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Abstract: Tissue regeneration is rapidly evolving to treat anomalies in the entire human body. The 
production of biodegradable, customizable scaffolds to achieve this clinical aim is dependent on the 
interdisciplinary collaboration among clinicians, bioengineers and materials scientists. While bone 
grafts and varying reconstructive procedures have been traditionally used for maxillofacial defects, the 
goal of this review is to provide insight on all materials involved in the progressing utilization of the 
tissue engineering approach to yield successful treatment outcomes for both hard and soft tissues. In 
vitro and in vivo studies that have demonstrated the restoration of bone and cartilage tissue with 
different scaffold material types, stem cells and growth factors show promise in regenerative treatment 
interventions for maxillofacial defects. The repair of the temporomandibular joint (TMJ) disc and 
mandibular bone were discussed extensively in the report, supported by evidence of regeneration of the 
same tissue types in different medical capacities. Furthermore, in addition to the thorough explanation 
of polymeric, ceramic, and composite scaffolds, this review includes the application of biodegradable 
metallic scaffolds for regeneration of hard tissue. The purpose of compiling all the relevant information 
in this review is to lay the foundation for future investigation in materials used in scaffold synthesis in 
the realm of oral and maxillofacial surgery. 

Keywords: Materials, Maxillofacial, Tissue regeneration, Scaffold 

1. Introduction 

Extraoral craniofacial tissue engineering is a blossoming field that encompasses a 
wide variety of stimulating materials and bioactive agents incorporated into a scaffold to 
restore the anatomy and functionality of an injured or defected region.1 Scaffolds are 
biocompatible, biodegradable three-dimensional constructs with a unique architecture that 
facilitate cell adhesion, migration, proliferation and differentiation.2–36 Various 
biomaterials have been recently developed to accommodate the need for scaffold or 
implant fabrication and their surface modification aimed at regeneration and tissue 
engineering of different organs.36–42 Craniofacial tissue engineering scaffolds and implants 
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can be composed of a specific material or a blend/composite of materials that correlate to 
the type of tissue being reconstructed, hard (bone) or soft (cartilage) tissue.43–46 Important 
factors to take into consideration in the design and implantation of the scaffold include 
dimensions of the defect, cell density in the surrounding tissue, and available vasculature 
around the area of damage.1 Signal-inducing growth factors and attached proteins can also 
mitigate mechanical property enhancement and cell-cell interaction within the complex.47–

49 While the scaffold is meant to facilitate the biochemical activity that gives rise to new 
tissue, its rate of degradation normally is equivalent to the rate of tissue formation.48 The 
applicability of this division of regenerative medicine will be discussed in the two separate 
types of tissue application that routinely serve as surgical sites for oral and maxillofacial 
surgeons: cartilage and bone. 

Approximately ten million people in the United States suffer from 
temporomandibular joint disorders (TMD).50 Tissue engineering applied to the 
temporomandibular joint (TMJ) has been a part of scientific discussion and practice for 
three decades. Severe complications of the TMJ disc have led to discectomies, (which is the 
surgical procedure to remove the TMJ disc) but functional implants are being seriously 
considered as an alternative approach.51 Displacement of the dysfunctional disc followed 
by the insertion of a cell source to manufacture neocartilage is the overall goal of current 
researchers in the field. Using a biocompatible scaffold seeded with cells and biological 
modulators can facilitate this process but the regeneration needs to be self-limiting and 
controlled so that ossification does not occur.52 With current understanding of underlying 
causes of TMJ pathology and its instigation of myofacial pain in the patient leading to 
debilitating masticatory function, recent strides have been made to create a long-term 
resolution. The potential to induce regeneration of the TMJ disc depends on a variety of 
factors, such as scaffold design and material, supplementary cells, bioactive agents, 
biochemical compatibility between the scaffold and surrounding environment, and the 
ability of the host to accept the scaffold and facilitate a natural process that equates tissue 
formation with safe biodegradation of the three-dimensional construct. Two decades ago, 
several papers were published to demonstrate the capacity for a TMJ disc-specific 
regenerative mechanism.53–55 In order to safely revitalize the natural environment of the 
disc, in addition to restoring its functional capabilities, the proper combination of 
biocompatible materials and bioactive agents needs to be employed, and a variety of these 
scaffold designs have been successfully tested in vitro and in vivo.53,56 The soft tissue of 
cartilage can be regenerated using natural and synthetic polymers alike.57,58 both classes of 
which will be further discussed in Section 3. 
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Significant maxillofacial bone damage that requires tissue reconstruction may result 
from tumors, osteoradionecrosis, trauma, or congenital defects, and traditionally, these 
debilitating causes were addressed by bone grafting procedures.59,60 Tissue engineering 
strategies to restore both the functional capabilities and morphology of lost bone tissue 
have made great strides in the last couple decades.61,62 Tissue engineering can be employed 
for bone as well by providing permanent, biomimetic, replacement tissue systems. To reach 
this aim, scientists can utilize the tissue engineering model (Fig. 1). In this schematic, 
native tissue is first evaluated to generate design parameters.63 

 
Fig. 1. Tissue engineering model applicable to TMJ tissues. The regenerative approach is initiated by the 
evaluation of biomechanical, biochemical, and cellular characteristics of the native tissue to generate 
design parameters for tissue engineering. Afterwards, cells are incorporated into scaffolds, bioactive 
agents, and mechanical stimuli to make a regenerated TMJ tissue that could be implanted in vivo.63 

Two methods are notable in hard tissue engineering: in situ tissue engineering, 
which incorporates an acellular scaffold matrix into the site of tissue injury to attract local 
cells and osteoconductive mediators that will guide the process of regeneration, and ex 
vivo cell seeding on the scaffold, which would allow the cells to orchestrate the mechanism 
of bone formation.59 

2. TMJ cartilage engineering 

2.1. Materials for cartilage tissue engineering 
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2.1.1. Collagen 

Although the study of most natural polymers has been very limited in the 
regeneration of the cartilage disc, one stands out considerably among the rest in attempts 
to achieve total disc reconstruction: collagen.64 Its ability to be broken down and used as a 
gel has led to its widespread use, especially because of the ease at which it can be injected 
as a delivery system suspension into the cartilage defect, although its use as a more rigid 
structure is more ideal because of the need for suitable porosity to allow for cell adhesion 
and proliferation throughout the scaffold.65,66 Levingstone et al. similarly conducted an 
experiment to support the use of collagen in osteochondral defects, ultimately presenting 
evidence that collagen type 1 improved the mechanical properties of composite scaffolds 
for osteochondral defect repair.67 Furthermore, Farrell et al. observed increased 
chondrogenic differentiation of mesenchymal stem cells in a rat model tested with a 
collagen-glycosaminoglycan scaffold.68 

2.1.2. Gelatin 

Gelatin, another natural polymer, is derived from the denaturation of collagen and is 
favorable because of its hydrophilicity and cross-linking ability.69 Kuo and Wang70 
exhibited in vitro chondrogenic differentiation with a scaffold composed of gelatin and 
chitosan while Xia et al.71 similarly yielded positive results with the same scaffold materials 
in vivo. Gelatin, although a recently developed material for the purpose of engineering 
cartilage tissue, is known to promote matrix-chondrocyte interaction, leading to the 
necessary cellular activity to regrow the native tissue.72 

2.1.3. Hyaluronic acid (HAc) 

Hyaluronic acid, as a polysaccharide derivative, is quite extensively used in the 
regeneration of cartilage. HAc hydrogels induce stem cell differentiation into chondrocytes 
and are powerful in cartilage matrix synthesis, as indicated by in vitro and in vivo studies 
alike.73 Chung and Burdick, for example, demonstrated that HAc hydrogel scaffolds support 
chondrogenesis and gene expression that positively impacts protein synthesis required for 
cartilage regeneration.74 Due to the fact that HAc is extremely abundant in synovial fluid 
and cartilaginous matrices, especially cartilage glycosaminoglycans (GAGs), its 
biocompatibility is well known to support a favorable cartilage microenvironment.75 
Yamane et al. reported that the addition of hyaluronic acid to hybrid scaffolds can also 
perpetuate an increase in mechanical properties of the scaffold to support cartilage tissue 
engineering.76 
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2.1.4. Fibrin 

Despite the fact that it has not been examined as vigorously as collagen, gelatin and 
hyaluronic acid, fibrin has additionally been researched as potential scaffold material for 
the culture of stem cells.77 Willerth et al. has employed fibrin scaffolds for the culture of ES 
cell derived neural progenitor cells and decided the important soluble growth factor signs 
are expected to encourage the differentiation of such cells in neurons and 
oligodendrocytes.78 Other authors have examined the behavior of mesenchymal stem cells 
seeded inside of fibrin clots and treated with growth factors for utilization in engineering 
bone.79,80 Furthermore, fibrin-based scaffolds seeded with mesenchymal stem cells have 
likewise been employed for engineering cartilage.81,82 Liu et al. has ascertained the 
suitability of fibrin scaffolds for encouraging vasculature formation from mouse ES cells.83 
They proposed an assortment of stem cell lines could be cultured inside of fibrin scaffolds 
for various tissue engineering applications. 

2.1.5. Silk 

The characteristics of silk make it appealing for engineering bone and ligament 
tissue and a broad study has been carried out utilizing 3D silk scaffolds in conjunction with 
mesenchymal stem cells for tissue regeneration applications.77 Particularly, Meinel et al. 
have effectively created such strategies.84 They have revealed that human mesenchymal 
stem cells combined with silk scaffolds can be employed to engineer bone. Also, this study 
ascertained that the stream conditions around the scaffold in addition to the characteristics 
of the scaffold impacted the rate of calcium deposition, which is a vital thought for bone 
tissue engineering. Another study investigated the use of silk scaffolds modified to contain 
RGD (arginine-glycine-aspartic acid) peptide sequences for the culture of human 
mesenchymal stem cells and cleared that the aforementioned scaffolds were suitable for 
supplanting bone due to slow scaffold degradation.85 Other works have explored the role of 
pore size to determine its impact on the stem cell's behavior seeded inside silk 
scaffolds.86,87 

2.1.6. Agarose 

Agarose, which is extracted from red algae and seaweed, comprises of a galactose-
based backbone and is usually employed as a medium for cell culture in the form of agar. 
One of the alluring characteristics of agarose is that its stiffness can be changed, taking into 
consideration tuning of the mechanical characteristics of the scaffold.77 Agarose scaffolds 
have been evaluated in combination with stem cells in an assortment of tissue applications, 
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including cartilage, cardiac, and nervous tissue. A collection of studies has shown the 
appropriateness of agarose scaffolds for elevating stem cells to differentiate into 
chondrocytes.88–90 The different stem cell types utilized in these works contained human 
mesenchymal stem cells, bovine mesenchymal stem cells and adipose-derived stem cells. 
Another research study affirmed that primate ES cells cultured inside of agarose scaffolds 
would form aggregates and differentiate into cardiomyocytes that would pound for up to 
one month.91 Other works have revealed that both mouse and primate ES cells can 
differentiate into dopaminergic neurons when encapsulated inside of agarose 
microcapsules.92,93 This technique could be utilized as a potential treatment for Parkinson's 
disease. In general, agarose scaffolds provide an adaptable platform for bone regeneration. 

2.1.7. Polylactic acid (PLGA) 

Poly-l-lactic-co-glycolic acid (PLGA) is a synthetic polymer that has great structural 
versatility and mechanical properties that can be manipulated—a feature that is indeed 
favorable in cartilage tissue regeneration. Uematsu et al. constructed a novel PLGA scaffold 
for the investigation of cartilage tissue regeneration and found that the polymer supported 
the infiltration and differentiation of MSCs in vivo.94 PLGA is also approved by the FDA for 
medical applications, which has been undoubtedly rare for synthetic materials.95 
Conventional PLGA, nevertheless, does not match collagen's structural compatibility to the 
native cartilage tissue of the TMJ disc and only sub optimally induces the functionality of 
chondrocytes and other cells in the native tissue, according to Kay et al.96 In an experiment 
conducted by Fan et al., they demonstrated that the addition of another polymer or two in 
order to produce a hybrid scaffold would ultimately sustain chondrogenesis and limit the 
degree of degeneration.95 

2.1.8. Poly vinyl alcohol (PVA) 

Poly vinyl alcohol (PVA) is a biodegradable and biocompatible polymer that has 
been implemented in the repair of cartilagenous defects because of its notable water 
content and hydrophilic behavior, in addition to its elastic and compressive properties.97 
Tadavarthy et al. demonstrated the biocompatibility of a PVA implant with the 
development of an Ivalon embolic material. The water content of PVA gels that measured 
80%–90% by weight were implanted intramuscularly or subcutaneously into a rabbit for 
cartilage repair.98 One of the first uses of PVA for articular cartilage replacement was 
reported by Bray and Merrill in the early 1970s.99 There are many other studies that 
demonstrated the use of PVA in articular cartilage repair.100–102 PVA hydrogel can be 
prepared with different polymer concentration and number of cycle tested to have tensile 
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strength in the cartilage range of 1–17 MPa103 and Elastic modulus varying from 0.0012 
and 0.85 MPa.104 Furthermore, due to the fact that PVA has a low rate of degradation, its 
mechanical properties can be preserved, while still retaining a chondrogenic phenotype, as 
a scaffold for enough time until the neocartilage tissue is restored.105 

2.2. Stem cells 

Stem cell use in scaffold design and implantation is beneficial for TMJ disc 
regeneration as a result of multipotent differentiation into the fibrocartilage that composes 
the joint.106 Extracting stem cells from the synovial capsule surrounding the joint holds 
promise for generating neocartilage. Bone marrow mesenchymal stem cells (BMSCs) also 
stimulated a higher rate of cell growth and division; its disadvantage is that the replaced 
tissue that the BMSCs generate is prone to endochondral ossification.106 Moreover, adipose 
stem cells (ASCs) are advantageous in a low oxygen environment, which is the setting 
immediately following implantation of the scaffold. ASCs, upon differentiation, replicate the 
extracellular matrix environment and its components, including the various types of 
collagen.107 The multilineage differentiation and abundant sources of adult mesenchymal 
stem cells make them the very suitable cell types in the regeneration of cartilage, among 
other tissues.108 

The source of the stem cells can be utilized in the maxillofacial regeneration has 
been given as follow: 

1. Bone marrow 
2. Adipose tissue 
3. Stem cells from oral and maxillofacial area109 

2.2.1. Bone marrow 

Bone marrow stem cells (BMSCs) can be reaped from sternum or iliac crest. It is 
made of both hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). The 
larger part of oro-maxillofacial structures is formed from mesenchymal cells. The upside of 
bone marrow is that it has a bigger volume of stem cells and can be differentiated into a 
wide assortment of cells. Isolation of BMSCs can be conducted only under general 
anesthesia with conceivable post-operative pain.109 
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2.2.2. Adipose tissue 

These stem cells can be extracted from the lipectomy or liposuction aspirate. 
Adipose derived stem cells (ADSCs) include a group of pluripotent mesenchymal stem cells 
that display multilineage differentiation.110 An advantage of adipose tissue is that it is easily 
obtainable and is plentiful in the human body.109 

2.2.3. Stem cells from the oro-maxillofacial area 

Stem cells from the oral and maxillofacial complex overwhelmingly contains 
mesenchymal stem cells. In this region, different types of dental stem cells were isolated 
and examined.109,111 They contain: 

(i)Dental Pulp Stem Cells (DPSCs) 
DPSCs were the first tooth-derived stem cells characterized by Gronthos et al. in 2000, and 
they are mesenchymal inside dental pulp.112 DPSCs are known to differentiate into various 
kinds of cells and tissues, such as osteoblasts, adipocyte-like cells, smooth muscle cells, 
neurons, dentin and a dentin-pulp-like complex.113 They were additionally revealed to have 
chondrogenic potential in vitro. Their multipotency, proliferation rate, availability, and cell 
number have exhibited to be more noteworthy than those of BMSCs. Generally, DPSCs are 
more appropriate than BMSCs for mineralized tissue regeneration.114 
 
(ii) Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) 
SHEDs were identified to be cells of higher proliferation rate, with increased population 
doublings, immature multipotent clonogenic cells isolated from deciduous teeth that can 
differentiate into several cell types.115 SHEDs are progenitor cells isolated from the pulp 
remnant of exfoliated deciduous teeth. It is worth mentioning that they display a higher 
proliferation rate with enhanced population doublings, immature multipotent clonogenic 
cells isolated from deciduous teeth that can differentiate into numerous cell types.109,111,115 
Osteoblasts, odontoblasts, adipocytes, and neural cells have been reported to differentiate 
from SHEDs.113 
 
(iii)Periodontal Ligament Stem Cells (PDLSCs) 
Although periodontal ligaments are known to be of neural crest cell origin, PDLSCs show 
stem cell characteristics similar to MSCs.113 Additionally, PDLSCs residing in the 
perivascular wall have general characteristics in phenotype, cell morphology and 
differentiation potentials.116 Immunomodulatory ability is another component that allows 
them to resemble BMSCs to some degree.117 PDLSCs can differentiate into osteoblasts, 
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cementoblasts, adipocytes, and chondrocytes, and they were described to form periodontal 
ligaments and cementum-like tissue in vivo.111 
 
(iv)Stem Cells from Apical Papilla (SCAPs) 
SCAPs are cells isolated from the root apex of a newly formed tooth, which is thought to be 
connected to root formation.118 They introduce the features of MSCs and can differentiate 
into chondrocytes, adipocytes, osteoblasts and neurons under suitable states.119 
 
(v)Dental Follicle Progenitor Cells (DFPCs) 
DFPCs are stem cells obtained from dental follicles encompassing a tooth germ in early 
tooth formation phases.120 The dental follicle is an ectomesenchymal cell condensation and 
harbors heterogeneous population of cells, including those within the periodontium. They 
are similarly known to differentiate into osteoblasts, chondrocytes, adipocytes and 
neuronal cells.113,121 

Since DPSCs are the most concentrated on in the literature, we will focus mostly on 
the utilization of DPSCs in this section. 

In a clinical research study, biocomplexes fabricated from DPSCs and collagen 
sponges were employed in human mandible repair and showed excellent results.111 In 
conjunction with other scaffolds, DPSCs have been cleared to have osteogenic 
differentiation ability.122–124 The topography of the scaffolds was described to assume an 
important role in clinical regeneration.125 

With regard to alveolar bone defects, Liu et al. proclaimed that DPSCs expressing 
bone morphogenic protein 2 (BMP-2) experience prior mineralization and produce a more 
noteworthy amount of bone in a rabbit model.126 Preceding this perception, proof with 
respect to the impact of BMP-2 on the osteoinducibility of DPSCs was reported by several 
authors.127–129 Platelet rich plasma has also been examined in the same 
context.62,63,111,130,131 

The role of DPSCs in bone regeneration around dental implants was, as of late, 
studied,131 and a comparable study was done with BMSCs; periosteal cells displayed that 
DPSCs describe the most astounding osteogenic potential as a source for tissue-engineered 
bone around titanium implants.132 Furthermore, a late report recommended that 
immobilization of DPSCs in alginate hydrogels results in increased osteogenic potential 
contrasted with control cells cultured in routine stem cell media.133 
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Osseous regeneration employing PDLSCs has been evaluated by multiple studies. 
For example, Chadipiralla et al. thought about the in vitro proliferation and calcium 
deposition of PDLSCs with SHEDs through retinoic acid treatment with insulin and 
demonstrated that PDLSCs display unrivaled characteristics.134 

Osteogenic differentiation of DPSCs has happened in conjunction with other 
material substrates.135 In the Mangano et al. study, the DPSCs were cultured in vitro on 
different titanium surfaces and differentiated into osteoblasts, leading to synthesized bone 
on laser-sintered surfaces.124 Lately, Akkouch et al. found that DPSCs had been pre-
differentiated into osteoblast-like cells and seeded onto collagen–hydroxyapatite–poly(l-
lactide-co-ε-caprolactone) composite scaffolds.122 They concluded that the composite 
scaffold encourages adhesion, proliferation and differentiation of the osteoblast-like cells, 
with ECM mineralization happening all throughout the scaffold. Kanafi et al. examined the 
possibility of immobilizing DPSC s within alginate microspheres and evaluated the in vitro 
osteogenic differentiation potential. Increased mineralization, protein secretion and an 
upregulated osteo-related gene profile came about because of immobilization and, 
curiously, immobilization activated osteogenic differentiation of DPSCs without the 
utilization of induction variables in the media.133 

2.3. Growth factors 

Growth factors are highly potent and serve as a popular bioactive agent in scaffold 
delivery. Basic fibroblast growth factor (bFGF) is extremely useful for cell proliferation and 
production of collagen. GAG synthesis is significantly stimulated by bFGF and platelet 
derived growth factor (PDGF) as well.136 Delivering a combination of two growth factors 
produces a more reconstructive effect than a single growth factor alone. Together, their 
cooperation contributes to the repair of the disc. Moreover, IGF-1 and bFGF synergistically 
aid in the biosynthesis of disc cells.137 The growth factors induce cell proliferation but fail 
to synthesize the matrix of the TMJ disc.107 The purpose of using growth factors essentially 
is to upregulate, at a biochemical level, the proliferation of fibroblasts and chondrocytes 
that will, in turn, give rise to the regeneration of hyaline cartilage, extracellular matrix 
components, glycosaminoglycans, and other tissues that compose and surround the 
temporomandibular joint cartilage.138 It is well supported in the literature that IGF-1 is 
dominant in its effect to repair cartilage by stimulating chondrogenesis in vitro and in vivo, 
while also increasing the GAG fraction of the construct.139,140 Additionally, Blunk et al. 
specified that although PDGF is known to have an anabolic effect in cartilage protein 
synthesis and expression, more notably in cartilage explants, their experimental findings 
did not conclude that it was consistently favorable for cartilage tissue regeneration due to 
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its role in decreasing the scaffold growth rate. They lastly demonstrated that the 
application of TGF-β also induced ECM deposition and an increase in the total fraction of 
collagen in the cartilage engineering construct.141 

Addition of growth factors into scaffolds might be refined in various routes, each of 
which presents distinctive characteristics. Immersion of a scaffold in growth factor-
containing solution results in a loose connection with the structural material, and, in this 
manner, it encourages a snappy release of the craved stimulatory molecules. Alternately, 
growth factors might be added to and even covalently connected to the scaffold 
microstructure for augmented release. Cells adjusted to express and secrete osteoinductive 
growth factors may likewise be seeded in the scaffold, accomplishing a comparable 
impact.142,143 The fundamental cell adjustments ordinarily include gene therapy 
accomplished either by viral or nonviral transduction. Viral transduction is the best 
method of gene transfer and is commonly conducted utilizing retroviruses, adenoviruses, 
or adeno-associated viruses.144,145 Gene transfer can also be carried out through direct 
uptake of gene-including plasmids from solution or as a conjugate with a nucleus-bound 
biomolecule.142,145 

Issues with growth factor-loaded scaffolds are mostly associated with inconsistent 
release profiles. The release of growth factor is regularly managed by passive diffusion or 
degradation rate and does not fittingly parallel the rate of bone regeneration and 
healing.142,143 It has been demonstrated that covalent linkage of the growth factor to the 
scaffold may be sluggish and boost its release profile to more firmly surmised cellular 
requests.146 For instance, covalently linked VEGF in a fibrin scaffold results in a more firmly 
controlled release and, in this way, a more sorted out vascularization in contrast with the 
scaffold with unlinked VEGF.147 One peril inborn in covalently liked growth factors is 
changing mechanical, osteoconductive, or other characteristics of the scaffold material. 
However, it has been employed in animal models to effectively repair mandibular, 
zygomatic, and calvarial bone defects.142,148 

In spite of such auspicious clinical accomplishments of growth factors for tissue 
regeneration, debates still hound their clinical employment for tissue regeneration of the 
oral and maxillofacial region. The greatest debate deals with the oncogenic capability of 
growth factors. Numerous tumors containing malignancies in the oral and maxillofacial 
region have, as of now, been demonstrated to over-express the previously stated growth 
factors such as TGF-β, BMPs, etc., which are undoubtedly valuable for tissue regeneration 
when expressed in sufficient quantity. For the clinical trial of growth factors, 
supraphysiological doses are needed for compelling tissue regeneration in addition to 
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enhancing the demise of tumor development. Lamentably, the optimum concentration and 
suitable planning for administering growth factors are not completely settled, which might 
be essential for fruitful clinical results without tumorigenic side effects. Biologically, 
growth factors more often react to each other in an exceptionally sensitive and modern 
way, trading criticisms from the responding cells and tissues. Thus, growth factors 
frequently have biphasic features contingent upon the condition of the tissue. For instance, 
startling deferred tissue regeneration might occur because of the upregulation of a growth 
factor inhibitor when an exogenous growth factor is in excess for the tissue condition. By 
stabilizing the appropriate dose of growth factors and the timing of their release, more 
studies are expected to comprehend the exact mechanisms of the falls of growth factors 
when the defected tissue is repaired. Furthermore, a solitary dose of exogenous protein is 
surely understood not to affect a biological response satisfactorily in traded off tissue 
conditions1,2. As examined by Ripamonti et al., there is much to examine regarding 
growth-signaling molecules in tissue, including contrasts among animal and human 
models. Along these lines, blind confidence in utilizing growth factors for target tissue 
regeneration ought to be dodged, and more meticulous contemplations ought to 
consequently be supported before utilizing growth factors. 

3. Mandible bone regeneration 

3.1. Materials for mandible regeneration 

3.1.1. Bioceramics 

3.1.1.1. Calcium phosphates 

Calcium phosphates are main components for dental, craniofacial and orthopedic 
treatments because of their similarity to bone composition, which can encourage the 
production of a useful functional interface.149,150 One category of calcium phosphates, 
known as calcium phosphate cements, including dicalcium phosphate anhydrous and 
tetracalcium phosphate, was indicated to be a suitable choice for dental and craniofacial 
applications.149,151 Calcium phosphate cement implants would be dependent on initial 
loading by temporary dentures and need to be resistant to flexure for periodontal bone 
treatments, mandibular and maxillary ridge augmentation. Furthermore, significant 
regeneration of the mandible and maxilla after trauma would benefit from calcium 
phosphate cement with optimal mechanical properties and rapid bioactivity, owing to 
cultured stem cells.152 Hydroxyapatite (HA), a common calcium phosphate, has been 
utilized for maxillofacial tissue engineering.153 In a research study, HA-based (n-
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HA/polyamide (PA)) scaffolds that had been produced using CAD/CAM models based on 
CT data were implanted into a mandibular condyle defect. The patients eventually obtained 
a jaw contour and appearance with the suitable temporomandibular joint function.154 In 
another report, HA porous scaffolds with 30 MPa compressive strength were implanted 
into mandibular defects, and these scaffolds were produced with two channel geometries, 
including orthogonal and radial shapes, with the channel size of 444 and 366 mm and 
porosities of 44% and 38%, respectively (Fig. 2).155 As it can be observed in Fig. 3, four 
defect sites were produced in each hemi-mandible. Three defects on each side were filled 
with HA scaffolds, and the last one was left as the control group. The results of this study 
indicated that although normal regeneration of bone tissue was found at 5 and 9 weeks in 
both designs, at 9 weeks, the average bone ingrowth increased to 45,721 and 23,728% in 
the orthogonal and radial designs, respectively confirming that it is possible to control the 
morphology of the regenerated bone tissue inside HA scaffolds through the design.155 

 
Fig. 2. (a) The locations of the defects in inferior posterior border of minipig mandible for implantation 
of sintered (b) radial (left) and orthogonal (right) design of HA scaffolds. The scale bar is 2 cm.155 

 
Fig. 3. (a) Bone regeneration through the pores of orthogonal design after 9 weeks. (b) Cross section of 
HA scaffold in low (b) and high (c) magnifications showing the regenerated bone structure. The location 
of tissue sections for imaging has been shown in right diagram.155 
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In the control group (Fig. 4), although new bone formation increased gradually, 
woven bone and fibrous tissue were more frequently observed. Considering the obtained 
results, the authors concluded that porous nHA/PA composite promoted bone formation 
over the extension of the defect and offers interesting potential for maxillofacial 
reconstructive procedures in load-free areas.156 

 
Fig. 4. Surgery images from nHA/PA implants after 4, 12 and 24 weeks. Left side includes the samples 
and right side is a blank control. Arrows show the defect area.156 

3.1.1.2. Bioactive glass 

Bioactive glasses (BaG) possess exceptional bioactivity, ability to deliver cells, and 
adjustable degradability.157 The aforementioned properties made BaG a potential scaffold 
material for tissue engineering.157–160 BaG is reported to be able to induce more bone 
synthesis compared to other bioactive ceramics. In vitro research studies show that their 
osteogenic behavior is mainly owing to their dissolution products stimulating 
osteoprogenitor cells at the genetic level. The osteoconductivity mechanism is due to the 
deposition of a hydroxycarbonate apatite (HCA) layer on the surface of the BaG.161 Several 
classes of BaG have been recently introduced, including the conventional silicates, such as 
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BaG 45S5, phosphate-based glasses, and borate-based glasses. The BaG 45S5 has been 
employed in over a million patients to treat bone defects in the jaw and different 
orthopedic sites.157 Its main marketing accomplishment is an active repair agent in 
toothpaste, under the name NovaMin. Clinical trials indicate that the dentifrice can 
mineralize tiny holes in dentine, reducing tooth sensitivity. BaG 45S5 has proven to be very 
stable into tooth extraction sites for treatment the tooth roots and providing a stable ridge 
for dentures. A 5-year research study indicated improvements over HA tooth root 
implants.157 Since dentists, surgeons and engineers desire a material that can fill in defects 
easily, particles have a preferable morphology for this purpose. The first particulate BaG 
45S5 product with a particle size range of 90–710 μm was PerioGlas as a synthetic bone 
graft for the repair of defects in the jaw that result from periodontal disease. It can be 
utilized to stimulate hard tissue regeneration in the jaw, so the bone quality becomes 
enough for anchoring titanium implants. PerioGlas is now sold in over 35 countries. For 
infra-bony defects between the roots of molars, clinical examinations confirmed that its 
regenerative behavior was increased with laser therapy after surgical treatment.162 The 
product has also been utilized with polymeric membranes for guided tissue 
regeneration.163 

The BaG research program in Finland caused the commercialization of S53P4 
particulates known as BonAlive, which has received European approval to serve as a bone 
graft substitute in 2006. While the mandible has been basically composed of dense cortical 
bone that can be grafted, the maxilla consists of porous cancellous bone that resorbs 
quickly in periodontitis and is thus harder to graft. Treatment is typically maxillary sinus 
floor lifting, whereas bone grows partly into the sinus defect. In comparison to an autograft, 
a combination of BaG particles with autologous bone allowed the implantation of titanium 
dental implants in the maxilla and presented faster bone treatment with thicker 
trabeculae.164 Clinical trials indicate that the BaG 45S5 particles adhere to the dentine, 
relieving the pain for longer periods.165 Although, BaG particles have been popular in bone 
defect treatments, new components are necessary for porous scaffold production and 
regulatory approval.157 

3.1.2. Polymers 

Natural scaffolds including chitosan, collagen, and hyaluronic acid have proven to be 
bioactive and, thus, appropriate for bone creation both in vitro and in vivo.166 However, a 
main drawback is the lack of mechanical stability. Synthetic polymers for example poly 
lactic acid (PLA), poly glycolic acid (PGA), polylactic-co-glycolic acid (PLGA), poly methyl 
methacrylate (PMMA) and polycaprolactone (PCL) have been introduced as alternatives 

http://dx.doi.org/10.1016/j.msec.2016.08.055
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0928493116309444?via%3Dihub#bb0785
http://www.sciencedirect.com/science/article/pii/S0928493116309444?via%3Dihub#bb0785
http://www.sciencedirect.com/science/article/pii/S0928493116309444?via%3Dihub#bb0810
http://www.sciencedirect.com/science/article/pii/S0928493116309444?via%3Dihub#bb0815
http://www.sciencedirect.com/science/article/pii/S0928493116309444?via%3Dihub#bb0820
http://www.sciencedirect.com/science/article/pii/S0928493116309444?via%3Dihub#bb0825
http://www.sciencedirect.com/science/article/pii/S0928493116309444?via%3Dihub#bb0785
http://www.sciencedirect.com/science/article/pii/S0928493116309444?via%3Dihub#bb0830


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the 
link in the citation at the bottom of the page. 

Materials Science and Engineering: C, Vol. 70, No. 1 (January 1, 2017): pg. 913-929. DOI. This article is © Elsevier and permission has been 
granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Elsevier. 

17 
 

with structural integrity. The aforementioned polymers display potential for osteoblastic 
differentiation and bone tissue development and are normally employed for oral and 
maxillofacial tissue applications.166 

The first generation of barrier function materials was non-resorbable, with 
expanded polytetrafluorothylene (ePTFE) membranes becoming the most commonly 
used.167–169 

Since 1982, when guided bone regeneration (GBR) method was first established, the 
e-PTFE membrane has been considered a gold standard for barrier function 
materials.170,171 Certainly, this non-resorbable material has all the characteristics for the 
GBR method, such as biocompatibility, covering the defect and coagulum stabilization;172 
however, e-PTFE membranes have certain cutoff points, such as the need of a second 
surgical operation to evacuate them and the likelihood of bacteria infection.173–176 Actually, 
ePTFE-membrane exposure to the oral cavity dependably brought about a failure of the 
treatment. 

Seibert and Nymann employed e-PTFE non-resorbable membranes to enhance the 
alveolar crest; after 55–90 days, the bone completely topped off the defect.177 Urban et al. 
utilized e-PTFE membranes associated with autogenous grafts for implant insertions and 
demonstrated that implants placed were osseointegrated, and along these lines, the vertical 
GBR method is both protected and unsurprising.171 

Other than avoiding a second surgery, resorbable membranes are likewise 
invaluable due to the boost in soft tissue healing and a lower bacterial contamination risk 
because of reduced exposure from the degrading membrane.177 Notwithstanding the 
necessities expressed beforehand, there are further properties that these barrier 
membranes must satisfy: biocompatible degradation products that don't meddle with bone 
regeneration, a suitable degradation profile to synchronize with new tissue growth, and 
adequate mechanical and physical characteristics to carry out the barrier function and 
permit in vivo utilization.167,178 

Among the widely recognized bioresorbable membranes are synthetic polyesters 
(poly(lactic acid), poly(glycolic acid), and poly(caprolactone) and their copolymers)167,179–

182 and tissue-derived collagen167,183–187 Polyester membranes show biocompatibility and 
have a high level of customization, with degradation rates and mechanical characteristics 
that can be balanced in view of polymer composition and concentration.167,188,189 As a 
natural component of the extracellular matrix, collagen is biocompatible and cell adhesive. 
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Despite the fact that collagen is not innately mechanically stable, it can be changed via 
different means of crosslinking.178 Poly(ethylene glycol) (PEG) is otherwise a 
biodegradable and biocompatible polymer. Since numerous oral and maxillofacial defects 
are uniquely shaped, an injectable material is alluring, such as a PEG-based in situ forming 
gel for GBR that exhibited adequacy in a clinical trial.190–192 Poly-DTE-carbonate has 
displayed promising characteristics, such as low immunological response and high ability 
to incite bone regeneration.170,192 

A number of works on resorbable membranes have been performed to examine the 
conditions associated with various experimental and human models. Specifically, Gottlow 
(1984) demonstrated that a biological space impelled right bone regeneration, while 
without this space the membrane caved in and thus traded off bone regeneration.170,193 

Hyder et al. and Kodama et al. stated that the inflammatory infiltrate incited by 
synthetic membranes was lower than heterologous animal membranes.194,195 Robert and 
Frank displayed that, changing the polymer concentration, the membranes persist for 
about 4 months.196 Laurel et al. cleared a period of resorption between 6 and 12 months, 
but the hydrolyses of the membrane led to little inflammation.197 

A final note encompassing polymeric scaffolds for bone tissue engineering is that 
single polymer-derived scaffolds are not significantly applicable to maxillofacial bone 
tissue regeneration strategies; therefore, this paper will more heavily focus on the diverse 
composites used to make a substantial impact in hard tissue growth. 

3.1.3. Polymer Matrix Composites (PMC) 

Polymer matrix composite materials have been extensively used for the 
regeneration of bone. A primary reason for combining polymers and ceramics in hybrid 
composites is to integrate the advantages of each class of materials into one, making an 
optimal blend with suitable mechanical strength, osteoconductivity and biodegradability 
for effective bone tissue formation.198–204 One such example is PLLA ⁄ HA, and it has been 
utilized successfully as an osteochondral construct for mandible bone engineering by the 
porcine chondrocytes delivery in the polymer layer and fibroblasts transduced with 
adenovirus driving the expression of bone morphogenetic proteins.205 In a pilot in vivo 
study, eight dogs were used for a model of the mandibular condyle that had been produced 
by rapid prototyping of PGA/PLA scaffold that was then seeded with bone mesenchymal 
stem cells. While research studies have explored the appropriateness of different kinds of 
materials in making the CAD/CAM scaffolds, histological evaluations focusing on bone 
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mesenchymal stem cells seeding in scaffolds have confirmed that PGA/PLA is one of the 
best available choices for the new bone regeneration.206 Xu et al.,206 have introduced a 
technique for production of PGA/PLA mandibular condyle porous scaffolds for bone 
regeneration that confirms outstanding morphological modification and accuracy. 
Moreover, synthetic biodegradable polymers such as PGA/PLA can be freely adjusted to the 
shape of a defect. Zhou et al.207 indicated that physiological healing of articular cartilage 
defects and the corresponding subchondral bone is possible via autologous bone 
mesenchymal stem cells and PGA/PLA polymers. This study confirms that PGA/PLA has 
appropriate cytocompatibility due to the bone mesenchymal stem cells dispersed in 
PGA/PLA scaffold.206 

Post-operative analysis is common in most circumstances of in vivo testing of 
scaffold implantation and subsequent hard tissue engineering because it is necessary to 
carry out histological evaluation to evaluate both the effectiveness of the scaffold in tissue 
repair and to monitor the site for any adverse reactions from the host in response to the 
scaffold. In another in vivo research study, a 2 cm incision was created in the lower edge of 
the mandible body of adult New Zealand white rabbits and was filled with porous nano-
hydroxyapatite/polyamide composite (nHA/PA). After the surgery, no necrosis, 
inflammation or postoperative complication was seen in any animal, and the bone defects 
were healing well. At 1 month, macroscopic inspections indicated that the scaffold was 
stable in the defects and the amount of callus creation was significant enough that nearly 
70% of the implant surface was covered. According to the results of macroscopic, 
radiographic, histological and histomorphometric examinations that were carried out up to 
6 months postoperatively, the defects were entirely occupied by neo-bone with density 
similar to the host bone.156 

Chitosan has been a potent material in the rampant use of wound-healing agents in 
maxillofacial and periodontal regeneration as well. Its osteoinductivity was supported by 
confirmative mineralization of hard tissue following the extraction of third molars.208 
Chemical mediators, in fact, are so effectively enhanced by the addition of chitosan that the 
number of osteogenic colonies drastically increases in patients with chronic bone defects, 
such as periodontitis.209 Zhou et al. prepared two types of scaffolds composed of different 
PMCs by way of homogenization and radiation crosslinking.210 Results showed that both 
scaffolds demonstrated remarkable biocompatibility and biodegradation following in vivo 
implantation in the mandible of beadle dogs, and osteogenesis occurred at the outer edges 
of the scaffolds initially before moving inward toward the center, with gelatin/CM-
chitosan/β-TCP quantifiably containing a higher volumetric density than gelatin/CM-
chitosan composite.211 
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3.1.4. Ceramic Matrix Composites (CMC) 

While PMCs are more flexible and more easily maneuverable than ceramic matrix 
composites for filling the shape of an irregular bone defect, CMCs have a distinct advantage 
in increasing the mechanical strength of the construct to withstand load-bearing 
applications, especially the compression of the jaw.212 However, it is more difficult to 
implant the scaffold because of its brittle nature; therefore, fitting the scaffold into the 
shape of the defect is a challenge for surgeons and could result in increased time of surgery 
as well as surrounding tissue damage.213,214 Xu et al., furthermore, demonstrated that while 
CMC scaffolds are durable and strong enough to withstand immense compressive force, the 
addition of a polymer, such as chitosan, can induce macropore formation for bone ingrowth 
and can also lead to a synergistic hardening and an overall superior fracture resistance.215 

A strong example of inorganic CMC scaffolds include cements composed of calcium 
phosphate (CaP's) and typically either hydroxyapatite, β-tricalcium phosphate (β-TCP), or 
bioactive glass.216 CaP's, in particular, have demonstrated that doping scaffolds with other 
inorganic materials not only stabilize certain factors, such as mechanical strength and 
dissolution rates.217–219 Similarly, the addition of oxides to β-TCP scaffolds may result in 
150% increase in compressive strength and approximately 90% rise in cell viability.217 
Furthermore, Biphasic hydroxyapatite (HA)/TCP was investigated by Cavagna et al. in 109 
orthopedic spinal fusion patients, showing the compound's promise in load-bearing bone 
tissue engineering applications.220 Ashuri et al. also experimentally demonstrated that a 
novel HA/bioactive glass scaffold exhibited optimal mechanical strength with 20 wt.% 
bioactive glass, but it eventually decreased over time following immersion in simulated 
body fluid (SBF).5 Although CMC scaffolds have their own distinct advantages applicable to 
craniomaxillofacial regeneration, as noted above, the literature appears to support the 
claim that PMCs are more widely applicable to these applications in medicine and provide 
scientists and clinicians with a greater sense of optimism moving forward in the field. 

3.1.5. Metals 

Biodegradable metals (BMs) are anticipated to corrode gradually in vivo, with a 
suitable host reaction evoked by released corrosion products, then wholly break down 
after satisfying the purpose of assisting with tissue recuperation without implant deposits 
[221]. Among BM frameworks, Mg-based BMs, which now have several applications 
reported in past clinical trial results, are viewed as effective material types for potential 
application in treating maxillofacial bone defects.22,221 
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Mg is mostly applied in bone tissue regeneration, it is an important element in the 
human body, and its presence is useful to bone growth and strength.222–227 It is a cofactor 
for several enzymes and serves as a stabilizer of DNA and RNA structures.228 Additionally, 
Mg is that the fourth most copious ion in the human body, further indicating its 
biocompatibility.229,230 In extracellular liquid, the level of Mg reaches somewhere around 
0.7 and 1.05 mmol/L, and its homeostasis is kept up by the digestive tract and 
kidneys.222,223 The frequency of hyper-Mg is uncommon because of the effective excretion 
of the element in urine.222,229 

Mg is osteoconductive and a bone growth stimulator material, as proposed by 
numerous studies. A remarkable increment of bone deposition has been seen in Mg-based 
implants compared to some polymeric scaffolds, such as PLA.231–240 The erosion layer 
around Mg inserts has been discovered to contain calcium phosphates, which seemingly 
makes it in direct contact with the encompassing bone.231 Xu et al. demonstrated new bone 
formation around Mg-Mn-Zn implants in their in vivo application in rats.241 Witte et al. 
revealed that three months after the operation, open porous Mg scaffolds inserted in 
rabbits were mostly degraded, foreign body giant cells phagocytizing the remaining 
corrosion products were rarely found, and no osteolytic changes were discovered around 
the insertion site.242 It has been demonstrated that porous Mg has better degradation 
characteristics, including lower pH change, slower hydrogen development, and slower 
decrement of compressive strength in simulated body fluid (SBF) soaking tests.243 Zreiqat 
et al. revealed an enhancing bone cell adhesion on Mg-doped alumina, as communicated by 
an increased level of a5b1 integrin receptor and collagen extracellular matrix protein.244 
Two studies using Mg-doped apatites or collagen materials displayed strong 
biocompatibility on bone cell adhesion and tissue growth.245,246 

Mg and its alloys are extremely lightweight metals, having density going from 1.74 
to 2.0 g/cm3, which is less than that of Ti alloys (4.4–4.5 g/cm3) and is near that of native 
bone (1.8–2.1 g/cm3).224 They have an extensive variety of elongation and tensile strength 
properties from 3% to 21.8% and from 86.8 to 280 MPa, respectively. Mg has a more 
prominent toughness contrasted with that of bioceramics, and its elastic modulus (41–
45 GPa) is closer to that of native bone contrasted with other metals. This property could 
assume a crucial role in avoiding the stress shielding effect. Mg also has preferable ductility 
over synthetic hydroxyapatite and a higher strength than existing biodegradable 
polymers.247 The elastic modulus of pure Mg is nearer to that of cortical and cancellous 
bones, which is an unrivaled component for bone scaffolds, further indicating their vast 
potential for load-bearing maxillofacial bone regeneration. Mechanical characteristics of 
Mg could be further enhanced by alloying and thermo-mechanical methods. The addition of 
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alloying elements, such as silver, silicon, zinc, tin, zirconium and indium, could boost both 
the strength and elongation of Mg alloys.248 Moreover, some fabrication procedures, such 
as hot extruding, hot rolling, and equal-channel angular pressing (ECAP) could likewise 
improve the strength of Mg alloys, and at times, these processes can further enhance 
ductility.248–250 

Random cellular Mg could be produced through powder or chip sintering 
(conventional, spark plasma and laser assisted), low pressure casting, or removable spacer 
techniques. These production methods create a random cell framework, wide distributions 
of cell size, and morphology, giving rise to unpredictable material characteristics over the 
range of 100 μm.225,251 Processes that could be employed to produce Mg with a 
topologically ordered open cell framework include the space holder technique, solid free-
form process, replication, leaching technique, electrodeposition, and vapor deposition. Fig. 
5 displays an example of porous Mg scaffolds fabricated by two different methods.225 

 
Fig. 5. Porous Mg scaffolds: (a) fabricated by laser-assisted mechanical perforation method;283 (b, c) 
produced by solid free-form fabrication technique.284 

3.2. Stem cells 

The incorporation of mesenchymal stem cells (MSCs) in bone regeneration scaffolds 
has revolutionized the role of tissue engineering in medicine and dentistry. Their 
osteogenic capacity has demonstrated osteoprogenitor differentiation, osteoblast 
proliferation, and matrix deposition in vitro and in vivo.252–254 MSCs also display diversity 
in clinical applications via proven acceleration in repair of femoral, craniomaxillofacial, and 
spinal defects, especially in animal models.255–257 These cells also heavily increase the 
osteoinductive potential of scaffold biomaterials by promoting osteogenic factor activity, 
and they influence the surrounding microenvironment with pressure cues that are 
favorable for mineral deposition and bone formation, in addition to angiogenesis of the 
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implant for increased blood flow and nutrient diffusion to the newly formed tissue.258–260 
Mauney et al. mention that although efforts to conduct ex vivo expansion limit the 
differentiation potential of MSCs, the addition of certain growth factors, such as FGF-2, 
ultimately assist in retaining these properties.261 Because of the previous body of work 
committed to utilizing the enormous potential of these stem cells, their mention in this 
paper is beneficial to potential approaches in load-bearing mandible regeneration 
scaffolds. 

3.3. Growth factors 

Similar to its their uses in cartilage regeneration, growth factors play a vital role in 
bone reconstruction due to their ability to elicit cellular responses and direct ligand-
receptor binding that can positively impact osteogenic activity.262 Transforming growth 
factor-β (TGF-β) has been used for many decades for not only osteoblast differentiation but 
also the activity of mesenchymal cells and production of ECM.263 Because of its popularity 
and widespread use in animal models over the years, TGF-β is an ideal growth factor 
candidate for regenerative therapy in the craniomaxillofacial complex.264,265 Another highly 
noteworthy growth factor is bone morphogenetic protein (BMP). They are the most widely 
studied osteogenic agents for bone synthesis in large defects.266,267 With over 30 isoforms, 
the BMP family is effective in both the embryonic phase and adulthood and is unlimited in 
its availability in the recombinant form.268 Intraoral and craniofacial bone repair has been 
investigated with recombinant human BMP (rhBMP), but human clinical trials are still 
limited.266 Other growth factors, such as insulin-like growth factor (IGF), fibroblast growth 
factor (FGF), and vascular endothelial growth factor (VEGF), have also been employed and 
studied as potent molecules for bone defects.269 

4. Newest progress in maxillofacial tissue regeneration 

Two decades ago, Sachs et al. developed a novel method of tissue fabrication in 3-
dimensional bioprinting.270 This rapid prototyping technique serves as an efficient way to 
design and manufacture reproducible, commercializable, and cost-efficient scaffolds in high 
volumes.271 While the type of material printed a few decades ago was limited to metals and 
ceramics, polymers and composites have recently been used to optimize mechanical 
properties or bioactivity in addition to maintaining scaffold biocompatibility.272–274 

Three-dimensional bioprinting can be manipulated with different biomaterials or 
varying manufacturing techniques, such as extrusion and laser-assisted sintering. Gross 
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macroanatomical structures can be designed by CAD data and the internal geometry can 
similarly be regulated by changing scaffold strand width and porosity.275 

Bone tissue development by three-dimensional printing does not only necessitate 
mimicry of the original bone architecture but stable functionality as well. It is essential that 
the printed vascularized bone scaffolds integrate into the native tissue by allowing for 
nutrient diffusion and cell migration while maintaining homeostatic angiogenesis.276 
Depending on the type of biomaterial employed, the temperature can be varied in the 
bioprinting method to incorporate bioactive agents and drugs.277 

In vivo bone substitutes fabricated by 3-D printing have been tested and reported in 
the literature with a common underlying goal of optimizing the mechanical properties, 
such as compressive strength, to match those of the cranium. Orthotopic examples of in 
vivo implantation have been noted in rabbits and dogs, and although craniofacial implants 
did yield some degree of calvarial regeneration in rabbits, the samples differed in 
regenerative consistency due to differences in blood supply patterns in the region.278,279 
Klammert et al. experimented with craniofacial ceramic implants in dogs, as noted above, 
and observed the degradation of secondary phosphate phases.279 These two studies 
demonstrate that a multitude of factors play a role in optimal scaffold fabrication. Wang et 
al. even modified bioceramic scaffolds by filling it with a phage nanofibers to form a virus-
activated matrix, which was also seeded with MSCs, and successful bone synthesis was 
seen as a result of osteoprogenitor differentiation, increased endothelial cell activity and 
stimulated angiogenesis.280 These positive in vivo results show promise in the future of 
regenerative medicine as clinicians and research scientists work together in order to 
produce the most ideal scaffold for human craniofacial defect repair. 

In a recent 2016 study by Kang et al., it was proven that craniofacial reconstruction, 
specifically biofabrication of the ear and mandible, can be achieved by means of the 3D 
printing process.281 Varying concentrations of the hydrogel composite were tested for 
optimal cell delivery and viability as well as suitable mechanical properties. The design of 
their ear construct was planned intricately, maneuvering the printing process in a way that 
oriented synthetic PCL in certain layers and the cell-laden hydrogel in others to confer an 
ideal mechanical stability to the structure and fabricate microchannels that allow for the 
passage of nutrients and oxygen. Their handling methods of mandibular and calvarial 
defects differed in that they assessed that mandibular defects are arbitrary and so, 
dispensing paths of the composite hydrogel need to be determined with a CAD-based 
motion program. With regard to calvarial defects, which typically result from injury or 
trauma, they took the mandibular test one step further by conducting in vivo trials in rats 
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with the 3D printed bone sample and observed the sample exhibited vascularized bone 
growth in the central portion and periphery alike (Figs. 6 and 7).281 

 
Fig. 6. Integrated tissue organ printer (ITOP) system. (a) The ITOP system consists of three main units: 
(i) 3-axis stage/controller, (ii) dispensing module containing multi-cartridge and pneumatic pressure 
controller and (iii) a closed acrylic chamber with temperature controller and humidifier. (b) Illustration 
of basic patterning of 3D architecture containing multiple cell-laden hydrogels and supporting 
polycaprolactone polymer. (c) CAD/CAM process for automated printing of 3D shape imitating target 
tissue/organ. A 3D CAD model yielded from medical image data produces a visualized motion program, 
which contains details for XYZ stage movements and actuating pneumatic pressure to generate 3D 
printing operations.281 

 
Fig. 7. Mandible bone reconstruction. (a) 3D CAD model identified a mandible bony defect from human 
CT image data. (b) Visualized motion program was developed to construct a 3D architecture of the 
mandible bone defect utilizing CAM software. Lines of green, blue and red colors show the dispensing 
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paths of PCL, Pluronic F-127 and cell-laden hydrogel, respectively. (c) 3D printing process utilizing the 
integrated organ printing system. The image displays patterning of a layer of the construct. (d) Image of 
the 3D printed mandible bone defect construct, which was cultured in osteogenic medium for 28 days. 
(e) Osteogenic differentiation of hAFSCs in the printed construct was demonstrated by Alizarin Red S 
staining, designating calcium deposition.281 

Wang et al. also expanded on the previous work of experts in the field of 
regenerative medicine by introducing anti-inflammation functionality with the 
incorporation of Atsttrin, which suppresses TNF-α signaling, into an alginate/nano-
hydroxyapatite scaffold.282 The pro-inflammatory factor was known to stagnate the process 
of tissue regeneration by interfering with osteoblastic differentiation. By adding Atsttrin to 
the scaffold, superior osteogenesis was observed in mouse calvarial defects compared to 
the control and other experimental groups. Wang et al. ascertained that not only can 3D 
printed scaffolds yield calvarial bone regeneration in vivo but the incorporation of 
bioactive agents can undoubtedly have a stimulatory effect on the repair of defected 
tissue.282 

5. Conclusions 

Over the last decade or so, the significant rise in hard and soft tissue engineering 
applications has drawn the attention of experts in the fields of medicine, dentistry, 
bioengineering, and materials science. Great strides have been made to improve on 
previous results to replenish large numbers of cells and bioactive agents that ultimately 
give rise to newly formed tissue. Scaffold-based regeneration with the use of an abundant 
variety of biomaterials, in addition to stem cell and growth factor use, has proven to 
efficaciously restore the microanatomy and functionality of bone and cartilage tissue both 
in vitro and in vivo, and these results are surely paving the way for future clinical trials that 
are patient-specific and cost effective. 

Studies of tissue engineering methods in the realm of oral and maxillofacial surgery 
have demonstrated that different scaffolds, polymeric, ceramic or composite, can be 
employed in load-bearing applications in the craniomaxillofacial complex. Their potency in 
revitalizing bone and cartilage in not only this region but also the entire human body 
provide promise and vast potential in future widespread incorporation in the defects of 
different maxillofacial tissues. Moreover, the expanding field of materials science is 
allowing bioengineers and clinicians to manufacture scaffolds of varying materials and 
composites that are ultimately proving to be effective in the regeneration of bone and 
cartilage. The evidence provided by this interdisciplinary, therapeutic approach that has 
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the potential to target maxillofacial anomalies provides the medical community with 
enthusiasm to advance the treatment of patients in a safe and effective fashion. 
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