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Abstract: The problem of computing the minimum tiling path (MTP) from a set of clones arranged in a 
physical map is a cornerstone of hierarchical (clone-by-clone) genome sequencing projects. We 
formulate this problem in a graph theoretical framework, and then solve by a combination of minimum 
hitting set and minimum spanning tree algorithms. The tool implementing this strategy, called FMTP, 
shows improved performance compared to the widely used software FPC. When we execute FMTP and 
FPC on the same physical map, the MTP produced by FMTP covers a higher portion of the genome, and 
uses a smaller number of clones. For instance, on the rice genome the MTP produced by our tool would 
reduce by about 11 percent the cost of a clone-by-clone sequencing project. Source code, benchmark 
data sets, and documentation of FMTP are freely available at http://code.google.com/p/fingerprint-
basedminimal-tiling-path/ under MIT license. 
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SECTION 1 

Introduction 

A physical map is a partial ordering of a set of genomic clones (usually bacterial 
artificial chromosomes or BACs) encompassing one or more chromosomes. A physical map 
can be represented by a set of unordered contigs, where each contig is a set of overlapping 
clones (see Fig. 1). A physical map is usually obtained by digesting BAC clones via 
restriction enzymes into DNA fragments and then measuring the length of the resulting 
fragments (restriction fingerprints) on an agarose gel. Since restriction enzymes cut clones 
at specific sites, overlapping clones in the genome will share a much larger number of 
fragments with similar length than nonoverlapping clones. By comparing all restriction 
fingerprints pairwise, overlaps between clones can be detected, and clones can be 
eventually “assembled” in a physical map. To minimize gaps, each genomic location is 
covered by many BACs in the physical map. This redundancy has to be removed before 
sequencing the clones. The smallest set of clones that spans the region represented by the 
physical map is called minimum tiling path (MTP) (see Fig. 1). The problem of computing 
the MTP can be approached at the level of each contig. Given a set of clones in a contig 
along with their restriction fingerprints, select the minimum set of clones that covers the 
same genomic region of the contig.  

 

 
Fig. 1. Illustrating the MTP of a physical map. A physical map consists of a set contigs, where each contig 
is a set of overlapping BAC clones. The MTP is the smallest set of clones that cover the same genomic 
region covered by the physical map. 

Determining the smallest set of clones that cover a genome is a critical step in clone-
by-clone (or hierarchical) sequencing projects. In this protocol, first a physical map is 
constructed, then clones in the MTP are sequenced one by one.1 The clone-by-clone 
sequencing method has been used to sequence several genomes including A. thaliana2 and 
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H. sapiens3 among others. Also, in several recent whole-genome shotgun sequencing 
projects, the MTP obtained from a physical map has been employed to validate and 
improve the quality of sequence assembly.4 This validation step has been used, for 
example, in the assembly of M. musculus,5 R. norvegicus,6 and G. gallus.7 

While shotgun sequencing is currently the most popular protocol for whole genome 
sequencing because it does not require cloning, the clone-by-clone approach has some 
advantages in certain domain of applications. For instance, very large/repetitive genomes 
can be extremely challenging to assemble, in particular from short reads obtained from 
next-generation sequencing instruments. In the clone-by-clone protocol, sequenced reads 
are separated into sets that represent individual BACs, and some sequences that are 
repetitive in the context of the whole genome can have only a single copy in each BAC; this 
greatly simplifies the assembly. Another advantage of the clone-by-clone approach is the 
ability of sequencing only a portion of a genome, a strategy called selective sequencing. One 
can focus, for instance, on the gene-rich fraction of the genome. To identify gene-rich 
segments, one can take advantage of EST sequences to design probes for screening, use 
gene enrichment techniques like methyl-filtration or high 𝐶𝐶𝑜𝑜𝑡𝑡 selection, or employ 
microarrays to capture the genomic DNA fragments that are enriched for genes. 

As said, computing the MTP from restriction fingerprints is challenging. If the exact 
locations of all clones in the physical map were known, the problem would be 
straightforward; simply select the set of clones in the shortest path from the leftmost clone 
to the rightmost clone in the interval graph representing all the clones. This ideal scenario 
is, however, far from the reality because noise in the fingerprinting data can only provide 
us with approximate clone overlaps. 

Although the problem of computing an MTP has been studied previously (see, 
e.g.,2,8,9), in practice there is only one commonly used software tool, namely, FingerPrinted 
Contigs (FPC).10 FPC builds a physical map from fingerprinting data and it offers two 
methods to compute an MTP. One of these methods uses sequence comparison between a 
draft sequence and BAC end sequences (BESs), whereas the other method uses solely 
restriction fingerprint data. Since a draft sequence and BESs are usually not available in the 
early stages of the physical mapping projects, we only consider the second method in this 
paper (hereafter called FPC unless specified otherwise). 

The FPC's MTP algorithm works as following: For each contig, an overlap score is 
computed for all pairs of clones that have a distance less than a user-specified maximum in 
the contig. To compute the overlap score, FPC incorporates restriction fingerprint data of 
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three extra clones, namely, a spanner clone that spans both clones in the pair and two 
flanking clones that extend to the left and right of the pair. The distance between clone 
pairs, and selection of spanner and flanking clones are based the coordinates of clones in 
the contig. The overlap score of the pair is computed as a weighted sum of number of 
matching fragments between clones in the pair, number of unmatching fragments in the 
spanner clone to either clone in the pair and number of unmatching fragments in the clone 
in the pair to either spanner or flanker clones. Once the overlap score between all pairs in 
the contig is computed, FPC uses clone coordinates in the contig to select the subset of 
clones that cover the entire contig by minimizing the total overlap score.10 

The performance of FPC is good, but it can be improved. Experimental results will 
show that the MTP computed by FPC can be significantly far from the perfect MTP, which is 
the MTP we would compute if we knew the genomic coordinates of all clones. In general, 
FPC selects fewer clones than necessary that in turns reduces the overall coverage. By 
changing parameters, one can increase the coverage, but this comes at the cost of 
introducing redundant clones (i.e., clones that do not provide additional coverage). 

1.1 Our Contribution 

We propose a new algorithm called fingerprint-based MTP (FMTP) that computes 
the MTP of a physical map based purely on restriction fingerprint data. Our algorithm 
analyzes each contig separately and completely ignores the ordering of clones in the contig 
obtained during the construction of the physical map, because such ordering is often 
unreliable due to noise in restriction fingerprint data. 

FMTP first computes a tiling path by selecting a set of clones that covers the 
genomic region that is covered by all clones in the contig. This preliminary tiling path may 
contain redundant clones. The problem of computing the tiling path is formulated as a 
minimum hitting set problem and solved heuristicly. In the second phase, FMTP orders the 
clones in the tiling path and computes the MTP by using a shortest path algorithm. In the 
earlier version of this work,11 we used integer linear programming to solve the minimum 
hitting set problem optimally. One of the anonymous reviewers suggested an alternative 
greedy heuristic that produced MTPs with higher coverage. The greedy approach is what is 
described below. 

We carried out an extensive set of experiments on physical maps of rice and barley 
based on real restriction fingerprint data and a synthetic physical map of rice based on in 
silico fingerprint data. For the rice data set, the actual coordinates for the clones are known 
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and, therefore, we could measure the accuracy of our algorithm. Experimental results show 
that although both tools are unable to achieve 100 percent coverage, the MTPs computed 
by FMTP for both real and synthetic physical maps for rice has higher coverage than the 
ones produced by FPC while using approximately the same number of clones. This suggests 
that a larger portion of the genome could be obtained for the same sequencing cost. Our 
experimental results also show that if one fixes a given MTP coverage, FMTP produces 
MTPs with about 11 percent fewer clones than FPC. This suggests that replacing FPC by 
FMTP would reduce the sequencing costs by the same amount. 

SECTION 2 

Methods 

We use the term clone fragment (or fragment) to indicate a portion of a clone 
obtained by digesting it with a restriction enzyme. Let 𝑏𝑏(𝑢𝑢) be the size for clone fragment u. 
We say that two clone fragments u and v match if their corresponding sizes are within the 
tolerance T, i.e., if |𝑏𝑏(𝑢𝑢) − 𝑏𝑏(𝑣𝑣)| ≤ 𝑇𝑇. The tolerance parameter depends on the 
fingerprinting method, thus it should match the one used in the construction of the physical 
map [12]. Given a fragment u, let N(u) be the unique ID of the clone that u belongs to. This 
notion can be extended to a set of fragments: given a set of fragments U,N(U) represents 
the set of all clones that contain at least one fragment in U. 

We say that two clones 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑗𝑗 are overlapping if their Sulston score S is lower than or 
equal to a user-defined cutoff threshold C, i.e., 𝑆𝑆(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗) ≤ 𝐶𝐶. The Sulston score measures the 
probability that two clones share a given number of fragments by chance according to a 
binomial probability distribution.13 FPC's physical mapping construction module uses an 
analogous cutoff parameter.12 

A matching fragment graph (MFG) of a contig is a weighted undirected graph G=(V,E) in 
which V represents the set of all clone fragments and an edge (u,v)∈E exists if fragment 
u matches fragment v and S(N(u), N(v))≤C. The weight on the edge (u,v)∈E is defined as 
the negative logarithm of S(N(u),N(v)). In an ideal MFG, each connected component of the 
MFG G should correspond to a unique region in the target genome. In practice, due to noise 
in the fingerprint data and falsely matching fragments, each unique region can be 
fragmented in several connected components in the MFG. 

Given a connected component H=(Y,F),Y⊆V,F⊆E we call N (Y ) a connected 
component cloneset (or cloneset if it is clear from the context). We say that a clone c covers 
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a connected component H of G if it belongs to the corresponding cloneset, i.e., c∈N(Y). 
Given an ideal MFG G, the MTP of G is the smallest set M of clones that cover all connected 
components of G, i.e., M∩N(Y)≠∅ for all connected components H of G. 

A small example of an MFG is shown in Fig. 2a. Each node is labeled as <clone name>-
<fragment size>-<copy number of the fragment>. Clones K, L, M, N, and O are 
overlapping. Shared fragments are represented by the connected component of the MFG 
(namely, fragments of approximate size of 1,870, 1,805, 1,255, and 1,400 bases, 
respectively). For example, given the connected component H=(Y,F) where Y={L-1,803-
1,M-1,807-1,N-1,802-1}, the cloneset N (Y ) is {L, M, N}. If we assume that this is an ideal 
MFG, the MTP would be {L, O} because by selecting these two clones we cover all the 
connected components of the graph.  

 

 
Fig. 2. (a) An example of an MFG. Each node represents a clone fragment and is labeled as the <clone 
name>-<fragment size>-<copy number of the fragment>. Each edge is weighted by the negative 
logarithm of the Sulston score between the clones that contain the incident node fragments. (b) Overlap 
graph of clones in this MFG. There is an edge between two clones if their fragments are together in at 
least one connected component in the MFG. 

2.1 Algorithm 

Before giving the details of our algorithm, we formally define the problem as 
follows: 

Problem statement: 

http://dx.doi.org/10.1109/TCBB.2013.26
http://epublications.marquette.edu/
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/8857/6576754/6487488/6487488-fig-2-large.gif
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/8857/6576754/6487488/6487488-fig-2-large.gif


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the 
link in the citation at the bottom of the page. 

IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol 10, No. 2 (March 2013): pg. 352-360. DOI. This article is © Institute of 
Electrical and Electronics Engineers (IEEE) and permission has been granted for this version to appear in e-Publications@Marquette. Institute of 
Electrical and Electronics Engineers (IEEE) does not grant permission for this article to be further copied/distributed or hosted elsewhere 
without the express permission from Institute of Electrical and Electronics Engineers (IEEE). 

7 
 

Input: Restriction fingerprints for a set of clones that belong to a contig. Each clone 
covers an unknown contiguous region (interval) of the genome; the coverage of a contig is 
the union of the intervals of its clones. 

Output: The smallest subset of clones that cover all the bases covered by the contig. 

The algorithm in FMTP is composed of two modules, namely the minimum hitting 
set module (MHS_MODULE) and the minimum spanning tree module (MST_MODULE) (see 
Fig. 3a). The MHS_MODULE aims to compute a tiling path without considering the possible 
redundancy by solving a minimum hitting set problem. The objective of MHS_MODULE is to 
cover all connected components in the MFG using the smallest set of clones. Since MFG is 
not ideal as mentioned above, the preliminary tiling path is expected to contain redundant 
clones. In the second phase, MST_MODULE removes redundant clones without affecting the 
coverage. The MST_MODULE computes the MTP based on an overlap graph: first it orders 
the clones in the tiling path, and then it runs a shortest path algorithm to compute the MTP.  

 

 
Fig. 3. (a) Flowchart of FMTP. First a preliminary tiling path is computed by MHS_MODULE. Then final 
MTP is computed by MST_MODULE. (b) Flowchart of MFG construction. This step is included in both 
modules. 

2.1.1 Constructing the MFG 

FMTP builds an MFG for each contig in the physical map so that each connected 
component in the MFG represents a unique region in the genome. To achieve this, for each 
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contig, after removing clones that are completely contained in others, FMTP performs a 
pairwise alignment between the remaining ones based on their restriction fingerprint data. 
The alignment produces the initial MFG. Then, some of the false-positive edges (i.e., falsely 
matched fragments) are removed and the final MFG is constructed, as illustrated in Fig. 3b 
and described below in more details. 

Preprocessing: burying clones. A clone is defined buried if B percent or more of its 
fragments are matching fragments of another clone, where B is a user-defined parameter. 
Since a buried cloned should not be selected as MTP clone, in this preprocessing step, we 
aim to reduce the problem size and false-positive edges in the MFG by discarding buried 
clones. If two clones can be buried into each other, the smaller of the two (i.e., the one with 
fewer fragments) is buried into the other one. FPC also buries clones during the process of 
building the physical map, but it does not discard them during MTP computation. 

Building the preliminary MFG. First, we align each pair of overlapping clones based 
on their restriction fingerprint data. For each clone pair (𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗) for which 𝑆𝑆(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗) ≤ C, we 
build a bipartite graph 𝐺𝐺{𝑖𝑖,𝑗𝑗} = (𝐿𝐿𝑖𝑖 ∪ 𝑅𝑅𝑗𝑗, 𝐸𝐸{𝑖𝑖,𝑗𝑗}), where 𝐿𝐿𝑖𝑖 and 𝑅𝑅𝑗𝑗 consist of the fragments of 𝑐𝑐𝑖𝑖 
and 𝑐𝑐𝑗𝑗, respectively, and the set of edges is 𝐸𝐸𝑖𝑖,𝑗𝑗 = {(𝑢𝑢, 𝑣𝑣)|𝑢𝑢 ∈ 𝐿𝐿𝑖𝑖, 𝑣𝑣 ∈ 𝑅𝑅𝑗𝑗suchthat|𝑏𝑏(𝑢𝑢) −
 𝑏𝑏(𝑣𝑣)| ≤ 𝑇𝑇}. To align clones 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑗𝑗, we search for the maximum bipartite matching in 
𝐺𝐺{𝑖𝑖,𝑗𝑗}. The matching of maximum cardinality is found by solving maximum flow on the 
corresponding flow network.14 Let 𝑀𝑀{𝑖𝑖,𝑗𝑗} be set of matched edges. For all clone pairs (𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗) 
for which 𝑆𝑆(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗) ≤ 𝐶𝐶, the matching edges in 𝑀𝑀{𝑖𝑖,𝑗𝑗} are used to create the (preliminary) 
MFG G. Specifically, for each edge (𝑢𝑢, 𝑣𝑣) ∈ 𝑀𝑀{𝑖𝑖,𝑗𝑗}, nodes u, v and edge (u , v ) are added to 
G (unless they are already present). The weight of (u , v ) is set to be the negative logarithm 
of the Sulston score between clone 𝑐𝑐𝑖𝑖 and clone 𝑐𝑐𝑗𝑗. 

The objective of the bipartite matching is to attempt to group together clone 
fragments that are located at the same location on the genome. Because of noise in the 
fingerprint data, some of the matched fragments might not represent the same region in 
the target genome. In the following steps, we try to eliminate as many false-positive 
matches as possible. 

MFG pruning. In this step, some of the components of G that might represent more than 
one unique region in the target genome are split. The aim of this step to increase the 
accuracy of MFG so that later steps can compute an MTP with high coverage and less 
redundancy. Specifically, we examine all the connected components of G and mark those 
that satisfy at least one of the following conditions as candidates: 
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1. Extra fragment. Since each fragment of a clone maps to a unique location in the 
genome, two or more fragments of the same clone should not be in the same 
connected component. If a connected component contains multiple fragments of a 
clone, it is possibly falsely merged. 

2. Unmatched fragments. Fragments that represent a common region must have 
similar lengths. If the difference between the length of the second shortest and the 
second longest fragment in the connected component is more than the tolerance 
value T, it is marked as a candidate to be split. We ignore the shortest and the 
longest fragments to allow two outliers per component. 

3. Weak overlap. If a connected component contains at least one pair of clones that are 
very unlikely to overlap (i.e., have Sulston score of at least 1e-3 for MHS_MODULE or 
1e-1 for MST_MODULE) then this connected component is likely to represent more 
than one unique region in the target genome. 

For each candidate component, we further check whether the criteria above are met 
even though the component could represent a unique region in the genome. A connected 
component might be incorrectly marked to be split for various reasons. For instance, if a 
clone fragment is reported more than once in fingerprinting stage then these multiple 
fragments would appear in the same connected component, which then satisfies condition 
#1 above. We mark a candidate component as noncandidate if the average weight of edges 
that would be removed to split the component is much higher (i.e., 1.5-fold) than −log(C). 
We would like to split each remaining candidate components so that fragments of 
nonoverlapping clones are no longer in the same component (since they do not represent 
the same genomic region). We aim to split the components by removing the weakest set of 
edges (i.e., minimum total edge weight) as these edges probably connect fragments of 
nonoverlapping clones. Thus, each remaining candidate component is partitioned using a 
min-cut algorithm.15 After a component is partitioned into two subgraphs, we check both 
subgraphs against the conditions above and we partition them recursively until no more 
components satisfy the conditions. 

Postprocessing: removing clones that are buried into multiple clones. Recall that the 
goal of the first step in the construction of the MFG is to bury clones into other clones to 
reduce the problem size. In this step, we reduce the problem size further by removing 
clones that are buried into multiple clones. For example, in Fig. 4 clone C is buried into 𝐵𝐵 ∪
𝐷𝐷, thus C can be removed.  

 

 
Fig. 4. A layout of five clones in a contig based on their actual genome coordinates. 
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For each clone in a contig, we compute the ratio between the total length of its 
fragments in the MFG and the total length of its fragments. If at least B ′ percent of the total 
fragment length is covered in the MFG then we declare that clone buried. However, there is 
a complication. It is possible that two clones are mutually buried and, therefore, we cannot 
remove both. To solve this problem, we first identify all possible candidates that can be 
buried into multiple clones. Then, we examine each connected component U of G, and save 
N (U ) in a list L if all clones in N (U ) are candidates to be buried. 

All candidates that do not exist in any 𝑁𝑁(𝑈𝑈) ∈ 𝐿𝐿 can be buried. However, we need to 
make sure that at least one clone in each 𝑁𝑁(𝑈𝑈) ∈ 𝐿𝐿 is not buried; otherwise, the region in 
the target genome that is represented by U will not be covered. So the task is to remove as 
many candidate clones as possible with the constraint that at least one clone from each 
cloneset 𝑁𝑁(𝑈𝑈) ∈ 𝐿𝐿 is kept. This problem is called minimum hitting set and it is NP-complete 
(polynomial reduction from the vertex cover problem16). Here, we solve it suboptimally 
using a greedy approach.16 At each iteration, we 

1. select the clone c that occurs in the maximum number of clone sets in L, 
2. remove all clone sets that contain c, 
3. save c into minimum hitting set H, and 
4. repeat. 

The iterative process terminates when the list L becomes empty. 

Buried clones are removed from the MFG permanently. If this removal introduces 
components with only one node, they are also removed from the MFG permanently. The 
algorithm is summarized in Fig. 5.  
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Fig. 5. Sketch of the algorithm that removes clones that are buried into multiple clones. 

2.1.2 Selecting Essential MTP Clones 

Clones that have to be selected as MTP clones are called essential clones. More 
specifically, if the total length of fragments that are not present in the MFG is at least 30 
percent of the total length of all fragments of a clone then that clone is marked as essential. 
When a clone is marked as essential, it is immediately stored in the MTP and ignored for 
further analysis by removing all of its fragments from the MFG. 

2.1.3 MHS_MODULE: Computing the Tiling Path by Solving the Minimum Hitting Set 
Problem 

Recall that the MTP can be computed by selecting the smallest set of clones that 
cover all connected components of an ideal MFG. This problem is known as the minimum 
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hitting set problem. Since, we do not necessarily have an ideal MFG, set of clones that cover 
all connected components of the MFG will produce a preliminary tiling path. We solve the 
minimum hitting set problem suboptimally using a greedy approach as described above 
(see section postprocessing: removing clones that are buried into multiple clones). 

2.1.4 MST_MODULE: Solving the MTP via Minimum Spanning Tree 

From this point onward, all the clones in the physical map that do not belong to the 
preliminary tiling path are disregarded. A new MFG G=(V,E) is constructed only on the 
clones in the preliminary tiling path. An overlap graph is built from G, and then the 
minimum spanning tree (MST) of the overlap graph is computed to order the clones. 
Finally, the shortest path from the first clone to the last clone in the ordering is computed. 
Clones on this path constitute the final MTP. Here are the details. 

First, MST_MODULE attempts to order the clones in the preliminary tiling path. For 
this purpose, a weighted overlap graph 𝐺𝐺𝑜𝑜 = (𝑉𝑉𝑜𝑜, 𝐸𝐸𝑜𝑜) is constructed for each contig, where 
𝑉𝑉𝑜𝑜 is the set of preliminary tiling path clones in each contig and 𝐸𝐸𝑜𝑜 = {(𝑢𝑢, 𝑣𝑣)|∃𝑈𝑈 ∈
𝐺𝐺 suchthat (𝑢𝑢, 𝑣𝑣) ⊆ 𝑁𝑁(𝑈𝑈)}. The weight of edge is again the negative logarithm of the 
Sulston score between u and v. 

Fig. 2b shows the overlap graph for the MFG in Fig. 2a. For example, there is an edge 
between clones K and L because their fragments occur together in at least one connected 
component in the MFG (see Fig. 2a). 

By computing the MST of an edge-weighted overlap graph where the edge weights 
are proportional to the overlap size we obtain an ordering of nodes in the graph.17 
Although the correlation between Sulston score and overlap size is not perfect, the MST 
still gives very accurate ordering because the clones originate from the preliminary tiling 
path and not from the original physical map. Recall that in the preliminary tiling path a 
clone is not expected to overlap too many clones with similar overlap size. 

According to our experiments, the MST of 𝐺𝐺𝑜𝑜 is usually a path. When the MST is not a 
path, the relative ordering of some of the clones may not be determined. However, this is 
not a serious problem if we can detect a pair of overlapping clones that cover the group of 
clones whose order is undetermined. Because of this overlap, clones with unknown relative 
ordering do not need to be in the MTP; hence, they can be discarded in the analysis. 
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Once the MST of 𝐺𝐺𝑜𝑜 is computed, we pick the longest path P in the tree. If there is 
more than one such path, we select the path with the smallest total weight. The rationale is 
to minimize the total overlap size between consecutive clones, and thus select the path 
with highest coverage. The clones in P cover almost the whole contig, but they may not be 
an MTP. To find the MTP, the path P must be augmented with high confidence overlap 
edges and a shortest path must be found. 

To minimize the possibility of adding false-negative and false-positive edges to P, we 
use several criteria based on the Sulston score and the MFG. The details of this algorithm 
are shown in Fig. 6. After augmenting P, the shortest path from 𝑢𝑢1 to 𝑢𝑢|𝑃𝑃| (in terms of 
number of hops) is computed. All nodes in this path are chosen as the MTP clones of this 
contig.  

 

 
Fig. 6. Sketch of the algorithm that detects overlapping clones in an ordered clone list. At each iteration 
four conditions are checked to determine if 𝑢𝑢𝑖𝑖 and 𝑢𝑢{𝑖𝑖+𝑑𝑑} are overlapping where 𝑢𝑢𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ |𝑃𝑃|, is the i th 
clone in P. All conditions have to be true to add edge (𝑢𝑢𝑖𝑖, 𝑢𝑢{𝑖𝑖+𝑑𝑑}) to P. In lines 7 and 8, we check whether 
the clone pairs 𝑢𝑢𝑖𝑖, 𝑢𝑢{𝑖𝑖+𝑑𝑑−1} and 𝑢𝑢{𝑖𝑖+1}, 𝑢𝑢{𝑖𝑖+𝑑𝑑} are overlapping. If at least one of these pairs do not overlap 
then 𝑢𝑢𝑖𝑖 and 𝑢𝑢{𝑖𝑖+𝑑𝑑} cannot be overlapping (assuming that no clone is completely contained in another 
clone). In line 9, we check if clones 𝑢𝑢𝑖𝑖, 𝑢𝑢{𝑖𝑖+1}, … , 𝑢𝑢{𝑖𝑖+𝑑𝑑} have fragments together in at least one connected 
component of G. If 𝑢𝑢𝑖𝑖 and 𝑢𝑢{𝑖𝑖+𝑑𝑑} are overlapping then 𝑢𝑢𝑖𝑖, 𝑢𝑢{𝑖𝑖+1}, …, 𝑢𝑢{𝑖𝑖+𝑑𝑑} have to be overlapping, and 
therefore they should share at least one fragment in G. At the end, we check if 𝑆𝑆(𝑢𝑢𝑖𝑖, 𝑢𝑢{𝑖𝑖+𝑑𝑑}) ≤ 𝐶𝐶. 
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2.2 Implementation 

FMTP is implemented in C++ and Perl. It uses the Boost C++ library for graph-
based functions. FMTP has been tested on Linux and Mac OS X platforms. The source and 
documentation of FMTP is freely available.1 

2.3 Data Sets 

Real fingerprint data for rice and barley. We used genomic data of two plants, 
namely, barley and rice, to compare our software to FPC. 

First, we constructed the physical maps using FPC's physical mapping construction 
module and our compartmentalized assembler method19 on real restriction fingerprints of 
rice2 and barley3 BACs.18 The rice physical map that we used contains 22,486 clones, 2,070 
contigs, and 2,593 singletons; and it is a subset of the publicly available rice physical map.4 
Specifically, our map contains only the subset of clones whose BESs could be uniquely 
mapped to the genome. Details of this procedure were given in.19 The barley physical map 
contains 72,052 clones, 10,794 contigs, and 10,598 singletons. 

Then, we ran FPC and FMTP on both physical maps and obtained their MTPs. To 
objectively measure the quality of the MTPs, we used genomic coordinates available for 
rice clones (but not for barley because its genome has not been sequenced yet). 

Synthetic rice physical map based on in silico restriction fingerprint data. To 
compare the performance of both FPC and FMTP at ideal conditions, we generated a 
physical map of rice based on in silico restriction fingerprint data. We used the FSD tool20 
to generate in silico restriction fingerprints of rice BACs whose genomic coordinates are 
available. Then, we used FPC's physical mapping construction module to generate the 
physical map and pruned contigs that did not represent a contiguous region in the genome. 
For each contig, we kept only the clones that represent the longest contiguous region in the 
genome. In the synthetic rice physical map there are 26,469 clones, 1,132 contigs, and 
1,004 singletons. 
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SECTION 3 

Results 

Parameters. FPC and FMTP have several parameters. Depending on the 
fingerprinting method (i.e., agarose or high information content fingerprinting (HICF)), 
FMTP provides default values for its parameters. Using values for these parameters close to 
the defaults is crucial to obtain good performance. For example, by default, MHS_MODULE 
uses a low C value (1e-10 for agarose or 1e-40 for HICF). Since MHS_MODULE processes 
the original contigs, which usually contain many clones, a higher value of C would 
introduce many false-positive overlaps. For the synthetic rice physical map, reducing C to 
as low as 1e-24 improved the coverage. MST_MODULE uses a high C value (1e-2 for agarose 
or 1e-10 for HICF) to detect shorter overlaps between clones. According to our 
experiments, B should be at least 80 to avoid false-positive buried clones. 

We have generated a large number of MTPs for each physical map using both tools 
with several parameter choices, however we only recorded the best possible MTP for a 
given size (i.e., number of clones). More specifically, given two MTPs 𝑀𝑀𝑖𝑖 and 𝑀𝑀𝑘𝑘 obtained 
by choosing different parameters and assuming without loss of generality that the size of 
𝑀𝑀𝑖𝑖 is greater than the size of 𝑀𝑀𝑘𝑘, we will keep 𝑀𝑀𝑖𝑖 if the coverage of 𝑀𝑀𝑖𝑖 is greater than 
coverage of 𝑀𝑀𝑘𝑘, and we will keep 𝑀𝑀𝑘𝑘 if the number of redundant clones in 𝑀𝑀𝑘𝑘 is smaller 
than the number of redundant clones in 𝑀𝑀𝑖𝑖. Consequently, as the size of the MTP increases, 
the coverage and number of redundant clones reported in the experimental result will 
always increase monotonically. 

To have a fair comparison between FMTP and FPC, we used the same B and T values 
used during the construction of the physical map (B=90, T=7 for rice, and T=3 for barley). 
We set C in the range [1e-10, 1e-24], and [9e-2, 5e-4] for the MHS_MODULE and 
MST_MODULE, respectively. We set B ′  to values from 80 to 90 for MHS_MODULE and 
MST_MODULE. The parameter values for each run of FPC and FMTP are listed in 
Supplementary Tables S1 and S2, respectively. 

“Perfect” and “Random” tiling path. To establish the range of possible coverage for a 
fixed number of clones in the computed MTPs, we declared the random tiling path (TP) as 
the lowest possible quality, and the perfect TP as the highest possible quality. 

The “perfect” TP was obtained as follows, assuming that the genomic coordinates of 
all clones were known. For each contig, we first build a directed interval graph where each 
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node is a clone and there is an edge between two clones if their coordinates are 
overlapping. Buried clones are disregarded. The perfect TP is the set of clones in the 
shortest (unweighted) path from the leftmost clone to the rightmost clone. The number of 
clones of this TP and its genome coverage was recorded. To have a fair comparison 
between the computed MTP and the perfect TP, we also limited the number of clones in the 
perfect TP by the number of clones in the computed MTP for each contig. 

A “random” TP was obtained by making completely random choices for each contig. 
The total number of TP clones selected randomly for each contig is again matched to the 
total number of clones selected by either FPC or FMTP for that contig. We compute ten 
random TPs for each computed MTP and report the average coverage. 

Evaluation metrics. We evaluate each MTP based on two metrics, namely contig-
wise coverage and number of redundant clones. The contig-wise coverage of a contig is the 
ratio between the coverage of its MTP clones and the coverage of all clones in the contig. 
The contig-wise coverage is computed for each contig and then an overall score is 
computed as the weighted average of contig-wise coverage, where the weight is the size of 
the contig. Contig-wise coverage is the essential evaluation metric because both FPC and 
FMTP aim to achieve 100 percent coverage with as smallest set of clones as possible. 

Recall that an MTP clone is called redundant if it is completely covered by one or 
more MTP clones in the same contig. To determine the number of redundant clones, we 
compute the perfect TP of the contigs based on the original MTP clones in the contigs. The 
difference between the number of original MTP clones and the number of clones in the 
perfect TP gives the number of redundant clones. 

The benchmark results show that FMTP outperforms FPC in terms of coverage (see 
Fig. 7) and number of redundant clones (see Fig. 8). For instance, for the synthetic rice 
physical map, the biggest MTP by FMTP has about 10.5 percent higher coverage than the 
biggest MTP by FPC. In the real map, the average coverage for the MTPs produced by FPC 
and FMTP are 86.2 and 91.7 percent, respectively. In the synthetic map, the average 
coverage for FPC and FMTP increases by about 0.2 and 3.3 percent, respectively (see Fig. 
7). In the real map, the smallest MTP obtained by FMTP has about 1 percent higher 
coverage than the biggest MTP by FPC even though the size of the former MTP is about 11 
percent smaller than the size of the latter MTP (see Fig. 7b).  
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Fig. 7. Contig-wise coverage of several MTPs generated by FPC and FMTP, and their corresponding 
“perfect” and “random” tiling paths in the rice physical map. (a) MTPs of the synthetic map generated 
with in silico restriction fingerprints (b) MTPs of the map generated with real restriction fingerprint 
data. 
 

 
Fig. 8. Number of redundant clones in the MTPs in Fig. 7. (a) MTPs of the synthetic map generated with 
in silico restriction fingerprints (b) MTPs of the map generated with real restriction fingerprint data. 

In general, FMTP tends to generate bigger MTPs than FPC. We also observe that the 
average MTP size for the synthetic map is lower than the average MTP size for the real 
map. The average MTP size by FPC is 2,721 for the synthetic map and 3,562 for the real 
map. MTPs generated by FMTP have an average size of 3,101 for the synthetic map and 
3,898 for the real map (see Fig. 7). 

The coverage for MTPs generated by FMTP is much closer to their corresponding 
perfect TP than FPC (see Fig. 7). FMTP generates MTPs whose coverage, on average, is 1.5 
and 3.9 percent smaller than the coverage of perfect TP in the synthetic and real map, 
respectively. The coverage gap between perfect and actual MTPs by FPC is 4.8 and 8.3 
percent in synthetic and real map, respectively. 

Both tools generate MTPs with fewer redundant clones for the synthetic map than 
for the real map. The biggest MTP for the synthetic map has about 25 redundant clones, 
whereas the biggest MTP for the real map has about 250 redundant clones (see Fig. 8). 

For the synthetic map, MTPs generated by FMTP have fewer redundant clones than 
FPC (see Fig. 8a). On the real physical map, small MTPs produced by FMTP have more 
redundant clones than similar size MTPs generated via FPC. However, medium-size and 
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large MTPs obtained with FMTP have fewer redundant clones than similar size MTPs 
generated via FPC (see Fig. 8b). 

We also ran FMTP and FPC on the barley physical map generated by our group at 
the University of California, Riverside and several other institutions.5 FPC generated MTPs 
that contain between 11,000 and 21,000 clones. When default values are used, FMTP 
generated MTPs that contain about 18,000 clones. 

In terms of running time, both FMTP and FPC compute MTP in a few minutes. 

SECTION 4 

Discussion 

FMTP generates MTPs with high coverage and a small number of redundant clones. 
When the physical map is accurate, FMTP can generate MTPs with coverage close to 100 
percent. The key ingredient to have high-quality MTPs is to have high-quality restriction 
fingerprint data. 

A few observations are in order. The average MTP size for the synthetic map is 
smaller than the average MTP size for the real map because there are fewer contigs in the 
synthetic map than in the real map. MTPs produced by FMTP are bigger than MTPs 
obtained via FPC for both the synthetic and the real map. Although we tried several 
combinations of parameter values, we could not reduce the MTP size computed by FMTP, 
probably because FMTP aims to maximize coverage by covering all the connected 
components in the MFG (i.e., regions in the contig). 

Once a set of MTPs is generated with different parameters, one common question is 
how to decide which MTP to choose for further analysis. Our experimental results indicate 
that the coverage of the MTP increases linearly with its size, whereas the number of 
redundant clones in an MTP increases exponentially with its size. In general, to balance 
coverage and redundancy, one should select a medium-size MTP. If the quality of 
restriction fingerprint data is high, an MTP with maximum coverage can be selected 
because the expected redundancy from high-quality data will be low. 

In the future, we plan to test the performance of FMTP on the HICF data. Since HICF 
allows to build high-resolution maps with less noise than from agarose fingerprinting,21 we 
expect that FMTP would generate much higher quality MTPs. 
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SECTION 5 

Conclusions 

In this paper, we presented FMTP, a novel tool to compute the MTP of a physical 
map that uses a two-step approach. In the first step, we solve a minimum hitting set 
problem on MFG of each contig heuristicly to generate a possibly redundant preliminary 
tiling path without compromising the coverage. In the second step, we order the clones in 
the preliminary tiling path by computing a minimum spanning tree of an overlap graph. 
Then, we employ a shortest path algorithm to compute the MTP. Our experimental results 
show that FMTP generates MTPs with significantly higher coverage than MTPs generated 
by the most commonly used software FPC, even using fewer MTP clones. As a consequence 
FMTP could substantially reduce the cost of clone-by-clone sequencing projects. FMTP runs 
under Linux and Mac OS X and is freely available.6 
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