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ABSTRACT 

EFFECTS OF RANDOM OSCILLATIONS ON BALANCE CONTROL IN HEALTHY YOUNG ADULTS 

 

 

Jacob Van Dehy, B.S. 

 

Marquette University, 2017 

 

 

 

 In human walking, balance control is managed through proactive changes in spatio-
temporal parameters of stepping [1].  It has been suggested that continuous disruptions to 
healthy young adult balance cause greater changes to overall variability of these parameters 
than a shift in the mean stepping parameters [2].  This suggests that walking may be occurring in 
a more reactive manner, modulating to maintain balance without increasing the mean 
significantly.  Work using continuous oscillations to treadmill walking suggest there is an 
interplay between the predictability of a signal used to disrupt subject balance and the degree 
to which compensation occurs [3].  To determine how balance compensation occurs during 
continuous, unpredictable oscillations this work investigated the effects of unpredictable 
oscillations on human walking.  A 6 Degree of Freedom Motion base was used to oscillate 12 
subjects walking on a treadmill for seven different balance conditions: (1) Normal Walking (2) 
Pitch Amplitude Oscillations, (3) Pitch Frequency Oscillations, (4) Roll Amplitude Oscillations, (5) 
Roll Frequency Oscillations, (6) Medial-Lateral Amplitude Oscillations, and (7) Medial-Lateral 
Frequency Oscillations.  Amplitude perturbations used a probabilistic multiplier to change the 
amplitude of an applied sine wave each period, maintaining timing, while frequency 
perturbations used the same multiplier to vary the timing of sine waves for each period.   

Amplitude oscillations caused a greater degree of proactive control characterized by 
changes in temporal stepping parameters.  Frequency oscillations resulted in a greater change in 
reactive control, demonstrating variability in stepping parameters immediately preceding and 
following peaks in accelerations peaks which exceed 0.5 m/s2.  These observations suggest that 
healthy young adults shift to a reactive strategy of balance compensation when subject to more 
difficult, higher acceleration oscillations of support surface while maintaining a proactive rate of 
level walking at low accelerations.
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Chapter 1 

Balance Control in Healthy Adult Walking: Exploration of Center of Mass Control in Predictable 

and Unpredictable Conditions 

 

1.1 Physiology of Standing Balance and Reflex Compensation 

Human walking is subject to multiple different types of balance disruption from 

environmental factors every day which may cause major injury or death due to falls; despite this 

fact, current literature demonstrates a poor understanding of the causes of balance disruption 

in human walking in healthy adults.  Human beings primarily achieve locomotion through 

walking balance.  Although seemingly simple, walking balance has been the subject of an 

immense body of literature [4].  Much of this literature focuses on disordered walking—the 

effects of diseases such as Multiple Sclerosis, Stroke, and Cerebral Palsy on walking kinematics, 

kinetics, and energy efficiency.  This deficiency in understanding balance disruption during 

healthy gait puts researchers using new technologies, such as CAREN Motion Base systems, at a 

distinct disadvantage in both human motor control and rehabilitation studies.   

1.1.1 Reflex Control of Center of Mass 

Standing balance is achieved through manipulation of a bilateral three-joint system of 

the ankles, knees, and hips to constrain motion of the upper body—torso, head, and arms—

between the feet, defined as the base of support (BoS).  Each of these joints can elicit 

movement in three-dimensions in either independent or combined motions  to maintain Center 

of Mass (CoM), the geometric center of the body, over the feet [5].  Muscle function fluctuates 

over time during quiet standing to maintain the CoM between the Center of Pressure (CoP) of 

the feet by tensing and relaxing muscles of the lower anatomy—this function can be modeled as 

a series of springs [6].  These fluctuations occur with a 6 ms lag between CoM and CoP in an 
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underdamped control system.  There is an intrinsic sway, even when standing, to maintain an 

upright position.  This natural process is exacerbated when walking, as the base of support 

changes over time and the torso accelerates constantly in both the medial-lateral (ML) and 

anterior-posterior (AP) direction, significantly increasing the challenge. 

Reflex control of upright posture is mediated via the vestibulospinal reflex pathway, 

located in the Central Nervous System (CNS) extra-pyramidal pathway in the brain [7].  This 

pathway controls feedback between the vestibular system to the body position and is 

responsible for the righting reflex.  The righting reflex corrects error between upright and 

displaced head position, which in turn guides body position back to upright via activation of the 

gastrocnemius and tibialis anterior muscles [8].  Use of external perturbation on this standing 

system likewise causes compensation—body tilt towards the center of the BoS via activation of 

both ankle and hip reflexes [9]. 

The ankle strategy of balance has been well documented in its relationship to increased 

fall risk [10].  The incidence of falling increases when ankle control is disrupted; this disruption 

can occur during the natural myelin breakdown during aging, or due to pathology in the case of 

stroke.   

1.1.2 Quiet Balance: Eyes Open and Closed 

Hip recruitment likewise plays a role in balance stability and compensation.  Studies in 

quiet balance using independent component analysis of correlated force plate and EMG signals 

demonstrate that balance in the Anterior-Posterior (AP) direction is controlled by activation of 

the ankle joint, while  Medial-Lateral (ML) balance is controlled by hip-flexor ab-adductor 

activation [11].  Combining these two control mechanism results in a periodic ML and AP sway 

over the force plate. 



3 
 

Control of sway is tantamount to preventing falls during quiet standing.  Analysis of 

sway during different conditions demonstrates increased ML sway during narrow-stance BoS 

positions [12].  This increase in ML sway represents decreased ability to control the CoM relative 

to a neutral stance, indicative of a lower level of balance overall [13].  Closing the eyes causes an 

increase in CoP velocity and decreases balance.  This indicates that the visual system coupled 

with the proprioceptive input modulates quiet balance.  Quiet standing, with the eyes closed 

and feet apart, demonstrates that random fluctuations in muscle activity impact the control of 

CoM.  There is an intrinsic sway, even when standing, to maintain an upright position against 

gravity.  This process is exacerbated when walking, as the BoS changes over time.  

Further breakdown of this motion in healthy adults using cross-correlational analysis 

elucidates a feed-forward system of control for quiet balance [14].  Gastrocnemius activation 

dominates AP sway, exhibiting a 250-300 ms delay between sway timing and activation.  When 

standing in a Romberg stance (feet parallel, eyes closed), significant correlation between a wide 

stance versus narrowed stance demonstrates the domination of ankle-based vs hip based, 

respectively, activation to control CoM.  A feed-forward predictive system is used to modulate 

this activation—CoM motion is permitted in this controller, allowing for a predictive model of 

the motion that allows ankle muscles to activate in the proper time frame.  This feedforward 

system is implemented and adapted in walking balance, modulating more gross characteristics 

such as step length and step width to minimize AP and ML sway of the CoM during normal 

walking. 

1.1.3 Perturbations and Quiet Balance—Planar Perturbations 

Applying AP perturbations during standing trials reveals the efficacy of the ankle and hip 

strategy in quiet balance.  When standing on support surfaces of different dimensions, humans 
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utilize varied control strategies to maintain balance under a forward-backward perturbation.  A 

support surface with dimensions that accommodates the subject’s foot yields an ankle-based 

response pattern: stabilization begins at the distal muscles of the gastrocnemius and tibialis 

anterior, propagating superiorly with a 92-113 ms delay to the proximal muscles of the 

quadriceps and hamstrings [15].  In contrast, when the support platform is smaller than the foot, 

subjects use a hip-based strategy: compensation begins with activation of the quadriceps and 

hamstrings with torso interaction, but fails to propagate down the kinetic chain, producing little 

activation of the ankle muscles [16].   

By contrast, ML perturbation during standing balance produces a primarily hip-based 

strategy relative to AP perturbations.  Compensation begins kinematically by the trunk shifting 

opposite to the direction of perturbation, with application of hip-adduction opposite the 

perturbation direction [17].  A three-stage compensation pattern occurs, with hips and ankles 

displacing in response to the perturbation, overcompensating via adduction, then settling to a 

steady-state value.  Increasing the size of these perturbations increases the kinematic response, 

creating greater angular corrections and trunk motions relative to smaller perturbations, with 

increased overshoot of steady-state values  [18]. 

1.1.4 Perturbations and Quiet Balance—Roll and Pitch Perturbations 

 Pitch perturbations, or “toes-up” and “toes-down” perturbations cause compensation in 

the sagittal plane with motion combined in the ML and AP directions, forcing greater balance 

correction.  The tibialis anterior and soleus combine to compensate for pitch perturbations 

reflexively—the ankle-based strategy adopted during AP movement is mirrored when the 

support surface tilts [19] [20].  Co-contraction of the tibialis anterior and soleus muscles 
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primarily control the balance strategy at the ankles with a supraspinal reflex in the direction 

opposite the tilt that compensates for the perturbation. 

Frontal plane rotation, by contrast, does not contribute to a primarily hip-based 

strategy.  Ankle activation again occurs, combined with increased compensatory hip torque in 

the frontal plane.  Stiffening at the trunk occurs immediately after the perturbation, which 

results in an overcorrection.  A combined hip-ankle strategy more effectively describes balance 

compensation to frontal plane rotations, rather than either a primary ankle or hip strategy 

individually for translations [20] [21]. 

1.2 Walking Balance and Spatio-Temporal Control 

1.2.1 Mechanical Determinants of Gait 

Saunders et al. began the initial study of gait and control with their seminal paper “The 

Six Determinants of Normal and Pathological Gait” [22].  They posit that walking controls the 

CoM, minimizing its displacement in both the sagittal and frontal planes.  This minimized 

motion, in turn, reduces energy expenditure; CoM motion can be optimized to simulate both 

normal and pathological gait.  The respective six determinants are: pelvic rotation (frontal 

plane), pelvic tilt (transverse plane), knee flexion during stance, tandem ankle rotation and knee 

flexion, and lateral pelvic displacement.  These segment and joint rotations were studied in both 

normal and pathological subjects, via kinematic observation, to determine impact on walking 

gait.  Removal of any determinant resulted in decreased walking speed, decreased stability, and 

increased energy expenditure during the gait cycle.   

When humans walk, several key factors are regulated: step length, step width, and 

stepping frequency (e.g. cadence).  Walkers set a speed and use a combination of gait variables 

[23] to control this speed.  Step length and width are used to affect gait on a step-by-step basis; 
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step frequency affects speed control over time [1].  There is an intrinsic variability in step length 

and width.  Even in undisturbed walking, a baseline level of variability exists in the step length 

and step width which affects stability of the walking subject [24].  These variables are not 

completely random, but change on a step-by-step basis with past steps affecting future steps.  

These step parameters change to maintain the CoM over the base of support. 

1.2.2 Machine Models of Walking Balance 

The area of robotics has provided a great expansion for the field of dynamic balance.  

Control theory has been used to model each of the degrees of freedom at the ankle, knee and 

hip and optimize motion for humanoid robots.  One promising area of research focuses on the 

inverted pendulum, wherein the CoM moves back-and-forth in a periodic motion pattern [25].  

Findings indicate that step parameters change to maintain the CoM over the BoS. 

Robotic models can simulate AP motion during walking: when placed on a downhill 

slope, these models exhibit passive forward progression without the need for compensatory 

balance mechanisms.  Single-joint robotic toys can achieve this downhill motion easily on a 

sloped surface [26].  The inclusion of additional joints to the model may introduce failure 

regions; the model must therefore incorporate system constraints such as the aforementioned 

determinants of gait [27].  The McGreer machine, in particular, can be started with a range of 

initial conditions or joint angles; the model then settles into a convergence zone of dynamic 

stability such that walking down a slope may be simulated without any control corrections.   

More robust models have been developed to simulate balance in the frontal plane 

during walking.  Although passively stable on a downslope, ML perturbations cause these three 

degree of freedom models to diverge from the dynamically stable region to a failure region [28].  

These marginal disturbances to ML balance may be mitigated through the inclusion of active 
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components (e.g. wheels or joint-stabilization at the ankle) or passive components (lateral step 

width and increased energy storage at the hip).  Each active component reflects a feedback 

mechanism and strategy present in true human walking on level terrain. 

 

1.3 Strategies for Walking Balance Compensation 

1.3.1 Proactive Walking Compensation 

During overground walking, the problems of quiet balance are amplified: the Center of 

Gravity (CoG, the projection of CoM) must be balanced between a continually changing BoS in 

both the ML and AP directions [11].  Walking has been described as a series of falls—the CoM of 

the body must be accelerated forward to achieve motion, then subsequently caught by the 

swinging limb at heel strike. Balance in this sense is dynamic, although the CoG is not located 

within the BoS during walking, the swinging limb moves towards a stable position during the 

subsequent heel strike.  The steady-state version of this system creates a dynamically stable 

oscillator—it occupies similar positions over time without settling to a single controlled point in 

space [29]. 

The motion of the CoM follows a sinusoidal pattern in the sagittal plane between heel 

strikes.  Brief instances of stabilization occur during double-limb support, when the CoM falls 

within the BoS, before being accelerated forward.  Double-limb support time increases in 

pathologic populations, increasing stabilization timing for the walking motion [30].  However, 

double-limb support makes up less than one-tenth of the standard gait cycle—more 

sophisticated mechanisms must exist to explain balance throughout the gait cycle. 

Similarly, balance in the frontal plane is also sinusoidal, but more intuitively controlled.  

Accelerations occur due to ML motion: during heel strike, the CoM sway velocity is transferred 
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from the ipsilateral to the contralateral foot.  In the frontal plane, the inverted pendulum moves 

less than ± 2° from vertical under typical walking conditions for healthy young adults [31]. 

The magnitude and velocity of CoM sway during walking varies with both age and 

walking speed.  Older subjects exhibit a significantly larger ML displacement than young subjects 

[32].  Likewise, increasing walking speed by 2 to 2.5x produces an additional two degrees of 

CoM sway.  This increase in ML sway has direct implications on joint motion in the frontal plane: 

to modulate the additional trunk sway, subjects reduce knee and hip adduction moment by 65 

and 57.5 percent, respectively [33].  The increase in CoM sway might be compensatory or a 

preventative mechanism on knee wear, as in the case of  osteoarthritis. 

1.3.2 Reactive Walking Balance Control  

The aforementioned content describes primarily proactive balance—a feedforward 

control system.  This control system predicts the CoM position due to existing sway and velocity 

parameters and compensates by adjusting step length, step width, and trunk control [6].  Visual 

cues of environmental obstacles such as slope inform the subject’s control of the CoM—subjects 

react with greater muscular activation at the hips and torso to stabilize the inverted pendulum 

due to the environment [5].  Trunk and hip-flexor muscles, including the erector spinae, 

hamstrings, and gluteus maximus activate at 5% of the gait cycle before heel strike and continue 

to activate halfway through stance phase, guiding the CoM through the gait cycle and 

preventing AP or ML trunk collapse [34]. 

1.3.3 AP Slip Compensation 

By contrast, reactive balance is primarily initiated at the distal limbs.  A reactive balance 

strategy compensates for a loss of balance by activating distal limb segments to restore 

continuous walking balance [5].  EMG recordings of lower anatomy muscles reveal that during a 
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reactive slip, where the terrain moves beneath the subject’s foot, muscle activity 

overcompensation occurs.  Muscular firing increases 2-3X baseline firing rate with a prolonged 

period of activation on a slip introduced by a moving platform [35].  Modulation of the gait cycle 

does not occur—instead, increased stabilizer and push-off forces are generated to complete the 

initial cycle as intended.   The trunk muscles serve little in the way of compensation during a slip 

at heel strike, though the hamstrings and quadriceps do serve a significant correlation to initial 

balance recovery [36]. 

Regardless of slip timing, compensatory muscular activation remains similar across 

anterior-posterior single-foot slips.  Experiments on treadmill walking during positive and 

negative acceleration impulses exhibit ipsilateral gastrocnemius or tibialis anterior activation 

with contralateral tibialis anterior or gastrocnemius activation, respectively, based on a 

deceleration or acceleration with 65-76 ms of activation latency [37].  Upper-body anatomy 

likewise plays a role during slipping: activation of deltoids tends to bring the arms up to 

compensate for a posterior CoM slip [38].  Reactive latency of the unperturbed limbs mimic the 

latency of the perturbed limb—there is not a significant timing advantage to phase lag of the 

unperturbed limb or upper anatomy, the body springs to action as quickly as possible to prevent 

a fall. 

Work studying the effect of walking under ML force perturbations demonstrates that 

increased compensation and aftereffects occur during unpredictable ML perturbations in both 

healthy and incomplete spinal cord injury (iSCI) patients [2].  iSCI subjects exposed to 

unpredictable ML forces while walking on a wide-belt treadmill exhibit greater step width (SW) 

and medial-lateral margin of stability (ML-MoS), decreased step length (SL), and increased 

stepping frequency.  However, healthy adults exposed to the perturbation field do not exhibit 

significantly different SW, SL, or ML-MoS over the course of the trial—but expressed a greater 
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variation in their stepping parameters.  This implies a more reactive strategy is employed in 

continuous ML perturbations by healthy adults, mirroring the work in AP perturbations above.  

As noted previously, the frontal plane is less stable than the sagittal plane during 

walking due to challenges in CoM control.  Studies involving geriatric falls note that lateral 

balance recovery is more difficult due to problems in limb placement [39].  Investigating both AP 

and ML perturbations during walking represents a fertile field for new growth and 

understanding. 

 

1.4 Quantifying Balance Control 

1.4.1 Margin of Stability 

One balance quantification method incorporates both CoM position and velocity relative to the 

BoS.  This is known as the Margin of Stability (MoS).  MoS is a metric which incorporates both 

the size (PCoM) and speed (VCoM) of the inverted pendulum motion, normalized to subject leg-

length and gravity (l/g) relative to the BoS (Equation 1.1) [40]. 

𝑋𝐶𝑜𝑀 = 𝑃𝐶𝑜𝑀 + 𝑉𝐶𝑜𝑀 ∗ √𝑙/𝑔                 

1.1 

𝑀𝑜𝑆 = 𝐵𝑜𝑆 − 𝑋𝐶𝑜𝑀                  

1.2 

MoS quantifies the difference between BoS at heel strikes relative to both the 

displacement size and velocity of the CoM.  MoS provides a quantifiable measure of balance 

used to assess changes in balance due to voluntary changes in step length and step width in 
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healthy subjects; subjects significantly increase ML-MoS from .09 meters to .16 meters during 

an increased step width [41].   

1.4.2 Double Limb Support Timing 

As mentioned previously, the level of balance impairment and disruption can be 

quantified by examining the amount of time spent in double-limb support.  Double-limb support 

occurs between heel strike of the leading foot and toe-off from the trailing foot and represents 

approximately 10% of the gait cycle [30].  The purpose of this timing is two-fold: to rebalance 

during trunk sway between the BoS and to initiate swing of the trailing leg [1][42].  The former 

has a greater impact on subject balance confidence and more relevance to this work. 

Elderly subjects exhibit a greater incidence of double-limb support compared to healthy 

young adult populations.  For example, during self-selected walking trials, double-limb support 

duration is 20-35% of the gait cycle for elderly subjects [42].  Sedentary older adults also 

demonstrate increased double-limb support time compared to their healthy older peers [42].  

This timing manifests differently between healthy and pathologic populations: pathologies such 

as Parkinson’s disease and Stroke, which have increased ataxia,  also exhibit increased in double-

limb support duration [43], [44]. 

Double-limb support duration increases in young adults who experience difficulty 

walking.  The majority of studies on young adult walking focus on dual-task conditions involving 

treadmills or overground while concurrently performing a memory, mathematic, or fine-motor 

task.  These tasks may consist of remembering a sequence of numbers, subtracting by a 

sequence of numbers, or solving a knot-puzzle [45].  When concurrent tasks are presented to 

challenge to young adult walking, double-limb support duration also increases [46].   
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1.4.3 Kinematic Analysis using Motion Capture 

Motion capture technology was born out of the direct linear transformation technique 

for two camera capture proposed in the early 1970’s.  This technique utilizes two cameras and a 

calibration technique to isolate 11 coefficients (L1 through L11) which define the orientation 

and internal parameters of two cameras.  Data captured by each camera are then transformed 

from “Local Camera Space” positions (x,y) to “Object State Space” positions (X,Y,Z) with user-

defined non-linear system noise (δx,δy),random error (Δx,Δy), and linear transformation 

constants (L1 through L11) and solved using Equations 1.3 and 1.4  [47].  Advances in this method 

progressed with increased computer power, allowing for multiple cameras to effectively be 

integrated and calculations for a larger object state space.  More effective image processing 

techniques utilizing least squares quadratic algorithms can be used to more effectively calibrate 

capture volumes[48].   

𝑥 +  𝜕𝑥 +  ∆𝑥 =  
𝑋∗𝐿1+𝑌∗𝐿2+𝑍∗𝐿3+𝐿4

𝐿9+ 𝐿10+ 𝐿11+1
                    

1.3 

𝑦 +  𝜕𝑦 +  ∆𝑦 =  
𝑋∗𝐿5+𝑌∗𝐿6+𝑍∗𝐿7+𝐿8

𝐿9+ 𝐿10+ 𝐿11+1
                              

1.4 

Motion capture gait analysis allows for quantitative analysis of gait patterns across 

different conditions, cadences, and patient groups.  This facilitates statistical analysis across 

different gait patterns [49].  Joint angle quantification is referred to the standard 1-100% gait 

cycle determination, with heel strike and toe-off events calculated using the maxima and 

minima of ankle-marker position[50].  Motion capture is hampered by marker artifact caused by 

the shift of the marker over the landmarks on the skin due to its natural elasticity and pliability.  
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To minimize this effect, markers are placed on bony landmarks which run proximal to the 

surface, which minimizes movement to +/-5mm.  Likewise, additional tracking markers and 

increasing camera triangulation provides better fidelity for motion analysis [51].   

Motion capture models rely on established biomechanical data, fusing it to define mass 

and length properties with inertial components via proper marker placement.  Development of 

this model began with the Golem Model, which utilizes anthropometric data to establish the 

mass of the pelvis, shank, femur, and foot segments by defining proximal and distal segment 

locations [50].  The Helen-Hayes marker system is a modification on the Golem system, changing 

the locations of markers and primarily defining the lower anatomy based on the definition of the 

hip [52].  Marker placement is contingent on the ability to accurately identify markers—trained 

technicians and physical therapists can adequately repeat the output of these models [53].  

These models are often difficult to use on subjects with orthopedic pathologies or who exhibit 

excessive fat distribution, but modified Helen-Hayes marker sets are developed to adequately 

study this population [54]. 

 

1.5 Understanding Perturbation Compensation in Treadmill Walking 

1.5.1 Understanding Overground and Treadmill Walking 

Treadmill walking exhibits minimal differences compared to overground walking in 

healthy young adult populations.  The advantages of treadmill walking are twofold in motion 

capture environments: it provides a large sample size for cross-subject variation analyses, and 

allows subjects to continuously walk in a straight line, rather than forcing a turn-around in the 

middle of a trial.  There are minimal kinematic differences between treadmill and over-ground 

walking, mainly resulting in small (<3% from overground) changes in step length, width, and 
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joint angles [55].   These differences are minimized after an accommodation period of 5 minutes 

[56], [57], though this familiarization time may take longer in older populations less accustomed 

to treadmill walking [58].  Likewise, kinetic parameters of treadmill walking are marginally 

smaller in instrumented treadmills compared to overground walking, but remains within 

reported variability parameters [59], [60]. 

1.5.2 Medial-Lateral Perturbations in Treadmill Walking 

The advent of treadmill mounted platforms have allowed for the study of balance 

reactions and slips in a controlled environment.  Platforms such as these typically consist of a 

split-belt treadmill, motion-capture system, electromyogram, and six-degree-of-freedom motion 

base.  These systems are commercially available from the MOTEK Corporation in the CAREN 

system [61].  Perturbations may be applied in the Medial-Lateral or Anterior-Posterior planes, or 

consist of rotations of the base in the Roll, Pitch, and Yaw directions (Figure 1.1).  Real-time 

feedback allows researchers to study self-selected static speed vs real-time update speed 

feedback; when experiencing oscillations, subjects do not significantly alter walking speed when 

given the opportunity [3]. 

Figure 1.1: Motion base 
perturbations including ML 
and AP translations.  Pitch 
rotation occurs about the X-
axis, Roll rotation occurs 
about the Y-axis, and Yaw 
rotation occurs about the Z 
axis.   

Perturbations may be 

applied to stimulate balance 

compensation, allowing 
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researchers to study the effects of perturbations on proactive and reactive balance.  Subjects 

exhibit increased step width and decreased step length inherent to a disturbed walking balance, 

changing due to increased perturbation amplitude. 

Unpredictable perturbations provide an increased challenge for healthy subjects, forcing 

greater compensation in step width, step length, and MoS [3].  Creating a pseudorandom 

perturbation signal allows researchers to challenge balance within the context of smooth 

disruptions using four superimposed sine waves with four different frequency parameters and a 

scaling factor, A, (Equation 1.5). 

𝐷(𝑡) = 𝐴 ∗ (1.0 ∗ sin(0.16 ∗ 2𝜋𝑡) + 0.8 sin(0.21 ∗ 2𝜋𝑡) + 1.4 sin(0.24 ∗ 2𝜋𝑡) + 0.5 sin(0.49 ∗ 2𝜋𝑡))                

1.5 

Although not a truly random signal, predictability of this signal for a human subject is 

lower than a pure sine wave and thus creates greater challenges to balance and compensation.  

Increasing the scaling amplitude significantly increases step width, decreases step length, and 

causes an increase in margin of stability on healthy young adult subjects [62][3].  The utility of 

the CAREN system allows for an exploration of walking speed—although the subjects slow their 

overall step length, stepping frequency increases to compensate and self-selected speed does 

not significantly change during any perturbation intensity [3].  This indicates that an initial self-

selected pace is useful in measuring walking parameters during treadmill walking. 

 The majority of literature, does not exploit the Roll and Pitch Perturbations of the 

Motion base system because the visual flow software inside the CAREN system is poorly suited 

to the task; the screen-based system can make subjects nauseous.  However, the changes in 

kinematics and kinetics of uphill and downhill graded treadmill walking have been probed. 
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1.5.3 Uphill and Downhill Changes in Body Kinematics during Treadmill Walking 

Uphill walking is substantially more difficult to perform than level walking due to the 

increased positive mechanical work necessary to move up a gradient.  During level walking, 

movement of the inverted pendulum causes the leading leg to produce negative work in the AP 

and ML directions to break and reverse the pendulum sway.  Consecutively, the trailing leg must 

generate a positive force to drive the body forward[63].  In uphill and downhill walking, more 

net positive and negative (respectively) work is generated by the leading/trailing limbs during 

double limb support [64].  During downhill walking, ML CoM velocity remains negative for 7-27% 

longer in the gait cycle between -3 and -9 degrees of downhill walking relative to level walking.  

Subjects also typically adopt a lean-forward and to the left while walking uphill while righting 

themselves for downhill walking [65].  This suggests that greater challenges occur in the ML 

plane during consecutive uphill and downhill walking, more effectively challenging balance due 

to postural preference and kinematic adaptation than normal walking.  The grade at which 

subjects walk has a direct effect on the amount of mechanical work performed as well as the 

compensatory posture adopted.  Whether continuous uphill and downhill sinusoidal 

perturbations are more difficult than ML perturbations remains to be explored. 

 

1.6 Summary and Statement of Purpose 

An exploration of literature on standing balance perturbations, the mechanics of 

walking, and compensation techniques for balance perturbations demonstrates a deep utility in 

exploring the level of compensation provided by different continuously applied perturbations, 

or oscillations, to healthy young adult subjects.  Pitch, Roll, and ML perturbations provide the 

most difficult challenge to quiet standing balance in healthy populations.  Likewise, because 
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frontal plane stability is reduced intrinsically due to the increased CoM velocity and decreased 

base of support, perturbations within this plane will likely provide the greatest challenge to 

balance in healthy adults.  Changes in grade of uphill and downhill walking significantly change 

kinematics and kinetics of CoM, challenging balance and forcing compensation—changing the 

grade of these values continuously will further destabilize subjects.  Although there is a lack of 

literature on the effect of Roll perturbations, the same effect will likely be present in those 

perturbations.   

Likewise, the speed at which perturbations occur will likely force more compensation 

due to a greater change in the vestibulospinal reflex.  Differences in acceleration have already 

demonstrated varying levels of compensation in standing balance, forcing greater hip-and-ankle 

strategy adoption at higher platform accelerations.  The degree to which oscillation acceleration 

impacts walking balance, however, has not been explored to great effect in the literature.  The 

standard pseudorandom perturbation signal muddles both changes in amplitude and 

acceleration, obfuscating underlying mechanisms that impact walking balance.  This study aims 

to mechanistically isolate balance challenges due to changes in amplitude and frequency in 

Pitch, Roll, and ML oscillations during treadmill walking in young healthy subjects.  This will yield 

information on both proactive compensation changes in SL, SW, and MoS and any reactive 

changes due to an unpredictable signal changes.  Specifically, the research hypotheses are that: 

1) changes in amplitude will result in smaller changes in reactive balance than changes in 

frequency (if both are scaled to the same time and oscillation length), and 2) more proactive and 

reactive stepping will occur during the frequency than the amplitude perturbations.  Study 

results will be used to define a graded challenge scale for balance in terms of proactive and 

reactive changes in step width, step length, and ML or AP MoS.  
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Chapter 2 

The Effects of Random Oscillations on Balance Control in Healthy Young Adults 

2.1 Introduction 

The purpose of this study was to characterize gait responses to perturbation 

movements of a walking surface, incorporating different amounts of predictability, to provide 

the foundation for the development of walking balance therapies.  The use of motion platforms 

to oscillate and perturb subjects while walking is emerging, with potential applications in the 

rehabilitation of gait [66]  There are many possible ways to manipulate a walking surface, 

including six possible degrees of freedom (3 rotations and 3 translations) and numerous 

waveforms, amplitudes and frequencies with which to  Prior work has focused primarily on 

pseudorandom oscillations in the medial-lateral (ML) direction [3], [62].  In the current study, we 

expanded on the types of walking surface movements, both in examining the movement 

directions and in varying the amount of predictability to the walking surface movements.     We 

aimed to evaluate reactive and proactive compensation to various movements. 

 Reactive balance compensation is a change in the variability of spatio-temporal walking 

parameters in response to mild balance instability.  Reactive balance compensation is a strategy 

favored by healthy young adults due to its energetic efficiency and use of short latency feedback 

systems to maintain balance during walking [63] [67].  Humans utilize a mixture of both 

feedforward and feedback control to maintain gait [68].  Feedback control is favored in healthy 

adults when undergoing mild balance destabilization in which the variability of spatio-temporal 

metrics increases due to occasional corrective stepping, but mean parameters remain 

constant[2], [69].  Neuropathic, ataxic populations such as incomplete Spinal Cord Injury and 

Multiple Sclerosis demonstrate decreased ability to engage in reactive compensation and favor 

a more feedforward strategy to maintain walking balance [70] [71]. 
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 Proactive balance compensation can be defined as a change in mean spatio-temporal 

walking parameters such as step width, in individuals experiencing balance instability.  Ataxic 

individuals often exhibit these proactive changes, widening step width and decreasing step 

length to maintain balance [72], [73], [74].  External balance perturbations can also force 

proactive compensation in healthy adults.  ML oscillations of walking platforms produce 

increases in proactive compensation during stepping in healthy adults [66],[74], [75].  Important 

to note in this work is that a change in both mean and variability occurs in healthy young adult 

SW, SL, and MoS [62].  By observing the response to walking surface perturbations, we can 

assess the proactive and reactive balance compensations in healthy adults.  These observations 

have implications for treatment of neuropathic balance. 

 This study assessed reactive and proactive compensation to balance perturbations in 

healthy adults using walking surface oscillations with varying frequency or amplitude of 

movements to alter the level of predictability of the perturbations.  Disruptions were 

administered in the Pitch, Roll, and ML directions to elicit both sagittal and frontal-plane balance 

challenges.  Compensation to the walking surface oscillations were measured using  step width 

(SW), step length (SL), medial-lateral margin of stability (ML-MoS), and anterior-posterior 

margin of stability (AP-MoS).  Mean changes of these parameters was used to quantify proactive 

balance compensation, while changes immediately after an acceleration of the base were used 

to quantify reactive balance compensation.  Characterization of the proactive and reactive 

compensation to different walking surface movements provide the basis for balance training 

paradigms in people with balance disorders. 

  



20 
 

2.2 Methods 

2.2.1 Subject Population 

Twelve healthy young adults (6 males) with an average age of 23.3 ± 2.6 years 

participated in this study.  Average subject height was 1.72 ± 0.08 meters, and weight was 67.20 

± 8.83 kg.  Subject self-selected walking speeds were 1.00 ± 0.10 meters per second based on 

treadmill speed.  Subjects had no self-reported injuries nor prior orthopedic surgeries.  All 

experimental procedures were approved by the Marquette Institutional Review Board, protocol 

number HR-3251. 

2.2.2 Testing Equipment 

 Subjects walked on a custom motion platform system (Figure 2.1) that consisted of a 

split-belt instrumented Woodway treadmill (Woodway USA Inc., Waukesha, WI) mounted on 

top of a six degree of freedom motion base (Model MB-E-6D0F/12/1000KG, 170-140, Moog Inc., 

East Aurora, NY).  This system allowed for the walking surface to be perturbed in six different 

degrees of freedom (Figure 2.1).  The base was controlled using a custom LabVIEW program 

(National Instruments Corp., Austin, TX), which provided a command oscillation signal to the 

motion base and collected kinematic, kinetic and electromyogram data.  To ensure subject 

safety, an overhead safety harness provided emergency fall-arrest, lateral handrails were 

available in the event of subject stumbling, and an emergency stop button was subject 

accessible in the event the subject became uncomfortable and wished to discontinue the study. 
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Figure 2.1: The motion base system (left) was capable of movements in 6 degrees of freedom.  
Of these, roll, pitch, and medial-lateral (ML) translation were used to perturb balance while 
walking.  The perturbations (right) consisted of sinusoids with either changes to amplitude or 
frequency determined by a Gaussian-distributed random multiplier.  Multipliers were constant 
(StD0), resulting in a pure sinusoid, a random multiplier based on a distribution that was one 
standard deviation about the mean amplitude or frequency (StD1), or a random multiplier that 
was two standard deviations about the mean amplitude or frequency (StD2).  The 
randomization multiplier was derived from a Gaussian, rather than flat, distribution. 

 

Thirteen motion capture cameras were used to collect kinematic data at 120 Hz 

(NaturalPoint Inc., Corvallis, OR).  Subjects wore reflective markers attached to lower-anatomy 

anatomical landmarks: bilateral anterior superior iliac spines, sacrum, greater trochanter, medial 

and lateral femoral condyles, medial and lateral ankle malleoli, and second and fifth metatarsal 

heads bilaterally.  Likewise, four markers were placed on the upper anatomy including the 

clavicle, C7, and left-and-right acromioclavicular joints.  Locations of these landmarks were 

found through manual palpation.  Three-marker clusters attached to plastic plates were placed 

on the thigh, shank, and heels of the subject’s shoes. 
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2.3 Experimental Protocol 

2.3.1 Walking Speed Selection 

 Subjects were familiarized with the treadmill system prior to the beginning of 

experimental trials.  Treadmill belt speed was determined by increasing incrementally by 0.045 

m/s until the subject reached a self-reported comfortable walking speed.  This speed was 

maintained for experimental trials.  An initial series of 7 level walking trials of 70 seconds were 

taken with no movement of the walking surface.  This served as the Normal_A condition to 

which each of the 6 perturbation types were compared.   

2.3.2 Experimental Trials 

 This experimental protocol consisted of 6 dynamic balance walking trials.  Each trial was 

recorded continuously for 490 s and was composed of seven, 70 s segments.  Each trial began 

with a 70 s period of level walking (Normal_A), followed by a sinusoidal oscillation with an 

amplitude 7 degrees (roll and pitch trials) or  17.8 cm (ML trials) at 0.2 Hz (StD0_A).  The third 

segment was a sinusoid with a randomized amplitude/frequency based on a Gausian 

distribution consisting of 1 standard deviation about the initial signal (StD1_A); the fourth 

segment was a sinusoid with a randomized amplitude/frequency based on a distribution 

consisting of 2 standard deviations of the initial signal (StD2).  Fifth (StD1_B), sixth (StD0_B), and 

seventh (Normal_B) correspond to one standard deviation, pure sine wave, and level walking 

respectively.  For each trial, motion was applied in the pitch, roll, or ML direction.  Trials also 

differed in either the amplitude or frequency manipulations of the movement.  Amplitude trials 

maintained the sinusoid frequency while varying movement amplitude.  Frequency trials 

maintained the movement amplitude, but varied the timing of the sine wave.  Changes in 

amplitude or frequency were made every one-half period of the sinusoid.  Trials were labelled 
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either the Pitch Amplitude (PitchAmp), Pitch Frequency (PitchFreq), Roll Amplitude (RollAmp), 

Roll Frequency (RollFreq), ML Amplitude (MLAmp), or ML Frequency (MLFreq) depending in the 

movement direction and variation in amplitude or frequency.  Subjects were given 120 s rest 

between the 490 s trials. 

2.4 Data Analysis 

2.4.1 Spatio-Temporal Parameter Calculations 

 Motion capture data were used to model body segments and determine gait 

parameters indicative of balance disruption.  Kinematic data were low-pass filtered using a 4th 

order Butterworth filter with a cut-off frequency of 6 Hz in Visual 3D (C-Motion Inc., Rockville, 

MD).  Local coordinate systems were used to define model segments for the torso, pelvis, 

thighs, shanks, and feet while kinematic data were used to determine heel strikes.  Each heel 

strike was defined at the maximum AP-distance between the pelvis and the foot and verified by 

visual inspection.  Center of mass (CoM) of the body was defined by the weighted average of 

each segment CoM based on anthropometric data from Winter et al (Winter 1990).  Step length 

and width were calculated as the sagittal and frontal plane distances between ankle markers at 

heel strike, respectively.  During roll and pitch perturbations, marker positions were corrected 

using an Euler transform applied to the coordinates of the base.  Double-limb support was 

calculated as the sum of right heel strike to left toe off and left heel strike to right toe off, 

divided by the difference between right heel stride timing. 

2.4.2 Margin of Stability Calculation 

 Margin of stability was calculated using the methods of Hof (Hof 2005) and Hak (Hak 

2012).  Briefly, maximum CoM displacement was found between each step during walking and 

subtracted from the position of the base of support (BoS), defined by the difference between 
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lateral ankle markers.  Velocity of the CoM (VCoM) was calculated by finding the first derivative of 

the calculated CoM.  Similarly, velocity of the motion base, VMotionBase was calculated from 

markers on the base position and then subtracted from the CoM velocity.  This difference  was 

then normalized to the subject’s leg length (l) divided by gravity (g) (equation 2.1).  This value 

was added to the position of the CoM (PCoM) to find the extrapolated center of mass (XCoM).  

This value is subtracted from BoS to find MoS (equation 2.2). 

𝑋𝐶𝑜𝑀 = 𝑃𝐶𝑜𝑀 + (𝑉𝐶𝑜𝑀 − 𝑉𝑀𝑜𝑡𝑖𝑜𝑛𝐵𝑎𝑠𝑒) ∗ √𝑙/𝑔              

2.1 

𝑀𝑜𝑆 = 𝐵𝑜𝑆 − 𝑋𝐶𝑜𝑀                 

2.2 

2.4.3 Reactive Balance Calculation 

To measure subject compensation to platform motion, the step width (SW), step length (SL), 

and MoS were correlated to walking surface movement peak acceleration events.  Peak 

accelerations of the walking surface ranged from 0 to 1 m/s2 during the walking trials.  

Acceleration of the base was calculated by the second derivative of marker positions on the 

motion base.  Peaks in acceleration were then found using the MATLAB Function peakfinder and 

values and timing of maxima greater than 0.1 m/s2 were identified.    Low accelerations were 

classified as events with peak accelerations  from 0.1 to 0.5 m/s2, while high accelerations were 

between 0.5 m/s2 and 1 m/s2. 
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2.5 Statistical Analysis 

To determine significance differences between oscillation types, one-way repeated measures 

ANOVAs were conducted to compare the effect of oscillation type on SW, SL, and MoS.  

Sphericity was assured using Mauchly’s test of Sphericity.  Greenhouse-Geisser correction 

factors were used when the sphericity assumption was violated.  α-level was set at 0.05 and 

data are reported as mean ± standard deviation in the text and figures.  Post-hoc tests were 

conducted with a Sidak correction for multiple comparisons.  Main effects and contrasts 

between oscillation types are presented, unless otherwise stated.  All statistics were performed 

using IBM SPSS Statistics 21.0 (IBM, New York, NY).  All reported significances are from p<0.05 or 

less and a power of 0.9 or greater. 

 

2.6 Results 

All participants completed each trial without falling or balancing themselves using the safety 

handrails.  Subjects reported that the trials were difficult and frequently reported the frequency 

perturbation trials as more difficult than the amplitude perturbation trials. 



26 
 

 
Figure 2.2: ML amplitude and frequency responses over the seven portions of each trial.  Trials 
were subdivided into a beginning round of Normal walking (Normal_A), the first sinusoid 
(StD0_A), the one standard deviation multiplier (StD1_A), and the two standard deviation 
multiplier (StD2).  A corresponding ramp-down occurred through StD1_B, StD0_B, and 
Normal_B. 

 

MLFreq oscillations exhibited the greatest differences between oscillation types.  Within 

ML Frequency trials (Figure 2.2), SL decreased significantly in StD1_A, StD2, StD1_B and StD0_B 

compared to both Normal_A and Normal_B.  Likewise, a decrease between StD0_A and StD1_A 

was observed.  SW increases were observed between StD1_A, StD2, StD1_B, and StD0_B 
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compared to Normal_A.  Likewise, SW increased significantly in StD1_A and StD1_B compared 

to StD0_A.  In StD1_A, StD2, StD1_B, and StD0_B SW was significantly larger than Normal_B.  

ML-MoS was significantly larger in StD2, StD1_B, and StD0_B compared to Normal_A; StD2, 

Std1_B, and StD0_B were significantly larger than Normal_B.  AP-MoS was significantly smaller 

for StD0_A, StD1_A, StD2, StD1_B, StD0_B compared to Normal_A.  StD1_A, StD2, StD1_B, and 

StD0_B were significantly smaller than Normal_B.  StD2 was smaller than StD1_A; StD2 was 

likewise smaller than StD0_B; StD1_B was significantly smaller than StD0_B. 

ML Amplitude trials exhibited the fewest significant differences in SL, SW, and ML-MoS 

compared to all other trials.  ML Amplitude trials (Figure 2.2) exhibited significant decreases in 

SL for StD0_A, StD2, StD1_B, and StD0_B and Normal_B.  There was also a difference between 

StD2 and StD0_B.  No significant differences were detected in either SW or ML-MoS during 

oscillations.  AP-MoS was significantly smaller for StD0_A, StD2, and StD1_A compared to 

Normal_B; StD2 was significantly smaller than Normal_A; and StD2 significantly smaller than 

StD0_B. 
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Figure 2.3: Roll Amplitude and Frequency responses over the seven segments of each trial.  
Trials were subdivided into a beginning round of Normal_A Walking (Normal), the first sinusoid 
(StD0_A), the one standard deviation multiplier (StD1_A), and the two standard deviation 
multiplier (StD_2).  A corresponding ramp-down occured through StD1_B, StD0_B, and 
Normal_B. 
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RollFreq trials exhibited significant differences in SL, SW, and ML-MoS (Figure 2.3) and 

demonstrated the most compensation differences in sagittal plane balance.  RollFreq exhibited 

the greatest number of deviations to step length—StD1_A, StD2, StD1_B and StD0_B were 

significantly smaller than Normal_A.  StD1_A and StD2 were shorter than StD0_A.  StD1_B and 

StD0_B were both longer than StD2.  StD0_B was likewise longer than StD1_B.  StD0_A, StD1_A, 

StD2, StD1_B, and StD0_B were each shorter than Normal_B.  For SW, RollFreq exhibited larger 

values in StD2 compared to Normal_A; StD2 was also larger than Normal_B.  There was likewise 

a significant drop in SW from StD1_B to StD0_B.  ML-MoS was significantly larger in StD2 

compared to Normal_A; StD1_A was larger than StD0_B and Normal_B as well.  AP-MoS was 

significantly smaller in StD0_A, StD1_A, StD2, StD1_B, and StD0_B were all significantly smaller 

than Normal_A; StD0_A, StD1_A, StD2, StD1_B, and StD0_B were all significantly smaller than 

Normal_B; StD1_A and StD2 were smaller than StD0_A; StD1_B and StD0_B were larger than 

StD2; StD0_B was larger than StD1_B. 

RollAmp trials exhibited significant differences in SL, SW, and ML-MoS (Figure 2.3) and—

similar to RollFreq—demonstrated greater compensation in sagittal plane balance compared to 

the frontal plane.  StD0_A, and StD2 were shorter than Normal_A in SL.  StD0_A, StD1_A, StD2, 

StD1_B, and StD0_B were each shorter than Normal_B.  By contrast, significant increases in SW 

were only detected between StD0_A compared to Normal_B and StD0_A compared to 

Normal_A.  This was mirrored in ML-MoS: StD0_A was significantly larger than StD0_B and 

Normal_B.  AP-MoS demonstrated smaller values in StD0_A, StD1_A, StD2, StD1_B compared to 

Normal_A; StD0_A, StD1_A, StD2, StD1_B, and StD0_B were each significantly smaller than 

Normal_B; StD2 was significantly smaller than StD0_B.   
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Figure 2.4: Pitch Amplitude and Frequency responses over the seven segments of each trial.  
Trials were subdivided into a beginning round of Normal_A walking (Normal_A), the first 
sinusoid (StD0_A), the one standard deviation multiplier (StD1_A), and the two standard 
deviation multiplier (StD2).  A corresponding ramp-down occurred through StD1_B, StD0_B, and 
Normal_B. 
 

PitchFreq trials demonstrated differences in SL, SW, and ML-MoS but demonstrated 

greater compensation in the Frontal Plane (Figure 2.4).  In PitchFreq, SL was significantly smaller 
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in Std0_A and StD2 compared to Normal_A; StD1_A, StD2, StD1_B, and StD0_B were all 

significantly smaller than Normal_B.  SW was significantly larger in StD0_A, StD1_A, StD2, and 

StD1_B compared to Normal_B.  PitchFreq demonstrated the greatest number of differences in 

ML-MoS compared to any other trial: StD0_A, StD1_A, StD2 were larger than Normal_A; StD1_A 

and StD2 were each larger than StD0_B; StD0_A, StD1_A, StD2, StD1_B, and StD0_B were each 

larger than Normal_B.  Within AP-MoS metrics, StD0_A, StD1_A, StD2, StD1_B, StD0_B were 

significantly smaller than Normal_A; StD0_A, StD1_A, StD2, StD1_B, StD0_B were significantly 

smaller than Normal_B; and StD1_A was significantly smaller than StD0_A. 

 PitchAmp trials demonstrated differences in SL, SW, and ML-MoS and mirrorred the 

results of PitchFreq, demonstrating more compensation in Frontal Plane (Figure 2.4).  SL was 

significantly smaller in StD0_A, StD2, and StD1_B than Normal_A; StD0_A and StD1_A were each 

smaller than Normal_B.  PitchAmp demonstrated sequential changes in SW with an initial 

increase followed by decrease: StD0_A was larger than Normal_A; StD1_A smaller than StD0_A; 

StD2 smaller than StD1_A. StD0_A, StD1_A, StD2, and StD1_B were each larger than Normal_B.  

For ML-MoS, StD0_A was larger than Normal_A; StD0_A and StD1_A were both larger than 

Normal_B.  For AP-MoS, StD0_A, StD1_A, StD2, StD1_B, StD0_B were significantly smaller than 

Normal_A; StD0_A, StD1_A, StD2, StD1_B, StD0_B were significantly smaller than Normal_B. 
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Figure 2.5: Medial-Lateral accelerations consisted of base motions in the Frontal Plane: Roll and 
ML oscillations.  High corresponds to accelerations between 0.5 and 1 m/s2, while low 
corresponds to accelerations between 0.1 and 0.5 m/s2.  Labels of -2 and -1 correspond with two 
and one steps before acceleration, while labels of 1 and 2 correspond to one and two steps after 
the acceleration peak.  SL, SW, ML-MoS, and AP-MoS metrics are displayed. 

Reactive balance to accelerations in the ML plane—during ML and RollFreq trials— 

highlighted the difference between proactive balance strategies present during low acceleration 

and reactive strategies in response to high acceleration.  SL, SW, and ML-MoS during high 

acceleration exhibited significant differences immediately before and after peak accelerations in 

data when compared to SL, SW, and ML-MoS during low acceleration.  Low -2, Low -1, Low 1, 

and Low 2 were significantly smaller in SW than High -1; Low -2, Low -1, and Low 2 were 

significantly smaller in SW than High 1.   Step Length was significantly smaller between Low -2, 

Low -1, Low 1, and Low 2 compared to High -1.  Likewise, step length was significantly smaller in 
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Low -2, Low -1, Low 1, and Low 2 than High 1.  Low -1 and Low 1 were significantly smaller than 

High 2.  ML-MoS was significantly smaller in Low -2, Low -1, and Low 1 compared to High 1.  Low 

-2 and Low 1 were likewise smaller than High 2.  AP-MoS was significantly smaller in High1 

compared to all Low Accelerations; High 2 was smaller than Low Accelerations; High -2 was 

significantly larger than High1 and High 2; High -1 was significantly larger than High 1 and High 2 

as well. 

 

 

Figure 2.6: Anterior-Posterior (AP) reactive balance for accelerations in the sagittal plane for SL, 
SW, ML-MoS, and AP-MoS metrics.  High corresponds to accelerations between 0.5 and 1 m/s2, 
while low corresponds to accelerations between 0.1 and 0.5 m/s2.  Labels of -2 and -1 
correspond with two and one steps before acceleration, while labels of 1 and 2 correspond to 
one and two steps after the acceleration peak.   
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Reactive balance to accelerations in the AP direction exhibited less compensation 

between high and low accelerations compared to ML direction accelerations; ML compensation 

techniques (SW and MoS) exhibited no change between high and low accelerations. SW was 

significantly larger in High 1 compared to High -2.  SW was also significantly larger in High 1 

compared to High -1.  Step Length was significantly lower in High -1 than Low -2, High 1, and 

High 2.  High 1 was significantly smaller than Low 1.  Likewise, Low -2 was larger than Low -1.  

Low -1 was significantly smaller than Low 1.  And Low 2 was smaller than Low 1.  There were no 

significant differences between ML-MoS during AP-reactive balance.  However, in AP-MoS was 

significantly smaller in High 1 compared to all low accelerations; High 2 was smaller than low 

accelerations; High -2 was significantly larger than High 1 and High 2; High -1 was significantly 

larger than High 1 and High 2 as well. 

2.7. Discussion 

 In this study, we demonstrated that movements of the walking surface produce 

alterations in step parameters during treadmill stepping, comprised of predictive and reactive 

components. Movements of the walking surface generally caused a decrease in step length and 

increase in step width, with greater changes as the predictability of the walking surface 

movement was reduced.  The alterations in step length and width had two components: a 

constant change associated with a predictive compensation and an acceleration-dependent 

change associated with a reaction to the movements.  Randomization of frequency of 

oscillations in the frontal plane produced greater changes in gait parameters compared to 

randomization of amplitude in this study, presumably due to the increased acceleration in these 

trials.  Using sinusoidal oscillations of a walking surface with randomized frequency or amplitude 

of movement might provide a means for training dynamic balance, enabling the therapist to 

target both predictive and reactive balance mechanisms. 
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2.7.1  Using Walking Surface Movements to Improve Gait Training 

 Movements of the walking surface might improve treadmill training of gait by increasing 

the difficulty of walking therapy.  Current approaches to treadmill training utilize techniques 

such as body weight support [76], [77] or robotic devices [78], [79] that assist treadmill stepping 

to provide impaired patients access to gait training, effectively making the gait training 

experience easier.  These approaches are effective [80] ; however, there appear to be no 

benefits of weight-supported treadmill training over standard home-based therapy [80].  Two 

approaches being investigated that might enhance gait training include 1) increasing the 

intensity of training and 2) using training approaches that target specific weakness in gait.  The 

use of movements of the walking surface could both increase the intensity and target balance 

during walking. 

Training intensity could be increased with a moving walking surface, which might 

improve the training effects of treadmill training.  Treadmill training works better when physical 

load is increased: in spinalized rats, those that walked 1000 steps during training sessions were 

able to more effectively walk at different speeds and loads than those training at 100 steps per 

day [81].  In humans, applying speed-dependent treadmill training techniques normally reserved 

for athletes to post-stroke populations yields significantly better step length, cadence, and 

overground walking speed than traditional walking therapies [82], [83].  The engagement of 

neuromuscular, cardiopulmonary and metabolic components of exercise might all be important 

to the training effects associated with high intensity treadmill training [81], [82], [84].  Moving 

the walking surface creates a more intense exercise experience, engaging active corrections by 

the patient, which could be beneficial to therapeutic outcomes. 
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 Another potential strategy to improve treadmill training is to implement an element of 

the training that challenges specific impairments to walking.  To improve leg swing during gait, a 

cable-resistance training system to modify load to the paretic leg during swing improves ankle 

kinematics, and self-selected and fast walking speeds of post-stroke [79] and spinal cord injury 

subjects [78].  Further research into this resistance training in SCI subjects revealed that 

consistent resistance training leads to sustained after-effects in stride length after resistive load 

was applied, but not after assistive load was applied.  Additional challenge forces 

overcompensation and more effective outcomes in gait parameters [85], similar to traditional 

motor adaptation paradigms.  Another strategy is to minimize the assistance provided by a 

robotic trainer, thereby allowing gait training that would not otherwise be possible, yet 

maximizing the exercise benefits.  For example, preliminary work using the REWALK exoskeleton 

demonstrates greater self-selected and fast walking speeds after an intervention which 

minimized robotic intervention; minimal corrections to the swing pattern provides better 

outcomes than full walking actuation [86].  The moving walking surface used in the current 

study could be used to target balance training during walking.  Because balance is an important 

factor that limits walking in neurologic patients [87], [88] , this approach could address unmet 

needs of current therapeutic approaches. 

 Improvements to balance confidence through therapeutic intervention are associated 

with gains in overground walking speed and improved walking kinematics in the elderly 

populations [89].  Balance confidence is the limiting factor to performance in elderly and 

neuropathic populations during walking tasks, improving this balance confidence through 

therapeutic intervention improves walking parameters and results in a better quality of life. 
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2.7.2 Proactive Balance Compensation 

 Various amplitude-banded oscillations caused one singular change in proactive stepping 

parameters relative to normal walking and did not change across the course of the trial.  For 

Pitch (Figure 2.4), Roll (Figure 2.3), and ML (Figure 2.2) amplitude oscillations the spatio-

temporal compensation jumped at StD0: SW and ML-MoS tended to increase while SL and AP-

MoS tended to decrease.  Of important note is the lack of change in either SW or ML-MoS in the 

ML Amplitude oscillations—preservation of frontal plane dynamics are important in maintaining 

balance and are often prioritized due to the inherent instability during walking [28].  By contrast, 

AP-MoS decreases voluntarily to decrease trunk velocity, mirroring work by Hak and Dingwell 

[3], [66]  Instead, it was amplitude oscillations in the Pitch and Roll dimensions which 

demonstrated the greatest compensation effect.  The change from level to non-level planes is 

likely the cause of this effect, forcing a switch from a purely ankle-based strategy of 

compensation to the combined ankle-hip strategy detailed in Horak’s work on standing platform 

motion[90]. 

 Frequency-based oscillations caused multiple changes in proactive stepping parameters 

across different oscillation types, indicating that they are the more effective at inducing balance 

challenges.  PitchFreq trials demonstrated decreases in SL and AP-MoS with corresponding 

increases in SW and MoS relative to Normal and StD0; more variability occurs in the sagittal 

plane dynamics relative to the frontal plane.  RollFreq and MLFreq oscillations demonstrate 

increasing compensation over the course of the trial, demonstrating less variability and more 

significant changes in corrective stepping in the sagittal plane.   

Comparison of these results to work with scaled pseudo-random signals demonstrates 

the impact of higher-frequency, quick accelerations on gait instability.  Previous work using 
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scaled pseudorandom signals in the ML plane yielded significant changes in proactive spatio-

temporal parameters as the scaling factor increased [3], [62].    ML-MoS also demonstrated a 

tendency to increase as the scaling factor increased [66].  However, there were no significant 

changes between scaling factor trials reported within these studies, consistent with our 

oscillations.  Our Amplitude-banded oscillations create similar balance disruption, but maintain 

mean velocity and acceleration profiles for future application in neuro-motor control response 

characterization. 

2.7.3 Reactive Balance Compensation 

 Anterior-Posterior accelerations demonstrate fewer significant differences before and 

after acceleration, demonstrating differences mainly between high and low accelerations 

(Figures 2.5 and 2.6).  SW and AP-MoS demonstrate significant compensation values 

immediately after a high acceleration.  However, Step Length only exhibits difference one step 

before and one step after the accelerations—i.e. during the length of the perturbation.  ML-MoS 

demonstrates that it is easily controlled proactively rather than requiring more reactive 

compensation after either a high or low acceleration in the sagittal plane, corroborating work on 

AP-translations of support surface, which saw minimal changes in MoS [62]. 

 Medial-Lateral accelerations demonstrate pronounced differences between high and 

low accelerations.  SL, SW, ML-MoS, and AP-MoS each exhibit significant differences between 

low acceleration and high acceleration responses.  The ML MoS more thoroughly demonstrates 

a ramp-up and ramp-down phenomenon in response to these challenges.  These are continuous 

oscillations with interspersed accelerations and exhibit fundamentally different reactions than 

work shown in AP slip trials where subjects do not modulate gait before reaching the potential 

fall hazard [91], [92].   
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Reactive balance compensation is an expected pattern of compensation in healthy 

young adults, while proactive balance compensation is a technique exhibited in low-balance-

confidence populations, such as SCI and trans-tibial amputee patients.  Work in dynamic low-

force medial-lateral pulls on healthy young adults suggests that neuropathic individuals are 

more likely to use long-term proactive changes to gait, while healthy young adults are more 

likely to take short-term reactive changes to gait parameters in order to maintain balance [2].  

Likewise, walking across a loose-rock surface by healthy young adults exhibited reactive changes 

in ML-MoS, increasing the variability of MoS, while trans-tibial amputees tended to take 

proactive changes in balance control, raising mean ML-MoS to preserve balance on an unstable 

surface [93].  However, these trials exhibit a layered proactive-reactive response, exhibiting 

proactive compensation during smaller accelerations, and adding additional reactive 

compensation during higher accelerations. 

This layered proactive-reactive approach blends both feedforward and feedback based 

balance compensation systems together.  In standing control during continuous platform 

motion, a change in oscillation frequency required four cycles in order to change feedforward 

adaptation to preserve balance [94].  During this transitional period, feedback-based balance 

control was used in order to facilitate balance, similar to work by Horak on unpredictable 

balance [95].  However, when changes in the platform motion are telegraphed to the user, EEG 

recordings note a predictive response for the event.  This study is a walking-based analog to the 

feedforward predictive cycle—feedforward balance presents as modulations to SW, SL, and 

AP&ML MoS mean values while further reactive stepping occurs after high- accelerations. 
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2.7.4 Study Limitations 

Limitations to this study include problems of comparing challenge across trials.  Pitch, 

Roll, and ML Translation are three different types of oscillation in the base—although Pitch and 

Roll were equivalent in degrees, the displacement of treadmill was greater in the Pitch 

oscillation due to the shape of the treadmill itself.  The displacement and velocity of the ML 

plane oscillation was matched to that of the Pitch and Roll, but as it occurs only in one axis 

movement rather than two, it is difficult to compare the difficulty side-by-side.  Because 

oscillations were continuous, it is difficult to gauge how rapid changes in acceleration impacted 

gait mechanics.  These quick changes were not administered at the same point in the gait cycle 

and thus limit the ability to assess reactive stepping when compared to other works. 

2.8 Conclusions and Future Direction 

There are distinct patterns of compensation which characterize changes in amplitude 

and frequency on during moving base oscillations.  Healthy young adult subjects are particularly 

thrown off balance by sudden changes in acceleration, adopting more conservative spatio-

temporal properties over the course of these trials as a whole; demonstrating that changes in 

signal frequency are more effective at disrupting balance than changes in amplitude.  

Disruptions in the Frontal plane cause more dramatic changes in temporal parameters overall, 

indicating that Roll and ML oscillations provide a greater challenge than Pitch balance 

disruptions. 

This work is important in order to more fully understand what causes greater challenges 

to balance in healthy young adults.  Motion base technology is becoming widely adapted across 

a variety of research and clinical settings, but there has always been a lack of clear guidelines for 

how to perturb subjects—it was very much dealer’s choice.  These results demonstrate a sliding 
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scale of oscillation types which force both proactive and reactive compensatory responses in SL, 

SW, AP-MoS, and ML-MoS while walking.  This becomes a useful tool for using the base to 

investigate or rehabilitate neurologically impaired populations—chronic stroke can be 

investigated on a perturbation by perturbation climbing scale to force more compensation over 

time and strengthen balance in over ground walking. 
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Chapter 3 

Conclusions & Future Directions 

 

3.1 Proactive and Reactive Compensation for Continuous Unpredictable Oscillations 

3.1.1 Brief Summary of Results 

During human walking under difficult conditions, balance compensation occurs in both a 

proactive and reactive manner during the course of continuous oscillations.  Subjects do exhibit 

an increased mean SW and MoS and reduced SL during the course of trials, but modulate that 

about that mean.  Subjects change these parameters in anticipation of a change in acceleration 

of the base, proactively modulating on a step-by-step basis towards a more stable method of 

locomotion, then two-steps after the perturbation moving back toward a more energy efficient 

gait mechanisms.  This proactive stepping mechanic was more prevalent in the frequency 

perturbations, where acceleration changed frequently, than the amplitude perturbations, where 

the absolute value of acceleration was constant.  

3.1.2 Step Frequency and Double Limb Support Time Variation and Balance Control 

 Although glossed over in the central manuscript, step frequency indicates a significant 

change over the course of these trials.  Step frequency increases uniformly across Amplitude 

trials to an average value of 1.83 Hz, while ramping upward from 1.73Hz to 1.93Hz during 

StD1_A and StD2 trials (Figure 3.1).  This increased stepping is not indicative of entrainment to 

the base—subject’s steps do not match an integer multiplier the 0.25Hz timing of the base.  

Significant differences exist between the Normal and Amplitude (p<0.01, Bonferroni Correction 

of 2), Frequency (p<0.001, Bonferroni Correction of 2).  Likewise, there is a significant difference 

between the Amplitude and Frequency perturbations (p<0.001, Bonferroni Correction factor of 

2).  This is confirmatory data that Frequency perturbations induce shorter step lengths than 
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Amplitude perturbations, requiring more steps overall to accommodate to the challenge.  

However, the fact that these steps occur with a greater frequency does not change the mean 

double limb support time. 

 Across all trials, including the normal walking trials, mean double limb support time 

remains nearly constant at 35% of the gait cycle (Figures 3.2 and 3.3).  This is much larger than 

the 20% of gait cycle which characterizes over ground walking, suggesting an overall subject 

discomfort and instability with walking on the base.  That subjects chose a lower walking speed 

of 1.00±.102 m/s compared to an average walking speed of 1.38 m/s for healthy adults 

demonstrates an initial trepidation with the system and cautionary planning before trials began 

[96].  Although the mean double limb support time for each oscillation time is essentially the 

same, the Coefficient of Variation for each oscillation varies significantly between perturbations.  

Variation increases from Normal to StD0_A to StD1_A to StD2 during Pitch, Roll, and Y 

Frequency perturbations.  This increased variation in double limb support time is the result of 

greater reactive stepping rather than proactive stepping. 
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Figure 3.1 Step Frequency in Hz was measured as the inverse of time between each step for 

each oscillation during the seven trials.  ML and Roll Frequency trials exhibited the greatest 

change, mirroring the changes in SL. 
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Figure 3.2: Double Limb Support Time was measured as the time between leading heel strike 

and trailing toe off as a percentage of standard gait cycle.  Coefficient of variation was calculated 

as the Standard Deviation of the oscillation divided by the mean of the oscillation double-limb 

support time.  Presented are the changes in double limb support time proper and the coefficient 

of variation for the Normal, PitchAmp, RollAmp, and MLAmp Trials. 
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Figure 3.3: Double Limb Support Time was measured as the time between leading heel strike 

and trailing toe off as a percentage of standard gait cycle.  Coefficient of variation was calculated 

as the Standard Deviation of the oscillation divided by the mean of the oscillation double-limb 

support time.  Presented are the changes in double limb support time proper and the coefficient 

of variation for the PitchFreq, RollFreq, and MLFreq Trials. 
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3.2 The Effect of Added Visual Feedback on Walking Ability 

 A lack of visual feedback negatively impacts subject’s ability to predict and compensate 

for future perturbations of the base—adding visual feedback to this system could either limit 

the reactive stepping potential or enhance it over time.  Visual feedback allows participants to 

“see down the path” and predict future obstacles, which should allow for greater on-line 

modification of control parameters rather than triggering purely reactive stepping.  However, 

visual flow information could also be exploited to enhance perturbation difficulty by 

encouraging complicated stepping patterns or increasing CoM sway. 

3.2.1 The Effect of Medial-Lateral Visual Flow on Instability in Unperturbed Treadmill Walking 

Work with simple over ground treadmills and visual flow information demonstrate that 

subjects adapt SW and SL to ML visual-flow perturbations [97].  These visual perturbations were 

applied at amplitudes of 20, 35, and 50 cm as a sum of three sine waves, similar to work done 

on pseudorandom perturbations in treadmill walking.  Adaptation occurs at the onset of 

perturbation in the form of increased SW and decreased SL; both metrics exhibited an increase 

in variation as well.  Over the course of the eight-minute trial subjects regressed toward 

unperturbed levels of walking, suggesting more reactive balance control.  However, when 

pseudorandom oscillation is paired with treadmill walking researchers do not report a 

regression towards normal walking patterns over the course of 2 minute trials [3], [66].  This 

suggests that paired visual-feedback to base motion may provide a two-fold method of balance 

disruption, with visual-motor disruption increasing the disruption input by the base. 

 Mechanistically, disruption of balance by visual flow can be explained by entrainment of 

CoM sway to flow speed.  Fran et al. again explored ML visual flow perturbations during 

treadmill walking, perturbing healthy young adult subjects using five different carrier 
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frequencies: 0.155 Hz, 0.31 Hz, 0.62 Hz, 0.93 Hz, and 1.24 Hz.  CoM sway amplification was three 

times larger when carrying frequency matched to average stride frequency at 0.93 Hz [97].  

Because CoM sway is associated with a greater need for spatio-temporal stepping measurement 

to correct and control balance during walking, matching the ML perturbation to stepping 

frequency can provide the greatest level of balance disruption while walking in healthy adults.  

Matching this paradigm dynamically to walking speed and frequency modulated by a moving 

treadmill could amplify this effect, forcing subjects to greater levels of balance compensation 

than unpaired combinations. 

3.2.2 The Effect of Visual Flow Information on Instability in Perturbed Treadmill Walking 

 Very little work has been done on utilizing visual flow disruption in conjunction with 

motion base oscillation or perturbation: often, the visual flow presented matches the motion of 

the base.  Pseudorandom oscillations bound between ±10cm of ML perturbation have been 

studied and found to influence SW, SL, and MoS but have a marginal effect on self-selected 

walking speed [3].  Visual flow has been studied at 10x greater disruption in tandem with base 

disruption: this perturbation type elicits greater SW and SL variability and proactive step 

compensation that likewise characterizes work in this study [62].  However, the effect of 

inversing or time-delaying visual feedback when paired with base motion has yet to be studied 

and represents a rich vein of future material. 

 Visual cueing in the form of stepping stones and visual obstacles have been studied to 

disrupt balance.  The CAREN system has been used to generate a flow of stepping stones which 

exhibit dramatic shifts and force new foot placement [98].  This study’s major limitation is the 

ability of the subject to look down at the stones for stepping—visual flow information ends at 

the beginning of the treadmill in the CAREN environment.  This could be rectified by conducting 
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experiments in new fully-immersive VR headsets, giving subjects the full freedom to look down 

and more effectively hit the targets.  This methodology could be applied to ataxic individuals, 

such as persons with M.S., to induce greater balance challenges and train compensatory 

strategies more effectively.  Altering the time delay of this flow information could likewise be 

used to reduce intention tremor, similar to the work currently focusing on upper-limb motion 

[99].  
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Appendix A—Motion Base Communication Protocol 

The Motion Base is controlled via one Host computer with a custom LabVIEW Program.  This 

program sends command data from the Host Computer to the Motion Base Computer.  The 

Motion Base Computer then interprets this data and sends it to the base via Fiber Optic Cable, 

see Figure A.1.   

 

Figure A.1: The Host Computer is linked to the Motion Base Computer via an Ethernet 

Connection.  Static Port 10.1.10.1 is set to the Host, Static Port 10.1.10.2 is set to the Motion 

Base Computer.  Host Computer Subnet Mask is static at 255.255.255.0. 

 

Figure A.2: The Host Computer message system Consists of several hexadecimal byte strings 

stitched together to denote the type of Motion, either Length or Degrees of Freedom, and 
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command message to Engage, Disengage, etc, as well as either Actuator Length or DoF Location 

Data.   

 

 

Figure A.3: The Motion Base Computer sends messages back to the Host Computer in 

Hexadecimal code. 
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Appendix B—Motion Base LabVIEW Controller Overview 

The Current motion base control file allows for multiple different types of controls: a 

degree of freedom mode, length-of-actuator mode, File Replay Mode, and 

PsuedoRandom Mode.  Each of these modes has two options: manual (base moves to 

position and stops) or sine-wave (base moves continuously through a sine wave). 

The base can change between these modes by toggling the switches and hitting the 

‘RESET’ button (3).  Without clicking reset, the mode remains the same. 

 Testing SubVI cluster, used to name text files and used during CoP and EMG recordings 

1. Manual Degree of Freedom Controls, used in manual mode to move the base to a 

static position in one of six degrees of freedom. 

2. Reset button, used to change between different controls 

3. Sine Wave Degree of Freedom controls, used to move the base in a sine wave 

fashion.  

a. Control type A moves the base immediately after change, while B has a 

push button delay.   

b. Type B allows for multiple sines to be input at once using (5). 

4. Start button, used to pass multiple inputs from Sine Wave DoF Type B controls.  

Ony functions when controller is in DoF Sine Wave Control. 

5. Stop button.  Provides an emergency stop to base movements if subject slips, 

trips, or is otherwise disturbed.  Can be used at any time during testing. 

6. Case Selector selects Degree of Freedom, length, or base disengage.  To cycle 

between them, choose a new one and click ‘RESET’. 
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7. Switches, left is used for controlling Sine Wave or Manual for both degree of 

freedom and length tests.  Right controls whether Length test is a total-height of 

treadmill test or if manual control of actuators is requested. 

8. Length test, controls Z length of treadmill in either manual or sine wave. 

9. Individual actuator lengths, controls lengths of actuators when selected using 

both (7) and (8) 

10. Feedback panel which displays current motion state. 

Degree of Freedom Manual Control:  (7) must be set to “Degree of Freedom Test” and the 

switch set to manual.  This mode allows for static inputs of one degree of freedom by 

sliding the bar or entering the degree.  The maximum degree of freedom input 

combination without interfering is 8 degrees for Roll, Pitch, and Yaw.   

Degree of Freedom Sine Wave Control: (7) MUST BE SET TO “Degree of Freedom Test” 

and the switch set to Sine Wave.  The maximum single degree of freedom is +/- 15 

degrees for Roll, Pitch, and Yaw.  The maximum single degree of movement is 9 inches 

for X and Y, 5 inches for Z.  Maximum Frequency for these movements is .2 Hz 

Maximum combined Roll, Pitch, and Yaw is 8 degrees each in combination.  Maximum 

combined X, Y, and Z is 5 inches each.  Negative inputs move the base in a different 

direction upon initial movement, creating a negative sine wave.  

To use the A control, input a value to both the amplitude and frequency bars.  As soon as 

both bars are filled, the base will move.  Currently, the base is programmed to displace a 

random point on the sine curve and continue the motion. 

To use the B control, input both values and click start.  Multiple values can be input into 

multiple different blocks and the system can be “started” together by clicking (5). 

Length Manual/Sine Wave Control: After selecting Length Test in (7) and either manual or 

Sine Wave control on the switch 1 and Height on Switch 2, this function adjusts the base 

height in either a static or sine wave. 

Length of Actuator Control: (7) Set to length test, Switch 1 set to manual, and Switch 2 set 

to length of actuator.  This allows for adjustment of the lengths of each actuator.  Serves 

no practical purpose, but is a neat party trick. 

Replay Mode—DoF or Length: (7) Change the dropdown menu to either Replay Mode—DoF or 
Replay Mode—Length.  Under the respective Replay Mode tab, the file path is set to where the 
pre-generated replay files are stored.  When launching the base, all the data will be read in 
before Engaging.  Set the length of the file to replay in seconds.  File to run begins at 0, set the 
file and click Start Replay to begin the replay of the file.  Unclick the button to stop replay. 

DoF replay files are formatted for Pitch (radians), Roll (radians), Yaw (radians), X (meters), Y 
(radians), and Z (meters) with 6 columns for each data stream to send.  Length replay files are 
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formatted for Acutator A (meters), B (meters), C (meters), D (meters), E (meters), and F (meters) 
with 6 columns for each data stream to send.   

Randomized DoF: (7) Change the dropdown menu to Randomized DoF and click reset.  This 
allows for base movements following the ML pseudorandom motion but builds it for Pitch, Roll, 
Yaw, X, or Y motions (Hak 2012) [3]. 
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