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Abstract

Analyses of singular (token-level) causation often make use of the idea that a cause in-
creases the probability of its effect. Of particular salience in such accounts are the values
of the probability function of the effect, conditional on the presence and absence of the
putative cause, analyzed around the times of the events in question: causes are charac-
terized by the effect’s probability function being greater when conditionalized upon them.
Put this way it becomes clearer that the ‘behavior’ (continuity) of probability functions in
small intervals about the times in question ought to be of concern. In this paper I make
an extended case that causal theorists employing the ‘probability raising’ idea should pay
attention to the continuity question. Specifically, if the probability functions are ‘jumping
about’ in ways typical of discontinuous functions, then the stability of the relevant proba-
bility increase is called into question. The rub, however, is that sweeping requirements for
either continuity or discontinuity are problematic, and as I argue, this constitutes a ‘conti-
nuity bind’. Hence more subtle considerations and constraints are needed, two of which I
consider: (1) utilizing discontinuous first derivatives of continuous probability functions,
and (2) abandoning point probability for imprecise (interval) probability.
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1 Introduction

Analyses of singular (token-level) causation often make use of the idea that a cause increases
the probability of its effect. Of particular salience in such accounts are the values of the prob-
ability function of the effect, conditional on the presence and absence of the putative cause,
analyzed around the times of the events in question: causes are characterized by the effect’s
probability function being greater when conditionalized upon them. Put this way it becomes
clearer that the ‘behavior’ (continuity) of probability functions in small temporal intervals about
the times in question ought to be of concern. One prominent (but under-examined) account of
token-level causation, that of Ellery Eells ([1991]), actually requires point ‘jumps’ (discontinu-
ities) in the relevant probability functions for positive and negative token-level causes.

In this paper I make an extended case that causal theorists employing the ‘probability rais-
ing’ idea should pay attention to the continuity question, as it has serious implications for the
viability of their accounts. Specifically, if the probability functions are ‘jumping about’ in
ways typical of discontinuous functions, then the stability of the relevant probability increase
is called into question. The rub, however, is that sweeping requirements for either continuity or
discontinuity are problematic, and as I argue, this constitutes a ‘continuity bind’. Hence more
subtle considerations and constraints are needed.

I begin by introducing the question of continuity in the context of causation and probability
functions (trajectories) using the work of Eells—one of the few theorists to explicitly con-
sider continuity.1 I then show how discontinuity requirements like Eells’ are untenable, and
in a surprisingly decisive way. Next I argue that the discontinuity issue also has problematic
implications for causal accounts without explicit discontinuity requirements (Menzies [1989];
Noordhof [1999]; Hitchcock [2004]; Kvart [2004]; Northcott [2010]; Glynn [2011]). After
that I consider a blanket continuity requirement and show that it is, while a tempting response,
unworkable because of the need to allow for the possibility of (empirically motivated) discon-
tinuity in probability trajectories. And therein lies the continuity bind. Finally I consider two
potential ways out of the bind, including (1) utilizing discontinuous first derivatives of continu-
ous probability trajectories for theoretically motivated discontinuity needs, and (2) abandoning
point probability trajectories altogether in favor of imprecise (interval) probability trajectories.

2 Probability Trajectories and Continuity

I present the continuity question here in a causal setting, roughly following (Eells [1991]); I
then expand it to other prominent accounts below in Section 3. Let x and y denote token events,
where x takes place at time and place (tx, sx) and y takes place at (ty, sy). Assume that x’s being
X caused (in some plausible way) y’s being Y , where x is of type X and y is of type Y . Of
interest is how the probability of token event y’s being Y evolves between tx and ty, that is, how
the probability of y’s being Y changes as a function of time. (I will abbreviate the token events
of ‘x being X’ and ‘y being Y’ by just writing the properties exemplified, X and Y .)

In the ensuing discussion probability will be understood as objective and physical, that is, as
a ‘physical probabilities’ or ‘chance’. A single-case time-dependent probability function P will
be assumed as part of a probability space triple < Ω,F , P >, where Ω is a set, F is a σ-field
over Ω, and P is a probability function on F that obeys the standard (Kolmogorov) axioms
of the probability calculus. Physical probabilities apply to particular events, ones that occur

1Peter Menzies ([1989]) and Igal Kvart ([2004]) in their respective accounts are also sensitive to how the
probabilities evolve through time, but without explicitly addressing continuity one way or the other; I take this up
further below.
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or fail to occur at a particular time and place, and hence have values defined relative to a time
of evaluation. To make explicit the temporal index, t, involved in evaluating the probability of
event Y ∈ F at time t, I use the notation PY(t). In general if an event Y occurs at a time ty,
PY(t) is strictly between 0 and 1 prior to ty, and 1 at time ty and all later times. Following (Eells
[1991]) I use the term ‘probability trajectory’ to refer to a probability function understood in
this way as a function of time.2

Again, while there are challenges to any interpretation of probability, in this causal setting
an objective physical understanding akin to ‘chance’ is a reasonable way to proceed; see (Eells
[1991], pp. 34–55) and (Eells [2010])) for detailed discussions. I (loosely) follow Jenann Ismael
([2011]), pp. 419–20) with my pre-theoretic understanding of physical probability or chance,
taking it to be ‘. . . the link between the fundamental level of physical description in quantum
mechanics and the measurement results that mark the points of empirical contact between the-
ory and world’. I follow her in that my understanding is that physical probability is objective
and non-trivial (not everywhere zero or one). I remain agnostic, however, with respect to her
ultimate analysis of it—especially whether its grounding is at the quantum level or some higher
level as in (Glynn [2010],[forthcoming]), or (Sober [2010]).

2.1 Probability trajectories

As an illustration of a probability trajectory in action, consider the following example from
Deborah Rosen [1978], modified here from (Eells [1991]):

Example 1 A poorly putted golf ball is rolling roughly in the direction of the cup when a
squirrel runs by and bumps it in such a way that its resulting trajectory is directly toward
the cup and it continues right into the cup.

Following the standard assumptions of such causal discussions, I take the probability values of
PY(t) to reflect the objective probability of the event (ball going in the hole) and assume that it
is strictly less than one until Y occurs. Suppose that the probability of the ball going into the
cup given its initial trajectory, velocity, and so on, is 0.25. Suppose further that, in general, the
(type) probability of balls going in when squirrels bump them is very low (say 0.05), however,
in this (token) case the particular trajectory of the ball immediately following the bump was
such that the probability of the ball falling in the cup was rather high, say 0.8. Let the event
of the squirrel bumping the ball be x being X and the event of the ball going into the cup be y
being Y . The probability trajectory of Y can be depicted following (Eells [1991], p. 293) as in
Figure 1.

The standard analysis of this example is that the squirrel’s kick X caused the ball to drop into
the cup Y , despite the fact that, in general, squirrel kick’s in such situations almost never result
in the ball going in the hole. For causal considerations, the salient features of the graph are that
the probability of Y takes an immediate point drop in probability at tx, corresponding to the
type-level fact that X-type events generally decrease the probability of Y-type events, and that
the probability of Y recovers immediately after the ball is bumped at tx to a higher value than it
had before because of the favorable trajectory and velocity actually imparted by the token event
X. Hopefully this causal story is plausible enough, though its causal details are not the primary

2For this paper, I will understand the basic form of these probabilities as unconditional. This is distinct from
general probability, which applies to classes of event and whose basic forms is conditional. This for clarity
and convenience only: the continuity issues I deal with here are not sensitive to whether the probabilities are
analyzed in the standard Kolmogorovian way or some other way, with a different conditionalization rule and/or
with conditional probabilities as the basic form; see (Hájek [2003]).
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Figure 1: Probability trajectory with discontinuous jump at occurring event.

concern here. For present purposes, the crucial features of the graph are the discontinuities at tx

and ty, that is, the fact that the probability of Y ‘jumps’ up just after x happens and then ‘jumps’
again to 1 at moment the ball falls into the cup.

As can be seen from the graph, Eells employs jump discontinuities in the probability tra-
jectory to (a) indicate that a token (positive) ‘cause’ has taken place, and (b) emphasize that
the world is chancy or indeterministic at the macro-level in that the probability of the event in
question is bound away from 1 until it happens.3 Use (a) is central to his account (as I detail
below), I will call this general idea the

CDJP (Causal Discontinuous Jump Principle) The probability trajectory of an event e that
occurs at te jumps discontinuously at times when events causally relevant to e occur.

The status of the second use of discontinuity, (b), is less clear in Eells work. This ‘occurring
event discontinuity’ assumption is made and discussed explicitly (Eells [1991], p. 294). I will
refer to this assumption as the

DJP (Discontinuous Jump Principle) The probability trajectory of an event e that occurs at te

jumps discontinuously to 1 at time te.

Notice though that the assumption that the probability of an event is not one until the event
occurs is also consistent with the graph continuously approaching one from below. Eells rec-
ognizes that the indeterminism could also be represented in a continuous fashion, with the
probability continuously approaching one from below. But he writes that his analysis does not
‘pay attention’ to whether the trajectory is continuous at the time the event occurs (Eells [1991],
p. 294, note 6]), and does not explicitly committed himself to (DJP), though he does consis-
tently draw all his graphs with such a discontinuity. Consider the alternative graph depicted in
Figure 2 in which the probability trajectory continuously approaches one at ty. It is equally true
in this graph that the probability of Y is strictly less than one until it actually occurs at ty. The
difference between this graph and the graph in Figure 1 is that in Figure 1 the value of PY(t)
is bound away from one prior to ty, while in Figure 2 the value of PY(t) becomes arbitrarily
close to, but always less than one as t approaches ty. I argue below that Eells was mistaken
about nothing turning on DJP and that thinkers concerned with probability should indeed ‘pay
attention’ to this continuity issue. But first I sketch his causal account.

3A ‘jump’ discontinuity is one in which the left- and right-hand limits exist, but are not equal. It is important to
note that in order for there to be a discontinuous jump (jump discontinuity) as Y occurs (or at any other significant
time, for example, tx), it is necessary that the trajectory be continuous in some (perhaps very small) interval to
the left of the jump discontinuity—this will become significant below. The other two possibilities, that the left
and right hand limits exist and are equal, or that one (or both) fail to exist are called ‘removable’ and ‘essential’
discontinuities, respectively. The essential discontinuity case will come up again below.
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Figure 2: Probability trajectory with continuous probability at occurring event.

2.2 Causation as discontinuous jumps

In his treatment of this example, Eells depicts the probability trajectory of PY(t) as in the graph
in Figure 1. The crucial feature of this graph for the causal question is that the probability of
the ball falling in the cup is higher immediately after the ball is bumped at tx than it was prior to
the bump, despite the fact that in general such types of events lower the probability of the ball
going in as indicated in the graph by the immediate point drop in probability at tx.4 According
to Eells, this structural property of the example is what leads us to say that this token squirrel
bump caused the ball to go in, despite the fact that, in general, such bumps tend to prevent balls
going in rather than cause them. When the probability trajectory of an event y has this structure
Eells defines y to have occurred ‘because’ x occurred. Explicitly what is required for an event
y’s being Y ‘because’ event x was X is the following three conditions:

(i) the probability of Y changes at the time of x,

(ii) immediately after the time of x the probability of Y is both high and higher
than before x, and

(iii) this probability remains high until the time of y.

Eells describes three additional causal relations: that of an event’s occurring ‘despite’ another
event, and events being ‘independent’ and ‘autonomous’ of another event. Though the details
of the additional three will not be of particular concern here, the basic idea is that in the despite
case, the probability decreases (and remains low), in the independent case it remains the same,
and in the autonomous case the probability increases to a high level but then drops to a low level.
Eells ([1991], p. 355) defines each of these relations in terms of the left and rights limits of PY(t)
at tx. He also specifies the qualifications needed to preserve the ‘causes increase the probability
of their effects’ idea, in particular that one must hold fixed the set, K, of the actual, separate,
independent causes of Y and also any interactive factors by which X influences the probability
of Y (Eells [1991], Sec. 6.4). In order to build in the temporal evolution of the probability in
the proper way, Eells further specifies Wt be the conjunction of all factors of the world (relevant
to y’s being Y) that have fallen into place by time t and whose exemplification (relative to K)
can be traced back to the exemplification of X at tx. He then defines PY(t) = P(Y |K&Wt) for
all times t. Against this understanding of the probability trajectory, the degree to which y is Y

4Another way of putting this, in terms of type-level probabilistic causality, is that the bump is a token-level
positive causal factor for the ball going in but that bumps of this type are type-level negative causal factors.
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because of, despite, independently of, and autonomously x’s being X are defined as follows:

B = M − P−

D = P− − P+

I = 1 − |P− − P+|

A = P+ − M

where P− and P+ are the left and right hand limits of PY(t) at tx, respectively, and M =

min {PY(t) : t in (tx, ty)}, which can be thought of intuitively as the lowest point in the prob-
ability trajectory between tx and ty. It should be clear that in the case of ‘despite’, if X is to play
a negative (‘despite’) causal role (D > 0), that P−−P+ > 0, from which it follows that P+ , P−,
or in other words that the limits of PY(t) from the left and the right at tx are not equal, which en-
tails a jump discontinuity at tx. The same follows for the ‘because’ relationship as well.5 Thus
if X is a positive or negative token cause of Y , then PY(t) has a jump discontinuity at the time
of X. That is, Eells’ account requires an event’s probability trajectory to have discontinuous
jumps at times at which causally relevant events occur.6

Let me stress again that Eells’ official position is that it is inconsequential as to whether
occurring events jump discontinuously to one (DJP), though he favored and utilized the discon-
tinuous version. But as to the question of whether causes require a jump discontinuity in the
probability trajectory of their effects (CDJP), Eell’s answer is an unequivocal ‘yes’, since his
entire token-level account depends on such discontinuities. It is surprising that this aspect of
his influential account has received virtually no discussion.

2.3 Against systematic discontinuity

In this section I make a detailed case for why systematic discontinuity requirements like DJP or
CDJP are problematic. I first direct my case against DJP. The reasons for beginning with DJP
are: (1) DJP is more general and is therefore of interest in its own right, outside the setting of
probabilistic causality (for example, event ontology, chance, and so on), and (2) the argument is
more straightforward and perspicuous in the case of DJP and requires only minor adjustment to
apply to CDJP as well. In what follows I present the main thread of a formal argument against
DJP (the details of which can be found Appendix A) and then show how it extends to CDJP.

Reconsider Example 1—especially the period from after the time the squirrel bumps the ball
to the time it enters the cup. The instant the ball comes off the bump it has a certain trajectory
and speed, one that will take it directly into the cup; this is why the probability of Y is high
after that instant. As time gets closer to ty and the ball gets closer to the cup, the number of
eventualities that could prevent the fall into the cup decreases, and so its probability continues
to increase. In other words, as the ball passes by points on the green closer and closer to the cup
and with the same favorable trajectory and speed, the probability of its going in the cup would
naturally be expected to continue to get closer and closer to one. While these considerations
alone favor a continuous increase of PY(t) to one, a stronger case can be made.

5This is because by definition, M ≤ P+, so if B = M−P− > 0, then P+ −P− > 0, so P+ , P−, that is, the limits
of PY (t) from the left and the right at tx are not equal, which again entails a jump discontinuity at tx.

6Eells ([1991], p. 354) makes it explicit that it is a presupposition of his account that the left and right limits
of PY (t) at tx exist. The value at the point tx itself is not constrained. At another point, Eells ([1991], p. 355) also
requires that the probability trajectory actually be constant in some open interval both to the left and right of tx.
He may have sensed the possibility of pathological behavior around such discontinuities. In any event, I argue
below that his required ‘jump’ discontinuity will entail not only that PY (t) cannot be constant to the left of tx, but
that it cannot even have a limit from the left.

6
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If the probability trajectories of all occurring events jump discontinuously at the instant
they occur (DJP), then in particular the probability trajectory for each of the occurring events
‘leading up’ (causally) to the event under consideration would also have a jump discontinuity at
the time each of them occur. The probability (trajectory) of the original event is not independent
of the probability (trajectories) of certain events leading up to it, that is, its probability depends
on certain events that need to ‘fall into place’ in order for it to happen—and this gives rise to
problems. Returning to Example 1: between the time of the cause tx and the time of the effect
ty, both version’s graphs (Figures 1 and 2) depict the probability trajectory as continuous in
the interval just to the left of ty. This, however, does not accord with the ‘jumpy’ nature of
the probabilistically relevant prior events falling into place. If all the events involved in the
ball traversing the points on the green after being bumped and before entering the cup have
probability trajectories that have a jump discontinuity at the time they occur, then it seems
that the probability trajectory of Y (ball falling into the cup), which depends upon these events
falling into place, should reflect this discontinuous ‘jumping’ at the times these prior events
occur.

Such considerations suggest that the discontinuous jump (as mandated by DJP) in the proba-
bility trajectory of an occurring event is inconsistent with the probability trajectory PY(t) being
continuous in the interval just before ty, as it must be in order to have a jump discontinuity. If
this is right, then assuming DJP in such settings is inconsistent, since PY(t) is required (as de-
picted) to be continuous in at least some small interval to the left of ty. I now put this objection
on a formal footing to show more precisely the source of the problem.

The form the argument will take is that of a inconsistent/incoherent dilemma, namely that
DJP in this setting entails either that

1. the probability trajectory, PY(t), is discontinuous from the left at ty (has no left hand
limit), which is inconsistent with there being a jump discontinuity at ty, or that

2. the certainty (distance the probability is from 1) of antecedent events upon which Y de-
pends becomes arbitrarily larger than the certainty of Y itself, which will be shown to be
an incoherent result.

For definiteness, the setting will parallel Example 1 and concern the assessment of the causal
relevance of a token event x being X for event y being Y , where these events occur at tx and
ty, respectively. I will show that DJP entails the unintended (and unexpected) consequence that
PY(t) has no limit from the left (is left discontinuous) at ty. To get the argument off the ground
I make use of a well-known theorem from probability, Bayes’ Theorem, which states that:

PY |X(t) =
PX|Y(t)PY(t)

PX(t)
, PX(t) > 0

where PY |X(t) is the probability of Y conditional on X at time t, and similarly for PX|Y(t). A
simple variation of this that will be useful here is:

PY(t) =
PY |X(t)PX(t)

PX|Y(t)
, PX|Y(t) > 0 (2.1)

The role of Equation (2.1) will be to instantiate in a formal way the intuitive idea expressed
above by the idea that the probability (trajectory) of the event under consideration depends
somehow on the probability (trajectories) of the events that fall into place leading up to it.7

7Recall that the causal background context K is built into the definition in that PY (t) = P(Y |K&Wt), so for

7
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Consider a sequence of moments {t̂i} converging to ty (the moment Y occurs) and a sequence
of events {Xi} occurring at these times and upon which Y probabilistically depends. In the
context of Example 1, these events and moments will be where the ball was at half of a second
before it went in, and a fourth of a second, an eighth of a second, and so on. More formally
we might put this as t̂i = ty −

1
2i and Xi = the event of the ball being where it was at t̂i with

the particular favorable trajectory it had.8 In order to formalize the degree to which probability
trajectories jump discontinuously to one, I use the left-hand limit of the probability of an event
X as time approaches the time X occurs (from before) and define the ‘distance’ of the jump to
one as:

D(X, t) = lim
s→t−

1 − PX(s) (2.2)

The value of D(X, tx), where tx is the time X occurs, is the distance the probability trajectory
jumps to reach one when X occurs. That D(X, tx) is greater than zero for all events is equivalent
to the assumption of DJP.

Returning to the sequence {Xi}, we see that {D(Xi, t̂i)} might be thought of as the ‘degree of
indeterminism’ or “chanciness” for each of the Xi events. In terms of Example 1, it would be
values representing how far the probability of the ball being where it is at a half of second before
it goes in, a fourth of a second, an eighth of a second, . . . jumps as each of those events occur.
The {Xi} sequence of events leading up to Y will be used to show that DJP is problematic. At
this point the argument bifurcates based on whether the sequence {D(Xi, t̂i)} converges to zero,
that is, whether

lim
i→∞

D(Xi, t̂i) = 0. (2.3)

I will show that if it does not converge to zero, then we have the inconsistency horn of the
dilemma, and if it does converge to zero we have the incoherency horn.

2.3.1 Inconsistency

The general strategy for this horn is to show how, using Bayes’ Theorem, if the ‘event occur-
ring jumps’ of the events getting close in time to Y do not converge to zero, then this forces
the probability trajectory PY(t) to be discontinuous to the left of ty (not have a limit as time
approaches ty from the left), which contradicts the requirement that the left hand limit of PY(t)
at ty exists. The full details of the proof can be found in Appendix A, which I sketch below.

Let 0 < L < 1 be the left hand limit of PY(t) at the time Y occurs, ty. To show that PY(t) is
discontinuous from the left at ty it is sufficient to find a sequence of times {ti} converging to ty

example, PY |X(t) will be P(Y |X&K&Wt). In the case of the example under consideration here, where the X’s are
not arbitrary events, but rather ones causally relevant to Y and converging to Y’s time, all the probability functions
in what follows will have the same causal background context; I will generally suppress the addition notation in
what follows, noting it only where it makes a difference.

8As will become clear below, a key feature of the Xi’s is that they be at least probabilistically and/or causally
relevant to Y . Thus the construction is unproblematic when there is a space-time process leading up to or con-
stituting the event Y as in the case here. The argument does not, however, necessarily apply to quantum events
or certain kinds of macro-level events that embed quantum event, which may not under certain interpretations
have such probabilistically relevant antecedent events. (I will not get into the distinction between causally and
probabilistically relevant here; there is much debate about when and how these notions coincide. In most settings
probabilistic relevance is weaker and I will employ it here.) While there is debate about whether all macro-level
examples of causation need to have such an intermediate process, even accepting a pluralistic view (Hall [2004]),
for my argument here it is sufficient that it work for the large class of macro-level cases like Example 1 in which
there is such a mediating process. See note 10 below for more on the kinds of quantum-embedding macro events
that are excluded.

8



DRAFT: Please do not cite.

such that PY(t) evaluated at those points does not converge to L, that is, {PY(ti)} 6→ L. In terms
of the definition of convergence this means showing that there is an ε > 0 such that

|PY(ti) − L| ≥ ε, for some i greater than any N > 0. (2.4)

The next task is to actually construct the problematic sequence {ti} and show that it satisfies
Equation (2.4).

Since by hypothesis {D(Xi, t̂i)} does not converge to zero, there is an ε̂ > 0 such that

D(Xi, t̂i) ≥ ε̂, for some i greater than any N > 0. (2.5)

It will simplify notation to define {Li} to be the sequence of left hand limits for each of the
{Xi}, so Li = 1 − D(Xi, t̂i), from which it follows that |1 − Li| ≥ ε̂ because of Equation (2.5).
To construct the sequence of times, {ti} that will generate the contradiction, we must find a
sequence of moments slightly before each of the {t̂i}, since we will be interested in what is
happening to the probabilities of the {Xi}’s right before the time they occur—recall that PXi(t̂i)
is simply equal to 1. A natural choice would be to pick moments like the following: t̂i −

1
10i .

Such a sequence of moments are always just before the moment {Xi} occurs and are such that
as i → ∞, they get arbitrarily close to those moments, t̂i. But we need the new sequence to be
more “tightly” tied to PXi(t).

The factor required will depend on each of the PXi(t) and how quickly each approach their
limit near t̂i. The limit in question is Li, so by the definition of limit, we can find a minimal
distance δ > 0 such that the distance between PXi(t) and Li can be made less than an arbitrary
ε > 0 for all t within the minimal distance δ of t̂i. The ε we will use here comes from the as-
sumption that D(Xi, t̂i) 6→ 0, namely, ε̂/2, which is half of the ε̂ > 0 we have from Equation 2.5.
Now consider the sequence of {δi}, each greater than zero, with the property that if |t̂i − t| < δi,
then |Li−PXi(t)| < ε̂/2. Again, that the δi > 0 exist follows from the definition of the (left) limit
of PXi(t) at t̂i being Li. Finally we define the {ti} as: ti = t̂i −

δi
10i Thus the sequence of {ti} are

such that as i → ∞, the ti’s get arbitrarily close to the t̂i’s (the times that the Xi’s occur), and
further, each ti is within δi of t̂i, so |Li − PXi(ti)| < ε̂/2, for each ti. From which it follows that

1 − PXi(ti) ≥ ε, for some i greater than any N > 0, (2.6)

where ε = ε̂/2. (See Appendix A, near Equation (A.3) for details.)
In making use of Bayes’ Theorem, the conditional probabilities PYXi(ti) and PXiY(ti) will be

needed. It will be assumed that limi→∞ PYXi(ti) = L and limi→∞ PXiY(ti) = 1. The reasoning
for this is as follows: given that the limit of PY(ti) is L, conditionalizing on the Xi’s, which
are the particular events leading up to Y , should not affect convergence; similarly since (by
definition) the {Xi} are events leading up to Y at times {ti} converging to the time they occur t̂i,
the probability of these events at these times conditionalized on Y will naturally converge to 1
as time converges to the time of Y .9 The convergence of the conditional sequence PYXi(ti) to L
entails that for any ε1 > 0 there is an N1 > 0 such that for all i > N1

|PYXi(ti) − L| < ε1 (2.7)

Similarly, the convergence of the conditional sequence PXiY(ti) to 1 entails that for any ε2 > 0
there is an N2 > 0 such that for all i > N2

|1 − PXiY(ti)| < ε2 (2.8)
9Nothing turns on these particular values for the limits of the conditional probabilities. As long as they con-

verge to some 0 < L̂ ≤ 1, as they must, then the proof can proceed with simple scaler adjustments.
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From this appropriate values can be chosen for ε1 and ε2 in terms the ε from Equation (2.6) and
then Equation (2.1), Bayes’ Theorem, can be utilized to show that

|PY(ti) − L| ≥ ε
′

> 0, (2.9)

for some i greater than any N > max{N1,N2} > 0, where ε
′

=
εL(ε+4)
4(ε+2) . Thus PY(t) is discontinu-

ous from the left at ty. (See Appendix A, Equations (A.7) through (A.11) for details.)

2.3.2 Incoherence

Having shown that if the sequence of ‘indeterministic jumps’ {D(Xi, t̂i)} does not converge
to zero, then we have the contradictory result that PY(t) is discontinuous from the left at ty,
consider now the case in which {D(Xi, t̂i)} → 0.

Again, this means that the difference between the left-hand limit of PXi(t) at t̂i and 1 can
be made arbitrarily small for large enough i. That is, we can find events Xi probabilistically
relevant to Y and arbitrarily close to the time of Y by picking an i large enough such that the
probability of Xi just before t̂i is arbitrarily close to one—this despite the fact that the probability
of Y at t̂i is bound away from 1. For example, this means that the probability of the ball being
at a point arbitrarily close to falling into the cup at an arbitrarily small instant before (say ε) it
actually does is a million, or a billion, or trillion, . . . times closer to 1 than the probability of the
ball’s falling into the cup the same arbitrarily small instant ε before it actually does.

More concretely, pick any location and time that the ball was very close to falling in, say
within 1

10256 of a second and 1
10512 of an inch from the edge. At an even smaller instant before the

ball was at this location, its probability of being there was any huge number you like, say 101024,
times closer to 1 than the ball’s probability was when it was a trillion (or any huge number you
like) times closer to falling in.

In short, this result says that while the probabilistically relevant antecedent events of the
ball being closer and closer to the hole with the favorable trajectory it had are such that their
probability right before they happen are getting as close to 1 as you like, the probability of the
ball falling in the hole, as close to the time it did as you like, is as many times farther away
from 1 as you want to make it. That an event’s probability right before it happens is arbitrarily
farther away from 1 than is each of an infinitesimally close series of (probabilistically) relevant
events leading up to it is unintelligible. This I offer as the incoherency horn of the dilemma.10

2.3.3 Extending to CDJP

Having made the case that DJP is untenable, it is relatively straightforward to extend this to
CDJP. The same construction of the sequence of events {Xi} and {ti} can be used with the simple

10I stress again that the argument of this section is against the view embodied in DJP, namely, that all occurring
events must jump discontinuously to 1; it is does not militate against the (very plausible) view that some classes
of events might so jump. In particular, it is compatible with the view that the probability trajectories of quantum
events or certain kinds of macro-level events that embed quantum events in particular ways do in fact so jump.

As a reviewer for this journal points out, without such a limitation a quantum variation of my Example 1 might
be construed as a counterexample to the incoherence horn of the dilemma. Consider Example 1 modified so
that the golf ball’s fall into the cup triggers a quantum triggering device that has an irreducible chance of 0.9 of
triggering an explosion nearby. One must assume (per impossible) that the triggering process and the detonation,
if they happen, will both be instantaneous, so if the explosion happens, it will happen at the same moment ty
when the ball falls into the hole. Then if the ball being where it was with its favorable trajectory at moments
converging to the time it falls into the cup are the events {(Xi, t̂i)}, and the explosion is Y , the {(Xi, t̂i)} events are
getting arbitrarily close to Y and their probabilities are getting arbitrarily close to one, but the probability of Y is
bound away from one (at 0.9). Whether it is legitimate in this context to collapse such triggering events onto Y in
the probability trajectory is not clear, but fortunately it need not be taken up here.

10
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change that {ti} converges to tx (the moment x occurs) instead of ty, and so Xi = the event of
the ball and the squirrel being where they were and in the particular states (velocity, direction,
internal states, and so on) at ti, which is converging to tx. In the case of DJP, we exploited the
fact that PY(t) has to ‘jump’ because of its dependence (via Bayes’ Theorem) on the PXi(t),
which jump as Xi occurs at ti, but in the case of CDJP the problem is more immediate.

It seems incontrovertible that the {Xi} events, are positive (‘because’) token causes, especially
for large i when ti gets very (arbitrarily) close to tx.11 But according to CDJP this would require
that PY(t) must at the very least have jump discontinuities at each of the {ti}, corresponding
to each of the {Xi} being a ‘because’ token causal factor—and this raises numerous problems.
First, Eells explicitly states that it is a requirement that PY(t) be constant in some small interval
to the left (and right) of tx, but this cannot be the case if each of the {Xi} are ‘because’ token
causal factors. Second, things would seem to get even worse in that there are an uncountable
number of possible such ‘because’ token causal events just prior to tx, which might well be in
tension with core parts of real analysis.12

But there is a potential way out, which is related to how Eells deals with suggestions that
his account cannot distinguish between simultaneous events as far as causal relevance goes.
Recalling that the causal background context K and temporal indexical set Wt is built into the
definition of the probability trajectory, that is, PY(t) = P(Y |K&Wt), it might be open to him
to deny that the probability trajectories are the same trajectory (function) for each of the {Xi}

events and the X event.13 In other words, when considering X’s causal significance for Y we
have

PY(t) = P(Y |K&Wt),

but for each Xi’s probability trajectory for Y we have

PYi(t) = P(Y |Ki&(Wi)t).

Thus the PYi(t) could be such that they were (point-wise) converging to PY(t) (from below)
and still jumping (as required) at the critical time ti. In particular, the PYi(t) functions would
presumably be increasing such that PYi(t) ≤ PYi+1(t) ≤ . . . ≤ PY(t), for t < tx. See Figure 3. A
virtue of this response would be that the increasing nature of the probability (trajectories) near
the critical point ti would fit neatly with the idea that as each of the events in question, the ball
and squirrel being where they were (Xi) at instants closer and closer to when they collide (ti) in
the favorable way they did with respect to causing the ball to fall in the hole (Y), actually occur,
the probability of Y increases.

Unfortunately, however, this response is not available on Eells’ account as it stands. The
first, not insurmountable problem is that as mentioned above, Eells requires that probability
trajectories be constant in some open interval to the left (and right) of the jump discontinuities.
Eells was (rightly) concerned about the limits upon which his account so crucially turns, and in
personal correspondence he indicated that the reason for requiring the trajectories to be constant

11See (Kvart [2004], p. 369–70) for a similar use of such an example and discussion.
12 There are provable restrictions on the size and nature of the set of points of discontinuity for real-valued

functions. In particular, this set must be an Fσ set, that is, one that can be written as a countable union of closed
sets of real numbers (Royden [1988], p. 53). And if the function in question is monotonically increasing or
decreasing on an open interval, as a probability trajectory might well be eventually, then there can be no essential
discontinuities and at most countably many “jump” discontinuities; see (Rudin [1976], p. 95–7) for details.

13This is how Eells’ account avoids the putative defect that, for example, an event located far away, say another
squirrel kicking a tree, but taking place at the same time as x, would also be deemed a cause of Y because the
trajectory would jump at the time of both events, tx. But in fact, there would be two trajectories, one for X and one
for the far away event, and the latter trajectory would not have a ‘because’ jump because its (distinct) Wt would
not include the factors (collision, change in the ball’s trajectory, and so on) traceable back only to x being X.

11
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Figure 3: Probability trajectories PYi(t) for Y with respect to Xi converging to PY(t) from below.

in this way was indeed in part to ensure that the limits exist, which of course it would, but at
the steep cost of coherency. To simply require that the left and right hand limits exist, and
not necessarily be constant in any open intervals to the left (or right), would seem to be a less
restrictive alternative, and it would allow the ‘series of increasing trajectories response’ I just
sketched. But there is a second problem—and that is that the (extensional) way that Eells has
defined the causal background context K and temporal indexical set Wt does not allow him to
assert that the trajectories associated with the Xi’s causal relevance for Y are distinct from X’s
trajectory, PY(t). This is because K is defined to be the set of factors causally independent of X
or Xi that are causally relevant to y’s being Y in the actual situation, and thus are identical for X
and Xi. And as for the Wt, the (actual) factors relevant to y’s being Y that are not in K but have
fallen into place by time t, these too will coincide in the cases of the Xi and X.14

It seems then that utilizing systematic discontinuities for understanding occurring events
(DJP) or causation (CDJP) is untenable, but it turns out that even the threat of discontinuities
in probability trajectories gives rise to problems for causal theorists, as I take up next.15

14Eells ([1991], pp. 344–5) does allow that one might conceive of K as a ‘kind of population’, and this could
open the possibility of a non-extensional understanding that might allow one to individuate the trajectories in
a more fine-grained way. Of course such a move brings with it problems of its own. The account could also
potentially be modified in a way that allows for (appropriately bounded) essential discontinuities as well as jump
discontinuities. As long as a proper bound was in place, one could employ the ‘limit superior’ (least upper bound
of the cluster points) from the left, rather than a limit from the left. This would potentially alleviate issues with
isolated essential discontinuities, though the problematic proliferation of them due to DJP/CDJP would remain as
would the problems to be taken up in the next section. I owe thanks to a anonymous reviewer for helping me see
this possibility.

15As a reviewer points out, another possibility for handling unruly kinds or numbers of discontinuities in prob-
ability trajectories would be to move to an account along the lines of (Woodward [2003]) or (Pearl [2009]) that
distinguishes between the actual situation of interest and causal models of the situation. Such an approach, in
utilizing a model to analyze causation, considers only a fixed and generally discrete set of causal variables, thus
even if in the actual situation the probability trajectory had (lots of) essential discontinuities, within the confines
of the idealized model such ‘bad behavior’ might well be modeled sufficiently by a simple jump discontinuity.
Indeed, if in the end the continuity bind proves insurmountable, this could be seen as a case for such model based
accounts.

12
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3 Broader Discontinuity Concerns

The attention Eells paid to continuity was well placed: how the probabilities evolve through
time is both relevant and non-trivial. Such continuity issues ought to be of more concern to
all causal theorists exploring probabilistic accounts. Most other prominent accounts have the
opposite concern from Eells: they depend—at least implicitly—on the continuity of probability
trajectories.

Accounts most obviously embroiled with continuity are those that make explicit use of tem-
poral conditions, for example, Peter Menzies ([1989]), who utilizes ‘temporally dense’ chains
of (counterfactual) probability increases, and Igal Kvart ([2004]), whose account looks for ‘sta-
ble screeners’ and ‘causal relevance neutralizers’ in temporally intermediate events between
cause and effect. If the temporal evolution of the probability values in question cannot be as-
sumed to be continuous, this strains such accounts by rendering the probability in the interval
potentially unstable in that it may ‘jump’ between values that may or may not preserve the
presence of the relevant ‘probability increases’ or the absence of ‘stable screeners’ (probability
decreasers).

Menzies’ account does not explicitly address continuity, but it does, however, implicitly con-
strain discontinuities. Building on David Lewis’ ([1986]) counterfactual analysis in terms of
unconditional probabilities, Menzies requires that causally related events c and e be ‘probabilis-
tically dependent.’ This means for him that there must be intermediate events corresponding
to any finite set of intervening times between the times of c and e such that the actual proba-
bility of each of the intervening events is significantly higher than it would have been had the
immediately preceding event in the set not happened. Put in terms of Eells’ probability trajec-
tories, this effectively requires the probability function to be monotonically increasing between
the times of c and e, and thereby limits the number and kind of possible discontinuities (recall
note 12).16

Kvart seems to be sensitive to the possibility of the inequality flipping at intermediate tem-
poral points between c and e and offers a condition that may be intended to prevent it. The con-
dition is developed in an example in a section entitled ‘Illustrating Causal Relevance through
Infinite Regress’ (Kvart [2004], Sec. 6, pp. 369–70), but is difficult to assess. The example
involves considering a series of events at intervening moments between putative cause and ef-
fect and verifying that the inequality does not reverse at any of the points—that they are not
‘neutralizers’. Causal relevance is defeated if one of the moments reverses the inequality. But
if one can continue indefinitely without a reversal, one thereby constructs an infinite series
of moments that are not neutralizers. His full condition is that ‘there is only infinite regress
of this sort, (i.e., there not being a suitable terminating chain)’ and this establishes that c is
causally relevant to e, since it guarantees that ‘there is no neutralizer for c and e’ (Kvart [2004],
p. 370). The logical form of the condition seems to be that all such sequences of intervening
events converging to an intervening time must not terminate with (contain) a neutralizer. If so,
then it might be understood as employing (part of) an alternative specification of the standard
epsilon-delta definition of continuity—constraining all convergent sequences in the domain—
but in such a way that it entails not full continuity, but rather something close to Menzies’
monotonically increasing condition.

While other prominent probabilistic accounts of causation may eschew explicit temporal
conditions, not surprisingly, they are not able avoid temporal (and hence continuity) issues

16This turns out to be an implausibly strong condition and Menzies ([1996]) himself disavows even an amended
version of this theory. This tension between stability in the probability trajectory and cripplingly strong constraints
on it is endemic to the point probability framework, as I take up further below.

13



DRAFT: Please do not cite.

altogether. For example, in (Noordhof [1999]), (Hitchcock [2004]), (Northcott [2010]), and
(Glynn [2011]) one finds reference to probability inequalities assessed ‘shortly before’ the time
of the cause and/or effect.17 In some variation these accounts all consider the probability of
an event e ‘just before’ it occurs, conditional on the presence and absence of a putative cause
c. The critical inequalities involve conditional probabilities at moments ‘just before’ the time
of the cause tc–ε or ‘shortly before’ the time of effect te–ε, and perhaps at times in between.
This comparison is typically assumed to be stable, that is, that one can ignore the precise ε > 0
magnitude expressed by ‘shortly before’, safely assuming that if ε is sufficiently small, the
values of the probabilities will retain the property of interest, an inequality in this case. The
inequality must be assumed to hold for all values closer than ε because otherwise its holding
would be completely arbitrary—it could be made to hold or not depending on the particular ε
one chose, which would render the inequality meaningless for the purpose at hand: there is a
very important difference between it holding for some ε > 0 and it holding for some ε > 0 and
all smaller.

This kind of stability can be assumed in general only if the probability trajectories are con-
tinuous with respect to time to the left of tc and/or te. I focus below on time te, but the same
reasoning applies to time tc or any other time between them. The relevant probability inequality
is:

Pte−ε(e|c) > Pte−ε(e| ∼ c). (3.1)

The critical probabilities are ‘shortly before’ the time of the putative effect e because at the pre-
cise time of e the (conditional) probabilities are trivial. If the probability trajectories involved
are not continuous to the left of te, then the mere fact that the inequality holds at a given time
‘shortly before te’ fails to ensure that it will hold (to the left) in any interval about te. If the
inequality could be reversing in the neighborhood (te − ε, te), then it holding at te–ε is not going
to be decisive for the causal efficacy of c, since such accounts clearly require a non-arbitrary
sense of Equation (3.1) for their warrant and plausibility.

Luke Glynn’s ([2011]) admirably complete account shows that even when utilizing variables
instead of events for the relevant probability assessments, there remains a dependence on time,
and hence continuity. Glynn originally employed a ‘just before’ ε-inequality in his ‘A Prob-
abilistic Analysis of Causation’, however, the version published as (Glynn [2011]) eliminates
such explicit reference to time, expressing causal conditions instead in terms of the conditional
probabilities of variables attaining a value.18 Nonetheless, a temporal index plays a role in the
definition of Glynn’s ‘Revealer of Positive Relevance’ set, which is to ‘include only variables
representing events occurring no later than tE’ (Glynn [2011], p. 358). Glynn also employs a
condition reminiscent of Menzies and Kvart in requiring that there be the right combinations of
‘increasers’ (supporters of the inequality) and ‘decreasers’ (under-cutters of the inequality) in
the interval (tc, te). While this might be thought to stabilize the inequality like continuity does,
the notion of the ‘right combination’ is only coherent if the set of potential increaser/decreaser
points is a finite set, which is certainly not the case for the interval (tc, te). Finally, in his dis-
cussion of the ‘Hiker Ducking Boulder’ example, Glynn proceeds by ‘interpolating a variable’
along the route of the boulder by which time it is too late for the Hiker to duck (Glynn [2011],
p. 382). So indeed, even when utilizing ‘variables attaining values’ instead of ‘events’, temporal
indices and their attendant continuity issues still loom.

17Christopher Hitchcock there develops a proposal growing out of Ned Hall’s suggestion that one evaluate the
probability of an effect shortly before the time at which the effect occurs (Hitchcock [2004], p. 414).

18The original version is still available online at http://web.mit.edu/gradphilconf/2008/A%
20Probabilistic%20Analysis%20of%20Causation.pdf.
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Continuity assumptions may also come into play in related discussions, for example, gen-
eralized causal relevance (Hitchcock [1993]), deterministic chance (Glynn [2010]), or rational
belief revision (van Fraassen [1984]). In the first, Hitchcock’s generalized account of causal
relevance utilizes probability spaces and measures to define conditional probability functions
on variables (for example, amount of medicine, blood pressure). There he analyzes (certain)
causal claims as captured by conditions like: “‘there exists an m such that x > m implies that
f (x) > 1 − ε”, where the value of ε is typically left vague’ (Hitchcock [1993], p. 350). Glynn
uses the inequality Ch(tc−ε)w(pe|pc) > Ch(tc−ε)w(pe| ∼ pc), translating it as, ‘just before c oc-
curred, the chance of e conditional upon the occurrence of c was greater than the chance of e
conditional upon the non-occurrence of c’ (Glynn [2010], p. 74). Finally, van Fraassen em-
ploys credence functions indexed by times toward the future, where Pt is the agent’s credence
function at time t, and Pt+x is her function at a later time t + x (van Fraassen [1984], p. 244).

To summarize, if probability trajectories cannot be assumed to be continuous, then prob-
abilistic accounts of causation are undermined because the probability around the times of
interest are rendered potentially ‘unstable’ in the sense of jumping between values that may
or may not preserve the relevant features of the probabilistic analysis—typically probability
increases in the presence of the putative cause expressed in the form of an inequality.

A glaring question at this point might be: why not simply require that probability trajectories
be continuous? There are two reasons to worry about this move. The first immediate reason is
because it seems that some kinds of events must be understood as having discontinuous prob-
ability trajectories, for example quantum events. I take this up at length in the next section. A
second perhaps less obvious reason is that such a continuity assumption would ‘definitionally’
legislate a priori against a particular qualitative feature of probability trajectories (a disconti-
nuity) that may well turn out to be relevant to causation and other empirical and metaphysical
questions. Whatever the remedy, it ought not be so restrictive as to decide such substantive
empirical or philosophical questions by definition.

4 The Continuity Bind

So far if one is ‘keeping score’, the tally would seem to favor continuity. One important and
influential analysis of causation that has understood causation in terms of discontinuity (Eells
[1991]), but it was ultimately discontinuity issues that saw it falter. Add to this the very real (if
neglected) continuity needs of many other probabilistic causal analyses and the balance would
seem to tip toward continuity. But enter quantum theory. In what follows I consider the case
for discontinuous probability trajectories based on quantum phenomena, which effectively ‘ties
the score’ and creates a real ‘continuity bind’. I then sketch two possibilities for mediating
between the demands for continuity assumptions and the need not to rule out the possibility of
discontinuity.

Quantum events like the decay of an atom may well have a non-trivial probability of occur-
ring that does not change through time. Accordingly, at the instant they occur their probability
trajectory will jump from a constant value to one as in Figure 4. Quantum events seem to be of
a singular kind that does not depend on any ‘ordinary’ causal factors, and hence have a proba-
bility trajectory that does not ‘evolve through time’ until it jumps to 1. One might suppose that
these discontinuities could be limited to the quantum level, but this is not obviously possible.
A straightforward example suggesting otherwise involves nothing more than a Geiger counter
that emits a clicking sound (macro-level event) when a micro-level decay event is detected.19

19Another now classic (if rather mean) example used in this context by Dretske and Snyder ([1972]) with a debt
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Figure 4: The discontinuous probability trajectory of a quantum-level event.

Another response might be to maintain that while at the quantum-level such quantum events
have discontinuous probability trajectories, macro-level events that involve them ‘dampen out’
the discontinuity. On such a view events at the macro-level always have duration; they consist
of intervals of time (and space). Thus the discontinuity is avoided at the macro-level because
the detection event and the ensuing clicking event have temporal duration during which the
probability of the click (detection event) can increase sharply but continuously to 1. Let such a
quantum-level decay event have a probability of r, and then the graph in Figure 5 represents the
probability trajectory of Y = the click of the counter, with interval [ty, ty + δ] being the duration
of the detection event, that is, the time from the decay event through the detection and ensuing
click. The probability of Y prior to ty is r− ε, for some ε > 0, which incorporates the possibility
of a mechanical or other macro-level failure to detect the particle or to bring about the click.

PY (t)

time
ty ty+δ

0

1

r-ε

Figure 5: The continuous probability trajectory of the detection of a quantum event.

At best this response, which understands macro- and quantum-level (physical) probability
and events as distinct kinds, with macro-level events having a duration that ‘dampens out’
the discontinuous probability at the quantum-level, saves only macro-level continuity—and
with the cost of assuming a bifurcated view of physical probability and/or events. And more
problematically, it involves making significant assumptions about how empirical theory will
ultimately unfold. Retaining at least the possibility of discontinuous probability trajectories at
all levels would seem to be the preferable way to proceed.

Thus we have the Continuity Bind. There are pressing needs for both continuity and the
possibility of discontinuity. In particular:

• requiring systematic discontinuities like (DJP) or (CDJP) is problematic,

to Schrödinger involves a quantum mechanical process and detector hooked to a device to ‘fire a revolver’ at a cat,
and calibrated to do so with a (quantum) probability of 0.01.
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• presupposing everywhere continuous probability trajectories is too restrictive,
and yet

• probabilistic causal analyses require some of the stability provided by conti-
nuity assumptions.

Next I sketch two possibilities for mediating between the demands for continuity assumptions
and the possibility of (empirically or metaphysically motivated) discontinuity, namely, by (1)
utilizing discontinuous first derivatives of everywhere continuous probability trajectories, or (2)
abandoning point probability trajectories altogether in favor of imprecise (interval) probability
trajectories.

4.1 Retaining continuity with discontinuous first derivatives

If it turns out that some events falling into place, in particular probabilistically significant ones,
need in some cases to involve some kind of qualitative ‘shift’ in the relevant probability trajec-
tory, then as we have seen in Eells’ work, this shift can be understood as a jump discontinuity,
but there is another way. An alternative is to capture such a shift by a jump in the rate of change
of the probability trajectory. Formally, this could be put in terms of the first derivative (with
respect to time) of the probability trajectory function, P′Y(t), which is interpretable as the rate of
change of the original function PY(t). The role played by jump discontinuities in PY(t) in causal
analyses could be handled in a parallel way by jump discontinuities in P′Y(t), and the jumps in
the first derivative would still correspond to and be grounded in the idea that “causes” constitute
shifts in the probability trajectory—in this case the shift would not be a discontinuous jump in
the probability trajectory itself, but rather a discontinuous jump in the rate of change of the
probability trajectory.20 The probability trajectory PY(t) could then be assumed/required to be
continuous, thereby avoiding the discontinuity issue altogether.

There would still be significant work to be done developing the precise conditions, since such
conditions would be based in both (1) the discontinuities of the derivative of the probability
trajectory, and (2) the shape of the now continuous probability trajectory itself, and these may
or may not be easy to put together. In particular, for an event to be a causal factor it would
have to result in the appropriate jump in P′Y(t), but it would also have to be the case that PY(t)
itself ‘remained high’ as per (Eells ([1991]), Ch. 6, esp. Sec. 6.2). Another issue to work out
would be precisely how differentiable PY(t) would have to be. It would not be necessary to
require PY(t) to be everywhere differentiable; as long as the left and right derivatives existed at
the point in question, the derivative itself could fail to exist.21

While this approach may have promise for a causal accounts, and especially for Eells’ dis-
continuity problems, there is little reason to think that it is viable or even coherent for quantum
mechanics. And further, as discussed above, a continuous probability trajectory would at best
alleviate the need for macro-level discontinuities, and while the idea of entirely distinct kinds of
(physical) probability at the quantum and macro-levels is not incoherent, it is not an attractive
philosophical commitment as it legislates too much from a pre-empirical framework.

20There is no concern that such discontinuities in the derivative of PY (t) might result in the same or similar
problems because there is an important difference: the arguments above cannot be applied to the derivative of
PY (t) because the derivative of a probability function is not itself a probability function.

21Since the number of possible configurations of a probability function and its derivative afford many more
complexities than are available when simply classifying discontinuities, it could well be that, as in the account
of Hitchcock ([1993], p. 359), there is ‘no natural division of causal relevance into a few simple species, such as
positive and negative; rather, causal relevance is infinite in variety’. On this account causal relevance is infinite
in variety because it is represented as an array of conditional probability functions that themselves have infinitely
many possible configurations.
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4.2 Imprecise (interval) probability trajectories

Within the setting of point probabilities, the pull toward and push away from continuity does
indeed constitute a bind, but this is not necessarily so in settings in which probabilities are
not points, but rather intervals. Imprecise (non-point-valued) probability has been studied for
some time in applied and subjective probability settings, for example, (Walley [1991]), (Ky-
burg [1999]), and (Weichselberger [2000]), and are of renewed interest of late; see (Augustin
et al. [2014]). And recently imprecise probabilities have been further extended to objective
understandings of chance (physical probabilities); see (Glynn [forthcoming]) and (Peressini
[2016]).

The advantage of interval-valued probability is that the notion of a continuous function opens
up when the function in question is an interval-valued function. It turns out that there are
multiple ways to generalize the standard point function definition of continuous, and thus one
could seek to develop and employ a kind of continuity that

• is not so restrictive as to decide substantive philosophical questions by definition,

• stabilizes causally salient probability inequality claims between trajectories, and

• retains the possibility of ‘jumpiness’ to capture quantum or other theoretically motivated
discontinuity.

The area in which to seek more general notions of continuity is generalized set-valued analysis.
In set-valued analysis one finds weaker notions of continuity, for example, upper and lower
semicontinuity, that could be employed in a way that minimizes the restrictions on disconti-
nuities, actually allowing some kinds, and yet offering sufficient stability for causal considera-
tions.22

Another approach would be to utilize classes of interval functions generated by distinct gen-
eralizations of continuity. For example, Anguelov et al. [2006] develops three distinct notions
of continuity: S-continuity, D-continuity, and H-continuity that apply to interval functions. The
class of S-continuous interval functions seem especially well-suited. And Anguelov [2004]
explores how by pairing a lower semi-continuous function f with an upper semi-continuous

function f , such that f ≤ f produces an interval function F = [ f , f ], that is a completely novel
entity from both algebraic and topological points of view. Such functions can be quite ‘jumpy’
(discontinuous in the ordinary sense) with the caveat being that the upper endpoint function can
only jump up and the lower endpoint function can only jump down, and hence such functions
do not have the problematic ‘gaps’ that discontinuous point-valued functions can have.

5 Concluding Remark

I hope to have shown that the question of the continuity of probability trajectories does indeed
have important implications for any account of causality that employs a form of the ‘proba-
bility raising’ condition. If the probability functions can be ‘jumping about’ in ways typical
of discontinuous functions, then the stability of the relevant probability increase is called into
question. Because of this, coupled with pressure from physical (quantum) theory to allow the
possibility of discontinuities, one is faced with a (dis)continuity bind that appears to be difficult
to resolve in the standard framework. While a continuous trajectory with discontinuities in its

22See (Peressini [2016]) for further details.
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first derivative doing the work is one possibility, exploration of the imprecise probability frame-
work seems the more promising option for a way out of the bind, that is, a way of retaining
the possibility of discrete ‘shifts’ in a qualitative feature of a probability trajectory while still
enjoying some of the stability of continuity.

Appendix A Proof of the Inconsistency of C/DJP

This appendix contains the detailed proof sketched in Section 2.3.1.
Let 0 < L < 1 be the left hand limit of PY(t) at the time Y occurs, ty. To show that PY(t) is

discontinuous from the left at ty it is sufficient to find a sequence of times {ti} converging to ty

such that PY(t) evaluated at those points does not converge to L, that is, {PY(ti)} 6→ L. In terms
of the definition of convergence this means showing that there is an ε > 0 such that

|PY(ti) − L| ≥ ε, for some i greater than any N > 0. (A.1)

The next task is to actually construct the problematic sequence {ti} and show that it satisfies
Equation (A.1).

Since by hypothesis {D(Xi, t̂i)} does not converge to zero, there is an ε̂ > 0 such that

D(Xi, t̂i) ≥ ε̂, for some i greater than any N > 0. (A.2)

It will simplify notation to define {Li} to be the sequence of left hand limits for each of the
{Xi}, so Li = 1 − D(Xi, t̂i), from which it follows that |1 − Li| ≥ ε̂ because of Equation (A.2).
To construct the sequence of times, {ti} that will generate the contradiction, we must find a
sequence of moments slightly before each of the {t̂i}, since we will be interested in what is
happening to the probabilities of the {Xi}’s right before the time they occur—recall that PXi(t̂i)
is simply equal to 1. A natural choice would be to pick moments like the following: t̂i −

1
10i .

Such a sequence of moments are always just before the moment {Xi} occurs and are such that
as i → ∞, they get arbitrarily close to those moments, t̂i. But for purposes here, we need the
new sequence to be more “tightly” tied to PXi(t).

The factor required will depend on each of the PXi(t) and how quickly each approach their
limit near t̂i. The limit in question is Li, so by the definition of limit, we can find a minimal
distance δ > 0 such that the distance between PXi(t) and Li can be made less than an arbitrary
ε > 0 for all t within the minimal distance δ of t̂i. The ε we will use here comes from the as-
sumption that D(Xi, t̂i) 6→ 0, namely, ε̂/2, which is half of the ε̂ > 0 we have from Equation 2.5.
Now consider the sequence of {δi}, each greater than zero, with the property that if |t̂i − t| < δi,
then |Li−PXi(t)| < ε̂/2. Again, that the δi > 0 exist follows from the definition of the (left) limit
of PXi(t) at t̂i being Li. Finally we define the {ti} as: ti = t̂i −

δi
10i . Thus the sequence of {ti} are

such that as i → ∞, the ti’s get arbitrarily close to the t̂i’s (the times that the Xi’s occur), and
further, each ti is within δi of t̂i, so |Li − PXi(ti)| < ε̂/2, for each ti. This entails that

|1 − PXi(ti)| = |1 − Li + Li − PXi(ti)| ≥ | |1 − Li| − |Li − PXi(ti)| |,

after adding and subtracting Li, regrouping, and making use of the identity: |a + b| ≥ ||b| − |a||.
Because from above |1 − Li| ≥ ε̂ and |Li − PXi(ti)| < ε̂/2, we have that

|1 − PXi(ti)| ≥ |ε̂ − ε̂/2| = ε̂/2. (A.3)

for some i greater than any N > 0. This step also depends on the fact that if |a| ≥ |c| |b| ≤ |d|,
then |a − b| ≥ |c − d|. Finally, using Equation A.3, removing unnecessary absolute value signs,
and relabeling our crucial value ε̂/2 as ε for notational simplicity we get:

1 − PXi(ti) ≥ ε, for some i greater than any N > 0. (A.4)
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In making use of Bayes’ Theorem below, the conditional probabilities PYXi(ti) and PXiY(ti)
will be needed. It will be assumed that limi→∞ PYXi(ti) = L and limi→∞ PXiY(ti) = 1. The
reasoning for this is as follows: given that the limit of PY(ti) is L, conditionalizing on the Xi’s,
which are the particular events leading up to Y , should not affect convergence; similarly since
(by definition) the {Xi} are events leading up to Y at times {ti} converging to the time they occur
t̂i, the probability of these events at these times conditionalized on Y will naturally converge to
1 as time converges to the time of Y .23 The convergence of the conditional sequence PYXi(ti) to
L entails that for any ε1 > 0 there is an N1 > 0 such that for all i > N1

|PYXi(ti) − L| < ε1 (A.5)

Similarly, the convergence of the conditional sequence PXiY(ti) to 1 entails that for any ε2 > 0
there is an N2 > 0 such that for all i > N2

|1 − PXiY(ti)| < ε2 (A.6)

Now the particular values to be used for ε1 and ε2 are

ε1 =
εL

2(ε + 2)
> 0 and ε2 =

ε

4
> 0.

Thus from Equation (A.6) and the value for ε2 and multiplying through by L > 0

|L − LPXiY(ti)| < ε2L =
εL
4
. (A.7)

Then adding and subtracting L, using the triangle inequality, and Equations (A.5) and (A.7) we
may derive that

|PYXi(ti) − LPXiY(ti)| = |(PYXi(ti) − L) + (L − LPXiY(ti))|
≤ |PYXi(ti) − L| + |L − LPXiY(ti)|

<
εL

2(ε + 2)
+
εL
4

=
2εL + εL(ε + 2)

4(ε + 2)

=
εL(ε + 4)
4(ε + 2)

(A.8)

Next using Equation (A.5) again with the value for ε1 we have that

PYXi(ti) > L −
εL

2(ε + 2)
. (A.9)

And now from Equation (A.4), multiplying by PYXi(ti), and using Equation (A.9), we can derive

23Again, nothing turns on these particular values for the limits of the conditional probabilities. As long as they
converge to some 0 < L̂ ≤ 1, as they must, then the proof can proceed with simple scaler adjustments.
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that

PYXi(ti)(1 − PXi(ti)) ≥ (L −
εL

2(ε + 2)
)ε

= (
2L(ε + 2) − εL

2(ε + 2)
)ε

= (
4L + 2εL − εL

2(ε + 2)
)ε

= εL(
4 + 2ε − ε
2(ε + 2)

)

=
εL(ε + 4)
2(ε + 2)

. (A.10)

Finally returning to Equation (A.1) which expresses the continuity condition:

|PY(ti) − L| =

∣∣∣∣∣∣PXi(ti)PYXi(ti)
PXiY(ti)

− L

∣∣∣∣∣∣ (Bayes’ Theorem (2.1))

=
1

PXiY(ti)

∣∣∣PXi(ti)PYXi(ti) − LPXiY(ti)
∣∣∣

≥ |PXi(ti)PYXi(ti) − LPXiY(ti)| (since PXiY(ti) ≤ 1)
= |PXi(ti)PYXi(ti) − PYXi(ti) + PYXi(ti) − LPXiY(ti)|
= |PYXi(ti)(PXi(ti) − 1) + (PYXi(ti) − LPXiY(ti))|
≥ | |PYXi(ti)(1 − PXi(ti))| − |(PYXi(ti) − LPXiY(ti))| | (|a + b| ≥ ||b| − |a||)

≥

∣∣∣∣∣εL(ε + 4)
2(ε + 2)

−
εL(ε + 4)
4(ε + 2)

∣∣∣∣∣ (from Equations (A.8) and (A.10))24

=
εL(ε + 4)
4(ε + 2)

> 0. (A.11)

This holds for some i greater than any N > max{N1,N2} > 0. Thus PY(t) is discontinuous from
the left at ty. �

24This step also depends again on the fact that if |a| ≥ |c| and |b| ≤ |d|, then |a − b| ≥ |c − d|.
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