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ABSTRACT
COMPUTATIONAL STRATEGIES IN UNCERTAINTY QUANTIFICATION FOR

HAZARD MAPPING

Regis Rutarindwa

Marquette University, 2017

There are many hazards associated with volcanic activities. Amongst them are
Pyroclastic flows; a mixture of rock fragments, debris and hot gases that flow down
the slope of actives volcanoes at high velocities. These flows have proven to be dev-
astating, and at the same time more than 500 millions people in the world live within
potential exposure to such a hazard. A few approaches have been used to try to mitigate
the impact of volcanic hazard in general. These include remote sensing technology and
developing hazard maps – a graphic representation of safe and risky zones for a given
volcanic area.

In this dissertation, we develop a workflow for fast creation of accurate hazard
maps. We apply this workflow on the case of the Long Valley volcanic region in north-
ern California (USA). We have also made a couple of contributions that, while pertinent
to the problem at hand, also have merit in a wide range of applications. First, we de-
velop a Hierarchical Bayesian model that combines data on Pyroclastic flow behavior
from various volcanic sites into a ”global” dataset and reduces predictive uncertainty at
volcanoes with sparse data. Of particular interest to us is the uncertainty in key input
variables for computer simulations of Pyroclastic flows. Secondly, we develop a learn-
ing algorithm for experimental resource allocation in the case where multiple objectives
need to be achieved simultaneously. This algorithm allows us to compute probability
of hazard for multiple locations at the same time, and vastly reduce the time it takes to
create hazard maps. These two contributions form the basis of a tool for geo-scientists
to rapidly assess risk spatially at a moment notice, and provide hazard maps that can be
used as a teaching tool for communities at risk.
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Chapter 1

Introduction

There are many hazards associated with volcanic activity; these include lava

flows, tephra/ash fall, volcanic gases, lahars 1 , volcanic landslides, and pyroclastic

flows (See Figure 1.2). According to a historical review of volcanic event reports by

Doocy et al., these hazards globally resulted in 91,789 deaths, 14,068 injuries and 4.72

million people affected from 1900 to 2009. On top of this, more than 500 millions

people live within potential exposure to a volcanic hazard, with this number set to

increase as world’s population increases [40]. These catastrophic events also lead to

significant economic loss and invaluable infrastructure damages.

In trying to mitigate the impact of these hazards, several approaches are used in

concert. These include continuously monitoring high-risk volcanic areas using a wide

variety of sensors and satellite images, and training programs to educate and raise the

awareness of the public, policy-makers, and emergency planners [74]. Along the lines

of educational programs is developing hazard zoning maps that provide a visual

representation of safe and risky areas in a region of interest. Such tools have been

successfully used for pyroclastic flows at Soufrière Hills Volcano [8, 9, 110], lahars at

Mount St. Helen [72] and Mount Rainier [59], and lava flows at Mount Etna [47] and

Mount Vesuvius [105]. Figure 1.1 shows one example of such hazard map for the case

of pyroclastic flows originating from Soufrière Hills Volcano on the island of

Montserrat (UK) [9].

In this work, we focus on pyroclastic flows. These are volcanic avalanches

made up of a mixture of ash, rock fragments, boulders, and gas. They can be as hot as

1,500◦F, and move at speeds upwards of 150 miles per hour [78]. Pyroclastic flows can

1Lahars: Wet mixture of water, rock fragments and debris that flows down slopes of active volcanoes.
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Figure 1.1: Probabilistic hazard map of the Belham valley North-West of Soufrière
Hills Volcano . The color represents probability of inundation ranging from 0 (green)
to 1 (red)

be quite massive, in the order of 106 to 1010m3 of material (rock, ash, boulders, etc.).

Small flows can travel long distances depending on their compositions and the

topography of an area, and larger flows are known to leave deposits as thick as 200

meters deep. There are many ways for pyroclastic flows to form: collapse of an

eruption column leading to hot gases and volcanic ash moving down the flank of a

volcano [109], “boiling over” from an explosive eruption [116], and the collapse of a

growing unstable lava dome [76]. Regardless of how they are formed, they can be very

deadly. In fact, pyroclastic flows alone accounted for roughly 75% of all volcanic

hazard related deaths between 1900 and 2009 [40].

1.1 Dissertation Contribution

In this dissertation, we devise a strategy for fast and flexible generation of

hazard zoning maps, and create probabilistic hazard maps of the Long Valley volcanic

region in California. In part, we achieve this by combining a high-fidelity physical

model of pyroclastic flows, TITAN2D , with Gaussian-Process based emulators, GaSP,

to estimate the probability of inundation of locations conditioned on an event of a

particular volume happening.
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1.2 Dissertation Organization

The following work is split in three chapters each with a separate objective but

all leading to the goal described in the previous section.

• Chapter II: Hierarchical Bayesian Analysis of Pyroclastic Density Current

Mobility Metrics

In this chapter, we develop a hierarchical Bayesian model to combine the

mobility data (basal friction angle & volume) of several volcanoes and improve

our knowledge of the relationship between a pyroclastic flow volume and its

associated basal friction angle. This allows us to accurately constrain input

parameters for TITAN2D simulations and quantify the uncertainty associated

with those parameters. We apply this technique on data from Volcán de Colima,

Mount Merapi, Soufrière Hills, Mount Unzen all of which have significant

amount of data and drastically improve predictive capability at Mount Semeru

which has limited data.

• Chapter III: Probabilistic Inundation Maps of the Long Valley Volcanic Region

In this chapter, we create probabilistic hazard maps of the Long Valley

volcanic region of California. We use the hierarchical Bayesian model

developed in the previous chapter to determine the input distribution the volume

and basal friction angle parameter for TITAN2D runs. In the framework we

develop here, computing probabilities of inundation becomes a post-processing

step of TITAN2D simulation output. The novelty of this strategy is the fact that

it allows for easy plug-in of different aleatoric variability models of locations

and volume. This enables us explore various different scenarios without making

any additional runs of TITAN2D .

• Chapter IV: Multi-Objective Adaptive Design of Experiments For Hazard

Mapping
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In this chapter, we develop an algorithm that allows us to cleverly combine

TITAN2D simulations runs we already have and vastly reduce the number of

simulations needed to get better estimates of inundation contours – the key to

fast probability calculations in Chapter III – for multiple locations. The

breakthrough of this method lies in devising a strategy for resource allocations,

in this case TITAN2D runs, when having to satisfy multiple objectives, in this

case contour estimates.
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Figure 1.2: Illustration of the various hazard caused by volcanism. Lahars and land-
slides can occur even without an eruption

2Graphics courtesy of U.S. Geological Survey. https://pubs.usgs.gov/fs/fs002-97/
fs002-97.pdf

https://pubs.usgs.gov/fs/fs002-97/fs002-97.pdf
https://pubs.usgs.gov/fs/fs002-97/fs002-97.pdf
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Chapter 2

Hierarchical Bayesian Analysis of Pyroclastic Density Current

Mobility Metrics

2.1 Introduction

A number of projects have been undertaken to create databases of volcanic data

for quantitative volcanic hazard assessment (QVHA). Examples of these include the

Global Volcanism Program database [45], WOVOdat [121], Geologic Survey of Japan

(GSJ) Quaternary and Active volcanoes databases [44], LaMEVE [35], DomeHaz

[83, 86], and FlowDat [84, 85]. As individual datasets provide limited information on

their own, new avenues are explored to make use of the global record of volcanic data.

The projects mentioned above enables us to exploit the notion that combining volcanic

datasets via statistical methods, for comparative studies or further research, is vital to

understanding volcanic phenomena.

Despite these efforts, scientists still deal with the issue of data sparsity at some

volcanic sites. This can be caused by either past flows not being adequately exposed

due to vegetation or human settlements nearby [35, 17, 64, 125], or the remoteness of

deposits and how it impacts data collection [125]. In addition to this, it has been

observed that small effusive flows are frequently poorly recorded [39, 43, 107, 35, 17],

and large flows from newly active volcanoes are often misunderstood because of the

lack of data from these previously dormant volcanoes [2, 124].

Broadly speaking, there are two “extreme” ways to deal with data sparsity.

First, one can assume that a volcanic process is similar for every site, and thus use

global volcanic data for analysis. Alternatively, it can be assumed that a volcanic

phenomenon is different at every sites and one uses only the data available for each
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site for analysis. However, a more sensible approach is to assume that while a physical

phenomenon has the same characteristics across all volcanoes, it can differ from site to

site by some slight difference that we can try quantify with a probability distribution.

Hierarchical Bayesian models allow us to borrow information from various different

sites, draw insights from the aggregate data and improve predictive capabilities at

individual sites with insufficient data [101].

In this chapter, we apply this last approach on mobility metrics of various

volcanoes to improve our understanding of pyroclastic flow hazards. Mobility metrics

play a crucial role in hazard mitigation and forecast of possible flow paths.

Specifically, they are commonly used in empirical models such as PFz [30, 126], or

computational flow models such as TITAN2D [87]. Normally, linear regression of

these mobility metrics such as the Heim coefficient (height drop/ runoff length, H/L

of a pyroclastic flow) are used as direct input [30, 126], or proxy input for

computational models (e.g. basal friction angle 1 for the case of TITAN2D ). With this

approach, models have proven successful at replicating historical flows

[28, 77, 106, 24, 85]. However, the dearth of data at some volcanic sites renders the

task of forward modeling with approach complicated.

We develop a systematic method to extract as much information from the

limited data available on mobility data (Heim coefficient) while quantifying the

uncertainty associated with each related input. We develop a hierarchical bayesian

model to pool mobility metrics data of pyroclastic flows from different volcanoes and

improve our characterization of the relationship between basal friction and volume at

volcanoes with sparse data. The objective of this study is to be able to quantify the

uncertainty associated with a flow’s basal friction angle and volumes, which are used

as inputs for TITAN2D . We used the global record of mobility metrics data from the

FlowData mass flow database [84, 85] (See Appendix B).

1Basal Friction Angle = tan−1 H/L
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First, it is useful to consider some background to the problem of assessing

mobility of pyroclastic density currents (PDC) and how their mobility metrics are used

with, and subsequently propagated through, flow modeling, is presented in Section 2.2.

The hierarchical Bayesian analysis of the compiled data is presented in 2.3, and the

results discussed in Section 2.4.

2.2 Mobility metrics for mass flows

2.2.1 Frictional vs. resisting shear stress models

The most widely used mobility metric for concentrated mass flows of (e.g.

volcanic and non-volcanic debris avalanches, dome- and column-collapse PDC) is the

Heim coefficient [50], commonly denoted as H/L, where H is the vertical fall height

traversed by a flow and L is the runout length. H/L is equivalent to the coefficient of

friction following a Mohr-Coulomb friction model, in which shear stress at the

initiation of failure is proportional to the normal stress.

According to Mohr-Coulomb friction models, the mass or volume V , of the

flow should be irrelevant to mobility, and the coefficient of friction should be a

function of material properties. Numerous studies of real deposits, however, have

shown a linear inverse relationship between log(V ) of a mass flow (of any type) and

log(H/L) [50, 98, 97, 55], with large volume flows demonstrably being more mobile

than small volume flows. It is clear then that capturing this behavior is essential for

accurate hazard forecasting of PDC.

An alternative to the frictional model approach is that of the constant resisting

shear stress models. In these models, the mobility of mass flows is described by a

constant resisting shear stress (CRS), or yield strength, and planimetric area, Ap, is

related to V 2/3 via scaling arguments [56, 59, 37, 23]. This model indicates a

relationship between inundated area and resisting shear stress, suggesting a yield stress

rheology [63, 34, 46].
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Both these metrics (H/L vs. V and Ap vs. V 2/3) have been applied to PDC

mobility with success [112, 79, 42, 102, 12, 41, 49, 23, 31, 119, 27] and have become

standard mobility metrics with which to compare and contrast PDC behavior.

2.2.2 Mobility metrics for flow modeling

Many empirical flow inundation models are based directly on measurements of

H/L vs V or Ap vs. V 2/3. This concept has been applied at a variety of volcanoes

[105, 123, 54, 1, 103] and also forms the basis for the FLOW2D and FLOW3D

computer models [67, 38, 104, 53] which base shear resistance on basal friction (taken

directly from H/L), viscosity, and turbulence.

H/L also informs computational flow models that use a Coulomb friction law,

including TITAN2D [87], which have built upon the work of [96], who used Coulomb

friction laws in conjunction with depth-averaged equations for mass and momentum

(See equation 3.6). The Heim coefficient can therefore provide a guideline for

choosing appropriate basal friction input angles for different flow volumes for

TITAN2D [82, 85, 28, 29].

LAHARZ and PFZ use semiempirical equations for planimetric area

(Ap = cV 2/3) and cross-sectional area (Axs = CV 2/3) to predict lahar [59], debris

flow, rock avalanche [46] and PDC [126] inundation using empirically derived

coefficients (c and C) from a variety of mass flow deposits worldwide. These

relationships also form the basis of flow models using constant shear stress instead of

constant friction [62].

With increasing application of these respective flow modeling approaches, it is

now timely and appropriate to undertake more considered approaches to understanding

and quantifying the uncertainty related to the use of mobility metrics as model inputs.

This work has been driven by our specific interest in constraining the basal friction

input parameter required by TITAN2D when undertaking ensemble runs for

generating probabilistic hazards maps [8, 110, 9], by using the H/L-volume mobility
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relationships for block-and-ash flows from the FlowDat database. The application of

the method developed can, however, be applied widely.
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Figure 2.1: Data from all volcanoes considered for each of the two countries relation-
ships along with their respective linear regression lines. Colima, Merapi, SHV, and
Unzen volcanoes have plentiful data, while the data set for Semeru is sparse

2.3 Statistical analyses

Herein, we present a method using hierarchical Bayesian modeling to leverage

the global record of mobility metrics for PDCs, which can aid in cases where data for a

particular volcano is sparse. We use the FlowDat database of mass flow mobility

metrics [84, 85], which is current through 2014. From FlowDat [84], 4 volcanoes were

selected with plentiful (14 to 80 flows) H/L and volume data for dome-collapse PDC:

Colima (Mexico) [94, 93, 95], Merapi (Indonesia)[14, 15, 99, 27, 26, 65], Soufrière

Hills Volcano (Montserrat) [23, 31, 48, 66, 70, 32], and Unzen (Japan) [80, 115]

(Figure 2.1). Semeru volcano (Indonesia) was also included due to the scarcity of the

data available [117]. These flows are all dense, concentrated dome-collapse PDC

(block and ash flows), for which it is reasonable to assume broadly similar flow

behavior. Error was rarely reported by the sources of the data, but is shown as error
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bars where available. However, the error bars were often smaller than the markers

themselves.

For the frictional model of mobility (H/L vs. V ), the strong linear relationship

between the logarithm of PDC volume and the logarithm of the coefficient of friction

(discussed in section 2) suggests the use of a linear model, such as a regression model

y = α + βx+ ε, ε
iid∼ N(0, σ2)

where x is the log-volume2), y is the log-coefficient of friction (H/L), α and β are the

intercept and slope of the regression line, and ε is random error. Graphically, this

model would correspond to fitting a straight line through all of the data y in Figure 2.1

which minimizes the errors between estimated and observed values. This approach

corresponds to one end-member option, that is, to assume that the relationship between

the coefficient of friction and flow volume for block-and-ash flows is constant at every

volcano, and thus use information from all the volcanoes to fit a regression.

Alternatively, one could fit separate regression lines for each of the J

volcanoes, namely

yj = αj + βjx+ ε, ε
iid∼ N(0, σ2

j ) ,

based on the data yj from volcano j alone. The result of separate regression fits is

shown in Figure 2.1. This approach represents the alternative end-member option, that

is, to assume that the relationship between the coefficient of friction and volume at

different volcanoes is unrelated and thus use only the information from a given

volcano to fit a regression.

The hierarchical analysis presented in the next section could prove useful for

any linear relationship suggested by transformations of volcanic datasets – the

frictional relationships for dome-collapse PDCs used here is just one example.

2Actually x = log10(volume/105.5). This x-origin then corresponds volume of 105.5m3, roughly
where the slope and intercept are least correlated.
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2.3.1 Hierarchical Bayesian model

In situations such as this, where it is unclear whether to fit an overall regression

or separate regressions, it has become common statistical practice to use the

hierarchical or multilevel approach, which is a happy medium between these

end-member alternatives. Hierarchical modeling is carried out via Bayesian analysis,

wherein a prior probability distribution is chosen to describe knowledge about the

unknown model parameters (here the various regression parameters); this distribution

will then be updated by the data to form posterior probability distributions of the

unknown model parameters.

The version of hierarchical modeling that we utilize here links together the

separate regressions by assuming that the regression line slopes arose from the

common normal distribution (part of the prior distribution)

βj are i.i.d. N(µ, τ 2) ,

with unknown hyper-mean (the mean of the prior distribution) µ and hyper-variance

(the variance of the prior distribution) τ 2. Note that, if τ 2 = 0, then all the βj would be

equal, so we would be back to the case of a single regression. At the other extreme, as

τ 2 →∞, this model would yield the same answers as the separate regression models.

The performance of the hierarchical model, in situations such as this, is typically better

than that of either of the two extremes.

Initially we will presume that little is known about µ and τ 2 (a vague prior

distribution will be used for these parameters), but we will learn about them from the

data through their posterior distribution and they, in turn, will affect the posterior

distribution of the βj .

If data were plentiful at each volcano, there would be little need (but also no

harm) in employing the hierarchical model, as the effect of the posterior distribution of
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µ and τ 2 on the βj would then be minimal. When data is sparse for one or more

volcanoes, however, the gains with the hierarchical approach can be considerable. For

instance, from the left panel of Figure 2.1 it can be seen that there are only four data

points from Semeru for a very narrow range of PDC volumes, and attempting to fit a

separate regression to just four points will lead to a very uncertain result. In contrast,

the hierarchical modeling approach allows for ‘borrowing strength’ from the other

volcanoes in estimating Semeru’s regression line slope (because of the assumption that

all slopes arose from a common normal distribution), and will be seen to result in

much tighter credible intervals for the regression line for Semeru.

To complete the specification of the hierarchical model, we need to also choose

‘prior’ distributions for the other unknown parameters in the model. Whereas the

regression coefficients from Figure 2.1 appear quite related, the intercepts, αj , seem

considerably more variable. We could utilize a hierarchical model for the intercepts

but, since there will be little gain, we instead employ an objective constant prior

distribution πO(α1, . . . , αJ) = 1; although this objective prior does not induce any

sharing of intercept information across volcanoes, the changes in the slope parameters

through their hierarchical modeling will influence the intercepts.

In developing prior distributions for the regression variances σ2
j , it is important

to consider that the PDC data represented in Figure 2.1 contain data from both highly

channelized and unchannelized (unconfined) flows, which experience different

frictional forces and exhibit different mobilities [85, 27, 114]. Modeling by Stinton

[114] using TITAN2D, showed that flows confined in synthetic channels had longer

runouts, higher velocities, and shorter travel times than flows simulated over synthetic

unconfined terrain.

This difference is also apparent in the data. Indeed, Table 2.1 gives the results

of separate regressions at the five volcanoes, and the mean square residual (MSR) are

very similar for the three volcanoes with dominantly channelized flows and much
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smaller than the MSR for the volcanoes with dominantly unchannelized flow deposits.

The higher MSR for unchannelized flows or those that inundate multiple channels

makes intuitive sense, as these flows travel over extremely varied topography, with

greater variation in slope and surface roughness than flows which travel down

channels.

Volcano Lin. Reg. Slope Lin. Reg. Intercept MSR (×10−4)

Colima* -0.224 -0.386 66.5

Merapi* -0.183 -0.384 95.2

SHV -0.201 -0.531 24.8

Unzen -0.156 -0.493 26.3

Semeru -0.314 -0.172 24.3

Table 2.1: Linear regression parameters and MSR for each volcano for H/L vs. V
relationship. The (*) marks volcanoes with flows which are generally unchannelized

Therefore, it would be natural to have a separate variance for the channelized

and the unchannelized flow data. We, thus, assign Merapi and Colima a common

variance σ2
C and the other volcanoes common variance σ2

U , with the two variances

being unknown.

To complete the Bayesian model, prior distributions are needed for σ2
C and σ2

U

and for the hyperparameters µ and τ 2 from the hierarchical prior. For these parameters

we utilize a standard objective prior – called the reference prior – πR(µ, σ2
β, σ

2
C , σ

2
U).

The reference prior is chosen so as to minimize the influence of the prior distribution

on the analysis, i.e., to ensure that the posterior distribution of the model parameters

only reflects what the data has to say.

With this, one now simply applies Bayes theorem to obtain the distribution of

all unknowns parameters, given all the data y



15

π(α1, . . . , αJ , β1, . . . , βJ , µ, τ
2, σ2

C , σ
2
U | y) ∝

J∏
j=1

f(yj | αj, βj, σ2
j )

×πO(α1, . . . , αJ)πR(µ, σ2
β, σ

2
C , σ

2
U)

J∏
j=1

N(βj | µ, τ 2) ,

(2.1)

where f(yj | αj, βj, σ2
j ) is the likelihood arising from the data at volcano j and the σ2

j

are either the channelized or unchannelized variance.

2.3.2 Analysis

There are no closed form analytical expressions for estimates of unknown

parameters or for credible intervals, but there is a relatively straightforward Markov

Chain Monte Carlo (MCMC) method – described below – for drawing samples from

the posterior distribution in (2.1). From this set of samples,

{(αi1, . . . , αiJ , βi1, . . . , βiJ , µi, (τ 2)i, (σ2
C)i, (σ2

U)i), i = 1, . . . ,m} ,

all desired inferences can be performed.

The typical parameter estimate would be the posterior mean, computed as the

average of all of the samples; enough samples are typically chosen (m = 106 was used

in the computations herein) that the numerical error in this computation is negligible.

Similarly a 95% credible interval, for example, would be formed as the interval

containing the central 95% of the ordered sample. Even more informatively, the entire

posterior distribution of a parameter could be approximated by simply making a

histogram of the sample values. These histograms are illustrated in Figure 2.2 and 2.3

The technical details of the MCMC method used in the hierarchical Bayesian

analysis are given herein. First, some notation: write the design matrix for the jth

regression (i.e., the intercept constant 1 and the transformed volume input values) as



16

(with nj being the number of observations for Volcano j)

Xj =



1 xj1

1 xj2
...

...

1 xjnj


,

and define (recalling that the σ2
j are σ2

C or σ2
U for the channelized and unchannelized

volcanoes respectively)

x̄j =
1

nj

nj∑
i=1

xji λj =
τ 2

σ2
j

vj = vj(σ
2
j , τ

2) = dj + τ 2

Sj =

nj∑
i=1

(xji − x̄j)2 dj =
σ2
j

Sj
v = (v1, . . . , vJ)

(
α̂j

β̂j

)
= (X

′

jXj)
−1X

′

jyj n =
J∑
j=1

nj µ̂(v) =

∑J
j=1 β̂j2/vj∑J
j=1 1/vj

From [11], the objective reference prior for the parameters (µ, τ 2, σ2
U , σ

2
C) is

π(µ, τ 2, σ2
U , σ

2
C) ∝

(
1

σ2
Uσ

2
C

)√√√√ J∑
j=1

1

v2j (σ
2
j , τ

2)
.

Then a Gibbs sampler [25] can be constructed as follows, to draw samples from the

posterior distribution in (2.1).

Step 1. Draw the βj , given σ2
j , µ and τ 2, from the following distribution:

N

(
β̂j −

(β̂j − µ)

1 + λjSj
,

σ2
jλj

1 + λjSj

)
.

This is the marginal posterior distribution of βj , given σ2
j , µ and τ 2 (i.e., αj has

been integrated out). Note that we could have also integrated out µ, but that

should not be necessary because below we generate µ from its marginal
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posterior distribution with the βs integrated out.

Step 2. Draw the αj , given σ2
j and βj , from the N

(
α̂j − x̄j(βj − β̂j), σ2

j/nj

)
distribution. This is the conditional posterior distribution of αj , given σ2

j and βj .

(It happens to not depend on τ 2 or µ.)

Step 3A. Propose a value of σ2
U , given the {βj}, j = 1, 2, by drawing a random

variable from the inverse gamma distribution with shape parameter

αU = (n1 + n2)/2 and rate parameter

βU =
1

2

2∑
j=1

(yji − [αj + xjiβj])
2 .

Draw a uniform random variable U on (0, 1) and accept the proposed σ2
U if

U <

√∑J
j=1 1/v2j (σ

2
j , τ

2)√∑2
j=1 1/v2j (0, τ

2) +
∑5

j=3 1/v2j (σ
2
j , τ

2)
;

else discard σ2
U and propose a new σ2

U , repeating as necessary until a σ2
U is

accepted. This arises from the standard accept-reject algorithm because the

numerator above, which is the unnormalized ratio of the target posterior

distribution and the inverse gamma proposal distribution, is maximized at

σ2
U = 0.

Step 3B. Propose a value of σ2
C , given the {βj}, j = 3, 4, 5, by drawing a random

variable from the inverse gamma distribution with shape parameter

αC = (n3 + n4 + n5)/2 and rate parameter

βC =
1

2

5∑
j=3

(yji − [αj + xjiβj])
2 .
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Draw a uniform random variable U on (0, 1) and accept σ2
C if

U <

√∑J
j=1 1/v2j (σ

2
j , τ

2)√∑2
j=1 1/v2j (σ

2
j , τ

2) +
∑5

j=3 1/v2j (0, τ
2)

;

else discard σ2
C and draw a new σ2

C , repeating as necessary until a σ2
C is

accepted. The rationale is as in Step 3A.

These steps yield draws from the conditional posterior distributions of σ2
U and

σ2
C , given the {αj, βj}, and do not depend on the other parameters.

Step 4. Draw µ, given the σ2
j and τ 2, from the following distribution:

N

(
µ̂(v),

1∑J
j=1 1/vj

)
.

This is the marginal posterior distribution of µ, given the σ2
j and τ 2, i.e., all the

βs have been integrated out.

Step 5. Generate τ 2, given µ, the {βj} and the σ2
j , by the following accept-reject

algorithm:

• Generate τ 2 from the inverse gamma distribution with shape parameter

α = (J − 2)/2 and rate parameter β = 1
2

∑J
j=1(βj − µ)2.

• Draw a uniform random variable U on (0, 1) and accept τ 2 if

U <

√∑J
j=1 1/v2j (σ

2
j , τ

2)√∑J
j=1 1/v2j (σ

2
j , 0)

;

else discard τ 2 and draw a new τ 2, repeating as necessary until a τ 2 is

accepted.

This algorithm follows from noting that the likelihood for τ 2, given all the other
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parameters, is proportional to the given inverse gamma distribution. The

posterior distribution of τ 2, given all the other parameters, is then proportional to

this likelihood times the prior; a sample is then drawn from this posterior using

accept/reject with the likelihood as the proposal distribution.

To view samples from the posterior and assess that the MCMC algorithm is

behaving properly, we consider histograms and trace plots, respectively. Trace plots

illustrate the entire sequence of samples from the posterior distribution, or chain, (after

the first few thousand are discarded) with the value of the random variable plotted on

the vertical axis vs. the sequence index. The reader unfamiliar with MCMC sampling

should note that a well-mixing algorithm should not get “stuck” at one value for many

samples, should not have too many vertical outliers, and should not have a discernible

periodic envelope. Note, the samples (and trace plots) have been “thinned” keeping

every fifth sample from the MCMC sequence.

Of particular interest are slope parameters for each volcano, βj , illustrated for

the frictional model in Figure 2.2. Histograms of slope parameter samples for each

volcano give reassurance that we are sampling around a common slope, near −0.2.

Spread in each individual histogram reflects the uncertainty of the slope parameter for

each volcano. Of course, wider histograms indicate more uncertainty.

Samples for any of the unknown parameters described by the posterior

distribution can be visualized in this manner. For example, one might be interested in

estimating the inferential variance parameters for the two flow categorizations,

channelized vs. unchannelized. Descriptive illustrations of these samples are presented

in Figure 2.3. Of course, which unknown parameters are of particular interest is

dependent on the scientific questions at hand for a given problem.

Next, we turn to use of the regression samples to draw the desired geophysical

conclusions.
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Figure 2.2: Left: Normalized histograms of sampled slopes for the frictional model for
each of the five volcanoes considered. Right: corresponding trace plots from MCMC
samples

2.4 Geophysical Results and Discussion

The coefficient of friction - volume relationship can be studied in several ways

from the posterior sample of parameters. Thus, for volcano j, we have a sample

{(αij, βij), i = 1, . . . ,m} of the intercepts and slopes. We thus immediately have a

sample from the posterior distribution of all regressions lines, illustrated in Figure 2.4.

Samples of regression lines are useful for the computation of inundation
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Figure 2.3: Left: Normalized histograms of the inferential variances, σ2
u (unchannel-

ized, top) and σ2
c (channelized, bottom), for linear regression model applied to the

frictional relationship, plotted on a log scale. Right: corresponding trace plots from
MCMC samples

probabilities from PDCs; for example, where it is necessary to consider different

possible mobilities for flows over a range of volumes. Samples from regression lines

can be used directly for empirical models such as the energy line/cone method or for

estimating the basal friction input parameter for a geophysical model like TITAN2D

[8, 85, 110] or the constant resisting shear stress input parameter in VolcFlow [85].

Furthermore, using regression samples generated by this method allows one to account

for uncertainty in probabilistic assessments of PDC inundation.

Figure 2.5 gives, for each volcano, a posterior summary consisting of the

regression line corresponding to the posterior median values of the sample regression

lines (the solid red line) – this would be the natural estimated regression line from the
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Figure 2.4: Both figures represent samples from the hierarchical linear regression model
of the frictional relationship applied to the data, but show the same sample curves on
different scales. Left: coefficient of friction and volume each on a log scale (which
the linear model was fit to), Right: Basal friction angle (calculated as arctan of the
coefficient of friction) versus volume on a linear scale (1× 106m3)

Bayesian analysis. 95% credible intervals (the dashed red lines) are also shown and are

obtained, at each volume value V , by taking the central 95% interval of values of

αij + βij log10(V ), over the posterior samples.

For comparison, the confidence intervals on the regression function from

classical individual regressions are also given in Figure 2.5, with the solid black line

being the standard estimated regression function and the dashed black lines being the

standard 95% confidence intervals. As expected, for the volcanoes with abundant data,

there is not much difference between the hierarchical model regression summaries and

the classical regressions. But, for Semeru, which had only four data points all of which

are closely clustered in volume, the differences found would affect the results of a

probabilistic analysis, with the hierarchical approach providing tighter uncertainty

estimates.

This type of approach is broadly applicable to other types of mass flows (debris

avalanches, lahars, or column-collapse PDCs, for example) or other types of data

entirely (ash-dispersion metrics, for example), but it is important that the datasets

selected describe phenomena that are similar. This work focused only pyroclastic
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Figure 2.5: Comparison of the 95% confidence intervals (black dotted line) on the re-
gression line for each individual volcano (black solid lines) and credible intervals (red
dotted line) obtained from the hierarchical model (red solid line) as applied to the coeffi-
cient of friction vs volume relationship. PDCs in a & b were considered unchannelized;
and c & d were considered channelized in this analysis. PDCs from Semeru (e) were
also considered channelized, but with only four data points



24

density currents which are considered to have broadly similar emplacement dynamics;

and accounted for dissimilarities (i.e. differences in channelization) by allowing for

different variances. However, the more similar the phenomena at different volcanoes,

the better the method is able to reduce uncertainty.

2.5 Conclusions

Understanding the past behavior of a particular volcano is the foundation upon

which assessments of potential future hazards are based. However, complete and

robust datasets are very rare, and really only exist for a handful of very well-studied

volcanoes. Additionally, newly active volcanoes may produce hazards with poorly

constrained characteristics due to limited data. This problem can be handled by: 1)

using only the data from a particular volcano (which may be sparse, and thus

introduces large uncertainties into hazard assessments); or 2) using the global record

of volcanoes (which may ignore or downplay any particularities of the volcano in

question). The hierarchical Bayesian method presented herein allows one to achieve a

happy medium between these two approaches by “borrowing strength” from the global

record of PDC behavior and thus greatly reducing the uncertainty for volcanoes with

sparse data.

The modeling results obtained herein are used in the next chapter as guidelines

to create experimental designs for large batches of computer experiments. The

experiments will in turn be used to produce hazard maps of the Long Valley Volcanic

region.
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Chapter 3

Probabilistic Inundation Maps of the Long Valley Volcanic Region

3.1 Introduction

The Long Valley volcanic region is located in Northern California, east of the

Sierra Nevadas. It comprises the Long Valley caldera, a volcanic depression 17

kilometers wide and 900 meters deep, and the Mono-Inyo craters, a series of more than

thirty volcanic craters aligned from the western end of the caldera to Mono Lake at the

northern end [108].

The volcanism in the area started more than 3 Ma ago, with the single largest

event being the creation of the caldera ∼760 Ka ago from the eruption of 600 km3 of

magma [51] 1. More recent activities include the eruptions of the Mono-Inyo craters

∼60 Ka [108, 22], the eruption of 1 km3 of lava from the Mono craters 1325 – 1350

AD [108], and the eruption that created the Paoha Island in Mono Lake around 1700

AD [51].

In 1978, a M 5.8 earthquake beneath Wheeler Crest, southeast of the caldera,

started a period of unrest characterized by earthquakes, ground uplift, and volcanic gas

emissions at Mammoth Mountain that is still going on to this day [52]. This extended

period of volcanic activities may be a precursor of a much larger future eruption with

devastating impact on the nearby surrounding but also on a wider scale. In immediate

danger are the town of Mammoth Lakes with 8000 inhabitants (along with its popular

winter ski resort), the Casa Diablo power plant, and part of the aqueduct connecting

the city of Los Angeles to the Lake Crowley reservoir. As a result of this, the U.S.

Geological Survey has installed a network of sensors to monitor the area and has

1Ma (Mega-annum): 1, 000, 000 years
Ka (Kilo-annum): 1, 000 years
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described its threat potential as Very High [118].

In this chapter, we focus on the hazard of pyroclastic density currents, PDC or

simply pyroclastic flows, in the Long Valley volcanic region. These flows can be

devastating as they expose surrounding areas to extreme temperatures, ash falls and

volcanic rock avalanches. We aim to quantify the probability of the hazard associated

with these flows, and develop a tool to visually represent our results. Although

pyroclastic flows give rise to many different hazard, we focus on inundation by the

flowing mass. We describe a location as being inundated if there is more than a critical

height of material, hcrit, present at that location at any time during the flow event. Our

intent is that this tool, which can be used to differentiate between safe and risky areas,

be used as a learning and experimental tool for policymakers and emergency planners

to quickly assess the hazard threat posed by various catastrophic scenarios.

A rudimentary approach to create such a tool would be to determine the limit

of previously observed flows and use that as a boundary between safe and risky areas

[105]. However, this proves to be a complicated task because distal deposits are often

hard to identify due to many factors such as human activities and vegetation [35, 17].

Also, activities are well described by heavy-tailed probability models. Thus, the

assumption that the future will look similar to the past can seriously underestimate the

threat of hazard.

We propose a simulation-based approach. We use a combination of physical

model of pyroclastic flow (TITAN2D ) and statistical emulators (GaSP) to develop a

tool that takes into account the uncertainty of important input parameters, while at the

same being computationally cheap to run. The hierarchical model we developed in the

previous chapter helps us accomplish this by combining different sources of data to

provide a better, more accurate, description of the uncertainty in the basal friction and

volume input parameters that are needed for TITAN2D simulations. Gaussian Process

Response Surface models (GaSP) are used as cheap surrogates of complex models. We
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use GaSPs to explore the output of TITAN2D at untried inputs. The tool we develop

allows for fast and easy plug-in of different scenario models and computation of

probability of inundation conditioned on flow event’s volume for all locations in the

Long Valley region. Illustrative hazard maps are presented.

The chapter has the following organization. Section 3.2 gives an overview of

the computational tools TITAN2D and GaSP models. Section 3.3 presents our datasets

and the details of our algorithm. Finally, Section 3.4 presents hazard maps of the Long

Valley volcanic region and a brief discussion of our findings.

3.2 Computational Tools

Various mathematical tools were used to generate these maps. First, we will

present a brief description of these and how they fit together in the next 2 sections.

3.2.1 TITAN2D

TITAN2D is the primary physical model that we use to simulate the flow of

pyroclastic density current. It is based on previous work by Savage & Hutter [96],

Pitman et at. [89], Iverson et al. [57, 58], and Bursik et al. [21]. It solves a system of

equations describing a depth-average model for granular flow governed by

Mohr-Coulomb friction interactions using a second order Godunov solver with an

adaptive grid. This system of equations is as follow:
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where h(x, y, t) is the depth of the flow at location (x, y) and time t. vx, vy, hvx, hvy

are flow velocities and depth-averaged momenta. gz is the gravitational acceleration,

and δint and δbed are internal and basal friction angle, respectively [110], and η is a

rheological parameter.

TITAN2D takes in a wide array of user input, including flow-related variables

(internal and basal friction angle, volume, granular pile geometry, initial flow velocity,

etc) and location or scenario-based variables such as a digital elevation map, vent

location and initial flow direction. The main mechanism to slow down a flow is

encoded in the internal and basal friction angle variables. However, it has been

observed that TITAN2D simulations are most sensitive to the basal friction angle

compared to the internal friction angle. It is for this reason that we developed the

Hierarchical Bayesian model of Chapter II, so as to reduce the uncertainty in our

knowledge of the basal friction angle, and thus improve the accuracy of TITAN2D

simulations.

It outputs a time series of flow depth and velocity at each location in the

elevation map. An example of this is illustrated in Figure 3.1, where we plot the

maximum flow depth at each location over time for case of the Long Valley region.
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TITAN2D uses the message parsing interface MPI and can be run on clusters

of computer to speed up processing and handle large amount of data. However, one

TITAN2D simulation for an average flow for 1 hour of simulated time can take around

30 minutes of compute time on 4 processors. This computational cost is the main drive

behind our use of statistical emulators to speed up computation.

Figure 3.1: Estimated maximum flow depth of a pyroclastic flow in Long Valley for an
event of volume 1010m3 and basal friction of 8 degrees

3.2.2 Gaussian Process Response Surface (GaSP)

Gaussian Process Response Surface models GaSP (also knowns as emulators,

meta-models, surrogate models) are statistical tools commonly used to model the

output of physical models that are expensive to exercise, such as TITAN2D

[92, 61, 127, 33]. With a few input/output pairs from a complex simulator, a GaSP

model can replicate the behavior of the complex model at untried inputs, and do so

much faster than the simulator. For our purposes, the simulator is TITAN2D 2, a

physical model of block-ash flow that is widely used to model pyroclastic flow paths.

Inputs are vent locations (Northing, Easting), flow volume, and basal friction angle,
2For more on TITAN2D see Section 3.2.1
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and the output is the maximum flow depth at a location.

A GaSP model works as follow. Let X = [x1, x2, . . . , xn]T be the set of inputs

for a simulator, and Y = [y1, y2, . . . , yn]T be the corresponding response. X is an

n× d matrix called the design and Y is a n-dimensional vector. A GaSP emulator

models the response Y as if it is a realization from a n-dimensional normal

distribution Y ∼ N(µ, σ2
zR). In other words,

y(xi) = µ(xi) + z(xi) ∀xi ∈ XD (3.2)

where µ = f(· ; θ) is the mean value of Y , which can be some pre-defined function

(constant, linear/quadratic regression) of the input XD. z(x) is a Gaussian process

with zero mean E[z(x)] = 0 and covariance structure given by cov(z(xi, xj)) = σ2
zRij ,

with Rij being a n× n correlation matrix. This covariance kernel can be defined any

number of ways depending on the stationarity of the simulator response Y . We use the

Matérn-5/2 kernel (See equation 3.3) with separate length-scale parameter σm and a

standard deviation σf [91].

R(xi, xj) =

(
1 +
√

5β +
5

3
rβ2

)
exp (−

√
5β) (3.3)

where

β =

√√√√ d∑
m=1

(xim − xjm)2

σ2
m

and m denotes the mth element of an input vector xi. Any covariance kernel in the

Matérn-ν family of kernels can be re-written as a product of a Squared Exponential

(SE) function – the most widely used kernel – and a polynomial of order p, where

ν = p+ 1/2. Unlike the infinitely-differentiable SE kernel, the Matérn-5/2 kernel is

only twice differentiable, which makes it more suitable for modeling non-linear

processes. Stein [111] recommends using Matérn kernels, as many natural physical
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processes do not behave as smoothly – a primary reason for using SE kernels.

Under normal assumptions, the likelihood of a GaSP model can be written as

L(σm, µ, σf ) =
1

(2πσ2
z)
n/2|R|1/2

exp

[
− 1

2σ2
z

(Y − 1nµ)TR−1(Y − 1nµ)

]
(3.4)

and the best linear unbiased predictor at an untried input x∗ has mean and variance

ŷ(x∗) = µ̂+ rTR−1(Y − 1nµ̂) (3.5)

s2(x∗) = σ̂2
z

[
1− rTR−1r +

(1− 1nR
−1r)2

1T
nR

−11n

]
(3.6)

where, r = (r1(x
∗), . . . , rn(x∗))T with ri(x∗) = R(x∗, xi) from equation. 3.3.

In practice, parameters associated with µ, e.g intercept and slope if µ is linear, are

substituted with their maximum likelihood estimates, likewise with σf and all σm [92].

A few key aspects of GaSP models ought to be noted. First, the mean

prediction at a design point xi ∈ XD is equal to its corresponding simulator response

yi, i.e ŷ(x∗) = yi. Accordingly, s2(xi) = 0 for all input points in our experimental

design XD. The predictive variance s2(x∗) tends to be larger in regions of the input

space that are less represented in the experimental design XD. For this reason, XD is

usually set up in a space-filling manner, such as a Latin Hypercube design, so as to

reduce regions of large variance in the response surface.

3.3 Methodology

3.3.1 Dataset

First, a log of the historical record of eruptions in the area gives us a basis for a

location model to be used in computing the probability of inundation (Figure 3.2 and

Table A.1 in Appendix A). Secondly, we used the results from the hierarchical model

from Chapter II for Mount Unzen, in place for the basal friction and volume required

to make TITAN2D runs (Figures 3.3 and 3.5).
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Figure 3.2: Historical records of the eruptions in the Mono-Inyo craters and Long Valley
Caldera region in the last 180 ka. Colors represent the age of eruptions. The different
colored labels represents different spatial groups of vents. The border of the Long
Valley Caldera is also displayed as from [4] (Picture taken from Andrea et al. [13])
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Figure 3.3: Basal Friction and Volume data from Mount Unzen (Japan)

3.3.2 Experimental Design

As explained in section 3.2.1, the initial set of TITAN2D runs requires a

4-dimensional experimental design with the following features: Northing, Easting,

basal friction, and volume. This is achieved using a Latin Hypercube sampling scheme

to generate 6000 design points that span the design space described below.

The Easting-Northing design is restricted to a smaller section of the digital

elevation map (DEM) that correspond to more recents events (see Figure 3.4). This

allowed us to reduce the total number of required TITAN2D simulations. Furthermore,

it allows us to explore more historically relevant regions of the design space.

From personal communication with experts [20], it was established that Mount

Unzen is good stand-in for the Long Valley region. Hence, the basal friction-volume

portion of the experimental design is derived from the BF-Volume relationship at

Mount Unzen we obtain from the Hierarchical model presented in the previous
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Figure 3.4: Juxtaposition of the entire DEM (larger rectangle) and the smaller area
of interest our experimental design is focused on (smaller rectangle). The blue dots
represent the vent location data, and the red dots represent the (Northing, Easting) vent
design points

chapter. This relationship is then extended up to 1010km3, to include the largest events

to be expected in the Long Valley region. Figure 3.5 illustrates this.

3.3.3 Algorithm

Using the experimental design described in the previous section, 6000 separate

TITAN2D simulations were run in parallel on a distributed system, using 4 cores per

node and up to 100 compute nodes. Each one of these simulations is initialized with

one 4-dimensional design point, for example E = 320,000, N = 4,180,000,

log10 V = 6, and BF = 15◦. Subsequently, these simulations yielded 6000 records of

maximum pile heights at all locations on the D.E.M of the Long Valley area (see

Figure 3.2). It is to be noted that, most scenarios do not reach all locations, i.e many

locations will have a pile height of 0 meters.

In order to create a map of probabilities of inundation, we compute these
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Figure 3.5: Comparison of the Basal friction – Volume subset of the experimental de-
sign we used (red dots), and the BF-Volume relationship from the Bayesian hierarchical
model for the case of Mt Unzen (purple dots and 90th percentile lines). The results from
the hierarchical model were extended horizontally from log10 V = 7 to log10 V = 10,
to accommodate the much larger volumes expected to be observed while staying phys-
ically accurate

probabilities for thousands of individual locations and make a map with this

information. The following steps outlines our algorithm to compute a probability of

inundation profile curve for each of these individual locations.

For each location Li

Step 1: Get a subset of design points relevant for Li

Since we are interested in estimating a critical flow height contour (hcrit = 1 meter),

we chose, out of the initial 6000 points, those scenarios that produced a flow height

0.2 m ≤ H ≤ 50 m. Design points that yielded flows higher than 50 meters were

deemed to not have enough information concerning our pre-defined critical height.

Likewise, flow heights of less than 0.2 meters were set to 0, as this is just above the

modeling error of TITAN2D for shallow flows. On top of this, we complemented this

sub-design with a n zeros design points (events of H = 0 meter) that are closest to Li
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in euclidian distance. So, for location Li situated at (El, Nl), we added to the

sub-design n = 20 new design points with the smallest

d(xi, Li) =
[
(Ex

i − El)2 + (Nx
i −N l)2

]1/2
where xi is a zero design point with location (Ex

i , N
x
i ) and (El, N l) corresponds to

location Li

Step 2: Fit a GaSP to sub-design

A version of the BLUP described in section 3.2.2 is fit to the sub-design after it

had been normalized to the hypercube [0, 1]× [0, 1]× [0, 1], to reduce the effect of the

difference in magnitudes of the different variables. Similarly, we scaled the output

flow height by log(h+ 1), as this emphasizes small values of flow heights, and

de-emphasizes the magnitude of very high height values and at the same time does not

affect the sign of the height values (must always be positive). The following

Matérn-5/2 covariance function is used

k(xi, xj) = σ2
f

(
1 +

√
5r

σl
+

5r2

3σ2
l

)
exp

(
−5r

σl

)

where r =
√

(xi − xj)T (xi − xj)

Step 3: Evaluate GaSP and impose monoticity constraint

Once the GaSP is fitted, we evaluate it on a dense grid of 75 points along each

our 3 input dimensions (Easting, Northing and Volume)3, producing mean predictions

ŷ(x) and their standard deviation σ(x). With this evaluation, the contour hcrit can be

easily visualized, as it is the level surface corresponding to ŷ(x) = 1 m (see Figure

3.6). This level surface separates regions of the design space that lead to inundation

(h > 1 m) and those that do not.

A monotonic constraint is also imposed along the volume axis to force the pile

3From here on, the basal friction is omitted from our design as it is dependent on volume
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height at a location Li to be monotonically increasing as the volume of an event is

increasing. While this assumption is realistic, the mean predictions ŷ(x) from the

GaSP do not always follow it, hence the need for a correction. The pooled adjacent

violator algorithm, PAV, presented in [6], [69] is used to impose this constraint (see

Figure 3.7).

Briefly, this algorithm for a 1-D problem is as follow:

Given a sequence of inputs x0, x1, . . . , xi, xi+1, . . . , xn, and their corresponding

outputs y(x0), y(x1), . . . , y(xi), y(xi+1), . . . , y(xn)

Step a: Iterate in increasing order of xi, until the first pair y(xi), y(xi+1) that violates

the monoticity is found, i.e y(xi) > y(xi+1). Replace both values with their

average (y(xi) + y(xi+1)/2

Step b: Check y(xi−1) and y(xi). If y(xi−1) > y(xi), replace [y(xi−1), y(xi), y(xi+1)]

with their average. Continue this correction going to the left until the

monoticity is respected again. Then, proceed to the right again starting from

y(xi+1).

Step 4: Compute Probability of Inundation

In order to provide an estimate of the probability of inundation of a given

location that takes into account all the random inputs, one would have to have input

models; for the vent locations (Northing & Easting) and the flow volume. Given these,

a probability of inundation P (I) of a location Li can be computed using Baye’s

theorem

PLi(I) =

∫ ∫ ∫
P (I|E,N,V)× P (E,N)× P (V) dE dN dV (3.7)

However, in the absence of a probabilistic model of volume P (V ), we use

models of vent locations and computed probabilities of inundation conditioned on a

flow volume. The two models of vent location we use are, a simple uniform
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(a) (b)

Figure 3.6: (a) Example of a hcrit level surface (in red) computed from the evaluation of
a GaSP fitted over a dense grid. The blue dots are the sub-design used as support for the
GaSP. (b) Top view of a slice of the level surface shown on the left at Volume = 108m3.
Scenario events whose location fall within this contour lead to a flow height of 1 meter
or more at the Town of Mammoth Lake (represented by the black dot)

distribution and a Gaussian mixture model based on the relevant historical vent

locations (see Figure 3.8). The Gaussian mixture model (GMM) is fitted using 3

distinct means and full covariance matrices.

These two distributions are then sampled and used in a Monte Carlo scheme to

compute conditional probabilities of inundation using the following equation which

follows naturally from equation (3.7) (see Figure 3.9)

PLi(I |V ≥ 10vm3) =

∫
E×N

1h>1m p(E,N) dE dN

where v ∈ [6, 10], E ∈ [316550, 330000], N ∈ [4152500, 4206620], and 1h>1m is an

indicator function that is 1 if h > 1m, and 0 otherwise. In other words, for one

geographical location, we get a function P (I|V ) of the flow volume, which we can

illustrate by the probability profile curve in Figure 3.10
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Figure 3.7: Illustration of the pooled adjacent violators algorithm applied on the func-
tion y = sin(2x) + x in the range [0, 10]. The corrected path (in red) agrees with the
original function (in blue) in places where the monotonicity is respected, and runs a
moving average in places where it does not

Figure 3.8: On the left, samples (in red) from a Gaussian mixture model fit over histor-
ical vents locations (in blue). On the right, samples from a uniform distribution of vent
locations over our region of interest of the D.E.M
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Figure 3.9: Illustration of the Monte Carlo method used to compute conditional prob-
abilities of inundation for the town of Mammoth Lakes (black star) using a Gaussian
mixture model (GMM) of vent locations. First, the 1-meter level surface is sliced at
V = 108m3, which yields the 2-D contour line seen on the left. Then, PLi(I |V ≥ 108)
is approximated by the ratio of samples from the GMM (in red) that fall within this
contour over the total number of samples (right)

Figure 3.10: Probability profile curves for the town of Mammoth Lakes (CA), under
two different vent location models
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3.4 Results and Discussion

The algorithm detailed in the previous section is run for 10,000 different map

locations, yielding 10, 000 probability profile curves similar to Figure 3.10. Then, we

interpolated these values to a much finer grid on the map for higher resolution map of

inundations, which we then combine into one pictogram, i.e the hazard map (Figure

3.10)

While both vent location models lead to results that show a strong correlation

between probability of inundation and altitude, they differ on a couple of points. Since

the GMM describes the vent locations more closely, its results tend yield lower

probability estimates far away from the Mono-Inyo craters compared to the the

uniform distribution. Moreover, we note that at volumes 108m3 or larger, a large

portion of the DEM has a relatively high probability of being inundated by more than 1

meter of pyroclastic flow (40% or higher).
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(a)

(b)

Figure 3.11: Maps of probability of inundation of the LGV region conditioned on a
flow volume being 108m3 or smaller (top row), and 1010m3 (bottom row), using a uni-
form distribution (right column) and a Gaussian mixture model (left column) fitted over
recorded vent locations. The black dot shows the location of the town of Mammoth
Lakes. Computing the color of each pixels is equivalent to repeating the algorithm
described in Section 3.3.3, Figures 3.9 and 3.10
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Chapter 4

Multi-Objective Adaptive Design for Estimation of Multiple

Contours

4.1 Introduction

In the previous chapter, we showed how a very large number of

computationally expensive runs of TITAN2D are required to yield a probabilistic

hazard map of an entire region. This large number of simulations, based on a input

DoE1 henceworth refered to as global design, is required to sample the aleatoric

uncertainty of volcanic systems, i.e, the intrinsic randomness of their process. Usually,

this global design would be chosen using some variant of the Latin Hypercube

sampling technique [75], or a space-filling design [60].

However, these generic schemes tend to not be very useful for contour or

threshold estimation, which is our goal, as contours constitute a very small section of a

design space and a primary objective of these schemes is to explore as much of the

design space as possible. We aim to develop a strategy that reduces the number of

simulations needed by targeting a contour of interest. On top of this, the issue of

having a useful DoE is compounded by the fact that for each physical location, only a

subset of the global design proves relevant for that particular location and this

relevant subset varies as we change location. Specifically, this is done because for

most locations the majority of simulations lead to either an estimated pyroclastic flow

height of 0 meters (no flow) or a flow so large (500 meters or more), as to not give any

information in the search for a critical height contour hcrit. So, while this

location-specific sub-design aims at providing a suitable support for a Gaussian

1Design of Experiment
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emulator from which to compute a contour, it also means that, at each location, our

predictions are based on a limited number of design points. We need a multi-objective

oriented strategy for choosing a global design which provides a useful sub-design at

multiple locations.

One way to solve this problem is to start with a relatively small initial design

DoE and adaptively add design points ( or batches of design points) to improve the

accuracy of an emulator in the vicinity of the contour(s) level of interest. In the same

spirit as Jones’ Efficient Global Optimization algorithm (EGO) [61], Ranjan et al. [90]

and Picheny et al. [88] proposed algorithms that balance space exploration with

reducing emulator’s variance around a level of interest. Shan et al. [100] proposed a

rough-set based approach to estimating areas less or equal to a given contour. Viana et

al. [122] used an ensemble of surrogate models, where each model suggested one new

design point to add, and iteratively added batches of new points at each step of their

algorithm.

This problem is also found in the engineering reliability literature where

instead of estimating a contour level, the focus is on trying to find a limit state function

that separates safe and failure regions of design space. Kuczera et al. [68] suggested a

mixture of meta-models and clustering algorithm to estimate transition zones and from

that, non-linear state function. Basudhar et al. [7] and Arenbeck et al. [3] both used

support vector machine as meta-models, and then used clustering and importance

sampling, respectively, to separate failure regions from safe ones.

In this chapter, we are concerned with improving our estimates of inundation

contours for locations in the Mono-Inyo region of California. We develop a new

methodology which builds on the work of Picheny et al. [88]. Our methodology

sequentially selects batches of new design points at which simulations are to be run in

order to improve estimate of inundation contours for more than one location at a time.

Unlike the previous works summarized above, the novelty of this method lies in
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devising a strategy for resource allocations, in this case TITAN2D runs, when having

to satisfy multiple objectives, in this case contour estimates. The algorithm we develop

allows us to cleverly combine experimental results we already have and vastly reduce

the number of simulations needed to get good estimates of inundation contours for

multiple locations. Ultimately, this can be used in concert with the hazard mapping

method from Chapter III to speed up studies of new hazard threats.

The organization of this chapter is as follow. Section 4.2 presents our

algorithm, both from a theoretical and computational perspective. Then, we present

applications of our algorithm on a pedagogical example, Section 4.3, and on the

hazard mapping tool of the previous chapter, Section 4.4.

4.2 Methods

Traditionally, DoE algorithms such as Latin Hypercube sampling [75], or

space-filling design [60] choose the entire design of experiment before any computer

simulation is made (experiment). However, algorithms that iteratively choose design

points are more flexible. Primarily, this is because they allow for objective-oriented

constraints, which discourages unnecessary experiments. Examples of such objectives

include finding a global extrema [61], a contour level [90, 88, 100], or a limit-state

function [68, 7, 3].

Objective-oriented constraints are defined in terms of a utility function that

assesses how much experimental improvement would be achieved if a candidate

design point were to be added to the design of a particular experiment. Candidates

with high utility value are then iteratively added to the DoE by a sequential algorithm.

In our case, the utility of a design point is generally defined as some weighted average

of its closeness to a contour and the variance of an emulator at that point.

A general step-by-step procedure to improve contour estimation for more than

one location at a time look works as follows. First, we select an initial small DoE for

all locations being considered and feed them to TITAN2D as inputs. Then, we
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compute utility functions for each locations being considered using predictions from

emulators fit to the TITAN2D output for each of those locations. Next, we devise a

multi-objective optimization strategy to choose optimal design points that maximize

all utilities simultaneously. These points are then added to each location’s sub-design

and simulations are run at those new design points. This process is repeated until the

Mean Squared Error (MSE) of each GaSP emulators near contours has decreased to a

satisfactory level.

4.2.1 Modified Integrated Mean Square Error criterion (I.M.S.E)

Picheny et al. [88] proposed this criterion as a specialized version of the

Integrated Mean Square Error criterion of Sacks et al. [92]. Both criteria use a GaSP

with predictive mean and variance ŷ(x) and s2k(x) for the basis of their computations.

The original criterion is defined in equation 4.1 below

IMSE =

∫
X

MSE[ŷ(x)]φ(x)dx (4.1)

IMSET =

∫
X

s2(x)W (x)dx (4.2)

where φ(x) and W (x) are both weight factors,

W (x) =
1√

2π(σ2
ε + s2(x))

exp
[
−1/2 (ŷ(x)−T )2

σ2
ε+s

2
K(x)

]
, ŷ(x) and s2(x) the mean and

variance of an GaSP, and σε a constant defining a range around the level of interest T .

It measures the average MSE of a meta-model over the whole input space.

According to [88], the modified IMSE criterion (equation 4.2) provides a

measure of the uncertainty of the GaSP (s2k(x)) weighted by the closeness of ŷ(x) to

the contour of interest T . In other words, both points with a predictive response ŷ(x)

close to the contour and points with a high variance s2k(x) in the vicinity of the contour

are weighted higher in this scheme. The algorithm we designed samples the input

space proportionally to the IMSE, and updates the DoE with the new found design

points. In doing so, it refines the sampling of the input space near the contour, and
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Figure 4.1: Illustration of the IMSE criterion of Picheny et al. [88]. The ‘contour’
(target value) of the 1-D function is set at a = −0.34. The bottom figure shows how
more importance is given to regions near the target value represented by the black stars

improves emulators’ approximations of the inundation contour.

As example of this criterion, Figure 4.1 below illustrates the IMSE for a simple

1-D function. Regions of the input space that are close to the contour of interest have

higher values of IMSE criterion. Hence, if we were to run our algorithm for this

example, the next points to be added to the DoE are most likely to come from these

regions.

4.2.2 Aggregation and Optimization

After IMSE criteria (utility functions) have been set up for multiple contours,

comes the problem of devising a strategy to find “compromise” design points that

improves contour estimation for all contours under consideration – each corresponding

to a different map location of interest.

We solved this resource allocation problem using the Nash arbitration scheme

[81], which suggests that the solution to such a problem be the maximum of the
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product of all criteria. Essentially, this approach turns a constrained high-dimensional

optimization problem into a manageable 1-D optimization problem. It is a special case

of the product of powers composite utility function of Bridgman [16], equation4.3,

where the weights wi of each weights are all set to 1.

UC =
k∏
i=1

[Ui(x)]wi (4.3)

where Ui(x) is the utility function of the ith objective (in our case the IMSE for one

particular contour), and wi is the corresponding weight associated with its importance.

However, criteria can have different magnitudes. So, a normalization process is first

required to avoid some criteria from dominating others. For our purposes, we rescaled

our vector-shaped criteria to have a norm L2 of 1.

Once we setup the composite utility function equation 4.3, we seek new design

points that maximize it with the added constraint that we maximize the minimum

distance between those new design points and the DoE we already have at hand. This

constraint avoids clustering of the design points and provides an appropriate support

for GaSP emulators.

For our work, we optimize equation 4.3 using a search method over a fine grid

in the input space [0, 1]× [0, 1]× [0, 1]. First, we compute each Ui(x) over the grid,

and evaluate the composite criteria UC . Then, we select design points whose UC value

are above the 99th percentile. From these, we iteratively pick a new design point (up to

a certain number n of design points) in a manner that is space-filling vis-a-vis of all the

current DoE. We use the euclidian distance to compute the distance between design

points. Figure 4.2 illustrates this algorithm.

It is to be noted that, while it may seem like we are computing many more

simulation input/output and choosing from them new design points, we are not doing

so. The composite criteria function of equation 4.3 is based on equation 4.2, which is
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itself based on evaluations of a cheap GaSP. So, a grid search optimization algorithm is

relatively fast. In cases where such technique is not feasible, we recommend a

multi-start optimization algorithm, as UC can be highly non-linear.

Figure 4.2: Illustration of one optimization step of the composite IMSE function of
equation 4.3 in the criteria space. Objective I and II represent two different contours.
The green dots are design points in the 99th percentile of the Composite IMSE UC , and
the red dots represents points that we decided to add to our DoE

4.3 Numerical Example

Consider the following ‘family’ of functions

F2(x, y; a) = exp

[
−(x− 0.5)2

0.02

]
× exp

[
−(y − 0.4)2

0.02

]
+

exp

[
−(x− xa)2

0.045

]
× exp

[
−(y − ya)2

0.045

]
(4.4)

where xa = 0.4 cos(
π

4
a)− 0.7 sin(

π

4
a) and ya = 0.4 sin(

π

4
a)− 0.7 cos(

π

4
a) and a

is a free parameter in the range [0, 1]. Each of these functions is defined on a range that

include the value T = 0.6 which we will consider to be our contour level of interest
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(see Figure 4.3). We apply our multi-objective sequential algorithm (summarized in

Table B.4) to the problem of improving GaSP model predictions of the contours

T = 0.6 of any two of these functions. Several different sets of experiments are made

to illustrate the advantage of our algorithm. One instance of such experiment is set up

as follow.

With a contour level of T = 0.6, the parameter σε, which determines the width

of a neighborhood around the contour, is set at σε = 0.1 (roughly 5% of the output

range of the functions). This has the effect of focusing our search window around the

contour and reduces input space exploration. An initial DoE of size n = 10 for each

objective is chosen, and batches of 5 design points are added after each iteration, up to

6 iterations. Each experiment is run 15 times with different random seeds to minimize

the effect of the initial DoE on our results. Table 4.1 summarizes this experimental

setup.

Experimental setup

Initial DoE size 10
Batch size 5
Number of steps 6
Grid size 100× 100
Values of free parameters a (0.1, 0.6)

Table 4.1: Summary of the experimental setup of one run of our algorithm. In this case,
we are trying to estimate the contours corresponding to a = 0.1 and a = 0.6

Furthermore, we consider three metrics of ‘goodness’ to assess the

performance of the algorithm. The first metric measures the average euclidean

distance between the j th contour Cj and the true contour CT [90].

M1 =
1

|Cj|
∑
x∈Cj

d(x,CT ) (4.5)

where d(x,CT ) = min{‖x− y‖2 : y ∈ CT}. The second metric measures the
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maximum distance between contour Cj and the true contour CT [90] and is given by

M2 = max{d(x,CT ) : x ∈ Cj} (4.6)

Lastly, we measure the average GaSP variance s2k(x) in the neighborhood of the

contour. That is, we have

M3 =

∑
x I(x)s2(x)∑

x I(x)
(4.7)

where I(x) =


1, if |ŷ(x)− T | ≤ σε

0, otherwise

1. Set up an initial DoE Xi for each objective i and perform experiments
to get corresponding responses Yi

2. Create a dense grid of candidates design points XD

3. Fit a GaSP emulator to the data {Xi, Yi} of each objective
4. Compute the IMSE criterion Ui(xk) of each xk ∈ XD, for each objective i

using equation 4.2
5. Combine all criteria using the composite utility function UC of equation 4.3
6. Identify k design points Xk = {x1, x2, . . . , xk} ∈ XD that maximize UC

in a space-filling manner
7. Perform experiments to obtain responses Yk for the new k design points

for each objectives
8. Update DoE Xi = {Xi, Xk}, and Yi = {Yi, Yk} and XD = XD \Xk

9. Repeat 3-8 until experimental resources are exhausted.

Table 4.2: Outline of a multi-objective sequential DoE algorithm. A GaSP model is
used as meta-model and design points are added in batches of size k

The plots in Figure 4.4, we see significant reduction in the average GaSP

variance near the contour and distance between approximated contours and true

contours, which shows that our algorithm is apt at finding design points that are useful

for both objectives simultaneously. This same behavior is observed for any

combinations of 2 or more functions we pick from equation 4.4.
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On the other hand, if we choose to only approximate one contour (primary

objective) and observe how another near-by contour (secondary objective) is

approximated by proxy, we get the same behavior as in the prior case but with some

dissimilarities. This is illustrated in Figure 4.5. In that case, our algorithm is able to

approximate both contours but more so the principal objective than for the secondary

objective. This matches one’s intuition, since in this case our search algorithm focuses

on the primary contour and the “goodness” of the approximation of the secondary

contour varies depending on how close the two objectives are.

Next, we analyze the relationship between the improvement our algorithm

achieves for two objectives (contours of function from equation 4.4) versus how

close/similar those objectives are to each other. We use the radial basis function kernel

(RBF) in equation 4.8 to quantify the similarity of two functions.

K(y, y′) = exp(−γ ∗ ‖y − y′‖2) (4.8)

where the free parameter γ = 0.05. This measure ranges from 0 for dissimilar

objectives to 1 for identical objectives.

For example, if we are looking to trade-off between two objectives C1 and C2,

we run our algorithm as usual and then compute the improvement made in, say, metric

M1 for C2 as the ratio M i
1/M

0
1 , where M i

1 and M0
1 are the final and initial value of M1

respectively. This ratio is greater than 1 if our algorithm reduced the average distance

metric M1 between approximated contour Ci
1 and the true contour C1, and less than 1

otherwise. We then record that improvement versus the RBF similarity measure of the

function generating C1 and C2.

Figure 4.6 shows that there’s a directly proportional relationship between how

similar objectives are and how well our algorithm performs. Indeed, the more similar

objectives are, the more likely our algorithm will make great improvements toward
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both of them. This observation makes sense as it is intuitively harder to find a good

compromise between conflicting objectives than it is for those that are more aligned.

Figure 4.3: Contour level T = 0.6 of 10 different functions from the family of func-
tions in equation 4.4 with a = 0.1, 0.2 . . . , 1. Each of the contours is considered as an
objective in our algorithm

4.4 Inundation Contours

We apply our algorithm on the problem of estimating inundation contours of

locations in the Long Valley volcanic region of California (see Figure 3.6). This

problem is similar to the pedagogical example in the previous section, only extended

to three dimensions (Easting, Northing, and Volume) and now the hcrit = 1m

inundation contour is a level surface.

First, we create a Latin Hypercube DoE with 600 points spread out in the input

space and run a TITAN2D simulation for each of those design points (event scenarios).

This constitutes our global design. Next, for each location in consideration, we choose

sets of 50 points each – sub-designs – that are most relevant for each location. These

sub-designs are made up of a combinations of design points that lead to a flow height

0.2 m ≤ H ≤ 100m (non-zeros) and design points that lead to a flow H < 0.2 m
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Figure 4.4: Plots illustrating the performance of our algorithm in simultaneously esti-
mating 2 different contours (A) of two functions from equation 4.4 using a GaSP model
and a IMSE criterion to select design points that are relevant for both objectives. In
(A), the black dots represent the initial DoE, while the red circles mark the new design
points added after the first iteration of the algorithm

Figure 4.5: Plots illustrating how an objective (red contour) is affected by our algorithm
estimating another objective near-by (the blue contour). The two objectives (A) are
contours of two functions from equation 4.4. In (A), the black dots represent the initial
DoE, while the red circles mark the new design points added after the first iteration of
the algorithm
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Figure 4.6: Relationship between the improvement our algorithm makes in trading-
off between two objectives versus the similarity between those objectives. The more
similar objectives (higher RBF) the more our algorithm is apt at finding a compromise.
For example, after running our algorithm for 6 iterations, we achieve an improvement
in M1 of about 51 for objectives that are as similar as RBF = 0.68 (top graph). This
means that our algorithm reduced the average euclidian distance to those objectives by
about 50 times

(zeros) that we think are relevant for a location – See Section 3.3.3 for a brief

description of why we classify design points as such. These zeros design points are

chosen in such a way to maximize the minimum distance between them and the
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non-zeros design points already in place. This avoids clusters of design points and

gives a suitable support for GaSP emulators. For each location, we fit a GaSP emulator

over the sub-design, which we then evaluate over a dense grid, and extract the

hcrit = 1m contour. Figure 4.7 illustrates an example of one such sub-design. The

IMSE is calculated using equation 4.2, with σε = 0.1, and at each iteration of our

algorithm we add 5 new design points, up to 10 iterations.

Since in this case the true contour is unknown, we use a modified version of

our metrics of ‘goodness’. We replace CT with Cj−1 in equation (4.5) and (4.6). Now,

the metric M1 measures the average distance between two successive contours Cj−1

and Cj . The same applies to M2. We now interpret our metrics as measuring the

stability of our estimates of contours. In other words, as these metrics go to 0, this

indicates that our approximations are becoming more and more similar to one another,

hinting that we may be getting closer to the true solution.

Figure 4.8 shows the results we obtain from refining our estimates of the

probability of inundation of two locations: the center of the Town of Mammoth Lakes

(CA), and another location 100 meters away. As with the previous example, we can

see that our algorithm is apt at reducing our metrics for multiple contours.

However, like in Figure 4.6, it is not trivial to correlate the similarity between

two objectives and how well our algorithm balances them. We suspect that is made

harder by the fact that the obvious high correlation between the topography and pile

height adds an extra spatial-orientation aspect to the problem that standard GaSP

emulation is blind to. In other words, two locations that are close together

as-the-bird-fly may be really hard to optimize for simultaneously due to the difference

in altitude of those two locations. This happens very often in the mountainous region

of the Long Valley Caldera.
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Figure 4.7: Example of a sub-design DoE for one location, marked in green, in the
Long Valley Region. Blue dots are design points that lead to flows height between 20
cm and 100 meters. Red dots are design points that lead to flows below 20 cm. The red
dots were chosen in a space-filling manner to cover the rest of the input space

4.5 Results & Discussion

In this chapter, we presented an iterative design of experiment algorithm that

incorporates objective-specific information from various objectives and finds the right

compromise Design of Experiment scheme suitable for all objectives. In particular, we

look at the case where an objective is defined as a contour level from a

high-dimensional function (or black-box model). This algorithm uses Gaussian

Response Surface (GaSP) models to emulate the function in consideration and a

constrained optimization strategy to choose new design points in such a way as to

improve estimation of contours. We also discovered a relationship between objectives

that can be combined together and how well our algorithm would do in trading-off

between them (See Figure 4.6 and 4.8). In short, the more objectives agree with each

other, the easier and the more apt our algorithm is at finding a trade-off between them.

This algorithm is used in estimating inundation contours for locations in the

Long Valley volcanic region of California. In this problem, the black-box model is the
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Figure 4.8: Results of our multi-objective sequential algorithm to enhance our approx-
imation of inundation contours for two different location simultaneously (marked with
two stars on the left picture). Plots of convergence metrics (on the right side) show that
the algorithm reduces the variance of a GaSP emulator near the contour (M3), and that
our estimated contours are slowly converging toward a stable solution

computationally intensive geophysical moodel TITAN2D . Our algorithm allows us to

improve estimate of inundation contours for more than one location at a time using

fewer runs of TITAN2D .

It is to be noted that, our approach is a general strategy for creating a Design of

Experiments that is targeted for multiple response-specific goals. As such, it can be

used in any situation where one (or more) utility function(s) can be defined and a user

has to satisfy all of them. Also, our use of Gaussian-based Response surface is specific

to this case and be replaced by any problem specific meta-model.
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Chapter 5

Conclusion

In the second chapter, we develop a model that is very useful for either

volcanic sites with a dearth of data, or any newly active sites that becomes of interest.

This model draws from the similarity in mobility phenomena across all volcanic sites,

makes use of the global dataset available about mobility metrics and proposes a

characterization of the mobility metric relationship for new locations with very little

data. We tested this model on basal friction and volume for 5 volcanic sites, one of

which had very little data compared to the others.

In the third chapter, we use the model developed in the previous chapter to

quantify the uncertainty in the basal friction-volume relationship within TITAN2D

simulations of pyroclastic flows and use GaSP models to allows for fast computation

of probability of inundation. These probabilities are then illustrated in hazard maps.

The process we propose allows for a flexible plug-in of any scenarios model and a fast

computation of probability of inundations for large areas.

In the fourth chapter, we develop a strategy for even faster generation of hazard

maps. This is achieved by recognizing the similarities in flow deposits of different

locations and devising a clustering metric and algorithm to improve the accuracy of

inundation contour computations for multiple locations at the same time. This both

speeds up map creation and reduces the number of expensive computer model runs

(TITAN2D) needed for hazard assessment.

Risk analysis and uncertainty quantification in volcanology is a complex field

of study. There are many factors that contributes to this. These include; the complexity

of the physical phenomena, the paucity of data available, the difficulty of collecting

data, the statistical analysis – and identification – of epistemic and aleatoric
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uncertainty, the inherent inability to provide conventional confidence bounds on

forecasts, the communication challenge between scientists and policymakers/public,

the human lives and financial interests at stake, and many more.

It is an immense task to develop a process that tackles all of these obstacles at

once, as they span multiple disciplines and require the collaboration of a wide range of

concerned parties; from the public to policymakers to scientists. This has been the

objective of the research group that I am a member of, and the research grants that

have been funding my work 1. Ultimately, the goal of this dissertation is to provide a

fast and flexible software tool for policymakers to quickly assess hazard threats based

on various scenarios and make well-informed decision. We foresee our methodology

being used in a model selection process or advisory role. We achieve this by

developing new statistical forecasting approach along with software to reduce and

quantify uncertainty, and allow for fast and accurate assessment of hazard threats.

There are a couple of avenues to follow up on. First, we might explore more

specialized covariance kernel functions for GaSP models to handle the non-linearity

and discontinuities from TITAN2D output. While the Matérn 5/2 is appropriate for

modeling non-linear systems, TITAN2D represents a unique challenge as uncertainty

in digital elevation maps, which drive flow movement, affect TITAN2D results.

Secondly, while developing our multi-objective strategy in chapter IV, we

noted that more study ought to be done in the selection of new design points as

non-linearity and topography can make it very hard to identify similar location on a

digital elevation map. Sometimes locations close together as the crow flies can have

very distinct TITAN2D output, which leads to drastically different inundation

contours. This is caused by either the non-linearity of TITAN output or topography

orientation. A spatially-aware flavor of GaSP models that takes into account a region’s

topography would be useful in these cases.

1See Acknowledgement section
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Appendix A

Vent Location Dataset

Age (in years) Northing Easting Age (in years) Northing Easting
215 4207338.98 321139.72 89000 4166281 320516
612 4180931.99 322095.45 91000 4170644 322239
612 4175778.42 322217.02 91000 4166665 320453
612 4199888.73 320281.11 93000 4170234 321145
612 4199071.61 321810.41 94000 4169947 324984
612 4197362.53 322115.8 95000 4167441 330730
612 4197823.21 322210.28 95000 4170250 319655
612 4196478.97 323426.6 95000 4170811 319278
612 4173782.23 322722.57 98000 4162718 321172
612 4180931.99 322095.45 103000 4168943 325551
612 4175778.42 322217.02 104000 4179940 329682
612 4199888.73 320281.11 106000 4171817 324472
612 4199888.73 320281.11 107000 4177151 326926
612 4199888.73 320281.11 110000 4171829 324833
612 4196478.97 323426.6 110000 4169741 324873
612 4196478.97 323426.6 111000 4165278 322213
612 4179254.58 322086.47 113000 4174088 322324
612 4180931.99 322095.45 118000 4167675 321647
612 4175778.42 322217.02 123000 4168323 321398
612 4175778.42 322217.02 126000 4167964 320293
702 4168092 321661 126000 4167161 330139

1329 4190881.56 323513.7 145000 4175487 327997
1574 4197823 322210 145000 4168477 322979

1660.5 4183588.98 321557 149000 4171436 327187
1660.5 4183588.98 321557 151000 4171051 327178
6000 4177151 326926 164000 4174962 328459
6000 4176755.63 321812.26 165000 4173537 326299
8490 4162569.97 318364.49 171000 4169741 324873

21680 4189650.19 323739.6 192000 4181015 343956
24000 4177498 324397 210000 4173537 326299
29000 4179494 325524 284000 4169841 322254
32000 4177529 324095 324000 4167314 340785
37000 4178534 323437 349000 4170668 340685
38000 4178356 322532 468000 4176884 332260
39800 4193120.39 322710.5 509000 4176297 333574
38700 4193120.39 322710.5 634000 4174471 328736
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40800 4193120.39 322710.5 658000 4176193 331020
44000 4177529 324095 660000 4172116 330428
62000 4167439 329611 664000 4171746 332912
63000 4167558 321978 670000 4167671 333052
65000 4167964 320293 673000 4177441 329630
67000 4170644 322239 675000 4169630 329071
76000 4167896 315803 730000 4168762 335186
79000 4168637 320847 767100 4165611 338700
82000 4164986 321146 767100 4165611 338700
82000 4166665 320453
83000 4167409 323735
89000 4167275 329849

Table A.1: Historical Record of Eruptions of the Mono-Inyo Chain and Long Valley
Caldera [129, 128, 120, 113, 108, 71, 73, 36, 22, 19, 18, 10, 5]
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Appendix B

Hierarchical Bayesian Model Implementation

1 # Implementation of a Hierarchical Bayesian
2 # for coeficient of friction vs volume relationship
3

4 # Author: Regis Rutarindwa
5

6 from numpy import *
7 import time
8 import matplotlib.pyplot as plt
9 from scipy import stats

10

11 # load data
12 clm = recfromtxt(’Clm_Vol_CoefFriction.txt’);
13 mrp = recfromtxt(’Mrp_Vol_CoefFriction.txt’);
14 shv = recfromtxt(’Shv_Vol_CoefFriction.txt’);
15 unz = recfromtxt(’Unz_Vol_CoefFriction.txt’);
16 smr = recfromtxt(’Smr_Vol_CoefFriction.txt’);
17 alldata = [clm,mrp,shv,unz,smr]
18

19 name = [’Clm’,’Mrp’, ’SHV’,’Unz’,’Smr’]
20 nvolc = len(alldata)
21

22 mid = 10**5.5
23 polys = zeros([nvolc,2])
24 njs = zeros([nvolc,1])
25 xj = zeros([nvolc,1])
26 Sj_lst = zeros([nvolc,1])
27

28 # Data manipulation: remember col1 = y, col2 = x
29 for i in range(nvolc):
30 alldata[i][:,1] = alldata[i][:,1] * 10**6
31 alldata[i][:,1] = alldata[i][:,1]/mid
32 alldata[i] = log10(alldata[i])
33

34 polys[i,:] = polyfit(alldata[i][:,1], alldata[i][:,0],1)
35 njs[i] = shape(alldata[i])[0]
36 xj[i] = mean(alldata[i][:,1])
37 Sj_lst[i] = sum((alldata[i][:,1] - xj[i])**2)
38

39 Sj_lst = squeeze(Sj_lst)
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40 njs = squeeze(njs)
41 xj = squeeze(xj)
42

43

44 # sample size
45 nsamples = 10**3
46 nflows = sum(njs)
47

48 # Allocating spaces for arrays
49 thetas1= zeros([nvolc,nsamples])
50 thetas2= zeros([nvolc,nsamples])
51 mus = zeros([nsamples,1])
52 st2_lst = zeros([nsamples,1])
53 sj2_lst = zeros([nvolc,nsamples])
54 lams = zeros([nvolc,nsamples])
55

56 # Initializing first values of matrices
57 t1 = polys[:,1]
58 t2 = polys[:,0]
59 thetas1[:,0] = squeeze(t1)
60 thetas2[:,0] = squeeze(t2)
61 mus[0] = mean(t2)
62 sigj2init = map(lambda x: var(x[:,1],ddof=1),alldata)
63 sj2_lst[:,0] = sigj2init
64 st2_lst[0] = var(t2,ddof=1)
65

66

67 Sj_lst1 = Sj_lst[:2]
68 Sj_lst2 = Sj_lst[2:]
69

70 vj_func = lambda s_j2,s_t2,Sj_part: (1.0*s_j2/Sj_part)+\
71 s_t2
72

73 mu_hat_func = lambda t2j, s_j2,s_t2,Sj_part: \
74 sum(t2j/vj_func(s_j2,s_t2,Sj_part))/ \
75 sum(1/vj_func(s_j2,s_t2,Sj_part))
76

77 tic = time.time()
78 q = nsamples/10
79 for k in range(0,nsamples-1):
80

81 # progress report
82 if (k%q == 0):
83 print "%3.1f %% done"%(k*10/q)



76

84

85 #######################################################
86

87 # STEP 1: Draw th2
88 lamtemp = st2_lst[k]/sj2_lst[:,k]
89 m1 = t2 - (t2 - mus[k])/(1 + lamtemp*Sj_lst)
90 s21 = (sj2_lst[:,k]*lamtemp)/(1 + lamtemp*Sj_lst)
91 thetas2[:,k+1] = squeeze(random.randn(nvolc,1)) *\
92 sqrt(s21) + m1
93

94 #######################################################
95

96 # STEP 2: Draw th1
97 m = t1 - xj*(thetas2[:,k+1]-t2) #use new t2
98 s22 = sj2_lst[:,k]/njs
99 thetas1[:,k+1] = squeeze(random.randn(nvolc,1)) *\

100 sqrt(s22) + m
101

102 #######################################################
103

104 # STEP 3A: Draw sig2_u
105 cu = 0
106 found_u = 0
107 while (found_u != 1):
108 btmp = 0
109 for i in range(2):
110 xji = alldata[i][:,1]
111 yji = alldata[i][:,0]
112 btmp = btmp + sum((yji-(thetas1[i,k+1] + \
113 xji*thetas2[i,k+1]))**2)
114

115 betau = 0.5*btmp
116 s2_u = 1/random.gamma(sum(njs[0:2])/2, 1.0/betau)
117

118 n1 = sum(1/vj_func(sj2_lst[:,k],\
119 st2_lst[k],Sj_lst)**2)
120 b1 = sum(1/vj_func(0,st2_lst[k],Sj_lst1)**2)
121 b2 = sum(1/vj_func(sj2_lst[2:,k],\
122 st2_lst[k],Sj_lst2)**2)
123

124 u_u = random.rand()
125 condu = sqrt(n1)/sqrt(b1 + b2)
126

127 if (u_u < condu):
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128 found_u = 1
129 cu = cu + 1
130

131 #######################################################
132

133 # STEP 3B: Draw sig2_c
134 cc = 0
135 found_c = 0
136 while (found_c != 1):
137 btmp = 0
138 for i in range(2,nvolc): #i=3:nvolc
139 xji = alldata[i][:,1]
140 yji = alldata[i][:,0]
141 btmp = btmp + sum((yji-(thetas1[i,k+1]+\
142 xji*thetas2[i,k+1]))**2)
143

144 betac = 0.5*btmp
145 s2_c = 1/random.gamma(sum(njs[2:])/2, 1.0/betac)
146

147 n1 = sum(1/vj_func(sj2_lst[:,k],\
148 st2_lst[k],Sj_lst)**2)
149 b1 = sum(1/vj_func(sj2_lst[:2,k],\
150 st2_lst[k],Sj_lst1)**2)
151 b2 = sum(1/vj_func(0,st2_lst[k],Sj_lst2)**2)
152

153 u_c = random.rand()
154 condc = sqrt(n1)/sqrt(b1 + b2)
155

156 if (u_c < condc):
157 found_c = 1
158

159 cc = cc + 1
160

161 for i in range(2):
162 sj2_lst[i,k+1] = s2_u
163 for i in range(2,5):
164 sj2_lst[i,k+1] = s2_c
165

166 #######################################################
167

168 # STEP 4: Draw mu
169 vs = vj_func(sj2_lst[:,k+1],st2_lst[k],Sj_lst)
170 ms = mu_hat_func(thetas2[:,k+1],sj2_lst[:,k+1],\
171 st2_lst[k],Sj_lst)
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172 mus[k+1] = random.randn(1)*sqrt(1/sum(1/vs)) + ms
173

174 #######################################################
175

176 # STEP 5: Generate sig_t2
177 beta = 0.5*sum((thetas2[:,k+1]-mus[k+1])**2)
178 sig_t2_cand = 1/random.gamma((nvolc-2)/2, 1.0/beta)
179 u_t = random.rand()
180 condt = sqrt(sum(1/vj_func(sj2_lst[:,k+1],\
181 sig_t2_cand,Sj_lst)**2))/ \
182 sqrt(sum(1/vj_func(sj2_lst[:,k+1],0,Sj_lst)**2))
183

184 ct = 0;
185

186 while ((u_t < condt) == 0):
187 beta = 0.5*sum((thetas2[:,k+1]-mus[k+1])**2)
188 sig_t2_cand = 1/random.gamma((nvolc-2)/2, 1.0/beta)
189

190 u_t = random.rand()
191 condt = sqrt(sum(1/vj_func(sj2_lst[:,k+1],\
192 sig_t2_cand,\
193 Sj_lst)**2))/ \
194 sqrt(sum(1/vj_func(sj2_lst[:,k+1],0,\
195 Sj_lst)**2))
196

197 ct = ct + 1
198

199 st2_lst[k+1] = sig_t2_cand
200

201

202

203 toc = time.time()
204 print
205 print ’%10.3f secs elapsed’%(toc-tic)
206

207

208 burn = nsamples*1.0/100
209 thetas1 = thetas1[:,burn:]
210 thetas2 = thetas2[:,burn:]
211 mus = mus[burn:]
212 st2_lst = st2_lst[burn:]
213 sj2_lst = sj2_lst[:,burn:]
214

215
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216

217 plt.figure(1)
218 plt.clf()
219 for i in range(nvolc):
220 plt.hist(thetas1[i,:], bins=100, \
221 histtype=’stepfilled’, normed=True,\
222 alpha=0.5, label=name[i])
223 plt.title(’Theta1’)
224 plt.legend()
225 plt.show()
226

227

228 plt.figure(2)
229 plt.clf()
230 for i in range(nvolc):
231 plt.hist(thetas2[i,:], bins=100, \
232 histtype=’stepfilled’, normed=True,\
233 alpha=0.5, label=name[i])
234 plt.title(’Theta2’)
235 plt.legend()
236 plt.show()
237

238

239 ###############################################
240

241 n = 10;
242

243 plt.figure(3)
244 plt.clf()
245 figind = 1
246

247 for j in range(nvolc):#j = 1 ########## volcano index
248

249 plt.subplot(3,2,figind)
250 figind += 1
251 x = alldata[j][:,1]
252 y = alldata[j][:,0]
253 vv = linspace(-1.5, 2.5, n);
254

255 p975 = zeros([n,1]);
256 p25 = zeros([n,1]);
257 p50 = zeros([n,1]);
258 fvv = zeros([n,1]);
259
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260 for i in range(n):
261 cf = thetas2[j,:] * vv[i] + thetas1[j,:]
262 p25[i] = percentile(cf,2.5)
263 p50[i] = percentile(cf,50)
264 p975[i] = percentile(cf,97.5)
265

266 nn = len(x)
267 p = polyfit(x,y,1)
268 sxx = sum((x - mean(x))**2)
269 yihat = polyval(p,x)
270 seps2 = sum((y - yihat)**2)/(nn-2)
271

272 topy = zeros([n,1])
273 boty = zeros([n,1])
274

275 for i in range(n):
276 val = stats.t.ppf(0.975,nn) * sqrt(seps2) * \
277 sqrt((1/nn) + ((vv[i] - mean(x))**2/sxx));
278 topy[i] = polyval(p,vv[i]) + val;
279 boty[i] = polyval(p,vv[i]) - val;
280

281

282

283

284 plt.plot(x,y,’bo’,ms=5,label=’data’)
285 plt.plot(vv,p25,’r--’, label=’HLM - CI’)
286 plt.plot(vv,p975,’r--’)
287 plt.plot(vv,p50,’r-’,label=’HLM - Mean’)
288 plt.plot(vv,topy, ’k:’, label=’LR - CI’)
289 plt.plot(vv,boty, ’k:’)
290 plt.plot(vv,polyval(p,vv), ’k-’,label=’LR’)
291 plt.xlim([-1.5,2.5])
292 plt.ylim([-3,3])
293 plt.title(name[j])
294

295

296 plt.show()
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0.3900000000000 0.1300000000000
0.4300000000000 0.1000000000000
0.2700000000000 1.6200000000000
0.2600000000000 1.7100000000000
0.3600000000000 1.1880000000000
0.2600000000000 1.0800000000000
0.3100000000000 0.8640000000000
0.2700000000000 0.7110000000000
0.3000000000000 0.6120000000000
0.2800000000000 1.1850000000000
0.2700000000000 1.1816500000000
0.7200000000000 0.0300000000000
0.6000000000000 0.1800000000000
0.4400000000000 0.6000000000000
0.4200000000000 0.8000000000000
0.4700000000000 0.4500000000000
0.4800000000000 0.3600000000000
0.3900000000000 0.9000000000000

Table B.1: File Clm Vol coefFriction.txt with mobility metric for Volcán de Colima
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0.2461538461538 4.5000000000000
0.2923076923077 2.6000000000000
0.4054054054054 0.2600000000000
0.4833333333333 0.2900000000000
0.3666666666667 0.1100000000000
0.3103448275862 0.1800000000000
0.3333333333333 0.3500000000000
0.4000000000000 1.1914010000000
0.3000000000000 2.6983110000000
0.4000000000000 0.9004950000000
0.4200000000000 0.7684380000000
0.4400000000000 0.7313370000000
0.4700000000000 0.6395460000000
0.5000000000000 0.5597460000000
0.5300000000000 0.0901080000000
0.5400000000000 0.2258180000000
0.6200000000000 0.0772460000000
0.2794701986755 3.8900000000000
0.2349272349272 4.2100000000000
0.2410423452769 0.6800000000000
0.1598765432099 8.8700000000000
0.3361344537815 0.3400000000000

Table B.2: File Mrp Vol coefFriction.txt with mobility metric for Mt Merapi

0.29260000000000 6.40000000000000
0.25443478260870 6.30000000000000
0.24660869565217 5.50000000000000
0.32511111111111 3.50000000000000

Table B.3: File Smr Vol coefFriction.txt with mobility metric for Mt Semeru

0.2805555555556 0.8080000000000
0.3200000000000 0.1720000000000
0.2107142857143 1.4100000000000
0.2107692307692 1.4520000000000
0.4201183431953 0.1225000000000
0.2861111111111 0.1517000000000
0.4382022471910 0.1539000000000
0.4382022471910 0.1179000000000
0.2861111111111 0.2496000000000
0.3896713615023 0.1410000000000
0.4201183431953 0.1731000000000
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0.3595041322314 0.1434000000000
0.3966480446927 0.1673000000000
0.3595041322314 0.6345000000000
0.3595041322314 0.2258000000000
0.3896713615023 0.1377000000000
0.2734584450402 0.6107000000000
0.3896713615023 0.1011000000000
0.3966480446927 0.1171000000000
0.3896713615023 0.1094000000000
0.3595041322314 0.1002000000000
0.3966480446927 0.1903000000000
0.3595041322314 0.1466000000000
0.3966480446927 0.1060000000000
0.3966480446927 0.1035000000000
0.3595041322314 0.1356000000000
0.3595041322314 0.1480000000000
0.3966480446927 0.1277000000000
0.3595041322314 0.1236000000000
0.3595041322314 0.1238000000000
0.3502109704641 0.1059000000000
0.3595041322314 0.2611000000000
0.3137254901961 0.1764000000000
0.3595041322314 0.1516000000000
0.4201183431953 0.1004000000000
0.3595041322314 0.2653000000000
0.3595041322314 0.1152000000000
0.3595041322314 0.1227000000000
0.3595041322314 0.3090000000000
0.2734584450402 0.3006000000000
0.3966480446927 0.1147000000000
0.3896713615023 0.2156000000000
0.2734584450402 0.1431000000000
0.4201183431953 0.1322000000000
0.3595041322314 0.1597000000000
0.3966480446927 0.3305000000000
0.3595041322314 0.1313000000000
0.3595041322314 0.2084000000000
0.3966480446927 0.1763000000000
0.3595041322314 0.2155000000000
0.3595041322314 0.1491000000000
0.4201183431953 0.1535000000000
0.3595041322314 0.1772000000000
0.2861111111111 0.1392000000000
0.3595041322314 0.1583000000000
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0.3966480446927 0.1395000000000
0.3966480446927 0.1164000000000
0.3595041322314 0.1890000000000
0.3723849372385 0.1482000000000
0.3595041322314 0.2709000000000
0.3502109704641 0.1049000000000
0.2861111111111 0.4298000000000
0.3299319727891 0.2224000000000
0.3595041322314 0.1051000000000
0.3137254901961 0.1217000000000
0.3137254901961 0.2419000000000
0.3137254901961 0.1576000000000
0.3502109704641 0.1001000000000
0.3966480446927 0.1012000000000
0.3966480446927 0.1312000000000
0.2734584450402 0.1139000000000
0.3137254901961 0.1058000000000
0.3125000000000 0.7300000000000

Table B.5: File Unz Vol coefFriction.txt with mobility metric for Mt Unzen
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0.362849210970 0.152000000000
0.308474576271 0.331000000000
0.208718563625 2.600000000000
0.358781810597 0.163000000000
0.211366838891 2.900000000000
0.282152230971 0.375000000000
0.233886320370 0.766000000000
0.143710870803 5.538000000000
0.162103746398 8.750000000000
0.156916254477 13.563000000000
0.158307087476 4.500000000000
0.258020668576 0.500000000000
0.173046378653 1.300000000000

Table B.4: File Shv Vol coefFriction.txt with mobility metric for Soufrière Hill volcano


	Marquette University
	e-Publications@Marquette
	Computational Strategies in Uncertainty Quantification for Hazard Mapping
	Regis Rutarindwa
	Recommended Citation


	1 Introduction
	1.1 Dissertation Contribution
	1.2 Dissertation Organization

	2 Hierarchical Bayesian Analysis of Pyroclastic Density Current Mobility Metrics
	2.1 Introduction
	2.2 Mobility metrics for mass flows
	2.2.1 Frictional vs. resisting shear stress models
	2.2.2 Mobility metrics for flow modeling

	2.3 Statistical analyses
	2.3.1 Hierarchical Bayesian model
	2.3.2 Analysis

	2.4 Geophysical Results and Discussion
	2.5 Conclusions

	3 Probabilistic Inundation Maps of the Long Valley Volcanic Region
	3.1 Introduction
	3.2 Computational Tools
	3.2.1 TITAN2D
	3.2.2 Gaussian Process Response Surface (GaSP)

	3.3 Methodology
	3.3.1 Dataset
	3.3.2 Experimental Design
	3.3.3 Algorithm

	3.4 Results and Discussion

	4 Multi-Objective Adaptive Design for Estimation of Multiple Contours
	4.1 Introduction
	4.2 Methods
	4.2.1 Modified Integrated Mean Square Error criterion (I.M.S.E)
	4.2.2 Aggregation and Optimization

	4.3 Numerical Example
	4.4 Inundation Contours
	4.5 Results & Discussion

	5 Conclusion
	BIBLIOGRAPHY
	Appendices
	A Vent Location Dataset
	B Hierarchical Bayesian Model Implementation

