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Comments on “The Principal Axes Decomposition
of Spatial Stiffness Matrices”

Abstract—A significant amount of research has been directed
toward developing a more intuitive appreciation of spatial elastic
behavior. Results of these analyses have been described in terms
of behavior decompositions and in terms of behavior centers. In a
recent paper titled “The Principal Axes Decomposition of Spatial
Stiffness Matrices” by Chen, Wang, Lin, and Lai (IEEE Trans.
Robot., vol. 31, no. 1, pp. 191-207), a decomposition of spatial
stiffness was presented and centers of stiffness and compliance
were identified. The results presented in the paper have sub-
stantial overlap with previously published results and redefine
previously used terms. The objective of this communication is to
clarify the contributions of prior work and to standardize the
terminology used in describing spatial elastic behavior.

Index Terms—Spatial stiffness matrix, force-deflection behav-
ior, center of stiffness/compliance, elastic behavior decomposition.

I. INTRODUCTION

A recent issue of the IEEE Transaction on Robotics con-
tained a paper titled “The Principal Axes Decomposition of
Spatial Stiffness Matrices” by Chen, Wang, Lin, and Lai [1].
In it the authors identified three proposed contributions. They
were:

1) A new coordinate-invariant decomposition of spatial
stiffness matrices;

2) New definitions of the center of stiffness and center of
compliance (including a proof of the coincidence of the
two locations);

3) A physical appreciation of the inherent structure of
spatial elastic behavior.

Interestingly, the work presented in the paper has substantial
overlap with previously published results. Most of the core
concepts in [1] were developed in work published more than
20 years ago. The objective of this communication is to
clarify the contributions of prior work and to standardize the
terminology used in describing spatial elastic behavior.

A. Technical Context

For linear spatial elastic behavior, the force-deflection re-
lationship is characterized by w = Kt, where t is the body
deflection twist (a 6-vector), w is the applied wrench (a 6-
vector), and K is the stiffness matrix (a 6× 6 symmetric PSD
matrix).

For consistency with most previous work (but not [1]),
the wrench w = [f, τ ]T is expressed here in Plücker’s ray
coordinates, the twist t = [δ, γ]T is expressed in Plücker’s
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axis coordinates, and the 6 × 6 stiffness is partitioned into
3× 3 blocks in the form:

K =

[
A B
BT D

]
. (1)

B. Overview

In this communication, we clarify the contributions of prior
work related to that presented in [1] in order to avoid potential
confusion and misunderstanding of concepts related to gen-
eral spatial elastic behavior. Specifically, existing coordinate-
invariant decompositions and existing concepts of elastic be-
havior centers are reviewed and compared to the content in
[1]. Finally, elastic behavior centers are interpreted in terms
of unique physical realizations.

II. THE DECOMPOSITION OF A LINEAR ELASTIC
BEHAVIOR

In the analysis of linear spatial elastic behavior, a decom-
position of the stiffness or compliance matrix into a simpler
form helps characterize and describe the nature of the behavior.
If a stiffness is decomposed into a sum of n rank-1 PSD
components:

K = k1w1w
T
1 + k2w2w

T
2 + · · ·+ knwnwT

n , (2)

then the behavior can be physically realized with n springs
(including screw springs and simple springs) connected in
parallel [2]. The 6-vector (screw) wi is called the spring
wrench.

The decomposition (2) can be expressed as:

K = WKdW
T , (3)

where W = [w1,w2, · · · ,wn] ∈ IR6×n is the wrench matrix
and Kd = diag(k1, k2, · · · , kn) ∈ IRn×n is the joint-space
stiffness matrix.

Thus, once a stiffness matrix K is decomposed into the form
of (2) or (3), a realization of the behavior with a set of springs
is achieved.

By duality [3], a decomposition of a compliance matrix will
yield a realization of the behavior with a serial mechanism.

For a given stiffness, the decomposition in (2) or (3) is
not unique. There are infinitely many decompositions for the
same elastic behavior. Most decomposition methods depend on
the coordinate frame selected to describe the elastic behavior.
Decompositions that are independent of the coordinate frame
are of interest because they characterize the inherent properties
of the behavior. Below, we review some coordinate-invariant
decompositions of elastic behaviors, then compare these with
the decomposition presented in [1].
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A. The Eigenwrench-Eigentwist Decomposition

Dimentberg [4] first discussed the screw axis of an elastic
behavior, in which a wrench along the axis yields a pure
translational (linear) deflection parallel to the direction of
the axis. This screw axis was defined as a wrench-compliant
axis by Patterson and Lipkin [5]. In [5], they described the
properties of a wrench-compliant axis and its dual, the twist-
compliant axis (in which a twist deflection along the axis
yields a pure couple parallel to the direction of the axis). The
wrench- and twist-compliant axes can be obtained by solving
the following eigenvalue problems respectively:

KΓwf = kfwf (4)
∆C∆Γtγ = cγtγ (5)

where the 6× 6 matrix Γ is defined as:

Γ =

[
I 0
0 0

]
. (6)

The screws representing the wrench- and twist-compliant
axes were defined in [6] as eigenwrenches and eigentwists
respectively.

It can be seen that the eigenvalue problem (7) depends solely
on the first three columns of the stiffness matrix K. Thus,
the eigenwrenches wfi and the corresponding translational
stiffness kfi are determined by the two 3 × 3 block matrices
A and B of K in (1). Similarly, the eigenvalue problem (8)
depends solely on the last three columns of the compliance
matrix C.

It was also shown in [5] that:
1) every full-rank elastic behavior has three orthogonal

wrench-compliant axes (eigenwrenches) and three or-
thogonal twist-compliant axes (eigentwists);

2) the wrench-compliant axes and twist-compliant axes are
reciprocal.

Based on these properties, Lipkin and Patterson [6] devel-
oped a decomposition of stiffness in the form of (3):

K = [Wf ,Wγ ]

[
Kf 0
0 Kγ

]
[Wf ,Wγ ]

T
, (7)

where Wf = [wf1,wf2,wf3] ∈ IR6×3 and each wfi is an
eigenwrench; Wγ = [wγ1,wγ2,wγ3] ∈ IR6×3 and each
wγi = [0, τ γi]

T is a pure couple in the direction of an
eigentwist; and where both Kf and Kγ are diagonal: Kf =
diag(kf1, kf2, kf3) and Kγ = diag(kγ1, kγ2, kγ3). Thus, (10)
can be written as:

K = kf1wf1w
T
f1 + kf2wf2w

T
f2 + kf3wf3w

T
f3

+kγ1wγ1w
T
γ1 + kγ2wγ2w

T
γ2 + kγ3wγ3w

T
γ3. (8)

In [6], Lipkin and Patterson did not provide a physical
interpretation of this decomposition. However, in [2], Huang
and Schimmels showed that any rank-1 PSD component
can be realized with a screw spring or a simple spring.
Thus, decomposition (11) indicates that K is realized with
three screw springs along the three eigenwrenches (wrench-
compliant axes) and three torsional springs in the directions of
the three eigentwists (twist-compliant axes). By the properties
of wrench- and twist-compliant axes, the three screw springs

and the three torsional springs are each orthogonal. Since the
wrench- and twist-compliant axes are coordinate invariant, the
decomposition (10) or (11) is unique for the generic case.

B. The Decomposition Described in [1]

In [1], a different decomposition of stiffness is described.
First, the stiffness matrix K is decomposed into two rank-3
components:

K =

[
A B
BT BTA−1B

]
+

[
0 0
0 C−BTA−1B

]
= KS + KT . (9)

Then, KS is further decomposed into the sum of rank-1 PSD
matrices based on the wrench-compliant axes; and KT is
further decomposed into the sum of rank-1 matrices based on
an eigenvalue decomposition. The three components of KS

are realized with three screw springs associated with the three
wrench-compliant axes; and the three components of KT are
realized with three orthogonal torsional springs.

In the decomposition process, the core step is the de-
composition (12) (presented in [1] as equation (13)). The
decomposition in (12), however, was previously developed and
originally presented in [7] for full-rank stiffness and then in
[8] for arbitrary PSD stiffness in order to realize an elastic
behavior with a set of concurrent springs. Additionally, the
decomposition properties in [1] (described as Lemmas 1-
3) were originally provided in [7] and [8]. Also the rank-1
decomposition defined as the “principal axes decomposition”
in [1] (equation (16) in [1]) is the same decomposition as (11)
that was developed by Lipkin and Patterson [6].

Finally, the term “principal axes decomposition” used in
[1] is not consistent with previous usage. In [9], Ball defined
the principal screws of a 3-system. These three orthogonal
principal screws are associated with the 3-system formed by
the three wrench- or twist-compliant axes, but are not along
the eigenwrenches or eigentwists.

III. CENTERS OF ELASTIC BEHAVIOR

Based on decomposition (12), [1] defined a “stiffness cen-
ter” to be the center of the cuboid bounded by the three
wrench-compliant axes, and defined a “compliance center”
to be the center of the cuboid bounded by the three twist-
compliant axes. The authors showed that these two centers are
coincident. These terms, however, have already been defined
by Loncaric [10] and are associated with different concepts. In
addition, the centers of the wrench-compliant axes and twist-
compliant axes were already defined by Lipkin and Patterson
[11], [12] as the center of elasticity. The traditional center of
stiffness, center of compliance and the center of elasticity are
different locations that are used to provide different charac-
terizations of elastic behavior. Below, the different centers of
elastic behavior are clarified.

A. Centers of Stiffness and Compliance

Loncaric [10] defined the center of stiffness as the location
at which the 3 × 3 off-diagonal block of the stiffness matrix
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(B in (1)) is symmetric. Similarly, the center of compliance is
defined as the location at which the 3×3 off-diagonal block of
the compliance matrix is symmetric. It was proved that for the
generic case, the two centers are unique and non-coincident.

Ciblak and Lipkin [13] investigated the relations between
Loncaric’s centers and the wrench- and twist-compliant axes.
They showed [13] that if rfi is the perpendicular vector from
the center of stiffness Ps to the wrench-compliant axis wfi,
(i = 1, 2, 3), then

kf1rf1 + kf2rf2 + kf3rf3 = 0, (10)

where kfi is the value of translational stiffness (or the eigen-
value of the corresponding eigenvalue problem (7)) associated
with wrench-compliant axis wfi.

Similarly, if rγi is the perpendicular vector from the center
of compliance Pc to the twist-compliant axis tγi (i = 1, 2, 3),
then

cγ1rγ1 + cγ2rγ2 + cγ3rγ3 = 0, (11)

where ci is the value of rotational compliance (or the eigen-
value of the corresponding eigenvalue problem (8)) associated
with twist-compliant axis tγi.

Thus, for the generic case, the center of stiffness can be
uniquely determined by the wrench-compliant axes and the
corresponding values of translational stiffness kfi. Likewise,
the center of compliance can be uniquely determined by
the twist-compliant axes and the corresponding values of
rotational compliance cγi.

B. Centers Defined by Wrench-Compliant Axes and Twist-
Compliant Axes

For an elastic behavior, the three wrench-compliant axes
(eigenwrenches) form Ball’s 3-system Sf [9]. The principal
screws of Sf are the three screws that are reciprocal, orthogo-
nal and concurrent [9]. The intersection point of the principal
screws is the center of the three wrench-compliant axes. For
its dual, the three twist-compliant axes define a 3-system Sγ
and the center of the principal screws of Sγ can be similarly
defined. The two 3-systems Sf and Sγ are reciprocal.

Lipkin and Patterson [11] proved that the two centers
associated with the wrench-compliant axes and the twist-
compliant axes are coincident. This unique point was defined
as the center of elasticity [11].

It was proved that:
1) In an arbitrary coordinate frame, the location of the

center of elasticity, Pe, can be calculated [11], [13] using

re =
1

2
(r1 + r2 + r3), (12)

where ri is perpendicular vector from the coordinate
origin to the wrench- or twist-compliant axes. If the
coordinate frame is at the center of elasticity, then

r1 + r2 + r3 = 0. (13)

2) If the coordinate frame origin is at Pe, the block matrix
BTA−1 ( or A−1B) is symmetric [14].

It is obvious from (15) or (16) that the center of elas-
ticity is the center of the cuboid bounded by the three
wrench-compliant axes (eigenwrenches) or by the three twist-
compliant axes (eigentwists).

C. Centers Incorrectly Redefined in [1]

Bellow, the centers defined by Loncaric [10] and by Lipkin
and Patterson [11] are compared with those from [1].

Based on the decomposition in [1], a stiffness is realized
with three orthogonal screw springs and three orthogonal
torsional springs. The center of the cuboid formed by the
three screw springs is incorrectly redefined (relative to that
from Loncaric [10]) as the “center of stiffness.” Using the
same process, performing the decomposition on a compliance
matrix yields three orthogonal screw joint twists and three
orthogonal prismatic joint twists in a serial mechanism that
realizes the behavior. In [1], the center of the cuboid formed
by the three screw joint twists is incorrectly redefined as the
“center of compliance” also relative to that from Loncaric [10].
Then, it was shown that the two centers are coincident and that
the block matrix BTA−1 is symmetric when the coordinate
frame is at the “center.”

Since the three screw-spring wrenches (screw joint twists) in
the decomposition (12) are along the three wrench-compliant
(twist-compliant) axes, the center defined in [1] is exactly the
center of elasticity defined by Lipkin and Patterson [11], [12].
The coincidence of the two centers and the symmetry of block
matrix BTA−1 at the center are known results [6], [11], [14].

D. Clarification and Physical Appreciation of Elastic Behav-
ior Centers

The center of stiffness, the center of compliance, and the
center of elasticity are three points used to characterize an
elastic behavior. These three distinct points reflect the nature
of elastic behavior in different aspects.

Figure 1 shows the geometric relations of the centers of
stiffness and compliance with respect to the three wrench-
compliant axes and twist-compliant axes identified by Ciblak
and Lipkin [13]. The center of stiffness can be determined by
(13), and the center of compliance can be determined by (14).
Since the locations of the wrench- and twist-compliant axes,
and the coefficients kfi and cγi in (13) and (14) are not the
same, the two centers are not coincident in general.

It can be seen that the center of stiffness depends on both
the wrench-compliant axes and the values of the translational
stiffness kfi. Thus, changing kfi in (11) changes the location
of the center of stiffness.

Figure 2 shows the geometric significance of the center of
elasticity, which is located at the center of the cuboid bounded
by the three eigenwrenches or the three eigentwists. The center
is also the intersection point of the three principal screws
associated with the 3-system defined by the three wrench- or
twist-compliant axes [9].

Unlike the centers of stiffness/compliance, the center of
elasticity depends solely on the locations of the three wrench-
or twist-compliant axes and is independent of the values of
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Fig. 1. The center of stiffness/compliance and the eigenwrenches/eigentwists.
(a) At the center of stiffness, kf1rf1+kf2rf2+kf3rf3 = 0. (b) At the center
of compliance, cγ1rγ1 + cγ2rγ2 + cγ3rγ3 = 0.

Pe

rf1

rf2
rf3

wf3wf2

wf1

Fig. 2. The center of elasticity defined to be the center of the three wrench-
or twist-compliant axes. At the center, rf1 + rf2 + rf3 = 0.

kfi or cγi. Thus, changing the value of kfi in (11) will not
change the location of the center of elasticity.

Comparing the different types of centers, the center of
stiffness by Loncaric [10] depends on both the eigenvalues and
eigenvectors of the eigenvalue problem (7); whereas the center
of elasticity by Lipkin and Patterson [11] only depends on the
eigenvectors of (7). In this sense, the center of stiffness better
represents the elastic behavior. For example, if the translational
stiffness kfi is increased, then the center of stiffness will move
closer to the wrench-compliant axis wfi.

Since the center of elasticity depends only on the two block
matrices A and B in (1), changing in the lower-right block
matrix D in the stiffness matrix K will not change the location
of the center of elasticity. Similarly, changing in the upper-
left block matrix in the compliance matrix will not change the
location of the center of elasticity.

For Loncaric’s centers, although changing the lower-right
block matrix of the stiffness matrix does not change the
location of the stiffness center, it changes the location of the
center of compliance. Similarly, changing the upper-left block
matrix of the compliance matrix does not change the location
of the compliance center, but changes the location of the center
of stiffness. Thus, the non-coincidence of the two centers better
describes the nature of an elastic behavior.

Huang and Schimmels [7] provided a different physical
appreciation of the centers of stiffness and compliance. It
was shown that, if a stiffness matrix is realized with a set

Ps
w1

w2
k1

x y
z

O

k2
w3 k3

wi

wn
ki

kn
x y

z

O
Pc

t1
c1

c2 t2
c3

ti
t3 ci

cn

tn

(a) (b)

Fig. 3. A physical appreciation of stiffness center and compliance center.
(a) The stiffness center is the intersection of all spring wrenches in a parallel
mechanism with concurrent axes. (b) The compliance center is the intersection
of all joint twists in a serial mechanism with concurrent axes.

of springs having concurrent axes, the intersection point must
be the center of stiffness; and that any full-rank stiffness
matrix can be realized with a set of springs intersecting at the
center of stiffness (Fig. 3a). By duality, it was shown that, if a
compliance matrix is realized with a serial mechanism having
concurrent joint axes, the intersection point must be the center
of compliance; and that any compliance matrix can be realized
with a serial mechanism having all joint axes intersecting at
the center of compliance (Fig. 3b).

Although for a general elastic behavior the three centers
are distinct in space, these three locations are related in
some cases. An obvious case is when the translational and
rotational components in an elastic behavior can be completely
decoupled, i.e., in a coordinate frame, the off-diagonal block B
in (1) vanishes. For this case, the three centers are coincident.

Ciblak and Lipkin [13] investigated the relations of the three
centers when the elastic behavior has at least one compliant
axis. A compliant axis is defined to be a screw axis for
which a force in the direction of the axis produces a parallel
translational deformation, and a rotational deformation about
the axis produces a parallel couple. It was shown [13] that
if one compliant axis exists then all three centers Ps, Pc and
Pe must be on the axis; if two compliant axes exist, then all
three centers must be coincident. Means of physically realizing
elastic behaviors having compliant axes were presented in [15].

IV. SUMMARY

The three proposed contributions of [1] listed in Section I
have significant overlap with previously published results. In
the development of the coordinate-invariant decomposition in
[1], the rank-3 decomposition used the methods presented in
[7], [8] and the rank-1 decomposition was presented in [6].
The authors of [1], however, did provide an alternate way
to obtain the same results. The proofs of properties of the
decomposition provided in the paper confirmed the previously
published results contained in [7], [8], [6], [14]. The center
“redefined” in [1] is not a new location that better characterizes
an elastic behavior, but the “center of elasticity” identified and
defined in [11], [12]. The center of stiffness, the center of
compliance, and the center of elasticity are different locations
in space. The center defined by the wrench- or twist-compliant
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axes should not replace the existing definitions of centers of
stiffness/compliance by Loncaric [10].

In this communication, the contributions of previous works
were identified relative to those presented in [1] and clarified
to avoid potential confusion. Discussions about the coordinate-
invariant decompositions of spatial stiffness, and the centers
of an elastic behavior were presented to avoid potential mis-
understanding of concepts and misuse of existing terms.
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