T

c c c

c c

r P P P A Y B a P

AP BY a P P

   

  

   
 

  

    (3.30) 
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Unlike with the linear case, the (1,1) term that has the linear growth bound is 

quadratic. Therefore, Lemma 1 is used to put inequality (3.30) into a linear form. The 

resulting LMI is (3.26). 

It should be noted that the additional constraints on the REA have the unintended 

consequence of making the allowable Lipschitz constant more conservative since instead 

of being only with respect to the stability of the system, it is with respect to the D-

stability of the region. Therefore, if separation of the eigenvalues is all that matters and 

the transient properties of the state response and the estimation error are deemed 

irrelevant, it may be advisable to use the simple REA described in Chapter 2. 

3.1.3 Continuous-time Nonlinear GPC Observer Design with REA Constraints 

Theorem 3.4: Given the model of a continuous-time nonlinear system described in 

(2.105) and (2.106) and the performance output as defined in (2.3), the closed loop 

system satisfies the GPC for the observer design if the matrix inequality 

2

2 2

( )

0 0

0 ( )

T T T T T T

o o z z o z z z

T

T T T T T T

o z z z z z z z

A P C Y PA Y C C C I P PF Y G C D C

P I

F P G Y D C C I D D D D



 

   



 

            
 

  
         

 

 (3.31) 

is feasible. 

Proof 
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In order to design the observer for the nonlinear system to have any of the general 

performance criteria, a Luenberger-type nonlinear observer is designed with state 

estimate dynamics 

ˆ ˆ ˆ ˆ ˆ( ) ( ( ))x Ax Bu f x L y Cx Du g x           (3.32) 

The state estimation error differential equation is 

oe A e f L g Fw LGw          (3.33) 

where  

ˆ( ) ( )f f x f x        (3.34) 

ˆ( ) ( )g g x g x        (3.35) 

This error dynamic can be expressed in a more compact form 

( )oe A e F LG w              (3.36) 

where 

 I L        (3.37) 

f

g

 
   

 
     (3.38) 

The GPC, defined in (2.29-2.31), is used in the design of the observer. Using the 

error dynamics described in (3.36), inequality (2.31) is expanded into 
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(( ) ( ) ) (( ) ( ) )

( ) ( ) ( ) 0

T T

T T T

z z z z z z

A LC e F LG w Pe e P A LC e F LG w

C e D w C e D w w w C e D w w  

       

      
  (3.39) 

 which can be further expanded and put into vector matrix form 

2

2 2

0 0 0

0 ( )

T T T T T T

z z z z z

T T T T

T T T T T T

z z z z z z z

A P C L P PA PLC C C P PF PLG C D C e

e w P

F P G L P D C C I D D D D w



 



 

            
           
             

 

(3.40) 

This matrix inequality is not linear due to the multiplication of the unknown P and 

L. This is remedied by defining a new variable,  

oY PL      (3.41) 

The resulting matrix inequality is not a valid LMI since there is a zero on the 

diagonal. This is due to incomplete information on the nature of the nonlinearity. This 

information is incorporated into the design by putting the bounds into vector matrix form. 

Due to the Lipschitz condition on the nonlinearities, the bound on Γ is 

2 2 2 2 2
f g e e             (3.42) 

or 

( ) 0 0

0 0 0

0 0 0

T T T

I e

e w I

w

    
            
      

     (3.43) 

Applying Lemma 2 to (3.40) and (3.43) yields the LMI (3.31) 
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The observer design will guarantee that the state estimate error achieves the 

desired performance criteria. Also, if it is desired to place the observer eigenvalues in a 

specific region, a specific circular region is the desired location of the observer 

eigenvalues, the regional eigenvalue assignment LMI can be use simultaneously with 

(3.31).  

Theorem 3.5: Given the model of a continuous-time nonlinear system described in 

(2.105) and (2.106) and the performance output as defined in (2.3), the closed loop 

system satisfies the GPC and place the eigenvalues of the linear component of the 

observer’s eigenvalues within a circular region of radius, ro, and centered at ao if the 

matrix inequalities (3.31) and  

2 ( )
0

T T T

o o o

o o

r P I A P C Y a P

PA Y C a P P

     
 

  

     (3.44) 

are feasible. 

Proof 

  From Chapter 2, the regional eigenvalue assignment inequality is 

2 ( ) ( ) 0T

o o or P A LC a I P A LC a I           (2.97) 

However, in order to maintain the regional stability in the presence of 

perturbations, the linear growth condition must be considered. Therefore, the regional 

eigenvalue assignment inequality becomes 

2 ( ) ( ) ( ) 0T

o o or P A LC a I P A LC a I I             (3.45) 
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After using Lemma 1, the regional eigenvalue assignment LMI is (3.44). 

The solution to both LMIs (3.41) and (3.44) will not only give the desired closed 

loop system performance, the eigenvalues of the linear component of the system will be 

within the circular region of the desired radius and centered where specified. 

3.1.4 Dynamic Feedback Design 

In order to control a continuous-time nonlinear system with unmeasurable states, 

a Luenberger-type nth-order nonlinear observer is used to calculate a state estimate, x̂ . 

ˆ ˆ ˆ ˆ ˆ( ) ( ( ))x Ax Bu f x L y Cx Du g x           (3.46) 

The feedback control, which is based on the state estimate, is 

ˆu Kx       (3.47) 

The state estimate error update equation is 

ˆ ˆ( ) ( ) ( ) ( ( ) ( ) )e A LC e f x f x Fw L g x g x Gw            (3.48) 

The closed loop system can thus be represented as, 

( )

0

c

o

A BKx x f x F
w

Ae e f L g F LG

        
          

               (3.49) 

Equation (3.49) can be compactly expressed as, 

J Hw         (3.50) 

where X, Λ, and H are as previous defined in (3.7), (3.8), and (3.9) and 
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0 0

0

I
J

I L

 
  

        (3.51) 

( )f x

f

g

 
 

  
 
         (3.52) 

The performance output is defined in (3.10) and (3.11).  

Theorem 3.6: Given the model of a continuous-time nonlinear system described in 

(2.105) and (2.106) and the dynamic feedback control law given by (3.4), the closed loop 

system satisfies the GPC if the matrix inequality 

0 0
1 1 1 2 1 12

( ) 0
2 1 2 2 2 22

0 0 0 0

0 0 0 0

0 0 0 0

1 12

T T T T TA P P A C C I P BK C C P P F C D C
c c c c z z c z z c c z z z

T T T T T T TK B P C C A P P A C C I P P L P F P LG C D C
c z z o o o o z z o o o o z z z

P I
c

P I
o

TL P I
o

T T T T TF P D C C F P G L P
c z z z o o

  
   

   
   


 

        

          





     

0

0 0 0 ( )
2 22 2

T T TD C C I D D D D
z z z z z z z

   
    

 
 
 
 
 
 
  
 
 
 
 
 
     
 

 (3.53) 

is feasible. 

Proof 

A system satisfies a general performance criterion if there exists a symmetric 

positive definite matrix, P, such that for the Lyapunov energy function, 

TV P   ;      (3.54)     
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where P is as defined in (3.13), the GPC is 

0T T TV z z w w z w      
    (3.55) 

From this, it follows  

( ) ( ) ( ) ( )

( ) 0

T T T

z z z z

T T

z z

J Hw PX X P J Hw C X D w C X D w

w w C X D w w



 

        

   
  (3.56) 

This can be expressed in the matrix inequality 

2

2 2

0 0 0

0 ( )

T T T T T

z z z z z

T

T T T T

z z z z z z z

P P C C PJ PH C D C

J P

w H P D C C D D I D D w



 

 

  

            
    

       
              

     (3.57) 

The bound on f (xk) is  

2 2
( )k kf x x      (3.58) 

Therefore, the bound on Г is 

2 2 2 2
( )f x f g     

2 2
( )x e    

    (3.59) 

This can be represented in block matrix for as 

T T M               (3.60) 

where 

0

0

I
M

I I



 

 
  

        (3.61) 
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Inequality (3.60) is expressed in such a way that it can be used with Lemma 2. 

0 0

0 0 0

0 0 0

T T T

M

w I

w

   
             
           (3.62)  

Lemma 2 is applied to the (3.57) and (3.62) in order to combine the system dynamics 

with the bounds on the nonlinearities. The resulting matrix inequality is then multiplied 

by τ-1.  Redefining P for P/τ yields 

2

2 2

0 0

0 ( )

T T T T

z z z z z

T

T T T T

z z z z z z z

P P C C M PJ PH C D C

J P I

H P D C C D D I D D

 
  

   
    

        
 

  
             (3.63) 

Expanding (3.63), the resulting matrix inequality is inequality (3.53) 

This result, when solved using the REA constraints defined in (3.44) and (3.26), 

will place the eigenvalues of the linear component in the specified regions in such a way 

that the nonlinearity is accommodated and the desired performance criterion is met.  

In dynamic control design, it is important that the error in the estimate of the state 

go to zero much faster than the state. In continuous-time, this means placing the observer 

eigenvalues closer to negative infinity. To force this separation, REA is used. 

Theorem 3.7: Given the model of a continuous-time nonlinear system described in 

(2.105) and (2.106), the performance output as defined in (2.3) and the input is defined in 

(2.39), the closed loop system satisfies the GPC and place the eigenvalues of the linear 

component of the controller’s eigenvalues within a circular region of radius, rc, and 
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centered at ac and the observer’s eigenvalues within a circular region of radius, ro, and 

centered at ao if the matrix inequalities (3.53),  (3.26), and (3.44) are feasible. 

 The basic example of this theorem was demonstrated in [31] for noiseless 

systems. 

3.2 Discrete-time 

The goal of deriving a matrix inequality result for a GPC dynamic feedback 

controller with REA constraints for nonlinear continuous-time systems has been met. 

Using similar methodology, a matrix inequality result in discrete-time will also be done. 

Like in the first half of this chapter, the dynamic feedback controller design for a linear 

system will be done first. Then, including the nonlinearity, the design for a controller, an 

observer, and a dynamic feedback controller with REA constraints will be derived. 

3.2.1 Dynamic feedback Controller Design for Linear Systems 

Let us consider the following linear discrete-time system,  

1k k k kx Ax Bu Fw         (3.64) 

k k k ky Cx Du Gw             (3.65) 

where x ϵ ℝn is the state of the system, u ϵ ℝm is the input, y ϵ ℝp is the output, and w ϵ ℝw   

is finite-energy (L2) disturbance 

A Luenberger-type nth-order observer is used to calculate a state estimate, 𝑥̂k. 

1
ˆ ˆ ˆ( )k k k k k kx Ax Bu L y Cx Du           (3.66) 
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The feedback control, which is based on the state estimate, is 

ˆ
k ku Kx       (3.67) 

Theorem 3.8: Given the model of a discrete-time linear system described in (3.64) and 

(3.65) and the dynamic feedback control law given by (3.67), the closed loop system 

satisfies the GPC if the matrix inequality 

1 1 1 2 1 12

2 1 2 2 2 22

1 1 2 22 2

T T T T T T TP A P A C C A P BK C C A P F C D C
c c c c z z c c z z c c z z z

T T T T T T T T T T T T TK B P A C C P A P A K B P BK C C K B P F A P F A Y G C D C
c c z z o o o o c z z c o o o o z z z

T T T T T T TF P A D C C F P BK F P A G Y A D C C
c c z z z c o o o o z z z


  


  

 
 


     


        

       


0




 

 
 
 



 (3.68) 

where 

( )
2

T T T T T T T TF P F F P LG G L P F G L P LG I D D D D
c o o o z z z z


          

 (3.69) 

is feasible. 

Proof 

 The state estimate error defined is the same as (2.74) and therefore has a 

corresponding state estimate error update equation that matches (2.75). Therefore, the 

augmented system can be represented as, 

1

1 0

k c k

k

k o k

x A BK x F
w

e A e F LG





       
        

      
    (3.70) 
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Equation (3.70) can be compactly expressed as, 

1k k kHw         (3.71) 

where Λ and H are as defined in Section 3.1 and  

k

k

k

x

e

 
   

 
     (3.72) 

The performance output is defined as 

k z k z kz C X D w       (3.73) 

where Cz is the same as what was defined for continuous-time systems. Like in 

continuous time, the GPC is revised by using the following Lyapunov energy function 

T

k k kV P   ;      (3.74) 

where P is defined in (3.13). The GPC in discrete-time is 

1 0T T T

k k k k k k k kV V z z w w z w           (3.75) 

Given the system described in (3.71), it follows that 

( ) ( ) ( ) ( )

( ) 0

T T T

k k k k k k z k z k z k z k

T T

k k z k z k k

Hw P Hw P C X D w C X D w

w w C X D w w



 

          

   
  (3.76) 

This can be expressed in the matrix inequality 

2

2 2

0
( )

T T T T T
kT T z z z z z

k k T T T T T
kz z z z z z z

XP P C C PH C D C
X w

wH P D C C H PH D D I D D



 

 

  

         
                  

   (3.77) 
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Expanding (3.78) yields the matrix inequality (3.68) 

 This inequality forms the basis of the general performance criteria design 

procedure for linear dynamic feedback controllers for discrete-time systems. In a future 

chapter, various methods of solving inequality (3.68) for design purposes will be 

examined. 

3.2.2 Discrete-time Nonlinear GPC Controller Design with REA Constraints 

In Chapter 2, the work of Siljak and Stipanovic allowed for certain types of 

nonlinearities to be accommodated through use of LMI techniques. In Section 3.1.2 of 

this chapter, the work was expanded for continuous-time systems. In this section, the 

same expansion will be done in discrete-time for systems with non-zero l2 noise. 

Theorem 3.9: Given the model of a discrete-time nonlinear system described in (2.123) 

and (2.124), the performance output as defined in (2.49) and the input is defined in 

(2.125), the closed loop system satisfies the GPC for the designed controller if the matrix 

inequality 

1 1 1 1 1

2

1

2 2

1 1

1

1 1

0

0 0 0 0

0 ( ) 0
0

0 0

0 0 0

0 0 0 0

T T T T T

z c z

T T T

z z z z

c

z z

P P C P A Y B P C P

I I

C P I D D F D

AP BY I F P

C P D I

P



 







 

 



    



 



 

 
 
 
 

  
  
 
 
 
 
 

  (3.78)  

where  
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        (3.79) 

is feasible. 

Proof 

To design the controller for the discrete-time nonlinear system described in 

(2.123) and (2.124) with a feedback control law defined in (2.125), the GPC is expanded, 

resulting in the matrix inequality 

(( ) ( ) ) (( ) ( ) )

( ) ( ) ( ) 0

T T

k k k k k k k k

T T T

z k z k z k z k k k z k z k k

A BK x f x Fw P A BK x f x Fw x Px

C x D w C x D w w w C x D w w  

       

      
  (3.80) 

this can be expanded into vector matrix form 

2

2 2

( ) ( ) ( ) ( )

( ) ( ) 0 ( ) 0

( ) 0 ( )

T T T T T T T

k z z z z z k

k k

T T T T

k z z z z z z z k

x P A BK P A BK C C A BK P A BK PF C D C x

f x P A BK P f x

w F P A BK D C C I D D D D w



 

 

  

             
    

       
               

 

(3.81) 

The inequality is not linear. The first step in putting this into a linear form is to 

make use of the bounding conditions on the nonlinearity 

2 2
( )k kf x x      (3.82) 

Or 

0 0

0 0 0

0 0 0

k

T T T

k k k k

k

I x

x w I

w

   
            
      

     (3.83) 
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Using the S-procedure yields the matrix inequality 

2

2 2

( ) ( ) ( ) ( )

( ) 0 0

( ) 0 ( )

T T T T T T

z z z z z

T T T T

z z z z z z z

P A BK P A BK C C I A BK P A BK PF C D C

P A BK I P

F P A BK D C C I D D D D





 

  



  

           
 

    
         

 

(3.84) 

To put this inequality into linear form, the Schur Complement is used. The 

resulting matrix inequality is 

2

2 2

0 ( )

0 0
0

0 ( )

( )

T T T T

z z z z z

T T T T

z z z z z z z

P C C C D C A BK P

I P

D C C I D D D D F P

P A BK P PF P





 

  



  

     
 
  
     
 

 

                (3.85) 

Like in the previous chapter, the matrix inequality needs to be pre-and post-multiplied by  

1

1

0 0

0 0

0 0

P

I

P





 
 
 
 
 

           (3.86) 

To get  

1 1 1 2 1 1 1 1

2

1 1

2 2

1 1 1

0

0 0
0

0 ( )

T T T T T T

z z z z z

T T T T

z z z z z z z

P P C C P P P C D P C P A P K B

I I

D C P C P D D I D D F

AP BKP I F P





 

  



  

       

 

  

     
 
  
      
 

 

 

(3.87) 

This results in two quadratic terms so the Schur complement is used twice. The resulting 

LMI is (3.78).  
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 If a specific circular region is the desired location of the controller eigenvalues, 

the regional eigenvalue assignment LMI (3.26) can be solve simultaneously with (3.78). 

The solution to both LMIs will not only give the closed loop system performance, the 

eigenvalues will be with the region specified. 

Theorem 3.10: Given the model of a discrete-time nonlinear system described in (2.123) 

and (2.124), the performance output as defined in (2.49) and the input is defined in 

(2.125), the closed loop system satisfies the GPC and place the eigenvalues of the linear 

component of the system within a circular region of radius, rc, and centered at ac if the 

matrix inequalities (3.26) and (3.78) are feasible. 

3.2.3 Discrete-time Nonlinear GPC Observer Design with REA Constraints 

Theorem 3.11: Given the model of a discrete-time nonlinear system described in (2.123) 

and (2.124) and the performance output as defined in (2.49), the closed loop system 

satisfies the GPC for the observer design if the matrix inequality 

2

2 2

( )

0 0

0 ( )

0

T T T T T

z z z z oT

T

T T T T T T

z z z z z z z o

o o

P C C I P C D C A P C Y

P I

D C C D D I D D F P G Y

PA Y C PF Y G P



 

    



  

       
 

 
       
 

   

 (3.88) 

is feasible. 

Proof 



69 

 

In order to design the observer to have any of the general performance criteria, it 

is assumed that the A matrix represents the closed loop system matrix. A Luenberger-

type observer is designed. The state estimate dynamics is 

1
ˆ ˆ ˆ ˆ( ) ( ( ))k k k k k k k kx Ax Bu f x L y Cx Du g x         (3.89) 

where x̂  represents the estimate of the state. The state estimation error dynamics are  

1 ( )k o k k k ke A e f L g F LG w          (3.90) 

where  

ˆ( ) ( )k k kf f x f x        (3.91) 

ˆ( ) ( )k k kg g x g x        (3.92) 

The error dynamics can be expressed in a more compact form 

1 ( )k o k k ke A e F LG w         (3.93) 

where 

 I L        (3.94) 

k

k

k

f

g

 
   

 
     (3.95) 

By applying the general performance criteria inequality to the error dynamics, (3.93) 

becomes 
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(( ) ( ) ) (( ) ( ) )

( ) ( ) ( ) 0

T T

k k k k k k k k

T T T

z k z k z k z k k k z k z k k

A LC e F LG w P A LC e F LG w e Pe

C e D w C e D w w w C e D w w  

         

      
 (3.96) 

 which can be further expanded and vector matrix form, 

2

2 2

( ) ( )( ) ( )

0 0 0

( ) ( ) ( ) ( )
0

( )

TT

T TTT
z z zzk k

T

k k

T T
k k

T T T

z z z z z z z

A LC P F LGP A LC P A LC
P

C D CC Ce e

P

w wF LG P A LC F LG P F LG

D C C D D I D D



 



  

     
 

     
    

       
             
        

(3.97) 

The resulting matrix inequality is not a valid LMI since there is a zero on the 

diagonal. This is due to incomplete information on the nature of the nonlinearity. This 

information is incorporated into the design by putting the bounds into vector matrix form. 

Due to the Lipschitz condition on the nonlinearities, the bound is 

2 2 2 2 2

k k k kk
f g e e             (3.98) 

or 

( ) 0 0

0 0 0

0 0 0

k

T T T

k k k k

k

I e

e w I

w

    
            
      

     (3.99) 

Applying Lemma 2 to (3.97) and (3.99) yields the LMI 
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2

2

2

( ) ( ) ( ) ( ) ( )

0 0

( ) ( )
( ) ( ) 0

( )

T T T T T

z z z z

T

T T

z zT T

z z z T

z z

P A LC P A LC C C I P A LC P F LG C D C

P I

F LG P F LG D D
F LG P A LC D C C

I D D







    








 
 
            
 

  
 

    
       

 

 

 (3.100) 

The inequality is not linear. The first step in putting this into a linear form is to 

make use of Lemma 1 to obtain (3.88). The observer gain, L, can be calculated as 

1

oL P Y      (3.101) 

The observer design will guarantee that the state estimate error achieves the 

desired performance criteria. If a specific circular region is the desired location of the 

observer eigenvalues, the regional eigenvalue assignment LMI (3.44) can be solve 

simultaneously with (3.89). The solution to both LMIs will not only give the closed loop 

system performance, the eigenvalues will be with the region specified. 

Theorem 3.12: Given the model of a continuous-time nonlinear system described in 

(2.123) and (2.124) and the performance output as defined in (2.49), the closed loop 

system satisfies the GPC and place the eigenvalues of the linear component of the 

observer’s eigenvalues within a circular region of radius, ro, and centered at ao if the 

matrix inequalities (3.89) and (3.1024) are feasible. 

3.2.3.1 Dynamic Feedback Design 

 To control a discrete-time nonlinear system with states that are not known, a 

Luenberger-type nth-order nonlinear observer is designed. 
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1
ˆ ˆ ˆ ˆ ˆ( ) ( ( ))k k k k k k k kx Ax Bu f x L y Cx Du g x           (3.103) 

The feedback control law is 

ˆ
k ku Kx      (3.104) 

The state estimate error update equation is 

1
ˆ ˆ( ) ( ) ( ) ( ( ) ( ) )k k k k k k k ke A LC e f x f x Fw L g x g x Gw             (3.105) 

The closed loop system is thus represented as, 

1

1

( )

0

k c k k

k

k o k k k

x A BK x f x F
w

e A e f L g F LG





         
                      

   (3.106) 

where the differences in nonlinearities and their estimate are defined as,  

ˆ( ) ( )k k kf f x f x        (3.107) 

ˆ( ) ( )k k kg g x g x        (3.108) 

Equation (3.106) can be expressed as, 

1k k k kJ Hw          (3.109) 

where Λ, H, and J are as previously defined in the continuous-time equations (3.8), (3.9), 

and (3.51) and Xk is defined in (3.72) and  

( )k

k k

k

f x

f

g

 
 

  
 
  

     (3.110) 
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The performance output is defined in (3.73) and (3.11). The bound on Гk is, 

2 2 2 2
( )k kf x f g     

2 2
( )k kx e       (3.111) 

this can be represented in block matrix form as 

0 0

0 0 0

0 0 0

k

T T T

k k k k

k

M

w I

w

   
             
      

   (3.112) 

Theorem 3.13: Given the model of a discrete-time nonlinear system described in (2.123) 

and (2.124), the performance output as defined in (2.49) and the input is defined in 

(2.125), the closed loop system satisfies the GPC if the matrix inequality 

γT T T T T T T TP - A P A -δC C - ταI A P BK -δC C -A P 0 0 -A P F-δC D - C
c c c c z1 z1 c c z1 z2 c c c c z1 z z12

γT T T T T T T T T T T T T T T T TK B P A -δC C P -A P A -K B P BK -δC C - τ(α +β)I K B P -A P A Y K B P F - A P F + A Y G -δC D - C
c c z2 z1 o o o o c z2 z2 c o o o o c o o o o z2 z z22

-P A P BK τI - P 0 0 -P F
c c c c c

0 -P A
o

0 τI - P P L -P F+ P LG
o o o o o

T T T T T0 Y A 0 L P τI - L P L -L P F+L P LG
o o o o o o

T T T T-F P F - F P LG + G L P F
c o oγ γT T T T T T T T T T T T T T-F P A -δD C - C F P BK -F P A +G Y A -δD C - C -F P -F P +G L P F P L - G L P L

c c z z1 z1 c o o o o z z2 z2 c o o o o2 2 γT T T T-G L P LG - εI - δD D + (D +D )
o z z z z2















> 0













 
 
 
 
 



(3.113) 

is feasible. 

Proof 

Using the augmented system and performance output, the GPC is expanded into the form 
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( ) ( ) ( ) ( )

( ) 0

T T T

k k k k k k k k z k z k z k z k

T T

k k z z k k

J Hw P J Hw P C X D w C X D w

w w C X D w w



 

             

   
 

 (3.114) 

where P is as defined in (3.13). This can also be expressed in the matrix inequality 

2

2 2

0

( )

T T T T T T T

k z z z z z k

T T T T

k k

T T T T T T

k z z z z z z z k

P P C C PJ PH C D C

J P J PJ J PH

w H P D C C H PJ H PH D D I D D w



 

 

  

           
    

          
                  (3.115) 

Lemma 2 is used to combine the system dynamics with the bounds on the nonlinearities.  

2

2 2

0

( )

T T T T T T

z z z z z

T T T T

T T T T T T

z z z z z z z

P P C C M PJ PH C D C

J P I J PJ J PH

H P D C C H PJ H PH D D I D D



 

  



  

       
 

     
           

  (3.116) 

When (3.116) is expanded, the resulting matrix inequality is (3.113).  

 In dynamic control design, it is important that the error in the estimate of the state 

go to zero much faster than the state. In discrete-time, the observer eigenvalues are placed 

closer to the origin. To address this weakness, REA is used. Since the REA formulation is 

the same in discrete-time as continuous-time, the LMIs for REA, (3.44) and (3.26) are 

used. 

Theorem 3.14: Given the model of a discrete-time nonlinear system described in (2.123) 

and (2.124), the performance output as defined in (2.49) and the input is defined in 

(2.125), the closed loop system satisfies the GPC and place the eigenvalues of the linear 

component of the controller’s eigenvalues within a circular region of radius, rc, and 

centered at ac and the observer’s eigenvalues within a circular region of radius, ro, and 

centered at ao if the matrix inequalities (3.113),  (3.26), and (3.44) are feasible. 
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 The H∞ controller was designed using this theorem in [32]. 

3.3 Summary 

In this chapter, the dynamic state-feedback controller design was derived in such a 

way that the system will satisfy a general performance criterion for both linear and 

nonlinear systems. The nonlinearity was assumed to be analytic and therefore a linear 

part could be extracted for use in eigenvalue assignment. The remaining nonlinearities 

were assumed to satisfy a linear growth bound. Since this technique alone could not 

guarantee separation between the controller eigenvalues and observer eigenvalues, 

Regional Eigenvalue assignment was used for dynamic state-feedback controllers to 

separate those eigenvalues. 

In the next chapter, the results from this chapter will be applied using various 

methods of designing the controller. Simulation results will be analyzed and compared to 

one another. Simulations will also compare the linear and nonlinear results of each 

method. 
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Chapter 4  

Methods of Implementation and Simulation Results 

In Chapter 3, the matrix inequalities were derived for GPC-based controller, 

observer, and dynamic feedback controller designs in continuous-time and discrete time 

with REA constraints. By developing the theory for linear systems first, the procedure 

used in the derivation of the matrix inequality was shown. When including the 

nonlinearity, use of the S-procedure allowed Lipschitz nonlinearities to be integrated into 

the matrix inequality framework in such a way that LMI techniques may be used. The 

resulting matrix inequalities can be used to find gains that satisfy a specified performance 

criterion while accommodating the nonlinear component of the system and satisfying a 

given REA constraint. 

The design technique is applied in both continuous-time and discrete-time in this 

chapter for the design of dynamic state-feedback controllers. The design procedure can 

utilize at least four distinct methods of using the main results from Chapter 3 to obtain the 

controller and observer gains that satisfy both the performance objective and the regional 

eigenvalue constraints. The first method utilizes the necessary condition of the (1, 1) 

block of main result matrix inequality simultaneously with the controller REA to solve 

for the positive definite matrix, Pc, and the controller gain, K. The second method solves 

the first 2n x 2n block simultaneously with the controller REA for Pc and K. The third 

method uses the controller regional eigenvalue assignment LMI to calculate the controller 

gain K to turn the main result matrix inequalities into an LMIs. These three methods use 

the Pc and K for the controller in order to then determine the observer gain, L. The fourth 
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method designs the controller based on the necessary condition of the (1,1) block and the 

controller REA and designs the observer based on the necessary condition of the (2,2) 

block and the observer REA. In all four cases, the main result matrix inequality becomes 

solvable using LMI techniques once certain unknowns are calculated, allowing the full 

LMI to be solved. By solving the LMI, stability, performance, nonlinear accommodation, 

and REA constraints are satisfied.  

The methods are compared in the final section. The comparison will measure which 

methods work best in terms of the ease of getting a feasible answer and the maximum 

feasible Lipschitz constant. For each time domain, the control design procedure will be 

used on the same system, allowing for a fair comparison of the effectiveness of each 

method. 

4.1 Dynamic feedback controller design for nonlinear continuous-time systems 

All methods proposed in continuous-time will use the following system model. 

Consider a simple inverted harmonic system with friction, shown in Figure 4.1. 
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Figure 4. 1: Simple inverted pendulum 

This system is expressed in state-space format as 

1

00 1 0 0

sin( )0 1 1
x x u w

xb 

      
         

      
            (4.1) 

 1 0 0.1y x w          (4.2) 

where 𝛼 = 10×10−6 and 𝑏 = 5×10−3. The initial conditions are chosen as 

𝑥𝑜 = [
0
0

]       𝑥̂𝑜 = [−10×10−6

0
] 

The initial conditions place the state at the origin, which is an unstable 

equilibrium point for the system. The finite energy noise generally is unknown; but for 

the purposes of simulation, it is defined as 

𝑤𝑘 = Ψ𝑒−𝜒𝑡 
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where Ψ=0.95 and χ =5.13. The finite energy noise causes the system to move from its 

unstable equilibrium point. 

A time response plot of the open loop system is shown in Figure 4.2. The plot 

shows the system settles at x1=π radians and x2=0 rad/sec.  

 

Figure 4.2: Simple inverted pendulum open-loop response 

Figure 4.2 shows the pendulum starting at a position pointing upwards. Due to it 

being slightly off the unstable equilibrium point, it proceeds to fall toward a position π 

radians, or 180 degrees from its initial position. Over the course of falling, the pendulum 

swings back and forth across the new stable equilibrium point and as the energy decays, 

the pendulum settles in a position pointing downward. The goal of the control problem 
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will be to return the pendulum to the unstable equilibrium point despite the imprecise 

knowledge of the state and despite the noise in the system. Furthermore, a specific 

performance criteria, either H∞ or Very Strict Passivity will be achieved in the process. 

To that end, the performance output is defined as  

𝑧 = [1 0 0.1 0] [
𝑥
𝑒

] + 0.1𝑤 

To satisfy the GPC parameters outlined in Chapter 2, the GPC design parameters 

for H∞ and Very Strict Passivity will be set to the values in Table 4.1 

Table 4.1: Performance Criteria design parameters 

 δ ε γ 

H∞ 1 -100 0 

Very Strict 

Passivity 

0.001 0.001 1 

It is assumed that the state cannot be accurately measured. Therefore, a dynamic 

state feedback controller will be designed. As mentioned in Chapter 3, REA is used to 

separate the controller eigenvalues from the observer eigenvalues. The design parameters 

for the desired regions for the controller eigenvalues, Dc (rc, ac), and the observer 

eigenvalues, Do (ro, ao), are 

𝑟𝑐 = 1           𝑎𝑐 = −1.5 

𝑟𝑜 = 4           𝑎𝑜 = −8.5 

For all simulations, Matlab will be used. The LMI solver will be used to calculate 

the feasible gains for the controller and the observer using one of the four methods 

discussed in this dissertation. Once a feasible set of gains have been found, Matlab will 

be used to run simulations based on the closed loop state-space model. Both a pole-zero 

map and a time response plot will be displayed. When the design is completed using 

either of the four methods, the dynamic state-feedback controller will have H∞ or very 



81 

 

strict passivity performance, have REA constraints that force the state-estimate error to 

go to zero much faster than the state, and will accommodate the nonlinearity in the 

system model. 

4.1.1 Method 1: First dimension necessary condition method 

4.1.1.1 Design Procedure 

For the matrix inequality described in (3.53) to be satisfied, it is necessary that the 

blocks along the diagonal be positive definite. Using this necessary condition, the (1,1) 

block of (3.53) is used to derive an LMI system that can find a feasible solution for Pc 

and K. The matrix inequality system is 

1 1( ) ( ) 0T T

c c z zA BK P P A BK C C I


      
  (4.3) 

In its current form, (4.3) is not linear due to the way the unknown matrices K and 

Pc multiply with B. This is remedied by pre- and post-multiplying each element of (4.3) 

by Pc
-1 to group the unknowns together and then grouping the unknowns together by 

defining Yc= KPc 
-1 

1 1 2 1 1

1 1 0T T T T

c c c c c c z z cP A Y B AP BY P P C C P
            (4.4) 

Matrix inequality (4.4), because of the quadratic term, is not linear. This is 

addressed by using Lemma 1a twice, resulting in the LMI  

1 1 1 1

1

1 1

1

1

0 0

0

T T T T

c c c c c c z

c

z c

P A Y B AP BY P P C

P I

C P I





 

   

 



    
 

 
 
    (4.5) 
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The quantities A, B, δ, and Cz1 are known. If LMI (4.5) is feasible, outputs Pc
-1 

and Yc are obtained. These results allow the value for the control gain, K, to be 

calculated. The value of α can also be an input if the Lipschitz bound is known. In that 

case, a value for τ is found and used in the observer design matrix inequality. 

Once the controller has been designed based on the necessary condition used 

above, Yc and Pc, are known, allowing for K and Ac=A+BK to be calculated. These 

values can then be used in the full matrix inequality (3.53). As was done in previous 

chapters, Yo=PoL. This yields the LMI, 

1 2 1 12

2 22

2

1 1

2 2

0 0

* 0

* * 0 0 0

* * * 0 0

* * * * 0

* * * * * ( )

T T T

c z z c z z z

T T

o o z z z

T T

z z z z

T

c c c c

T

z z

T T T

o o o o o

T

z z

P BK C C P P F C D C
c

P Y P F Y G C D C
o o

I

I

I

I D D D D

A P P A

C C I

A P C Y P A Y C

C C I I

 

  



 

 

  









 

   

    

   

  
 
  

 
    
 

  






 

0







 

(4.6) 

If LMI (4.6) is feasible, the outputs Po and Yo are obtained, allowing the observer 

gain, L, to be calculated. The variable, β, can be a known input quantity or calculated as 

an output value with this LMI technique. The controller gains and observer gains 

calculated using this design procedure place the eigenvalues of the linear component of 

the controller and observer within left half plane and can accommodate nonlinearity in 

the measurement and state. 



83 

 

However, our goal is to be able to explicitly locate the eigenvalues of the linear 

component of the controller and observer systems in specific regions of the unit circle 

while satisfying the performance criteria and accommodating the nonlinearity. To that 

end, a second set of LMIs is needed. To place the eigenvalues of the linear components in 

the desired locations, the REA LMI (3.26) is used to place the eigenvalues of the 

controller within one circular region and the REA LMI (3.44) is used to put the 

eigenvalues of the observer in a separate circular region in the complex plane.  

The advantage to using regional eigenvalue assignment is the LMI region is in D-

space, meaning it is not tied directly to continuous-time or discrete-time systems. This 

means that the LMIs for circular regional eigenvalue assignment can be used in either 

continuous-time or discrete-time. The disadvantage is that to guarantee stability, a second 

LMI with the stability constraints in the appropriate time domain is needed.  The LMI 

system consisting of (4.5) and (3.26) places the eigenvalues of (A+BK) within the 

circular region for the controller. Then the LMI system consisting of (4.6) and (3.44) 

places the eigenvalues of (A-LC) within the circular region for the observer. The closed 

loop system is robust with respect to the nonlinear deviation within the system and is 

asymptotically stable. 

4.1.1.2 Method 1 application to the continuous-time system model 

Using the system model defined in (4.1) and (4.2), Method 1 is applied.  Solving 

the combination of the (1,1) block of the main result and the controller Regional 

Eigenvalue Assignment LMI (3.26) yields a feasible value for Pc
-1 and Yc, which then 

allows for the calculation of the controller gains, K. 
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Table 4.2: Controller gains using Method 1 

 H∞ Very Strict Passivity 

Controller Gains, K [-1.8115  -2.7124] [-1.8115  -2.7124] 

 

Using the values for Pc
-1 and K, the feasible observer gains, L are calculated by 

solving the main result LMI (4.6) for Po and Yo. 

 

Table 4.3: Observer gains using Method 1 

 H∞ Very Strict Passivity 

Observer Gains, L [13.2686  43.1780]T [13.7334  46.7140]T 

 

When the design parameters for H∞ control are used in 4.5, the eigenvalues for the 

linear component are placed within the prescribed circular regions, as shown in Figure 

4.3. 
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Figure 4.3: Pole-Zero map for H∞ control using Method 1 

When the design parameters for very strict passivity control are used, the 

eigenvalues for the linear component are placed within the prescribed circular regions, as 

shown in Figure 4.4. 
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Figure 4.4: Pole-Zero map for very strict passivity control using Method 1 

The pole-zero maps in Figure 4.3 and 4.4 show that the eigenvalues are being 

placed within the regions specified. Table 4.3 also shows that the gains are the same 

between the 2 performance criteria for the controller design phase, but the observer gains 

have a small difference. This means that specifying the performance objective does 

change the eigenvalue location within the region for this method, demonstrating that this 

design method does indeed distinguish between different performance objectives. 

The gains, which have been found though this design procedure, are applied to the 

augmented system. The closed loop time response is shown in Figure 4.5. 
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Figure 4.5: Method 1 Time response plot 

Figure 4.5 shows that the system response was driven to zero. In physical terms, 

this mean the inverted pendulum is stabilized about its unstable equilibrium point. 

Furthermore, despite the state of the system being unknown, the estimator eliminates the 

estimation error quickly, thereby allowing the state to be accurately driven to zero. These 

results are demonstrated for both the H∞ controller and the very strict passivity controller. 

Figure 4.5 also shows only a slight different in the time response between the H∞ 
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controller and the very strict passivity controller. In the state plot, the very strict passivity 

plots stay closer to zero than the H∞ plot. 

4.1.2 Method 2: Second necessary condition method 

4.1.2.1 Design Procedure 

For the matrix inequality described in (3.129) to be satisfied, all blocks of all 

dimensions with the matrix along the main diagonal must be positive definite. Using this 

necessary condition, the composite block consisting of the (1,1), (1,2), (2,1), and (2,2) 

blocks of (3.129) are used to derive an LMI system that can solve for Pc and K. This 

differs from the first method by including more information into the controller design in 

the form of the off diagonal elements and information about the observer in the (2,2) 

block. The matrix inequality system is 

1 1( ) ( )
1 2

0

( )
2 1 2 2

T T

c c z z

TA BK P P A BK C C I P BK C C
c z z

T T T T TK B P C C A P P A C C I
c z z o o o o z z







   
 

       
 

 
      

 

 (4.7) 

In order to design the controller, the terms associated with the observer gains are 

bounded, as defined by the matrix inequality 

TA P P A R
o o o o

          (4.8) 

Applying (4.8) to (4.7) yields 
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 

 (4.9) 

 In its current form, (4.9) is not linear due to the way the unknown matrices K and 

Pc multiply with B. This is remedied by pre- and post-multiplying each element of (4.9) 

by Pc
-1 to group the unknowns together and then defining Yc= KPc 

-1 
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   (4.10) 

 where 

1 1

o c cR P RP       (4.11) 

This matrix inequality is made linear by using Lemma 1a twice, resulting in the 

LMI  
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  (4.12) 

The known variables are A, B, Ro, δ, Cz1 and Cz2.  If LMI (4.12) is feasible, 

outputs Pc
-1 and Yc are obtained. These results allow the value for the control gain, K, to 
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be calculated. The values of α and β can also be a known input or an output of the LMI. 

The value for R can also be calculated based on the equation (4.11) 

Once the controller has been designed based on (4.7) and Ac, Pc, K, R, α and β are 

known, it can be expanded by setting Yo=PoL to get the LMI. If LMI (4.6), (4.8), and 

(3.44) are feasible, the outputs Po and Yo are obtained, allowing the observer gain, L, to 

be calculated. The gains calculated using this design procedure place the eigenvalues of 

the linear component of the controller and observer within left half plane and can 

accommodate nonlinearity in the measurement and state. 

The LMI system consisting of (4.11), and (3.26) places the eigenvalues of 

(A+BK) within the circular region for the controller. Then the LMI system consisting of 

(4.6), (4.8), and (3.44) places the eigenvalues of (A-LC) within the circular region for the 

observer. The closed loop system is robust with respect to the nonlinear deviation within 

the system and is asymptotically stable. 

4.1.2.2 Method 2 application to the continuous-time system model 

Using the system model defined in (4.1) and (4.2), Method 2 is used.  Normally, 

solving the combination of the 2n x 2n block of the main result and the controller 

Regional Eigenvalue Assignment LMI would yield Pc
-1 and Yc, which would then allow 

for the calculation of the controller gains, K. However, for the given system parameters, 

Matlab’s LMI solver was unable to find a feasible result for the observer design stage. In 

order to get a feasible result, the known Lipschitz bound on the nonlinearity, α, is reduced 

to 10-15 and the performance output is modified to  

𝑧 = [0.1 0.001 0.001 0.0001]x + 0.001w 
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The resulting controller gains are shown in the following table. 

 

Table 4.4: Controller gains using Method 2 

 H∞ Very Strict Passivity 

Controller Gains, K [-3.4682   -3.4458] [-2.1607   -3.0168] 

 

Using the values for Pc
-1 and K, the observer gain, L is calculated by solving the 

main result LMI for Po and Yo. 

 

Table 4.5: Observer gains using Method 2 

 H∞ Very Strict Passivity 

Observer Gains, L [14.8437   49.8542] T infeasible 

 

When the design parameters for H∞ control are used, the eigenvalues for the 

linear component are placed within the prescribed circular regions, as shown in Figure 

4.6. 
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Figure 4.6: Pole-Zero map for H∞ control using Method 2 

When the design parameters for very strict passivity control are used, no feasible 

answer was achieved for the design of the observer. This shows that given very strict 

constraints, it is possible to not be able to get a working design using this method. Figure 

4.6 shows that like with Method 1, the eigenvalues were placed within the desired 

regions. It is also notable that the eigenvalue locations are different from those in Method 

1. Specifically, the controller region contains eigenvalues that are complex, unlike the 

real eigenvalues that resulted from using Method 1.  

The H∞ closed loop time response is shown in Figure 4.7. 
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Figure 4.7: Method 2 time response plot  

 Like Method 1, despite the state of the system being unknown, the estimator 

eliminates the estimation error quickly. This allows the state to be accurately driven to 

zero. Unlike Method 1, the use of Method 2 to design a very strict passivity controller 

failed due to Matlab’s inability to find a feasible solution for all unknowns. This 

demonstrates the limitation of Method 2. 

4.1.3 Method 3: The REA controller method 
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4.1.3.1 Design Procedure 

The third method uses the controller regional eigenvalue assignment LMI to solve 

for a controller gain, K, that will place the eigenvalues of the controller within the 

prescribed region. Unlike the previous two methods, this method relies only on the REA 

constraint for the controller design. There is no GPC consideration for the controller, only 

with the observer. Once the controller has been designed using the controller REA (3.26) 

and Pc and K are known, (3.129) can be used as an LMI. Setting Yo=PoL yields the LMI, 
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(4.13) 

If LMI (4.13) and the observer regional eigenvalue assignment LMI produce a 

feasible result, the outputs Po and Yo are obtained, allowing the observer gain, L, to be 

calculated. The variable β can be used as a known input quantity or calculated as an 

output value with this LMI technique. The gains calculated using this design procedure 

place the eigenvalues of the linear component of the controller and observer within 

specified circular regions in the left half plane and can accommodate nonlinearity in the 

measurement and state. 

4.1.3.2 Method 3 application to the continuous-time system model 



95 

 

Using the system model defined in (4.1) and (4.2), Method 3 is used.  Solving the 

controller regional eigenvalue assignment LMI yields Pc
-1 and Yc, from which the 

controller gains, K, can be calculated. 

 

Table 4.6: Controller gains using Method 3 

 H∞ Very Strict Passivity 

Controller Gains, K [-1.8276  -2.7212] [-1.8276  -2.7212] 

 

Using the values for Pc
-1 and K, the observer gains, L are calculated by solving the 

main result LMI for Po and Yo. 

 

Table 4.7: Observer gains using Method 3 

 H∞ Very Strict Passivity 

Observer Gains, L [16.6876  58.7608]T [16.9641  56.4191]T 

 

When the design parameters for H∞ control are used, the eigenvalues for the 

linear component are placed within the prescribed circular regions, as shown in Figure 

4.8. 
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Figure 4.8: Pole-Zero map for H∞ control using Method 3 

When the design parameters for very strict passivity control are used, the 

eigenvalues for the linear component are placed within the prescribed circular regions, as 

shown in Figure 4.9 
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Figure 4.9: Pole-Zero map for very strict passivity control using Method 3 

The controller eigenvalues were placed in the same location. This is not surprising 

since without the GPC consideration, the design is the same for both the H∞ and very 

strict passivity controller.  

The closed loop time response is shown in Figure 4.10. 
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Figure 4.10: Method 3 time response plot 

Figure 4.10 is very similar to Figure 4.5 in terms of transient response. The 

primary differences are that the estimation error drops have a larger magnitude initial 

drop when using Method 3.  

4.1.4 Method 4: The design and check method 

4.1.4.1 Design Procedure 
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The design procedure for this method starts off similarly to Method 1. Using this 

necessary condition, the (1,1) block of (3.129) is used to derive an LMI system that can 

solve for Pc and K. The matrix inequality system is (4.3) LMI techniques are used, 

resulting in LMI (4.5). Like Method 1, the input variables are A, B, δ, and Cz1. If LMI 

(3.129) and REA LMI (3.26) are feasible, outputs Pc
-1 and Yc are obtained. These results 

allow the value for the control gain, K, to be calculated.  

Method 4 differs from Method 1 in the following steps.  Method 4 uses the 

necessary condition of the (2,2) block, as well as the observer REA to do the observer 

design. The necessary condition for the observer design is 

2 2( ) ( ) ( ) 0T T

o o z zA LC P P A LC C C I


            (4.14) 

This matrix inequality can be put in linear form using the previously defined 

variable, Yo. 

2 2 0T T T

o o o o z zA P C Y P A Y C C C I I


            (4.15) 

This matrix inequality is linear and does not require additional LMI techniques.  If 

LMIs (4.16) and observer REA LMI (3.44) are feasible, the outputs Po and Yo are 

obtained, allowing the observer gain, L, to be calculated. The variable β can be used as a 

known input quantity or calculated as an output value with this LMI technique. The gains 

calculated using this design procedure place the eigenvalues of the linear component of 

the controller and observer within left half place, but it does not necessarily guarantee the 

satisfaction of a general performance criterion. 
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Using the values of K, L, α, and β, the main result LMI is solved for Pc and Po. If 

the resulting LMI is feasible, then the closed loop system will accommodate the 

nonlinearity and satisfy the general performance criterion while satisfying REA 

constraints.  

4.1.4.2 Method 4 application to the continuous-time system model 

Using the system model defined in (4.1) and (4.2), Method 4 is used.  Solving the 

combination of the (1,1) block of the main result and the controller Regional Eigenvalue 

Assignment LMI yield Pc
-1 and Yc, which then allows for the calculation of the controller 

gains, K. 

 

Table 4.8: Controller gains using Method 4 

 H∞ Very Strict Passivity 

Controller Gains, K [-1.8115  -2.7124] [-1.8115  -2.7124] 

 

Using the values for Pc
-1 and K, the observer gains, L are calculated by solving the 

main result LMI for Po and Yo. 

 

Table 4.9: Observer gains using Method 4 

 H∞ Very Strict Passivity 

Observer Gains, L [15.5880  54.2390]T [15.5880  54.2390]T 

 

Note that the controller and observer gains are the same. This is because the 

relevant design parameter, the δ parameter, is the same for both performance criteria. 



101 

 

Though the magnitudes of the delta terms differ between the performance criteria, they 

are still relatively small when compared to other elements of the LMIs. Therefore, they 

have the same gains to a significant figure and will therefore have the same pole-zero and 

time response plots. This differs from previous methods by excluding the information 

from the off diagonal terms and not including the information about the system noise.  

Using Method 4, the eigenvalues for the linear component are placed within the 

prescribed circular regions, as shown in Figure 4.11. 

 

Figure 4.11: Pole-Zero map using Method 4 

The closed loop time response is shown in Figure 4.12. 
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Figure 4.12: Method 4 time response plot 

The transient response seen in Figure 4.12 is like those seen when methods 1 and 

3 were used. The goal of separating the eigenvalues of the controller and observer have 

had the desired result, the state estimation error goes to zero faster than the state. 

The 4 methods demonstrated show that given a feasible solution, the controller 

can be designed to specifications. The variety of methods allows the designer flexibility 

in using the design procedure. However, certain limitations can influence which methods 

are used and when. In the next section, the differences in the methods will be explored in 

more detail. 

4.1.5 Comparison 
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The first metric of comparison is the maximum Lipschitz constant each of the 

methods allows. This value, α, is determined by using a consistent system model and 

increasing α until the LMI solver no longer provides a K and L that result in a strictly 

feasible result for the system of LMIs. Using this methodology, the results in are 

tabulated in Table 4.5.  

 

Table 4.10: Comparison of maximum alpha values between the 4 methods 

 
max α for 

H∞ 

Rank 

Method 1 0.792x10-3 2 

Method 2 28x10-15 4 

Method 3 0.104x10-3 3 

Method 4 4.693 x10-3 1 

 

 

The results show that Method 4 has the highest value of alpha that produces a 

feasible result. Method 2 is the most restrictive method and this shows in the small value 

for alpha it needs to achiever feasibility. 

A look at the pole zero map for an H∞ controller using α=10e-16 shows the 

relative pole locations within the regions the eigenvalues are placed for all the design 

methods. 
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Figure 4.13: Pole-Zero comparison of Methods 1, 3, and 4 

From Figure 4.13, the observer eigenvalues are indeed being placed differently 

within their regions. However, the controller eigenvalues do not appear to have much 

difference in their eigenvalue locations, except for Method 2. To get a better idea of 

where within those regions the eigenvalues lie, a zoomed in version of Figure 4.13 for 

each region is done. 
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Figure 4.14: Pole-Zero map for the controller region 

 Figure 4.14 shows the very close eigenvalue locations between methods 1, 3, and 

4. However, it should be noted that only methods 1 and 4 have the same eigenvalue 

location. Method 3 places the eigenvalues slightly closer together. 
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Figure 4.15: Pole-Zero comparison in the observer region 

Figure 4.15 shows that in terms of the observer design, Method 3 places the 

eigenvalues farthest apart and closest to the edge of the observer region. Method 1 places 

it’s eigenvalues closest to the center of the region and to each other. 

These results show that the matrix inequality (3.129) can be used to achieve 

design goals using multiple methods. Some methods are computationally easier and 

provide a broader range of feasible solutions. Other methods are computationally more 

intense and provide a narrower range of feasible results. These results are only for 
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continuous-time systems; to get a broader understanding of the effectiveness of each 

method, they are also being tested in discrete-time 

4.2 Discrete-time 

All methods proposed in discrete-time will use the following system model. 

Consider a simple harmonic system with friction, like the system pictured in Figure 4.1, 

expressed in discrete-time state-space format as 

1
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0 1
00 0

(2 ) 4
1 0.001sin( )

(2 ) (2 )

k k k k
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x x u wT b
x

T b T b
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    (4.16) 

  1 6

,11 0 tan ( ) 10k k k ky x x w        (4.17) 

where 𝛼 = 10×10−12, β=10-3, b = 3 is the friction coefficient, and T=0.001 is the 

sample rate. The initial conditions are 

𝑥𝑘,𝑜 = [
0.1
0.2

]       𝑥̂𝑘,𝑜 = [
0
0

] 

The initial condition is estimated to be at the equilibrium point, which is unstable. 

However, the actual position is perturbed from its equilibrium. The finite energy noise 

generally is unknown but for the purposes of simulation, it is defined as 

𝑤𝑘 = Ψ𝑘cos (𝑘) 

where Ψ=0.99. From the system model, it is seen that the finite energy noise also 

contributes to the system’s deviation from its equilibrium point. 

A time response plot of the open loop system is shown in Figure 4.16. The plot 

shows the system settles at x1=π for two different values of alpha, the one used in the 

system model, α= 10×10−12, and a much larger alpha, 𝛼 = 10×10−5. The output with 
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the larger alpha reaches steady state in less time than the system with the smaller alpha 

due to the dominance of the friction in the system model.  

 

Figure 4.16:Simple discrete-time inverted pendulum open-loop response 

The performance output is  

𝑧𝑘 = [1 ∙ 10−6 0.01 ∙ 10−3 0.1 0.1]𝑥𝑘 + 0.1𝑤𝑘 

This performance output signifies that the transient of the state is less important than the 

estimation error and the noise in terms of how the system performance is measured. The 

GPC design parameters for H∞ and Very Strict Passivity are 

 

Table 4.11: Performance Criteria design parameters --Discrete-time 

 δ ε γ 

H∞ 1 -10 0 

Very Strict 

Passivity 

1 0.001 1 
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It is assumed that the state cannot be accurately measured. Therefore, a dynamic 

state feedback controller will be designed. As mentioned in Chapter 3, REA is used to 

separate the controller eigenvalues from the observer eigenvalues. The design parameters 

for the desired regions for the controller eigenvalues, Dc (rc, ac), and the observer 

eigenvalues, Do (ro, ao), are 

𝑟𝑐 = 0.1           𝑎𝑐 = 0.75 

𝑟𝑜 = 0.2           𝑎𝑜 = 0.25 

The control goal is to keep the system at (0,0) though the use of state estimate 

feedback control. This is achieved through one of the four methods described in the 

previous section. However, this time, it will be applied toward the design of a discrete-

time controller. When the following methods are completed, a dynamic state-feedback 

controller is designed with either H∞ or very strict passivity performance, has REA 

constraints that force the state-estimate error to go to zero much faster than the state, and 

accommodates the nonlinearity in the system model. 

4.2.1 Method 1: First dimension necessary condition method 

4.2.1.1 Design Procedure 

For the matrix inequality described in (3.113) to be satisfied, it is necessary that 

the blocks along the diagonal be positive definite. Unlike in continuous-time, the 

necessary conditions used are both the (1,1) and the (3,3) blocks of (3.113), to derive an 

LMI system that can solve for Pc and K. The matrix inequality system is 

1 1( ) ( ) 0T T

c c z zP A BK P A BK C C I          (4.18) 
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with the constraint 

0cI P         (4.19) 

However, in order to convert (4.17) into a linear form, Lemma 1a is used to give 

1 1 0
T T T T

c z z c c

c c c

P I C C A P K B P

P A P BK P

    
 

 

  (4.20) 

In its current form, (4.20) is not linear due to the way the unknown matrices K and Pc 

multiply with B. This a remedied by pre- and post-multiplying each element of (4.20) by 

Pc
-1 in order to group the unknowns together  
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  (4.21) 

This matrix inequality is still not linear due to the quadratic term in the (1, 1) block of 

(4.21). This is addressed by using Lemma 1a twice, resulting in the LMI  
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  (4.22) 

The second necessary condition is a constraint on Pc. To be consistent with (4.22), 

(4.19) is also pre- and post-multiplied by Pc
-1. The new constraint on Pc

-1 is 

1 1 0cP I
        (4.23) 

The known quantities are A, B, δ, and Cz1. If the LMI system consisting of (4.19), (4.22), 

and (3.26) is feasible, outputs Pc
-1 and Yc are obtained. These results allow the value for 
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the control gain, K, to be calculated. The resulting eigenvalue locations for the linear 

component of the controller eigenvalues are assigned to the region specified by the REA 

constraints.  The value of α can also be an input if the Lipschitz bound is known. In that 

case, τ is found and used in the observer design matrix inequality.  

The controller has been designed based on the necessary conditions of (3.113), 

Ac, Pc, K, and α are known. In order to design the observer, Lemma 1 is used on (3.116). 

The resulting matrix inequality is 
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      (4.24) 

Inequality (4.24) is expanded based on the system model (3.106), P is as defined in (3.13) 

and Yo is defined in (2.36).   This yields the LMI, 

1 1 2 1 1 12

1 2 2 2 2 22

1 1 2 22 2 2

0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 (

T T T T T T T

c z z z z z z z c c

T T T T T T T T T

z z o z z z z z c o o o

c

o

T

o

T T T T

z z z z z z z z z

P I C C C C C D C A P K B P

C C P C C I I C D C K B P A P C Y

I P

I P

I Y

C D C C D C I D D D D





  

   

    







   

     

       



       

0

)

0 0 0

0 0 0

T T T T

z c o o

c c c c c c

o o o o o o o

F P F P G Y

P A P BK P BK P P F P

P A Y C P Y P F Y G P

 
 
 
 
 
  
 
 

 
  
 
    

   (4.25) 

If LMI (4.25) and (3.44) are feasible, the outputs Po and Yo are obtained, allowing 

the observer gain, L, to be calculated. The variable β can be used as a known input 

quantity or calculated as an output value with this LMI technique. Then the LMI system 

consisting of (4.25) and (3.44) place the eigenvalues of (A-LC) within the circular region 
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for the observer. The gains calculated using this design procedure place the eigenvalues 

of the linear component of the controller and observer within the unit circle and can 

accommodate nonlinearity in the measurement and state. The general performance 

criterion chosen guarantees the eigenvalues are within the unit circle. The closed loop 

system is robust with respect to the nonlinear deviation within the system and is 

asymptotically stable. 

4.2.1.2 Example of discrete-time design using Method 1  

Using the system model defined in (4.16) and (4.17), Method 1 is used with initial 

conditions and noise defined at the beginning of Section 4.2.  Solving the combination of 

the (1,1) block of the main result, the (3,3) block, and the controller REA LMI yield Pc
-1 

and Yc, which then allows for the calculation of the controller gains, K. 

 

Table 4.12: Controller gains using method 1--Discrete-time 

 H∞ Very Strict Passivity 

Controller Gains [0.4172   -0.4834] [0.4172   -0.4834] 

 

Using the values for Pc
-1 and K, the observer gains, L are calculated by solving the 

main result LMI for Po and Yo. 

 

Table 4.13: Observer gains using method 1 --Discrete-time 

 H∞ Very Strict Passivity 

Observer Gains [1.4532   1.9607] T [1.4533   1.9610] T 

 



113 

 

When the design parameters for H∞ control are used, the eigenvalues for the linear 

component are placed within the prescribed circular regions, as shown in Figure 4.17 

 

Figure 4.17: Pole-Zero Map H∞ control using method 1--Discrete-time 

When the design parameters for very strict passivity control are used, the 

eigenvalues for the linear component are placed within the prescribed circular regions, as 

shown in Figure 4.18 
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Figure 4.18: Pole-Zero map for very strict passivity using method 1 --Discrete-time 

The pole-zero maps in Figure 4.17 and 4.18 show that the eigenvalues are being 

placed within the regions specified. Table 4.12 also shows that the gains are the same 

between the two performance criteria for the controller design phase, but the observer 

gains have a small difference. This means that specifying the performance objective does 

change the eigenvalue location within the region. 



115 

 

The closed loop time response is shown in Figure 4.19. 

 

Figure 4.19: Method 1 Time response plot-- Discrete-time 

 The very slight difference in the eigenvalue locations in the observer have made it 

so that the time response is virtually identical for the H∞ controller and the very strict 

passivity controller. Both controllers drive the estimation error to zero faster than the 

state reaches zero and both controllers succeed in keeping the pendulum balanced at its 

equilibrium point. 
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4.2.2 Method 2: Second dimension necessary condition method 

4.2.2.1 Design Procedure 

For the matrix inequality described in (3.113) to be satisfied, it is necessary that 

the blocks along the diagonal be positive definite. Using this necessary condition, the 

composite block consisting of the (1,1), (1,2), (2,1), and (2,2) blocks of (3.113) are used 

to derive an LMI system that can solve for Pc and K. The matrix inequality system is 
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 (4.26) 

Since the observer information at this point in the design is not needed. Therefore, 

the observer information is bounded, as defined by the matrix inequality 

TP A P A R
o o o o
          (4.27) 

Or expressed in LMI form 

0
T T T

o o o

o o o

P R A P C Y

P A Y C P

  
 

 

        (4.28) 

Applying (4.8) to (4.7) yields 
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(4.29) 
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 Lemma 1a is applied to (4.28)  
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 In its current form, (4.29) is not linear due to the way the unknown matrices K 

and Pc multiply with B. This is remedied by pre- and post-multiplying each element of 

(4.30) by  
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Yc is substituted in the matrix inequality for the product KPc 
-1. 
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This matrix inequality is still not linear due to the quadratic term in the (1,1) and 

(2,2) blocks. This is addressed by using Lemma 1a twice, resulting in the LMI  
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    (4.34) 

The input variables are A, B, Ro, δ, Cz1 and Cz2.  If LMI (4.34) is feasible, outputs 

Pc
-1 and Yc are obtained. These results allow the value for the control gain, K, to be 

calculated. The values of α and β can be an input and τ-1 can be found immediately or α 

and (α+β) solved and β can be calculated. The value for R can also be calculated based on 

the equation (4.10) 

Once the controller has been designed based on the necessary condition of 

(3.113), Ac, Pc, K, R, α and β are known, it can be expanded. Setting Yo=PoL yields the 

LMI (4.25). If LMI (4.25), LMI (3.44), and LMI (4.27) are feasible, the outputs Po and Yo 

are obtained, allowing the observer gain, L, to be calculated. The gains calculated using 

this design procedure place the eigenvalues of the linear component of the controller and 

observer within left half plane and can accommodate nonlinearity in the measurement 

and state. 

The LMI system consisting of (4.32), and (3.26) places the eigenvalues of 

(A+BK) within the circular region for the controller. Then the LMI system consisting of 

(4.25), (4.27), and (3.44) places the eigenvalues of (A-LC) within the circular region for 
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the observer. The closed loop system is robust with respect to the nonlinear deviation 

within the system and is asymptotically stable. 

4.2.2.2 Example of discrete-time design using Method 1. 

Using the system model defined in (4.16) and (4.17), Method 2 is attempted for 

the same system and performance parameters. However, in this particular case, the 

method described above failed to yield a feasible LMI solution for all LMIs.  

The LMIs for the controller design could find a feasible solution, however, when 

the values of Pc and K were substituted into the discrete-time main result LMI, a feasible 

solution could not be found. This either means this method could not find a feasible LMI 

solution for the observer or the resulting closed loop solution could not match the 

performance criteria. When the main result LMI was removed, a feasible result was 

found, but it lacked the performance criteria information needed to guarantee the desired 

performance. 

The reasons for the failure of this method on this system could be that the LMI 

solver is not advanced enough to find the feasible solution. However, it is also important 

to remember that in continuous-time, this method was the worst at generating a feasible 

solution and only when system parameters are drastically changed was a feasible solution 

for the continuous-time H∞ controller found. However, like with the continuous-time very 

strict passivity case, a feasible solution could not be obtained via Matlab. 

4.2.3 Method 3: The REA only controller method 

4.2.3.1 Design Procedure 
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The third method uses the controller regional eigenvalue assignment LMI to solve 

for a controller gain, K, that will place the eigenvalues of the controller within the desired 

region. Once the controller has been designed and Ac, K, and α are known, (3.113) can be 

used as an LMI. A feasible solution for LMI (4.25) can then be found. If LMI (4.25) and 

the observer regional eigenvalue assignment LMI produce a feasible result, the outputs Po 

and Yo are obtained, allowing the observer gain, L, to be calculated. The variable β can 

be used as a known input quantity or calculated as an output value with this LMI 

technique. The gains calculated using this design procedure place the eigenvalues of the 

linear component of the controller and observer within left half plane and can 

accommodate nonlinearity in the measurement and state. 

4.2.3.2 Example of the design procedure for method 3 

Using the system model defined in (4.15) and (4.16), method 3 is used.  Solving 

the controller regional eigenvalue assignment LMI yields Pc
-1 and Yc, from which the 

controller gains, K, can be calculated. 

 

Table 4.14: Controller gains using method 3--Discrete-time 

 H∞ Very Strict Passivity 

Controller Gains [0.4117   -0.4755] [0.4117   -0.4755] 

 

Using the values for Pc
-1 and K, the observer gains, L are calculated by solving the 

main result LMI for Po and Yo. 
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Table 4.15: Observer gains using method 3-- discrete-time 

 H∞ Very Strict Passivity 

Observer Gains [1.4536    1.9710] T [1.4589    1.9635] T 

 

When the design parameters for H∞ control are used, the eigenvalues for the 

linear component are placed within the prescribed circular regions, as shown in Figure 

4.20. 
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Figure 4.20: Pole-Zero map for H∞ control using Method 3-- Discrete-time 

When the design parameters for very strict passivity control are used, the 

eigenvalues for the linear component are placed within the prescribed circular regions, as 

shown in Figure 4.21. 
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Figure 4.21: Pole-Zero map for very strict passivity control using method 3--Discrete-time 

Note that the H∞ controller has complex eigenvalues in the observer region while 

Very Strict Passivity controller has real eigenvalues in the observer region. The closed 

loop time response is shown in Figure 4.22. 
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Figure 4.22: Method 3 time response plot-- Discrete-time 

Figure 4.22 is very like Figure 4.19 in terms of transient response. The difference 

between performance criteria is seen in the error where the effects of the noise are still 

visible. This slight decrease in noise accommodation differs from the smooth error 

estimation error steady-state seen in Method 1. But like the design using Method 1, the 

design objectives are achieved. 

4.2.4 Method 4: Design and Check 
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4.2.4.1 Design Procedure 

The design procedure for this method starts off similarly to method 1. Using this 

necessary condition, the (1,1) block of (3.113) is used to derive an LMI system that can 

solve for Pc and K. The matrix inequality system is 

   (4.35) 

with the constraint from the (3,3) block 

          (4.36) 

LMI techniques are used, resulting in the LMIs  

      (4.37) 

and 

          (4.38) 

The input variables are A, B, δ, and Cz1. If LMI (4.37), (4.38), and REA LMI 

(3.26) are feasible, outputs Pc
-1 and Yc are obtained. These results allow the value for the 

control gain, K, to be calculated.  

Method 4 then uses the necessary conditions from the (2,2), (4,4), and (5,5) block, 

as well as the observer REA to do the observer design. The first necessary condition for 

the observer design is 
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which can be expressed in a linear form as 
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The second necessary condition is 

0I P
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and the third necessary condition is 
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which is expressed in linear form as 
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If LMIs (4.40), (4.41), (4.43) and observer REA LMI (3.44) are feasible, the 

outputs Po and Yo are obtained, allowing the observer gain, L, to be calculated. The 

variable β can be used as a known input quantity or calculated as an output value with 

this LMI technique. The gains calculated using this design procedure place the 

eigenvalues of the linear component of the controller and observer within the unit circle, 

but it does not necessarily guarantee the satisfaction of a general performance criterion. 
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Using the values of K, L, α, and β, LMI (4.25) is solved for a new Pc and a new 

Po. If the resulting LMI is feasible, then the closed loop system will accommodate the 

nonlinearity and satisfy the chosen general performance criterion. 

4.2.5 Example of discrete-time design using method 4  

Using the system model defined in (4.16) and (4.17), Method 4 is used.  In 

simulation, the controller gains found from the first set of LMIs, LMIs (3.26), (4.36), and 

(4.37), place the eigenvalues within the desired circular region for the controller design.  

 

Table 4.16: Controller gains using method 4-- Discrete-time 

 H∞ Very Strict Passivity 

Controller Gains [0.4612   -0.5469] [0.4612   -0.5469] 

 

Using the values for Pc
-1 and K, the observer gains, L is calculated by solving the 

second set of LMIs (3.44), (4.40), (4.41), and (4.43) for Po and Yo. 

 

Table 4.17: Observer gains using method 4-- Discrete-time 

 H∞ Very Strict Passivity 

Observer Gains [1.5127   2.0497T [1.5127   2.0497] T 

 

Note that the gains are the same. This occurs because the design process itself 

only taking delta into account, which is equal to 1 for both design objectives. Therefore, 

they have the same gains and will therefore have the same pole-zero and time response 
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plots. The eigenvalues for the linear component are placed within the prescribed circular 

regions, as shown in Figure 4.23. 

 

Figure 4.23: Pole-Zero map for method 4--Discrete-time 

The third LMI (4.25) is feasible for both the H∞ controller and the very strict 

passivity controller for the found controller and observer gains. This means that the 
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closed loop system meets the desired performance criteria. The closed loop time response 

is shown in Figure 4.24. 

 

Figure 4.24: Method 4 time response plot-- Discrete-time 

The time response of the controller designed using method 4, seen in Figure 4.24, 

is very like the time response from the controller designed using method 3, seen in Figure 

4.22. The noise is still influencing the estimation error. However, because the gains 
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satisfy the main result matrix inequality and the verification via the time response plot, it 

is concluded that method 4, like methods 1 and 3, work. 

Three of the four methods demonstrated show that given a feasible solution, the 

controller can be designed to the desired specifications. In the next section, the 

differences will be explored in more detail. 

4.2.6 Comparison 

Just as in the continuous-time case, the first metric of comparison will examine 

the maximum Lipschitz constant. Table 4.5 shows that Method 4 has the highest values 

of α and β that produce feasible results. This matches the result in continuous-time. 

 

Table 4.18:Comparison of maximum alpha and beta values between the 4 methods--Discrete-time 

 
Maximum α 

H∞ 

Maximum α 

VSP 

Maximum β 

 H∞ 

Maximum β  

VSP 

Method 1 1.4189 x 10-12 1.0049 x 10-12 19.680x10-4 11.939x10-4 

Method 3 0.4714x10-4 0.4698x10-4 20.660x10-4 20.545x10-4 

Method 4 3.1687x10-4 3.1687x10-4 188.44x10-4 189.24x10-4 

 

From Table 4.18, it is uniformly seen that the smallest maximum Lipschitz 

bounds are found using Method 1 while the largest are found using Method 4. This shows 

that the most conservative method that works is Method 1. In Figure 4.25, an 

examination of the pole zero map for an H∞ controller shows the relative pole locations 

within the regions the eigenvalues are placed. 
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Figure 4.25: Pole zero comparison-- Discrete-time 

Unlike in continuous-time, the eigenvalues of the observer region are observed to 

have imaginary components. There also appears to be less overlap in terms of the 

eigenvalues within the controller region. It should be noted that unlike in continuous-

time, method 1 and method 4 do not have the same eigenvalue locations for the controller 
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despite the similarity in design methods.  Like in continuous-time, Method 3 places the 

eigenvalues closer together than the other methods. 

The observer region shows that the eigenvalues calculated using method 1 are 

complex while the other two methods produced real eigenvalues. Unlike in continuous-

time, method 4 places an eigenvalue closest to the edge of the region and the eigenvalues 

found using method 1 are closer to the center. 

These discrete-time results show that the main result can be used to achieve 

design goals using three of the four methods that were used successfully for continuous-

time. The design method is an important factor to consider when implementing this 

design procedure. Some methods are computationally easier and provide a broader range 

of feasible solutions. Other methods are computationally more intense and provide a 

narrower range of feasible results. But how does this controller compare to a linear 

controller for the same model with the same parameters? 

4.3 Linear vs. Nonlinear 

In continuous- and discrete-time, the differences in the norms of the states between 

the linear system and the nonlinear system are small. This is due to the small magnitudes 

of the system response, the relatively large size of the noise, and the small value for α. 

More analysis of this controller design procedure with different systems will need to be 

done in future work.  

4.4 Discussion 

In this chapter, four methods of applying the main results from Chapter 3 are 

demonstrated. Method 2 is the least workable method due to the difficulty of obtaining a 
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feasible solution in Matlab. This method is included in this dissertation because in the 

future, LMI software will improve to better calculate feasible solutions and it is the 

author’s opinion that this method will be useful for control systems designers. 

In contrast, the fourth method discussed in this chapter was the easiest method for 

which a feasible solution was found. This is due to the design being based solely on REA 

and the necessary conditions of the main results from Chapter 3.  These relatively lax 

conditions allowed the LMI solver to calculate larger Lipschitz bounds on the 

nonlinearity. The downside of this method is that the performance criteria are treated as 

an afterthought. This may be what leads to a slower convergence of the system. Method 4 

is best used as an initial design to test for feasibility. If method 4 fails to obtain a feasible 

solution, it is very likely that the other methods will also not be able to find a feasible 

solution. 

Method 3 and Method 1 both worked well for the given system and performance 

parameters. While Method 3 found a higher Lipschitz constant, Method 1 did a better job 

accommodating the noise, as evidenced by the lack of oscillation in the estimation error. 

Overall, apart from method 2, all three methods succeeded in designing a state-

estimate feedback controller that achieved a desired performance and accommodated the 

nonlinearity in the system. The successful application of this dissertation’s main results, 

using multiple methods, show the viability and flexibility of this design technique.  
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Chapter 5  

Conclusion and Future Work 

In this dissertation, a dynamic feedback controller design procedure is proposed. 

The goal of this dissertation is to develop a design procedure which uses LMI constraints, 

the GPC, and REA to estimate and control certain types of nonlinear systems. This goal 

was achieved in this dissertation.  

In Chapter 2, there was an in-depth look at the previous work in the various areas 

of control theory that contribute to the controller design procedure introduced in this 

dissertation. The various performance criteria that are encompassed by the GPC 

framework briefly examined in both continuous-time and discrete-time. The GPC was 

then applied to the design of observers for state estimation and controllers for 

stabilization using LMI techniques. The LMI derivation for REA was used to 

demonstrate how a combination of LMI techniques and REA could be used to design 

observers and controllers for linear systems. Chapter 2 concluded by examining the 

method of using the Lipschitz property to bound certain types of nonlinearities. This 

allowed for LMI techniques to be applied to the analysis and design of controllers for 

nonlinear systems. 

In Chapter 3, the main theorems were derived in both continuous-time and 

discrete-time. The matrix inequality conditions necessary to design a linear dynamic 

feedback controller which satisfied the GPC was proven first. The theorem was then 

expanded to include Lipschitz nonlinearities in the system model for the design of 

observers, controllers, and dynamic state-feedback controllers. The REA constraints were 
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added to the design of the observers and controllers. In this dissertation, the main result 

was the application of the REA constraints to the system of matrix inequalities that, when 

satisfied, designed a GPC dynamic feedback controllers for systems with Lipschitz 

nonlinearities. 

Chapter 4 applied the main results derived in Chapter 3 to a simple real world 

system, the simple inverted pendulum, in continuous-time and discrete-time. By using 

any one of four methods, the matrix inequalities were manipulated to design the 

controller first. Once the controller gains had been calculated, the observer was designed. 

When the design process was complete, the closed loop system would exhibit the desired 

performance in the presence of the nonlinearity and noise. Chapter 4 also compared the 

different methods since all the methods gave slightly different designs. 

The design technique is a combination of previously established mathematical and 

control design techniques. Using the LMI constraints allows for flexibility in the design 

procedure; this is illustrated using 4 methods to design the dynamic feedback controller. 

The GPC provides flexibility in terms of the performance criteria, as well as building in 

extra noise accommodation. The REA is used to guarantee that the state estimation goes 

to zero faster than the state itself.  Using the properties of Lipschitz nonlinearities, bounds 

on the nonlinearity are incorporated into the LMI formulation to accommodate the 

nonlinearity in the system. By bringing these various techniques together in a single 

design procedure, an innovative approach to control design has been conceived and 

tested. Furthermore, this design technique works in both continuous-time and discrete 

time.   
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The design technique is not without limitations. The biggest limiting factor is 

being able to find the feasible solution to the main results of this dissertation. The LMI 

software algorithm is not always able to find a strictly feasible result. This limits the 

effectiveness of this technique for more complex systems. The simulated maximum 

Lipschitz bound is conservative for both continuous-time and discrete-time systems. A 

small Lipschitz bound limits the potential use of this design technique on real world 

systems. These computational shortcomings are outside the purview of this dissertation. 

However, new LMI software is being developed and used. As a direct extension of this 

work, testing out other LMI solvers on a different system may provide additional insight 

into the problem. 

This research can be further expanded and explored in many other ways. While 

this dissertation based the dynamic feedback controller design on a full order observer, 

the work could be expanded to address systems where a few states are unknown and the 

rest are known using a reduced order observer. A reduced-order observer would reduce 

the computational cost to the controller while providing a more accurate estimate of the 

state. 

This research also used the GPC to guarantee a single performance criterion is 

achieved. For future work, mixed-criteria design can be explored. The simplest way of 

implementing a mixed-criteria design would be to incorporate additional GPC-based LMI 

constraints [33]. However, this could make the design process more computationally 

complex than it needs to be. Other methods of addressing the mixed criteria objective 

should also be investigated. 
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Other areas of potential future work include: 

 Use of this design procedure for stochastic systems 

 Incorporating the resilience property into the design 

 Analysis of how the controller design affects the observer design/ GPC 

constraint 

 Exploration of additional methods of using the main result 

 Optimal Control via LMI optimization 

Future graduate students can explore these areas.  
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