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Abstract 
The accurate modeling of coal combustion requires detailed radiative heat transfer models for both 

gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) 

radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The 

MCRT solver considers radiative interactions between coal particles and three major combustion products 

(CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray 

correlation for the solid phase are employed to account for the nongray effects. The flame structure is 

significantly altered by considering nongray radiation and the lift-off height of the flame increases by 

approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the 

evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for 

medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral 

models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray 

particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas 

approximation considerably underestimates the radiative source terms for both the gas phase and the solid 

phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. 

However, the level of under-prediction is not as significant as that resulting from the employment of the 

gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and 

found to be insignificant for the present target flame. 
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1. Introduction 

Thermal radiation plays a significant role in coal combustion, especially for the emerging 

new clean coal combustion technologies, such as oxy-coal combustion [1] and combined coal-

magneto-hydrodynamics cycle [2]. There either the concentrations of CO2 and H2O are high or 

the overall temperature is elevated. To accelerate the development of such new technologies, an 

accurate and predictive coal radiation model is necessary. The modeling of radiation during coal 

combustion is first complicated by its multiphase nature: the particulate media including coal, 

char and fly ash, emit, absorb, and scatter with different spectral properties. Second, radiatively 

participative gaseous combustion products, mainly CO2, H2O, and CO have spectral properties 

that are very different from those of the particulate phases. The elevated CO2 concentration in 

coal combustion, especially in oxy-coal combustion, can alter the heat transfer pattern from 

convection-dominant to radiation-dominant [1]. The accumulation of H2O in coal combustion 

with wet recycling enhances the possibility of radiation re-absorption as well. Third, unlike other 

multiphase fuel mixtures such as sprays, coal particles are active emitter due to the combination 

of high emissivity and high temperature. These aspects of thermal radiation in coal combustion, 

i.e., propagation of radiation through a particulate medium, the difference between participative 

gas phase and particulate phase radiative properties, and the emission and absorption by coal 

particles, have to be considered to accurately model and predict the heat transfer process in coal 

combustion. 

Several radiation solvers, such as the PN methods [3,4] and the discrete ordinates method [5] 

have previously been adopted to simulate the coal radiation for their computational expediency. 

The expensive but accurate Monte Carlo ray tracing (MCRT) method has been applied to 

combustion applications involving mainly gaseous media [6,7]. In the area of coal combustion, 

the MCRT method has been applied to solve the radiative transport equation (RTE) [8,9] only 

recently, due to the recent improvements in computing capabilities. Despite constraints such as 
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high computational cost and long execution times, the MCRT method has the advantage of 

reproducing exact solution for sufficiently large statistical samples and the ability to treat 

inhomogeneous participative media and complex geometries with relative ease. This advantage 

is crucial for coal radiation modeling because coal combustion often involves both 

inhomogeneous participative media and complex geometries.  

Besides an accurate solver for the RTE, the models for the spectral properties of the coal 

particles and the gas phase are also crucial for obtaining accurate radiation solutions. Simple 

gray models are commonly used for coal combustion [10,11]. However, coal, char, fly ash, and 

the gas phase have distinct spectral properties. Gray models, such as the constant-absorption-

coefficient model and the weighted-sum-of-gray-gases model (WSGGM), cannot correctly 

predict the spectral properties of the mixture without ad hoc tuning. Recently, some detailed 

nongray spectral models are examined in the context of coal combustion [8,12]. Both the full 

spectrum k-distributions model [12] and the line-by-line (LBL) model [9] have been applied to 

account for the nongray gaseous properties of coal combustion. For coal particles, models that 

employ large particle limit assumptions [13], as well as the size-dependent Buckius-Hwang 

correlations [14] are examined in various coal combustion simulations [9,12,15]. To quantify the 

effects of radiative heat transfer in coal combustion, the present study attempts to bring together 

the most accurate RTE solver and the most accurate spectral models available for both the 

gaseous and particle phases. With the increasing computing power, the high-fidelity radiation 

models become less prohibitive. Therefore, it is a worthwhile exercise to bring the predictive 

power to the simulation of coal radiation. 

The objective of this study is twofold: first, to develop a high-fidelity multiphase MCRT 

method that accounts for nongray properties of gas and particle phases and second, to investigate 

effects of nongray spectral properties through parametric studies using a laboratory-scale jet coal 

flame. In addition to the detailed radiation models, the developed coal combustion solver 

features a transient Reynolds-averaged Navier-Stokes-based (RANS) Eulerian-Lagrangian 

multiphase flow solver, a detailed gas-phase chemistry model and the potential of considering 

turbulence-chemistry-radiation interactions. The flow solver is expected to provide transient 

information on the number densities of coal particles with reasonable accuracy, which has been 

found to be essential in predicting the overall effects of radiation [4]. 
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This article is organized as follows. The target flame is introduced in Sec. 2, followed by the 

description of the physical models and numerical methods in Sec. 3. In Sec. 4, results obtained 

using the proposed models are presented and discussed, and conclusions are drawn in Sec. 5.  

2. The target flame  

The target configuration is a laboratory-scale pulverized-coal jet flame. The flame was 

studied experimentally to investigate the ignition and pyrolysis characteristics of different coal 

types and coal feed rates [16]. Radiation effects for different size groups of coal particles, as well 

as lift-off heights and coal burnout rates, were measured in the experiments, for three coal jet 

flames with different stoichiometric ratios. Only the condition of a stoichiometric ratio of 0.22 is 

presented in this study where coal particles are injected through a central nozzle with a feed rate 

of 6.08 mg/s. The Reynolds number of the central jet is approximately 4,400 based on the inlet 

air viscosity and velocity. Coal particles are ignited by a preheated gas mixture formed by 

catalytic combustion of propane that contains hot O2, N2, CO2 and H2O (Table 1). The hot 

coflow is injected through the square slit as indicated in Fig. 1. The proximate and ultimate 

analysis of the coal particles used in the experiments are listed in Table 2. 

Table 1 Operating conditions. 

 Primary jet Preheated mixture 

Average velocity (m/s) 10 4.8 

Temperature (K) 300 1,510 

Mass fraction (-) 

N2 0.768 0.761 

O2 0.232 0.101 

CO2 0.0 0.093 

H2O  0.0 0.045 
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(a) Experimental apparatus (b) Computational domain 

Figure 1 A  sketch of the experimental setup of the target flame, with details of the inlet jet and 

the computational mesh. 

 

Table 2 Thermophysical properties of the coal samples. 

Parameter Experimental values Numerical values 

Ultimate analysis (dry-ash-free wt. %) 

C 83.1 83.1 

H 4.6 4.6 

O 9.9 9.9 

N 1.9 2.4 

S 0.5 0 

Proximate analysis (dry basis wt. %) 

Volatile matter 31.1 31.1 

Fixed Carbon 54.0 54.0 

Ash 14.9 14.9 

 

The target flame has been the subject of several modeling studies, including both RANS- 

and large eddy simulation-based (LES) methods [11,15,17]. These simulations show reasonable 

agreements with the experimental data in some aspects, but also substantial differences in others. 
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Each simulation has a different focal area, ranging from validating combustion models [15,17] to 

implementing accurate and inexpensive devolatilization model [11]. It has been postulated in the 

previous studies that the radiative heat flux is comparable to the convective heat flux after 

ignition and a better radiation model might improve the accuracy of the prediction of flame lift-

off heights. 

3. Models and methods 

In this section, the models and solution methods are presented. Details on the RTE solver 

and spectral models will be discussed in Secs. 3.1 and 3.2, respectively, followed by the 

descriptions of the turbulent multiphase combustion models in Sec 3.3. The remaining numerical 

details are described in Sec. 3.4. 

3.1 The RTE solver 

A Monte Carlo ray tracing (MCRT) method is chosen to solve the RTE. The MCRT method 

can naturally account for the nongray effects of heterogeneous participative media, as well as 

isotropic/anisotropic scattering. With its stochastic nature, the MCRT method can be easily 

coupled with other stochastic models to capture turbulence-radiation interactions. Therefore, it is 

a suitable candidate because the nongray emission/absorption and scattering for the coal-gas 

mixture are of interest. Instead of directly solving the RTE mathematically, the MCRT method 

solves radiation transport by emitting and tracking a statistically large number of “energy rays” 

to account for their interaction with participating media. Each of these energy rays carries a 

specific amount of energy, and has a specific wavenumber, direction, and origin. They are 

emitted everywhere within the computational domain. The strength of each energy ray is 

proportional to the local emission potential of its host cell. The selection algorithms of the origin, 

propagation direction, and wavenumber of each energy ray are based on random number 

relations and have been reported in [6,13,18]. As each ray moves through the domain, it loses 

energy due to absorption by local participating media, and also scatters (i.e., changes direction) 

according to the scattering potential along its travel path. Each energy ray is tracked until its 

energy is completely absorbed by the participative media or it hits and/or exits the computational 

boundaries. 



7 

 

For the multiphase system, the total emission from participating media within the i
th

 finite 

volume/cell,       , is equal to the sum of the emission from both the gas and solid phases. The 

quantity is calculated as 

                          ,     

where the subscripts     and     represent gas and solid phases in cell i, respectively.          

and          are the emission from gas and solid phases on a per-cell basis, respectively,  

                      
      ,     

                      
      , (3) 

where   ,   and   are the Planck-mean absorption coefficient, temperature, and volume of each 

phase as denoted by the subscript, respectively. The calculation of the Planck-mean absorption 

coefficients for both the gas and solid phases requires the knowledge of the spectral properties, 

which will be discussed in Sec. 3.2. 

During the tracing of each ray, absorption and scattering are considered as separate discrete 

events. In the present study, the “energy partition” scheme [19] is adopted for tracking 

absorption and the amount of energy absorbed by cell   from the  th
 energy ray emitted from cell 

  is 

        
     

 (     (     
 )) ,     

where    
  is the energy of the  th

 ray as it enters the absorbing cell (cell i) and     
  is the local 

optical thickness. If no scattering occurs prior to the departure of the k
th

 energy ray from cell i, 

the local optical thickness due to absorption of gas and solid phases is computed as 

     
  (         )   

  ,     

where    
  is the distance traveled by the ray through cell  . With the “energy partition” scheme, 

the energy of a ray diminishes as it traverses each cell according to  

    
    

  ∑                   
  ,     

where    
  is the energy of the     ray that originated in cell j entering cell i, and   

  is the initial 

energy of the     ray, determined by the total emission energy in the     cell,       , divided by 

the number of rays emitted from this cell. The set        
  denotes all cells crossed by the     ray 

emitted from cell   before intersecting cell  .  
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       Isotropic scattering from coal particles is also considered in this study. Scattering only 

affects the propagation direction of a ray. A collision-based method [13,20] is employed for 

scattering where the direction of the ray is unaltered until it travels a certain predetermined 

optical thickness calculated based on scattering coefficient of the participating media along its 

path. Once the optical thickness due to scattering reaches this threshold, the direction of the ray 

is altered without changing any other properties. 

Once the ray tracing is completed, the radiative source terms can be collected for the gas 

phase and the solid phase respectively. A Eulerian-Lagrangian system is employed to describe 

the flow field of the gas and solid phases (described in Sec. 3.3). Therefore, radiative source 

terms (i.e., absorption - emission) are collected on a per-parcel basis for the Lagrangian coal 

parcels and they are collected on a per-cell basis for the Eulerian gas phase. 

3.2 Radiative properties 

The gas phase Planck-mean absorption coefficient is computed as the sum of the Planck-

mean absorption coefficient        of each individual gas species, i.e.,   

      ∑       
  

    ,     

where    is the number of participating gas species. For each gas species m, individual Planck-

mean absorption coefficient is calculated from spectral absorption coefficient based on gas 

temperature    by 

        
 

   
 ∫             

 

 
 .     

The most accurate approach to account for the spectral variation in the gas phase radiative 

properties is the line-by-line (LBL) approach, which relies on the detailed knowledge of every 

single spectral line. A LBL database for three major combustion products (CO2, CO, and H2O) 

for temperatures up to 3,000 K is obtained from the HITEMP database to provide spectral 

properties for the gas phase [21]. A Planck-mean based gray gas model is also tested in this work 

for the parametric study. 

In absence of dependent scattering, the radiative properties of a coal particle (assumed to be 

a sphere) of radius   are governed by its complex index of refraction,       , and its size 

parameter,        . The optical properties   and   are the real and imaginary components of 

the complex index of refraction of the solid particles, and   is the wavelength. The absorption 
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and scattering potential of a particle is expressed in terms of efficiency factors for absorption, 

scattering, and extinction for a particle of radius a, defined as [13] 

      
    

    ,       
    

    ,       
    

    ,     

where     ,     , and      are the absorption, scattering, and extinction cross-sections, 

respectively, and               . 

For clouds of particles of non-uniform sizes with the same optical properties, the absorption, 

extinction, and scattering coefficients are given, respectively, as  

    ∫           
 

 
  ∫      

       
 

 
 ,      

    ∫           
 

 
  ∫      

       
 

 
 , (11) 

    ∫           
 

 
  ∫      

       
 

 
 , (12) 

where the      is the particle size distribution function. 

To calculate the radiative properties of coal particles of arbitrary size distribution, we use the 

Buckius-Hwang correlations [14] that were obtained from a variety of complex indices of 

refraction and a variety of different particle distribution functions for coal. The Buckius-Hwang 

correlations present spectral correlations for the absorption coefficient of coal particles in terms 

of the complex index of refraction and the size parameter. Here, a constant complex index of 

refraction is assumed in this study, hence the spectral dependence of the complex index of 

refraction is neglected. However, particles should still be considered as nongray due to their 

spectrally-dependent size parameters.   

To quantify the importance of the nongray effects, the large-particle-limit assumption is also 

implemented where the extinction, scattering, and absorption efficiencies are not size dependent. 

Neglecting diffraction, in the large particle limit, the efficiencies can be written as [13],  

                      ,      

where   is the hemispherical reflectance and   is hemispherical absorptance. There, the particles 

are approximated to be large (i.e.,    ) and opaque (    ), and this is a reasonable 

assumption for large coal particles (~100 μm) compared to typical mid-infrared wavelength (1 – 

10 μm) relevant for combustion. Using Fresnel's relations, the reflectance for unpolarized rays 

due to normal incidence can be written as [13], 

   
         

          .      
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The values of   and   are indicated in Table 3.  

Available data [22] for carbon and different types of coal suggest that the real component of 

the complex index of refraction,  , varies little over the infrared spectrum and is relatively 

insensitive to the type of coal. The absorptive index,  , may vary strongly over the spectrum and 

from coal to coal. Since bituminous coal was used in the experiments, a typical complex index of 

refraction,              is used for the entire spectral range [8]. Scattering by coal particles 

is considered to be isotropic when the Buckius-Hwang correlations are used, and is neglected 

when the large-particle limit is considered.  

The composition of the fly ash and its optical properties may also vary greatly from coal to 

coal. An extensive database exists on the optical properties of ash [22], where there is agreement 

on a consistent value for the real component of the complex index of refraction (n    ) [23]. In 

contrast, strong wavelength and temperature dependence [23] has been observed for the 

imaginary component    ) (e.g., from        to      [22]). In general, there is significant 

difference in the values of complex index of refraction between coal and fly ash. Therefore, a 

value of              is chosen for fly ash to study the effect of its presence on radiation 

characteristics.  

During combustion, particles composed of pristine coal or ash rarely exist; most coal 

particles are partially burnt, especially for the laboratory-scale pulverized coal flames studied 

here. Therefore, models to calculate the complex index of refraction of partially burnt coal 

particles are needed. Both linear model and binary-switch model are discussed in literature [23]. 

A binary-switch model is proposed here, where the complex index of refraction is switched to 

that of the fly ash when only 5% of the initial mass of the solid carbon remains. 

Table 3 The complex indices of refraction for coal and ash used in this study. 

Particle Type        

bituminous            
fly ash            

 

Finally, particles of identical diameters are grouped into a computational parcel. It is used to 

reduce the computational cost of particle tracking.  From the computational point of view, parcel 

and particle are equivalent as long as the projected area for a parcel is scaled with the 

mass/volume the parcel represents, which is the case in the current model for dilute dispersed 

phase.  
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3.3 Chemistry and turbulence models 

Detailed kinetic models are used to account for the gas-phase chemical reactions. The coal 

composition is obtained from the proximate and ultimate analysis as indicated in Table 2. Sulfur 

is not considered in this study, and the measured amount of sulfur is added to the nitrogen 

content. The elemental components are distributed among volatile matter, ash, and fixed carbon, 

according to the proximate and ultimate analysis. By matching the lower heating value to the 

experimental measurement, the volatile matter is assumed to decompose instantaneously to four 

small molecules, namely C2H4, CO, N2 and H2, with mass fractions of 0.307, 0.512, 0.115, and 

0.066, respectively. The volatile matter is released from coal particles with a rate determined 

from Kobayashi’s two-rate model [24]. Surface reaction is assumed to occur sequentially after 

the devolatilization and the global reaction of                   is considered as the 

heterogeneous reaction. A diffusion-kinetic-control surface reaction model [25] is used to 

determine the heterogeneous reaction rate.  

The convective heat transfer for particles is accounted for using the Ranz-Marshall 

correlation [26]. The specific heat of coal particles is a linear combination of the specific heat of 

the volatile matter, ash and char. A Rosin-Rammler distribution is employed to describe the 

initial size distribution of the particles in the coal injection models, and the model parameters are 

selected based on the experimental measurements.  

For the gas phase combustion, the PaSR model [27] is used to calculate the chemical source 

term, where the model parameter    is chosen to be unity, neglecting the effect of turbulent 

chemistry interaction. A systematically reduced 31-species mechanism [28] is used to model the 

gas-phase kinetics. 

A Reynolds-averaged formulation is used in the simulation in a Eulerian-Lagrangian 

framework. The gas-phase Favre-averaged continuity, momentum, species, and sensible enthalpy 

are solved on the Eulerian mesh, and the coal parcels are tracked individually in a Lagrangian 

manner. Turbulence is modeled using a standard     model [29] with a modified constant 

       . A two-way coupling scheme that accounts for mass, momentum and energy transfer 

between the gas phase and coal particles is considered. The mean source terms originating from 

the coal particle motion and reaction are collected in a particle-source-in-cell manner (PSIC) [30]. 
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3.4 Computational domain and numerical details 

The coupled mean continuity, mean momentum and turbulence equations are solved using a 

structured finite-volume method with a second-order spatial discretization and a first-order time 

discretization scheme in OpenFOAM-2.2.x [31]. The radiative heat transfer models are 

implemented in separate FORTRAN codes and coupled with OpenFOAM.  

The computational mesh employed in this study is a 10° axisymmetric wedge consisting of 

15,000 hexahedral cells for computational expediency. The wedge-like 3D grid [31], shown in 

Fig. 1, is one-cell thick in the azimuthal direction. The grid is refined in the mixing regions near 

the inlet to resolve the mixing layer between the fuel jet and the preheated mixture, and is 

stretched in the coflow and downstream to save computational time. 100,000 parcels are injected 

per second, and 5,000 to 6,000 parcels are present at every time step within the computational 

domain after the flame reaches statistically stationary state. Constant pressure boundary 

condition and zero gradient condition for all other scalars are applied at the outlet and at the 

outer peripheral boundary. For velocity, a fixed value of 0.16 m/s along the radial direction is 

prescribed for the outer peripheral boundary to account for the entrained flow rate resulting from 

the exhaust fan [11]. Buoyancy effects are considered as per direction of gravity in the 

experimental setup. Symmetry conditions are applied at the two lateral faces.  

 

 

Table 4 Baseline physical models and numerical parameters for the target flame. 

Item Model  Baseline values 

Eulerian CFD Structured finite-

volume method 

Axisymmetric, 15,000 cells 

Turbulence closure standard            ,         ,         ,  

      ,        

Gas phase chemistry 31-species detailed 

mechanism 

- 

Devolatilization Two-rate model            1/s,       , 

            J/kmol K, 

           1/s,       , 

            J/kmol K 

Surface reaction  Diffusion-kinetic-

control model 
        (kg/m

2
s) (N/m

2
), 

          J/kmol K, Sb = 1.0 

Coal properties Constant volume, 

constant char and ash 

specific heat 

          
= 710 J/kg K 

100,000 parcels per second 

Convective heat Ranz-Marshall - 
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transfer correlation 

Dispersion Stochastic dispersion 

model 

- 

 

A summary of the models used in the baseline case is provided in Table 4. A gas phase 

mixing simulation is first performed to obtain fully-developed flow and temperature fields. No 

combustion or radiation is involved during this stage. The coal particles are then injected after 

approximately ten flow-through times, while the injection duration is about twenty flow-through 

times, based on the fuel jet inlet. Finally, the coal combustion is performed for ten flow-through 

times until a statistically stationary state is reached. Statistics are collected over another ten flow-

through times. 

Table 5 A summary of the conditions of the test cases. 

 Solid phase Gas phase 

Case 1 Baseline (N/A)  Baseline (N/A) 

Case 2 Large (OT) Gray (OT) 

Case 3 BH correlations (OT) LBL (OT) 

Case 4  BH correlations LBL 

Case 5 Large (OT) with ash properties Gray (OT) 

 

The test cases with different combinations of radiation models are summarized in Table 5. 

Results obtained from these test cases are compared in Sec 4. In Table 5, “Large” represents the 

large particle limit, and “BH correlations” denotes cases using the Buckius-Hwang correlations. 

“LBL” represents the line-by-line spectral model, and “Gray” denotes the gray gas model. “OT” 

represents optically thin radiation model, where no absorption is considered. The baseline case is 

a simulation without any radiation model. 

4. Results and Discussion 

The baseline (Case 1) results for the target flame are shown first in this section followed by 

results obtained from the optically thin (OT) simulations (Case 2 and 3) and the nongray 

simulation (Case 4). The effects of nongray radiation on the evolution of coal particles are 

examined next. Following that, parametric studies of the nongray effects are performed. Finally, 

the effect of different ash properties is briefly explored.  
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4.1 Baseline model results  

Figure 2 shows the mean mass fractions of radiatively important gaseous species for Case 1. 

To demonstrate the effect of combustion, the minimum values of CO2 and H2O are set to be their 

corresponding inlet levels in the hot preheated mixture. CO2 can be produced by two processes: 

the complete combustion of volatile matters (CO and C2H4) and the surface reaction. The 

oxidation of volatile matters leads to a CO2-rich zone between 0.1 m and 0.2 m downstream the 

inlet, while the surface reaction creates a second CO2-rich zone further downstream, as indicated 

in Fig. 2. Water vapor is produced only through the combustion of volatile matter (e.g., C2H4 and 

H2). Therefore, water vapor starts to form between 0.1 m and 0.2 m and begins to decline 

towards the exit of the domain because the devolatilization process is almost completed there. As 

a major pollutant, CO is formed through devolatilization and partial combustion, and is 

eventually consumed through oxidation. Therefore, its concentration peaks at locations where the 

O2 concentration is relatively low and where the devolatilization is still active. It should be noted 

that the peak mass fraction of CO is comparable to that of H2O.  

   

(a) CO2 (b) H2O (c) CO 

Figure 2 Mass fraction contours obtained from Case 1 for (a) CO2, (b) H2O, and (c) CO. 

The lift-off height of the test flame is one of the key observables reported by the 

experimental study. A high-speed camera was used to capture the flame development in the 

experiment. Three distinct flame regions were identified from the experiment [16]: isolated 

bright particles (IBP), the growing flame (GF) and the continuous flame (CF). Ignited particles in 
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the IBP region are isolated and do not contribute to the growth of the flame. In the GF region 

(0.15 m to 0.2 m), the ignited cloud is growing and eventually the CF region takes shape in 

which the center of the jet is combusting stably. Consequently, the lift-off height of the coal 

flame can be defined as the bottom of the CF region (which is fluctuating in space). As a second 

definition, the lift-off height can be defined as the axial position where the local mean gas 

temperature first exceeds 1,560 K [11]. Using the second definition, the lift-off height of the 

target flame is approximately 0.12 m, which is lower than the experimental observation. The 

competing effects of radiative heat loss from the hot products and the radiation gain of coal 

particles near the inlet can alter the lift-off height of the test flame, which is discussed in Secs. 

4.3 and 4.4. 

4.2 Optically-thin simulations: maximum impact of radiation 

Case 2 is simulated as a limiting condition where maximum possible temperature difference 

resulting from considering radiation can be observed. Figure 3 compares the temperature field 

obtained from Cases 1 and 2. As expected, the computed peak mean temperature is lower when a 

gray, optically thin model is used. The maximum decrease of the mean temperature is greater 

than 500 K near the outlet, as shown in Fig. 3(c). It should be noted here that the flame structure 

changes significantly when considering radiation. Comparison solely based on same physical 

locations might not reveal all the factors that cause the observed difference.  

   

(a) Case1 (b) Case 2 (c)  T 
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Figure 3 Temperature contours obtained from (a) Baseline (Case 1) and (b) Large/Gray (OT) 

(Case 2). Subfigure (c) shows the difference in temperature,  T = Case 1 – Case 2. 

The gas phase emission predicted in Case 2 is presented in Fig. 4(a), while the logarithm of 

the ratio of the coal emission to gas phase emission is shown in Fig. 4(b). It is found that the heat 

loss due to coal emission is dominant in the jet core due to the stronger radiative effect of coal 

particles, which is an order of magnitude higher than the gas phase emission. Emission from the 

gas phase is comparable to coal emission outside the injection core, and becomes more important 

in the pure coflow stream. Case 3 is also simulated here where nongray properties are used for 

both the gas and solid phase. No discernible difference can be observed because only emission is 

considered in Cases 2 and 3. It should be noted that the computational cost associated with Case 

2 is an order of magnitude lower than that of Case 4 (shown in Sec. 4.3) because no RTE is 

solved. Due to its computational expediency, Case 2 is used as a test-bed for further parametric 

studies shown in later sections.  

  

(a) Gas emission (b) Logarithm of the ratio of coal-to-gas emission 

Figure 4 Radiative emissions obtained from Case 2: (a) Gas emission (MW/m
3
), and (b) 

logarithm of ratio of coal emission to gas emission. 

4.3 Nongray simulation with emission and re-absorption 

Case 4 is used to demonstrate the thermal radiation effect when considering both emission 

and re-absorption. This is the most accurate and detailed combination of models. The lift-off 

heights are first compared between the experiment and the simulations for both Case 1 and Case 
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4, as shown in Fig. 5. As a reference, we also include the 1,560 K isoline (black line) in Fig. 5. 

The flame is lifted higher when radiation is considered according to both definitions of the lift-

off height. Approximately 35% increase in the lift-off height is observed for Case 4 compared to 

Case 1, according to the second definition of the lift-off height. Overall, by considering radiation, 

the heating rate of the coal particles is reduced, which leads to delayed devolatilization and 

ignition. Due to the difference in ignition characteristics, the flame structure is altered.  

Radial profiles of gas phase temperature at four downstream locations are compared in Fig. 

6. Due to the dominance of the emission from preheated gas and absorption by coal particles 

near the inlet at H=0.05 m, the gas phase temperature is lower when radiation is considered. 

From H=0.25 to 0.35 m, the strongly burning flame becomes dominant, and the difference in the 

gas phase temperature can reach up to 500 K. At H = 0.45 m, the difference in the gas phase 

temperature becomes much larger than at upstream locations due to the change of flame structure 

and the radiative heat loss from the hot heterogeneous mixture. The tight coupling between the 

chemical reactions and the temperature leads to a significantly altered species concentration field, 

which in turn changes the radiative spectral properties of the gas phase. 

  

 

 

 

 

 

 

 

 

(a) Case 1 (b) Case 4  

Figure 5 Temperature contours obtained from (a) Baseline (Case 1) and (b) BH/LBL (Case 4) for 

measurement of the lift-off height. The black line is the isoline of T = 1,560 K (i.e., the second 

definition of lift-off height [11]). The white dashed lines mark 0.1 m, 0.15 m, and 0.2 m 

downstream, respectively. 
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The indirect effect of radiation on convective heat exchange between the gas phase and 

particle phase is explored in Fig. 7, where the red dots denote convective heat transfer from gas 

to particle and the blue dots denote convective heat transfer from particle to gas. As shown in Fig. 

7, heat is transferred from the gas to the particle phases mainly through convection for both cases 

before the lift-off height (approximately 0.2 m). The direction of convective heat transfer 

reverses (i.e., from particle to gas) for most of the particles in the baseline (Case 1) due to the 

higher particle temperature. However, in Case 4, beyond the lift-off height, radiation reduces 

particle temperature dramatically and hence the direction of convective heat transfer remains to 

be from gas to particles throughout the flame for a significant amount of particles. Also 

noticeable from Fig. 7 is the substantial drop in particle temperature near the exit boundary when 

nongray radiation is considered. 

 

Figure 6 Radial profiles of the gas phase temperature obtained from Case 1 (blue solid line) and 

Case 4 (red dashed line). Temperature is scaled by 1000. 
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(a) Case 1 (b) Case 4 

Figure 7 Scatter plots of particle temperature distribution along the axial direction. Each dot 

represents a coal parcel. Red dots denote convection of heat from gas to the particle and blue 

dots denote convection of heat in the opposite direction. Temperature is scaled by 1000. 

4.4 Effects of radiation on the particle evolution 

Effects of radiation on the dynamics of coal particles are investigated by tracking 110 coal 

parcels that are injected approximately at the same time (i.e., within a span of          s after 

attaining the statistically stationary state) and approximately at the same location (i.e., within 

0.015 m from the inlet in the axial direction). These parcels are then classified into three groups 

based on their diameters,  :        ] μm,         ] μm and    70 μm. The radiation-to-

convection ratio,    , which is an important indicator of the heat transfer mechanism for the 

solid phase, is defined as: 

     |
     

      
| ,      

where       and        are the Lagrangian radiation source and convection source for a given 

coal particle, respectively.  

Figure 8(a) shows the evolution of     along the axial direction for the three groups. Each 

dot in Fig. 8 represents a parcel. The horizontal dashed line represents the value of unity, and the 

vertical dashed line marks the lift-off height obtained using the second definition. Before the lift-

off height, convective heat transfer is dominant for all size groups. The parcels with stronger 

radiation effects mostly belong to the small particle size group due to the relatively higher 

temperature for small particles (Fig. 8(b)) in this region. After the parcels move beyond the lift-

off height, radiation becomes equally or more important compared to convection for all three 
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groups as indicated by the red dots that are populated in the top-right zone. By collecting the 

probability density functions of     for all three size groups (not shown here) in the top-right 

zone of Fig. 8(a), it can be observed that radiation plays a more significant role than convection 

for the medium and large particles, which is consistent with the experimental observations in 

[16].  

The temperature evolution for parcels from different size groups is plotted in Fig. 8(b). Two 

peaks are observed for small particles. The first peak is due to the volatile matter combustion, 

and the second peak is caused by the surface reaction. The temperature of medium and large 

particles increases slowly before the lift-off height, due to their relatively larger heat capacity. To 

investigate the completeness of particle burning, Fig. 8(c) shows the burnout rate, which is 

defined as  

     
    

    
 ,       

where      and      denote the remaining and the initial combustible matter (volatile matter plus 

solid carbon), respectively, in the parcel. 

Two-stage burnout is observed for all particles, with the first stage caused by the fast 

devolatilization and the second stage caused by the relatively slower surface reaction. The 

characteristics of the two stages are different for different particle size groups. Smaller particles 

burn out faster because they respond faster to heating. Most of the medium-to-large particles 

burn out near the outlet, while many small particles complete burning before reaching the 

continuous flame indicated by the lift-off height. 
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(a)    (-) (b) T/1000, K (c) B(-) 

Figure 8 Radiation-to-convection ratio, temperature, and burnout rate history for 110 coal parcels 

along the axial direction. The first, second, and third row represent groups of small, medium, and 

large particles as defined in the text, respectively. The red solid lines represent the mean 

temperature and burnout rate for each group. Temperature is scaled by 1000. 

4.5 Effects of the nongray spectral properties 

A frozen-field analysis is conducted here to demonstrate the effects of nongray spectral 

properties. Since unsteady RANS with Lagrangian particles were used in the simulation, the 

statistically steady state snapshot was obtained after time-marching the simulation for a large 

amount of time steps. The temperature and species concentration fields obtained from the 

solution of Case 2 are analyzed. The MCRT simulations were run for a sufficient number of 

iterations to obtain a statistically converged solution. The standard deviation of the solution is 

small enough and, hence, is not shown in the line plots for clarity. The cases considered are: i) 

gray gas with large (gray) particle approximation, referred to as Set-GG hereinafter; ii) LBL gas 
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with large (gray) particle approximation, referred to as Set-NGG hereinafter; and iii) LBL gas 

with BH correlation for particles (nongray), referred to as Set-NGNG hereinafter.  

The impact of nongray gas-phase properties is first evaluated by comparing results obtained 

using Set-NGG and Set-GG. Figure 9(a) presents the radial distributions of the absorption by gas 

at three axial locations. The absorption by gas using the models Set-NGG is significantly higher 

than that from the models Set-GG, as evident in Fig. 9(a). To clearly present the difference in the 

absorption source terms for coal, the relative difference between absorption source terms for coal 

obtained from Set-NGG and from Set-GG,  , is defined as 

   
                

        
 ,      

where Q denotes the absorption terms of the coal particles obtained using the models indicated 

by the corresponding subscript. Using models Set-GG, the solid phase absorption is predicted to 

be higher than that obtained using models Set-NGG for all three locations. Largest difference can 

be observed at location H=0.35 m where a significant amount coal parcels are available with 

high temperatures.  

The effects of nongray particle spectral models are examined next. Figure 10 compares 

results obtained from models Set-NGG with those obtained from models Set-NGNG. The gas 

phase absorption is slightly lower (approximately 20%) when gray models are employed for coal. 

For coal particles, the emission and absorption source terms obtained from Set-NGG are also 

slightly lower than those obtained from Set-NGNG. By comparing Figs. 9 and 10, it can be seen 

that the employment of non-gray gas phase spectral models makes a larger difference than the 

employment of non-gray solid-phase spectral models in terms of source term prediction.  
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(a) Gas absorption (b) Relative difference of coal absorption 

Figure 9 Effects of nongray and gray gas approximations on (a) absolute values of gas absorption 

and (b) relative differences of coal absorption ( ) at three downstream locations. Frozen field is 

based on the steady state solution obtained from Case 2. 

   

(a) Coal emission (b) Coal absorption (c) Gas absorption 

Figure 10 Effects of nongray and gray particles approximations on (a) coal emission, (b) coal 

absorption, and (c) gas absorption. Frozen field is based on the steady state solution obtained 

from Case 2. 
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4.6 Effects of the different spectral properties of ash 

Both a linear model and a binary switch model are tested using the 1-D validation condition 

described in Appendix A.1. No significant difference is observed for the test flame when the 

spectral property of ash is considered because of the low loading rate and the small burnout rate 

of coal particles inside the open flame system. It has been found that no significant change is 

observed in the convective heat flux or divergence of radiative flux distributions when the ash is 

up to 0.0005 kg/m
3
 [4]. The effect of fly ash is prominent in furnace combustion where the coal 

burnout rates are higher and the deposition of fly ash on the furnace walls is significant [3]. 

5. Conclusions 

A Monte Carlo ray tracing radiative heat transfer solver is developed to study the radiative 

characteristics in turbulent coal combustions. The developed solver incorporates detailed 

radiative spectral properties for both the gas (LBL) and solid phases (Buckius-Hwang 

correlations). The MCRT-LBL/BH solver is coupled with a full Reynolds-averaged Navier-

Stokes based turbulent multiphase combustion solver to solve the coupled turbulent-coal-

combustion-radiation problem. A laboratory-scale pulverized coal flame is chosen as the target 

flame, for which experimental measurements are available. A set of test cases are developed to 

study the effects of radiative heat transfer in coal combustion. Parametric studies are also 

performed to quantify the significance of the nongray effects for both the gas and solid phases.  

It has been found that an over-prediction of more than 500 K in temperature can be observed 

when neglecting radiative heat transfer. This large difference can alter the lift-off heights, flame 

shapes, temperature fields, as well as species concentration fields. By tracking coal parcels that 

originate from the same location and the same time, the different responses of the coal particles 

within different size groups are compared. Small particles (       ] μm) ignite and burn out 

faster than medium and large parcels, and they contribute to the ignition of the coal clouds 

significantly. The ratio of radiative heat transfer source and the convection heat transfer source 

for individual parcel shows that radiation tends to be more dominant for medium size parcels 

(        ] μm) compared to the other size groups, which is consistent with experimental 

observations. Parametric studies of the nongray effects are carried out through the frozen-field 

analysis based on the steady state solution obtained from Case 2. With the coal particles kept as 

gray, switching between nongray and gray gas-phase models create significant differences in the 
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emission and absorption source terms. Meanwhile, with the gas phase kept as nongray, switching 

between nongray and gray solid-phase models results in less significant differences. This is 

partly due to the fact that the particle loading rate is low and the residence time is short in the test 

flame. It is expected that the nongray effects from both the gas phase and the solid phase will be 

more prominent in furnace-like configurations. Future work includes the incorporation of the 

effects of anisotropic scattering for heavy particle loading conditions. Studies on the effect of 

turbulence-chemistry-radiation interactions and larger-scale oxy-coal furnace simulations are 

also planned for the future.  
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Appendix 

A.1 Validation of the MCRT method in a one-dimensional slab 

The MCRT scheme is validated in a one-dimensional slab, where exact solutions to the RTE 

can be obtained. The slab is bounded by two cold black walls 0.1 m apart. Coal particles are 

distributed in the finite volume cells in a way that a desired spatial distribution of bulk Eulerian 

coal absorption coefficient can be obtained. All particles are identical and have a diameter of 5 

 m. The number of particles per computational cell was adjusted to obtain a constant distribution 

of       m-1
. The gas mixture was chosen to have a homogeneous distribution with an 

absorption coefficient of       m-1
. All properties were assumed to be gray. Two cases were 

investigated. In both cases gas temperature was kept at constant 2000 K. In the first case the coal 

particles were assumed to be cold, i.e., nonemitting, and in the second case they were assumed to 

be at the same temperature of gas (2000 K). The results for the total radiative heat source as well 

as that for individual phases are shown in Fig. A1. The exact solution is also given in the same 
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figure. In both cases, the results obtained from the MCRT calculation agree well with the 

analytical solutions. 

  

(a) Hot gas/ cold particle (b) Hot gas/ hot particle 

Figure A1. Comparison of radiative heat source for a one-dimensional slab with homogeneous 

media. The solid lines and symbols represent exact solutions and MCRT solutions, respectivly, 

for particle radiation source terms (blue), total radiation source terms (red), and gas radiation 

source terms (black). 
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Highlight 

1. A Monte Carlo–based nongray radiation solver is developed to study effects of radiation in 

turbulent coal combustions.  

2. Radiation significantly affects the lift-off height, flame shape, temperature fields, and species 

concentration fields in the target flame.  

3. Radiation alters the heat transfer mechanism of particles from convection-dominant to radiation-

dominant.  

4. Nongray effects are found to be more important for gas phase than particle phase for the target 

flame.  

5. The spectral properties of ash have insignificant influence on the present flame.  
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