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Abstract 

 

Multiple molecular wires braided together in a single assembly, termed as 

molecular cable, are promising next-generation materials for effective long-

range charge transport. As an example of the platform for constructing 

molecular cables, 1,3,5-trifluorenylcyclohexane (TFC) and its difluorenyl 

analogues (DFCs) were systematically investigated both experimentally (X-

ray crystallography) and theoretically (DFT calculations). Although the 

syntheses of DFCs were successfully achieved, the synthesis of TFC, which 

involved a similar intramolecular Friedel–Crafts cyclization as the last step, 

was unsuccessful. An exhaustive study of the conformational landscape of 

cyclohexane ring of TFC and DFCs revealed that TFC is a moderately strained 

molecule (∼17 kcal/mol), and computational studies of the reaction profile 

show that this steric strain, present in the transition state, is responsible for 

the unusually high (∼5 years) reaction half-life. A successful synthesis of TFC 

will require that the steric strain is introduced in multiple steps, and such 

alternative strategies are being currently explored. 

Introduction 

Linearly connected polyfluorenes or ladder polyfluorenes1 and 

poly-p-phenylenes2,3 have been extensively investigated as molecular 

wires for long-range charge transport.4-6 A cable is defined as two or 

more wires running side by side and bonded, twisted, or braided 

together to form a single assembly. We envisioned that 1,3,5-

trifluorenylcyclohexane (TFC) could serve as a platform to construct 

molecular cables with three ladder polyfluorene or poly-p-phenylene 

wires braided together to allow effective electronic coupling (see 

Figure 1). Moreover, through-space electronic coupling among the 
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braided poly-p-phenylene wires would be further facilitated via 

conformational transformations of the moderately strained 

cyclohexane ring (Figure 1). 

 

The intriguing conformational landscape of TFC and its promise 

for the preparation of next-generation charge-transport materials 

prompted us to design a straightforward 6-step synthesis based on 

well-known reactions (vide infra). However, the last step of this 

synthesis, an intramolecular Friedel–Crafts reaction to construct a 

fluorene ring (i.e., Scheme 1), which has ample literature 

precedence,7,8 was unsuccessful. This is particularly curious, given that 

a successful synthesis of 1,4-difluorenylcyclohexane (14DFC) was 

carried out using a similar strategy. 

 

Figure 1. Conformational mobility of TFC and a representative example of AM1 
minimized molecular cable shown as line and space-filling representations. 

 
Scheme 1. Example of Intramolecular Friedel–Crafts Reaction to Construct 

Fluorenylcyclohexane Ring System 

 

To investigate this finding, we conducted and report herein a 

computational investigation using appropriately benchmarked DFT 

methods to elucidate the reasons behind failure of the intramolecular 

http://dx.doi.org/10.1021/acs.joc.5b02792
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Friedel–Crafts ring closure to access TFC. These findings are further 

augmented by a careful mapping of the conformational space of 
14DFC, 1,3-difluorenylcyclohexane (13DFC), and TFC by DFT 

calculations, which are compared with experimental results from X-ray 

crystallography. A detailed computational analysis of the 

conformational landscape of TFC demonstrated that it is not an 

unreasonably strained molecule. However, analysis of the reaction 

profile and transition-state structure reveals that the key step of the 

multistep synthesis possesses a prohibitively high barrier, due to a 

combination of strained cyclohexane conformation and facial steric 

hindrance. 

 

Despite the failure to access TFC, this study serves as a useful 

example of how an a priori computational analysis of key steps in 

synthetic designs of complex organic molecules can allow one to 

judiciously choose more facile routes while minimizing effort and 

resources on problematic strategies. 

Results and Discussion 

A 6-step route for the synthesis of TFC is outlined in Schemes 2 

and 3. The difluorenylmethane (1), readily available from a reaction of 

fluorene and formaldehyde with potassium tert-butoxide (KOtBu) in 

DMF,7 was treated with 3-chloro-2-(chloromethyl)propene in DMF in 

the presence of KOtBu to afford methylenecyclohexane 2 in ∼70% 

yield. The methylenecyclohexane 2 can be converted to the 

corresponding cyclohexanone 3, either via ozonolysis in CH2Cl2 at 

−78 °C (72% yield) or by a reaction with catalytic amounts of OsO4 in 

the presence of potassium periodate in dioxane/H2O mixture (77% 

yield). The resulting cyclohexanone 3 was transformed to 

iodocyclohexene 5 in excellent yield by its conversion to the 

corresponding hydrazone 4, followed by a reaction with iodine in the 

presence of tetramethylguanidine as a base.9 The iodocyclohexene 5 

was then subjected to Suzuki coupling reaction with 2-biphenylboronic 

acid in the presence of a palladium catalyst to afford 6—the Friedel–

Crafts precursor to TFC—in excellent overall yield (see Scheme 2). The 

structure of 6 was confirmed by 1H/13C NMR spectroscopy, mass 

spectrometry, and by X-ray crystallography (Scheme 3). It is noted 

that the intermediate 3,5-difluorenylcyclohexanone 3 can be easily 

http://dx.doi.org/10.1021/acs.joc.5b02792
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converted to the corresponding catechol ketal 7 or be reduced to 
13DFC, both in excellent yields (Scheme 2; also see the Supporting 

Information). 

 

Subsequently, 6 was subjected to a Friedel–Crafts cyclization in 

a 9:1 (v/v) solution of CH2Cl2 and methanesulfonic acid (or 

trifluoromethanesulfonic acid), and stirring of the resulting reaction 

mixture was continued for an extended period (up to 1 week) at 

ambient temperature and under an argon atmosphere. Although the 

color of the reaction mixture immediately darkened, the starting 

compound 6 was recovered quantitatively after aqueous workup. 

Treatment of 6 with polyphosphoric acid or concentrated sulfuric acid 

at 110 °C similarly did not afford TFC even after prolonged reaction 

times (>24 h), thereby attesting to its inertness toward the 

intramolecular Friedel–Crafts cyclization (Scheme 3; also see the 

Supporting Information). 

 
Scheme 2. Synthetic Route Towards the Preparation of Precursor of TFC and 13DFC 

http://dx.doi.org/10.1021/acs.joc.5b02792
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Scheme 3. Attempted Acid-Catalysed Intramolecular Friedel–Crafts Cyclization of 6 to 
TFC and ORTEP Diagram of 6 (50% Probability) 

 

This surprising observation of the inertness of 6 toward the 

intramolecular Friedel–Crafts cyclization prompted us to investigate 

the synthesis of another fluorenylcyclohexane derivative via the same 

route. Thus, the synthesis of 14DFC, a close analogue to TFC, outlined 

in Scheme 4, was successfully achieved in excellent overall yield, and 

the critical synthetic step for its preparation is identical to the failed 

synthesis of TFC (Scheme 3) in all respects. Indeed, an intramolecular 

Friedel–Crafts cyclization of 13 (Scheme 4) in a 9:1 (v/v) solution of 

CH2Cl2 and methanesulfonic acid at ∼0 °C for 30 min afforded 

crystalline 14DFC in quantitative yield. The structure of 14DFC was 

established by 1H/13C NMR spectroscopy, mass spectrometry, and by 

X-ray crystallography (see Scheme 4; also see the Supporting 

Information). 
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Scheme 4. Successful Synthesis of 14DFC Using Acid-Catalyzed Intramolecular 
Friedel–Crafts Cyclization As the Key Synthetic Step and Its ORTEP Diagram (50% 
Probability) 

 

The failure of intramolecular Friedel–Crafts cyclization of 6 to 

produce TFC, while the structurally similar 13 underwent a smooth 

Friedel–Crafts cyclization to 14DFC, prompted us to perform a detailed 

investigation of the mechanism of these transformations (i.e., 

Schemes 2–4). It is noteworthy that 13DFC and spirocatecholketal of 

3,5-difluorenylcyclohexanone (i.e., 7) can be easily prepared as stable 

molecules (Scheme 2); and the failure of the synthesis of TFC 

suggests that the expected facial steric congestion by the three 

fluorenyl groups may be responsible for prohibiting intramolecular 

Friedel–Crafts ring closure. Accordingly, we sought to establish if TFC 

can exist as a stable molecule and undertook a systematic 

http://dx.doi.org/10.1021/acs.joc.5b02792
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conformational analysis of TFC and 13DFC and 14DFC as well as the 

parent cyclohexane. 

 

To cover the complete conformational space, we followed the 

Cremer–Pople approach, where all possible conformations of six-

membered rings are mapped using three well-established cumulative 

puckering variables.10 These variables form a spherical coordinate set 

(Q, θ, and ϕ), where θ is the azimuthal angle (θ = 0–180°), ϕ is the 

polar angle (ϕ = 0–360°), and Q is the total puckering amplitude (Q ≥ 

0), which uniquely determines the position of each carbon atom in a 

cyclohexane ring on the z-coordinate (eq 1), i.e., its 

elevation/depression with respect to the mean plane z = 0 (see the 

Supporting Information for additional details). 

 

(1) 

 

Combinations of the cumulative variables Q, θ, and ϕ generate 

all possible conformations of cyclohexane ring, and the positions of the 

typical conformations are identified on the sphere and its 2D map 

projection (see Figure 2). It is noted that only two variables (θ and ϕ) 

are needed to map every conformation in Figure 2, i.e. chair (C), 

twist-boat (TB), boat (B), half-boat (HB), and half-chair (HC, also 

known as twist-chair), at a fixed value of Q, which is essentially a 

measure of the displacement of the carbon atoms from the mean 

plane of cyclohexane ring. For example, a value of Q = 0 would 

produce a completely planar cyclohexane ring, vide infra. 
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Figure 2. (a) Representation of spherical coordinates which were used to map the 

conformations of six-membered rings. (b) Typical conformations of cyclohexane ring 
and (c) their mapping to the (θ, ϕ) coordinates. 

 

Using the approach outlined in Figure 2, we computed the 

conformational landscape, and all resulting conformations were 

sequentially refined using molecular mechanics (UFF), semiempirical 

(AM1), and DFT [M06-2X/6-31G(d)+PCM(CH2Cl2)] calculations. The 

results are compiled in Figure 3 (also see Figure S5 in the Supporting 

Information for the corresponding AM1 plots). 

 
Figure 3. (a–d): Potential energy surface (PES) of cyclohexane, 14DFC, 13DFC, and 
TFC (as denoted on the plot) with respect to θ and ϕ at Q = 0.57 Å (Q was obtained 
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from the DFT calculations of parent cyclohexane in its chair conformation) [M06-2X/6-
31G(d)+PCM(CH2Cl2)]. Step size of 15° was used for both θ and ϕ. Note that only one 

hemisphere of the conformational PES (i.e., for ϕ = 0–180°) is shown for brevity since 

the other hemisphere (i.e., for ϕ = 180–360°) is symmetrically identical to the shown 

part of the PES. (a′–d′): Potential energy of the most stable conformers [i.e., chair, 
boat, and half-boat-like (XR)] of cyclohexane, TFC, 13DFC, and 14DFC as a function of 
Q. Lines in panels (a′–d′) were obtained by local polynomial regression fitting. 

First, conformational analysis of the parent cyclohexane with 

respect to θ and ϕ at a fixed Q reproduced all expected conformations. 

The chair conformer was the most stable one, while twist-boat and 

boat were 10.4 and 10.8 kcal/mol higher in energy (Figure 3a), with 

boat being the transition state between the enantiomeric twist-boat 

conformations. Importantly, in this scan (Figure 3a) the variable Q was 

fixed at the value of 0.57 Å, corresponding to a fully minimized chair 

conformation of cyclohexane. This value of Q does not necessarily 

correspond to an optimal value for other conformations; thus, we 

carried out another scan with respect to Q at fixed values of θ and ϕ 

for the most stable (identified) conformers: chair, boat, and twist-boat 

(Figure 3a′). Indeed, the lowest-energy boat and twist-boat 

conformers of cyclohexane occur at Q = 0.8 Å, and the resulting 

relative energies of the cyclohexane conformations [i.e., ΔE(B) = 6.2 

kcal/mol, ΔE(TB) = 7.8 kcal/mol with respect to the chair conformer] 

were in close agreement with the well-accepted values of 5.5 and 6.9 

kcal/mol for B and TB, respectively.11,12 As expected, all conformations 

converge to a planar structure [ΔE(P) = 27.9 kcal/mol] when the value 

of Q is decreased to 0 Å. 

 

A similar conformational scan of 14DFC with respect to θ and ϕ 

with Q = 0.57 Å (Figure 3b) identifies the chair as the most stable 

conformer, and its structure agrees well with experimental X-ray 

structure (Scheme 4). A number of different boat and twist-boat 

conformations are possible for 14DFC, because there are two sets of 

the opposing carbon atoms, with and without fluorenyl groups, which 

form the stern and bow of the boat. Expectedly, the boat and twist-

boat conformations with fluorenyl-containing carbons forming the bow 

and stern of the boat lead to higher energy conformations due to 

increased steric effects [i.e., B2 (ΔE = 26.7 kcal/mol) and TB1/TB2 (ΔE 

= 18.8 kcal/mol) conformations, see Figure 3b, also see Figure S6 in 

the Supporting Information]. At the same time, the energies of B and 

TB conformations without fluorene-containing bow-/stern-carbons 
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[i.e., ΔE(B1) = 10.9 kcal/mol and ΔE(TB3) = 8.3 kcal/mol] are 

comparable to the parent cyclohexane (Figure 3 and Figure S6 in the 

Supporting Information). A scan with respect to Q of the chair (C), 

boat (B1), and twist-boat (TB3) conformations of 14DFC showed that 

the value of Q for the lowest-energy conformations was similar (lower 

by ∼0.1 Å) to the parent cyclohexane (compare Figure 3a′,b′). 

For 13DFC, the situation is decidedly different. Here, the twist-boat 

conformation TB2 was identified as the most stable conformer, while 

the chair (C) and boat (B2) conformations were higher in energy by 4.4 

and 1.7 kcal/mol, respectively, at Q = 0.57 Å (Figure 3C). The X-ray 

structure of 13DFC showed that its conformation (denoted XR) 

resembles a half-boat (Scheme 2). A number of half-boat 

conformations are possible for 13DFC. Higher energy half-boat 

conformations (e.g., HB1/HB8) are located at the northwestern 

(centered at θ = 105–150°, ϕ = 0°) and southeastern zones (centered 

at θ = 30–75°, ϕ = 180°) of the sphere and are 15–20 kcal/mol higher 

in energy than the most stable conformer TB2 due to steric repulsion 

(Figure 3c, Figure S6 in the Supporting Information). The stable half-

boat conformations (e.g., HB4/HB5), resembling the X-ray structure of 
13DFC, were just 3.4 kcal/mol (at Q = 0.57 Å) higher in energy when 

compared with the most stable TB2. 

 

A scan of the most stable chair (C), boat (B2), and twist-boat 

(TB2) as well as half-boat-like (XR) conformations for 13DFC was 

performed with respect to Q and is displayed in Figure 3c′. 

Importantly, the lowest energy B2, TB2, and XR were found at a lower 

value of Q when compared to 14DFC, suggesting a flattening of the 

cyclohexane ring due to the presence of the 1,3-difluorenyl groups, 

see Figure 3c′ and Figure S6 in the Supporting Information. The most 

stable twist-boat conformer (TB2) and the half-boat-like conformation 

(XR) differed in energy only by 1.5 kcal/mol.13 

 

With these computational observations in hand, we now turn to 

an analysis of the conformational landscape of TFC. Our calculations 

(Figure 3d) show that the low-energy conformations were all localized 

near the equator (i.e., θ = 90 ± 15°). Considering that TB was the 

most stable conformer, the boat conformation, which constitutes a 

pseudorotational barrier between two TBs, was only 0.4 kcal/mol 

higher in energy (at Q = 0.57 Å), thus allowing a rapid interconversion 
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of conformations along the equator (Figure 1). On the other hand, the 

chair conformation localized on the poles (C) was 12.0 kcal/mol higher 

in energy than TB, which can be readily attributed to the facial 

crowding among three fluorene fragments. In fact, such facial 

crowding can be dramatically reduced by flattening of the cyclohexane 

ring, i.e., by reducing Q from 0.57 to 0.4 Å, the chair conformation 

was stabilized from ΔE(C) = 12.0 to 4.6 kcal/mol (Figure 3d′). 

Furthermore, a completely planar cyclohexane ring in TFC (i.e., Q = 0 

Å) is only 11.4 kcal/mol higher in energy than the most stable 

conformer TB (see Figure S6 in the Supporting Information). 

 

The energetic penalty from facial crowding in TFC can be easily 

estimated as a sum of the strain energy of cyclohexane ring (Ers) and 

steric repulsion among the fluorene fragments (Ecrowd) based on the 

assumption that in a completely planarized TFC, the steric repulsion is 

negligible14 (Figure S6 in the Supporting Information). On this basis, 

the total energetic penalty in TFC can be evaluated as 17 kcal/mol, of 

which 7 kcal/mol arises directly from the facial crowding and 10 

kcal/mol from the adaptation of cyclohexane ring from chair to twist-

boat conformation and the considerable flattening of the ring (Figure 

4). 

 
Figure 4. Evaluation of the total energetic penalty from fluorene crowding in TFC as a 
sum of the strain energy of cyclohexane ring (Ers) and steric repulsion among the 

fluorene fragments (Ecrowd) based on the assumption that Ecrowd = 0 for completely 
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planarized TFC [M06-2X/6-31G(d)+PCM(CH2Cl2)]. Note that Ers = 10 kcal/mol for TB 
TFC was obtained from parent cyclohexane at the same coordinate set (Q, θ, and ϕ), 

which is shown as a red-colored bar. See Figure S7 in the Supporting Information for 
the extended version of the energy diagram including 14DFC and 13DFC. 

The conformational analysis presented above clearly 

demonstrates that formation of TFC should be at least 17 kcal/mol 

more endothermic than the corresponding formation of 14DFC. To 

pinpoint how the endothermicity of formation of TFC affects its 

reaction rate, we computed the energetic profile for Friedel–Crafts 

cyclization of TFC, for which the attempted synthesis was 

unsuccessful, and 14DFC, for which the corresponding cyclization 

proceeded smoothly (Figure 5). 

 

The key difference between the two reaction profiles in Figure 5 

is the structure of the protonated intermediates (i.e., protonated 

starting olefin and product) and the transition states, which acquire 

twist-boat conformations in the case of TFC and chair conformations in 

the case of 14DFC. Thus, formation of TFC from 6 was almost 

thermoneutral (ΔG = 2.0 kcal/mol), while formation of 14DFC from 13 

was exothermic (ΔG = −15.3 kcal/mol). Interestingly, the free energy 

changes for the formation of TFC and 14DFC differ by 17.3 kcal/mol 

(Figure 5), and this difference is in close agreement with the evaluated 

total steric strain in TFC of 17 kcal/mol when compared with 

unstrained cyclohexane (Figure 4). Moreover, the twist-boat 

conformation imposed by the facial crowding in TFC is preserved in its 

protonated form and the transition state. Accordingly, the net free 

activation energy of cyclization 6 → TFC was 8 kcal/mol higher when 

compared to the cyclization 13 → 14DFC. A simple estimation of the 

ratio between the reaction rates of formation of TFC and 14DFC at 

room temperature, based on the Eyring equation, showed that 

formation of TFC should be 5 × 106 times slower than that of 14DFC. 

Therefore, based on the observed half-life of 5 min for the 

transformation 13 → 14DFC, the corresponding transformation 6 → 

TFC would have a half-life of ∼5 years (see the Supporting Information 

for details). Interestingly, lack of observation of any TFC in the 

attempted intramolecular Friedel–Crafts cyclization of 6 at 110 °C, 

where the reaction is expected to be considerably faster, may indicate 

that this reaction is reversible, and the equilibrium favors the Friedel–

Crafts precursor 6. 
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Figure 5. Mechanism (a) and the reaction profile [M06-2X/6-31G(d)+PCM(CH2Cl2)] 

(b) of formation of 14DFC and TFC via the intramolecular Friedel–Crafts cyclization. 
See also Figure S8 in the Supporting Information. 

Conclusions 

In summary, TFC was envisioned as a platform to construct 

molecular cables with braided ladder polyfluorene or poly-p-phenylene 

wires. Straightforward synthetic strategies allowed ready preparation 

of 13DFC and 14DFC; however, synthesis of TFC, which involved a 

similar intramolecular Friedel–Crafts cyclization as the last step, was 

unsuccessful. 

 

The results of the detailed conformational analysis of 14DFC, 
13DFC, TFC, and parent cyclohexane, performed using DFT 

calculations and validated by the X-ray crystallography, showed that 

TFC is a relatively strained molecule (∼17 kcal/mol) due to the facial 

crowding of fluorene fragments which leads to a considerable 

flattening of the twist-boat conformation. The calculated reaction 

profile of the transformation of the Friedel–Crafts precursor 6 to TFC 

showed that similar steric strain is also present in the transition state 

of the 6 → TFC transformation. By making use of the Eyring equation 

and the activation barrier from the reaction profile, it was clearly 
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shown that the half-life of the reaction was prohibitively high (∼5 

years). At the same time, the 6 → TFC transformation is only slightly 

endothermic, ΔG(6 → TFC) = 2 kcal/mol, and thus a successful 

synthesis of TFC is not prohibited from the thermodynamic 

consideration, thereby suggesting feasibility of designing an alternative 

synthetic route in which the strain energy is gradually introduced over 

multiple steps. A number of such strategies for the preparation of TFC 

are being currently explored. 

Experimental Section 

Preparation of 2 
 

To a solution of difluorenylmethane7 1 (5.0 g, 14.5 mmol) in 

toluene (200 mL) was successively added a solution of 50% NaOH 

(200 mL), 3-chloro-2-(chloromethyl)propene (1.5 mL, 14.5 mmol), 

and tetra-n-butylammonium bromide (100 mg) under an argon 

atmosphere and at 22 °C. The resulting mixture was stirred for 15 h, 

ethyl acetate (15 mL) was added, and the organic layer was 

separated. Aqueous layer was further extracted with ethyl acetate (2 

× 30 mL), and the combined organic layers were washed with 5% 

hydrochloric acid (2 × 30 mL) and water (2 × 50 mL), dried over 

anhydrous MgSO4, and evaporated under reduced pressure. The crude 

product was purified by column chromatography on silica gel using a 

98:2 mixture of hexanes/ethyl acetate as eluent. Yield: 3.9 g, 70%; 

mp 152–154 °C; 1H NMR (CDCl3, 400 MHz) δ: 2.48 (s, 2H), 3.08 (s, 

4H), 5.05 (s, 2H), 7.36–7.38 (m, 8 H), 7.64–7.66 (m, 4H), 7.71–7.73 

(m, 4 H); 13C NMR (CDCl3, 100 MHz) δ: 41.3, 43.3, 50.8, 113.7, 

120.1, 124.0, 127.4, 127.9, 139.5, 142.3, 154.3. HRMS (APCI/IT-TOF) 

m/z: [M + H]+ calcd for C31H24 + H 397.1951; found 397.1941. 

 

Preparation of 3 
 

To a chilled (−78 °C) solution of 2 (3.5 g, 8.83 mmol) in dry 

CH2Cl2, ozone was bubbled for 45 min. Argon gas was then bubbled 

into the resulting blue solution until it became colorless. A mixture of 

zinc powder (6 g) and glacial acetic acid (15 mL) was added, and the 

resulting mixture was warmed to room temperature and stirred 

overnight. It was filtered through a short layer of Celite, and the 
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filtrate was poured into water (50 mL). The organic layer was 

separated, and the aqueous layer was extracted with ethyl ether (3 × 

40 mL). The combined organic extracts were washed with water, dried 

over anhydrous MgSO4, and evaporated. Yield: 2.7 g, 77%; mp 148–

150 °C (CH2Cl2/MeOH); 1H NMR (CDCl3, 400 MHz) δ: 2.74 (s, 2H), 

3.13 (s, 4H), 7.36–7.39 (m, 8 H), 7.56 (m, 4H), 7.73 (m, 4 H); 13C 

NMR (CDCl3, 100 MHz) δ: 43.4, 49.1, 50.7, 120.5, 123.4, 128.0, 

128.4, 139.4, 153.2, 210.5. HRMS (APCI/IT-TOF) m/z: [M – 2H + H]+ 

calcd for C30H22O – 2H + H 397.1587; found 397.1580. 

 

Alternative Preparation of 3 
 

To a mixture of 2 (1.0 g, 2.5 mmol) and 2,6-lutidine (0.54 g, 

5.0 mmol) dissolved in 3:1 mixture of dioxane and water (24 mL) was 

added a catalytic amount of OsO4 (50 mg) followed by KIO4 (2.31 g, 

10.1 mmol). Resulting mixture was then heated to reflux for 12 h. It 

was cooled to room temperature, diluted with water, and extracted 

with CH2Cl2 (3 × 25 mL). The combined organic extracts were washed 

with water (2 × 25 mL) and dried over MgSO4. Evaporation of solvent 

under reduced pressure and column chromatography with a mixture of 

hexanes and ethyl acetate afforded 0.72 g (72%) of crystalline 3. 

 

Preparation of 5 
 

Following closely a literature procedure,1 finely powdered 

molecular sieves (6 g), methanol (30 mL), and hydrazine hydrate (3 

mL) were added successively to a Schlenk flask, and the resulting 

mixture was stirred for 20 min. A methanol solution (50 mL) of the 

ketone (1.2 g, 3 mmol) was added dropwise to the above mixture, and 

it was stirred for 2 h. After which time, molecular sieves were filtered 

off and washed with CH2Cl2. The filtrate was evaporated in vacuo by 

gently heating to 30–40 °C to afford hydrazone 4 in excellent yield 

1.22 g (98%); mp 220–222 °C; (CH2Cl2/MeOH); 1H NMR (CDCl3, 400 

MHz) δ: 2.61 (s, 2H), 2.97 (s, 2H), 3.11 (s, 2H), 5.05 (s, 2H), 7.32–

7.42 (m, 9H), 7.66–7.68 (m, 7H). Note that the hydrazone 4 was used 

in the next step without further purification. 

 

To a solution of N,N,N′,N′-tetramethylguanidine (1.25 mL, 9.8 

mmol) and THF (15 mL) was slowly added during 30 min a solution of 
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iodine (1.24 g, 4.9 mmol) in THF (15 mL) at 0 °C.2 To the resulting 

mixture was added dropwise a solution of crude hydrazone (0.4 g, 

0.98 mmol), from the previous reaction, in THF (30 mL) over 10 min 

at 0 °C. The reaction was instantaneous, but the stirring was 

continued for an additional 15 min. The reaction mixture was washed 

with 5%HCl, aqueous Na2SO3, and aqueous NaHCO3 and dried over 

MgSO4. After removal of the solvent under reduced pressure, the 

residue was subjected for a flash column chromatography using silica 

gel and hexanes/ethyl acetate (98:2) as the eluent to give the title 

compound 5. Yield: 0.49 g (98%); mp 284–286 °C (CH2Cl2/MeOH); 1H 

NMR (CDCl3, 400 MHz) δ: 2.66 (s, 2H), 3.19 (s, 2H), 6.37 (s, 1H), 

7.21–7.41 (m, 8 H), 7.55–7.73 (m, 8 H); 13C NMR (CDCl3, 100 MHz) 

δ: 43.2, 48.0, 52.0, 57.3, 94.3, 120.3, 120.6, 125.0, 125.2, 127.9, 

128.1, 128.3, 128.6, 140.1, 140.1, 142.9, 151.73, 152.67. HRMS 

(APCI/IT-TOF) m/z: [M + H]+ calcd for C30H21I + H 509.0761; found 

509.0765. 

 

Preparation of 6 
 

Biphenyl-2-boronic acid (0.26 g, 1.33 mmol) and iodo derivative 

5 (0.45 g, 0.89 mmol) were added to a solution of 

tetrakis(triphenylphosphine)palladium(0) (50 mg) in 1,2-

dimethoxyethane (50 mL) at 22 °C and under an argon atmosphere. 

To this stirred mixture was added 4 M aqueous sodium carbonate (15 

mL), and then the reaction mixture was refluxed for 12 h. It was then 

poured onto water (40 mL), and the resulting aqueous layer was 

extracted with CH2Cl2 (3 × 25 mL). The organic layers were combined, 

dried over magnesium sulfate, and evaporated. The resulting crude 

product was chromatographed over silica gel using 98:2 mixture of 

hexanes/ethyl acetate to afford pure 6 as a white crystalline solid. 

Yield: 0.4 g (86%); mp 292–294 °C (CH2Cl2/MeOH); 1H NMR (CDCl3, 

400 MHz) δ: 2.32 (s, 2H), 2.63 (s, 2H), 5.88 (s, 1H), 7.18–7.76 (m, 

25 H); 13C NMR (CDCl3, 100 MHz) δ: 38.1, 42.5, 49.0, 52.6, 118.8, 

118.9, 123.4, 123.8, 125.9, 126.05, 126.10, 126.2, 126.4, 126.8, 

127.1, 127.7, 128.5, 129.1, 138.2, 138.6, 138.7, 138.7, 139.2, 141.4, 

141.9, 151.5, 153.3. HRMS (APCI/IT-TOF) m/z: [M + H]+ calcd for 

C42H30 + H 535.2420; found 535.2420. 
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Preparation of 7 
 

To a solution of catechol (0.44 g, 4 mmol) and 3,5-

difluranylcyclohexanone 3 (0.80 g, ∼ 2 mmol) in toluene (60 mL) was 

added a catalytic amount of p-toluenesulfunic acid (50 mg), and the 

flask was outfitted with Dean–Stark trap. The mixture was refluxed 

overnight, and the water was separated in the Dean–Stark trap. After 

cooling, the reaction mixture was washed with 5% aqueous NaHCO3 (2 

× 30 mL) and water (2 × 30 mL). After evaporation of the solvent, the 

crude product was chromatographed on silica gel using hexanes/ethyl 

acetate (90:10) mixture as the eluent to afford the ketal 7 as a white 

solid. Yield: 0.9 g (82%); mp 224–226 °C (CH2Cl2/MeOH); 1H NMR 

(CDCl3, 400 MHz) δ: 2.62 (s, 2H), 2.95 (s, 4H), 6.73 (s, 4H), 7.36–

7.46 (m, 8H), 7.74 (m, 4H), 7.85 (m, 4H) ; 13C NMR (CDCl3, 100 MHz) 

δ: 43.5, 44.9, 49.9, 108.7, 118.1, 120.1, 121.3, 124.7, 127.7, 128.0, 

140.0, 146.9, 153.3. HRMS (APCI/IT-TOF) m/z: [M – 2H + H]+ calcd 

for C36H26O2 – 2H + H 489.1849; found 489.1840. 

 

Preparation of 13DFC 
 

In a Schlenk flask under argon ketone 3 (250 mg, 0.627 mmol) 

was dissolved in ethylene glycol (10 mL). Hydrazine hydrate (554 mg, 

9.41 mmol) was added to reaction mixture and stirred for 10 min, 

followed by addition of KOH (527 mg, 9.41 mmol). Reaction mixture 

was then heated to reflux over 5 h. After that, the reaction mixture 

was cooled to room temperature and diluted with 37% HCl. Mixture 

was extracted with dichloromethane and washed with water. Organic 

layer was dried over MgSO4 and evaporated under reduced pressure. 

Crude product was then passed through short pad of silica and 

recrystallized from dichloromethane and methanol to yield 91% of 

pure 13DFC; mp 170–172 °C (CH2Cl2/MeOH); 1H NMR (CDCl3, 400 

MHz): 7.74(m, 8H), 7.37(m, 8H), 2.46(S, 2H), 2.29(S, 6H); 13C NMR 

(CDCl3, 100 MHz): 17.6, 32.2, 42.6, 50.5, 120.1, 124.2, 127.2, 127.8, 

139.6, 155.1. HRMS (APCI/IT-TOF) m/z: [M + H]+ calcd for C30H24 + H 

385.1951; found 385.1950. 
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Synthesis of Spiro[cyclohexane-1,9′-fluoren]-4-one 

(10) 
 

Three-step synthesis of cyclohexanone 10 was accomplished 

closely following the literature procedures,3,4 and the 1H/13C data 

matched well with the reported data. 1H NMR (CDCl3, 400 MHz) δ 2.19 

(t, 4H), 2.85 (t, 4H), 7.34 (t, 2H), 7.43 (t, 2H), 7.60 (d, 2H), 7.80 (d, 

2H); 13C NMR (CDCl3, 100 MHz) δ 35.7, 39.1, 49.0, 120.4, 123.8, 

127.5, 127.8, 139.9, 150.9, 211.5. 

 

Synthesis of 11 
 

To a solution of catechol (6.2 g, 56 mmol) and 10 (9.2 g, 37 

mmol) in toluene (100 mL) was added a catalytic amount of p-

toluenesulfunic acid (0.1 g), and the flask was outfitted with Dean–

Stark trap. The mixture was stirred at refluxing temperature for 

overnight, and the water was separated from the reaction system by 

azeotropic distillation with a water separator using Dean–Stark trap. 

After cooling, the reaction mixture was washed with water (3 × 30 

mL). After evaporation of the solvent, the crude products were 

chromatographed on silica gel and eluted with hexane/ethyl acetate 

(96:4) as the eluent to give the ketal 11 as a white solid. Yield: 9.5 g 

(75%); mp 215–217 °C; (CH2Cl2/MeOH); 1H NMR (CDCl3, 400 MHz) δ 

2.09 (t, 4H), 2.45 (t, 4H), 6.85 (d, 4H), 7.32–7.43 (m, 4H), 7.70 (d, 

2H), 7.77 (2, 2H); 13C NMR (CDCl3, 100 MHz) δ 32.8, 33.2, 49.3, 

109.3, 118.2, 120.6, 121.7, 124.6, 127.7, 127.9, 140.3, 147.8, 152.0. 

HRMS (APCI/IT-TOF) m/z: [M – 2H + H]+ calcd for C24H20O2 – 2H + H 

339.1380; found 339.1370. 

 

Preparation of 12 
 

To a magnetically stirred solution of the spirocatecholketal (5.0 

g, 14.7 mmol) in dichloromethane (30 mL), cooled in an ice-salt bath, 

was added dropwise a 1 M solution of boron tribromide in 

dichloromethane (20 mL, 20 mmol) under an argon atmosphere. The 

resulting mixture was stirred for 8 h at 0 °C, and after which time it 

was quenched with ice-cold water (50 mL), and the dichloromethane 

layer was separated. The aqueous layer was extracted with 
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dichloromethane (3 × 25 mL). The combined organic extracts were 

washed successively with water (50 mL), 10% sodium hydroxide (2 × 

25 mL), and water (50 mL) and then dried over anhydrous magnesium 

sulfate. Evaporation of the solvent and filtration through a pad of silica 

gel hexane/ethyl acetate (98:2) as the eluent afforded the gem-

dibromide as the pure product. Yield: 5.4 g (94%); mp 165–167 °C; 

(CH2Cl2/MeOH); 1H NMR (CDCl3, 400 MHz) δ: 1.97 (br s, 4H), 2.98 (t, 

4H), 7.31–7.43 (m, 4H), 7.61 (d, 2H), 7.75 (d, 2H); 13C NMR (CDCl3, 

100 MHz) δ 34.4, 46.5, 48.4, 70.9, 120.4, 124.8, 127.6, 127.8. This 

gem-dibromide was used in the next step without further 

characterization. 

 

To a magnetically stirred solution of gem-dibromoide (5.4 g, 

13.77 mmol), obtained above, in anhydrous THF (60 mL) was added 

excess potassium tert-butoxide (2.8 g, 24.78 mmol). The resulting 

mixture was stirred under an argon atmosphere for 3 h at 22 °C. The 

reaction was quenched with saturated ammonium chloride solution (50 

mL) and triturated with dichloromethane (100 mL). The organic layer 

was separated, and the aqueous layer was further extracted with 

dichloromethane (3 × 25 mL). Combined organic extracts were 

washed with water (3 × 25 mL) and brine (3 × 25 mL) and dried over 

anhydrous magnesium sulfate. Evaporation of the solvent gave the 

crude material which was purified by column chromatography using a 

98:2 mixture of hexanes/ethyl acetate as eluent to afford 12 the pure 

product. Yield: 4.0 g (93%); mp 160–162 °C; 1H NMR (CDCl3, 300 400 

MHz) δ: 1.92 (t, 2H), 2.48 (m, 2H), 2.83 (m, 2H), 6.34 (m, 1H), 7.30–

7.47 (m, 6H), 7.57 (d, 2H); 13C NMR (CDCl3, 300 100 MHz) δ: 34.051, 

34.22, 36.859, 47.30, 120.13, 122.273, 123.394, 127.62, 127.657, 

128.61, 139. 78, 151.475. HRMS (APCI/IT-TOF) m/z: [M – H + H]+ 

calcd for C18H15Br – H + H 310.0352; found 310.0350. 

 

Preparation of 13 
 

A freshly prepared solution of 2-biphenylmagnesium bromide 

[from 2-bromobiphenyl (3.7 mL, 21.4 mmol) and excess magnesium 

turnings (1.03 g, 42.92 mmol) in anhydrous THF (50 mL)] was 

transferred to a Schlenk flask containing 12 (3.8 g, 12.2 mmol) and a 

catalytic amount of bis(triphenylphosphine)palladium dichloride (0.1 g) 

under an argon atmosphere and at 22 °C. The resulting yellow mixture 
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was refluxed for overnight, cooled to room temperature, and quenched 

with saturated ammonium chloride solution (50 mL). The aqueous 

layer was extracted with dichloromethane (3 × 50 mL), and the 

combined organic extracts were dried over anhydrous magnesium 

sulfate and filtered. Evaporation of the solvent in vacuo afforded the 

crude material which was subjected to flash chromatography on silica 

gel, eluted with hexane as the eluent to give a white solid. Yield: 4.1 g 

(88%); mp 174–176 °C; (CH2Cl2/MeOH); 1H NMR (CDCl3, 400 MHz) δ: 

1.58 (t, 2H), 2.19 (t, 2H), 2.48 (d, 2H), 5.99 (m, 1H), 7.20–7.51 (m, 

15H), 7.67 (d, 2H); 13C NMR (CDCl3, 100 MHz) δ: 28.2, 31.1, 35.1, 

47.8, 119.9, 123.8, 127.1, 127.15, 127.23, 127.26, 127.34, 127.58, 

128.3, 129.3, 129.6, 130.5, 139.5, 139.7, 140.3, 152.7. HRMS 

(APCI/IT-TOF) m/z: [M + H]+ calcd for C30H24 + H 385.1951; found 

385.1950. 

 

Alternative Preparation of 13 
 

A mixture of biphenyl-2-boronic acid (2.4 g, 12 mmol) and 12 

(3.04 g, 10 mmol) was added to a solution of 

tetrakis(triphenylphosphine)palladium (100 mg) in 1,2-

dimethoxyethane (100 mL) at 22 °C and under an argon atmosphere. 

To this stirred mixture was added 4 M aqueous sodium carbonate (40 

mL), and the resulting mixture was refluxed for 16 h. It was then 

poured onto water (200 mL), and the aqueous layer was extracted 

with CH2Cl2 (3 × 50 mL). The organic layers were combined, dried 

over magnesium sulfate, and evaporated. The resulting crude product 

was chromatographed over silica gel using 98:2 mixture of 

hexanes/ethyl acetate to afford pure 13 as a white crystalline solid. 

Yield: 3.5 g (91%). 

 

Preparation of 14DFC 
 

The compound 13 (1.9 g, 5 mmol) was dissolved in 50 mL of 

dry dichloromethane and cooled to 0 °C, and then methanesulfonic 

acid (5 mL) was added dropwise to the solution. The resulting mixture 

was allowed to stir at room temperature for 30 min and then quenched 

with aqueous NaHCO3 (100 mL, 10%). The organic layer was 

separated, washed with water, and dried over MgSO4. Evaporation of 

the solvent in vacuo and crystallization from a mixture of 
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dichloromethane and methanol afforded pure 14DFC. Yield: 1.88 g 

(99%); mp 286–288 °C; (CH2Cl2/MeOH); 1H NMR (CDCl3, 400 MHz) δ: 

2.28 (br s, 8H), 7.44–7.47 (m, 8H), 7.82–7.85 (m, 4H), 8.00–8.03 

(m, 4H); 13C NMR (CDCl3, 100 MHz) δ 32.7, 49.9, 120.6, 124.6, 127.6, 

127.8, 140.3, 153.4. HRMS (APCI/IT-TOF) m/z: [M + H]+ calcd for 

C30H24 + H 385.1951; found 385.1950. 
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