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ABSTRACT
PERFORMANCE ANALYSIS OF A CONSTANT SPEED LOCAL OBSTACLE

AVOIDANCE CONTROLLER USING A MPC ALGORITHM
ON GRANULAR TERRAIN

Nicholas Haraus, B.S.M.E.

Marquette University, 2017

A Model Predictive Control (MPC) LIDAR-based constant speed local obstacle
avoidance algorithm has been implemented on rigid terrain and granular terrain in
Chrono to examine the robustness of this control method. Provided LIDAR data as
well as a target location, a vehicle can route itself around obstacles as it encounters
them and arrive at an end goal via an optimal route. This research is one important
step towards eventual implementation of autonomous vehicles capable of navigating
on all terrains. Using Chrono, a multibody physics API, this controller has been
tested on a complex multibody physics HMMWV model representing the plant in
this study. A penalty-based DEM approach is used to model contacts on both rigid
ground and granular terrain. Conclusions are drawn regarding the MPC algorithm
performance based on its ability to navigate the Chrono HMMWV on rigid and
granular terrain. A novel simulation framework has been developed to efficiently
simulate granular terrain for this application.

Two experiments were conducted to analyze the performance of the MPC
LIDAR-based constant speed local obstacle avoidance controller. In the first, two
separate controllers were developed, one using a 2-DOF analytical model to predict
the HMMWV behavior, and the second using a higher fidelity 14-DOF vehicle
model. In this first experiment, two controllers were compared as they controlled
the HMMWV on two obstacle fields on rigid ground and granular terrain to
understand the influence of model fidelity and terrain on controller performance.
From these results, an improved lateral force model was developed for use in the
2-DOF vehicle model to better model the tire ground interaction using
terramechanics relations. A second experiment was performed to compare two
developed controllers. One used the 2-DOF vehicle model using the Pacejka Magic
Formula to estimate tire forces while the second used a 2-DOF vehicle model with
the newly developed force model to estimate lateral tire forces.

As a result of this research, a smarter controller was developed that uses friction
angle, cohesion, and interparticle friction coefficient to more accurately predict
vehicle trajectories on granular terrain and allow a vehicle to navigate
autonomously on granular terrain.
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1 INTRODUCTION

Obstacle avoidance is a crucial capability for Autonomous Ground Vehicles

(AGVs) of the future. This refers to a ground vehicle’s ability to sense its

surrounding environment, develop an optimal path around the obstacles in the

environment, generate optimal control commands to satisfy that path, and

physically navigate around the obstacles safely and to a desired endpoint. Safety is

defined as avoiding collisions as well as enforcing limitations on excessive sideslip or

tire lift-off. An ideal control algorithm is one that is capable of pushing a vehicle to

its performance limits by using knowledge of its dynamic capabilities and

surrounding environmental conditions, while still enforcing strict safety

requirements. Although previous work has demonstrated use of Model Predictive

Control (MPC) algorithms for obstacle avoidance on wheeled vehicles, more work is

required to test the fidelity of these algorithms and determine where improvements

are needed.

One area in which MPC algorithms have yet to be tested is their ability to

control a wheeled vehicle on granular terrain. Up to this point, the terrain has been

assumed to be rigid and flat. The performance of MPC algorithms on deformable

terrain raises an additional question. Do the current most commonly used vehicle

models perform successfully within an MPC algorithm on deformable terrain? The

present work evaluates, through numerical simulation, the robustness and validity of

an MPC algorithm with different vehicle models in an environment more similar to

what an off-road military vehicle would experience in combat. This controller could

be applied to any car-like wheeled vehicle.

The remainder of this thesis is organized as follows. The remainder of Chapter 1

consists of the problem statement, a thorough literature review into the problem,

and the objectives of this research based on the findings of the literature review.
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Chapter 2 consists of theoretical background and overviews pertinent to this

research. Chapter 3 describes the Chrono::Vehicle HMMWV model used in this

study as the plant model to be controlled and the proposed method for simulating a

vehicle driving on deformable terrain over large distances. Chapter 4 presents the

results of the tests performed in Experiment 1 and provides comparisons when the

internal controller vehicle model is varied and when the terrain is changed from

rigid to granular. Chapter 5 presents a new intermediate vehicle model that uses

terramechanics relations to better predict vehicle trajectories on granular terrain.

Chapter 6 contains the description and results of Experiment 2 performed to test

the new vehicle model within the MPC controller. Chapter 7 wraps up the thesis

and presents potential future work based on the results of this study.

1.1 Problem Summary

Regarding the MPC control algorithm, many studies have been performed

previously to validate its potential as a local obstacle avoidance controller.

Specifically, studies by Ersal, et al. explored the implementation of an MPC local

obstacle avoidance algorithm in AGVs. The research group tested a steering

controller for an AGV on rigid flat terrain [3], then a combined steering and speed

controller [4], and finally studied the role of model fidelity in the implementation of

the MPC algorithm [5] to understand how detailed the internal controller model

needs to be to effectively and quickly control the vehicle. However, in these studies

and those performed before them, the AGV has been tested on rigid flat terrain, an

assumption which does not hold when driving a vehicle in reality. Therefore, the

research for this thesis will perform studies on the promising models from [5] and

test them on granular terrain to understand how changing the ground from rigid

and flat to granular affects the controlled AGV performance.

This research also addresses another larger problem for the military. The North

Atlantic Treaty Organization (NATO) is seeking to replace their current NATO
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Reference Mobility Model (NRMM) [6]. The current NRMM is an empirically based

computer model developed during the 1970s, which computes tactical mobility

metrics by correlating engineering level performance of various ground vehicle

systems with different terrain conditions, allowing for successful comparison of these

ground systems and capabilities over varied terrain surfaces, obstacles, vegetation,

weather scenarios, grades, and other features which can adversely impact ground

vehicle performance. NATO seeks to replace this older model with a new

physics-based computer simulation solution which can still answer the same

questions as the older model, but can then be extended past situations with only

empirical results. One of the key areas of work in this group effort is the ability to

develop and deliver to the vehicle go-nogo maps of upcoming terrain, either from

recent satellite imagery or other sorts of sensors. With this research, the

development of this simulation and test will seek to control an AGV only with the

sensor data or terrain inputs provided by the mission planner. Any research

achieved relating to vehicle mobility across a variety of terrains can help with the

NRMM effort.

Significant studies have been carried out and work accomplished testing the

MPC Algorithm and validating Chrono as a viable program for Multibody

simulations. However, the two topics have not combined to be tested together. The

MPC algorithm has been tested on rigid flat terrain, yet with Chrono::Parallel one

has the ability to simulate granular terrain if desired with reasonable runtimes.

Therefore, one can develop a simulation of a vehicle on granular terrain with

scattered obstacles in Chrono::Parallel, and then use the MPC algorithm from [5] to

control that simulated vehicle. Doing so would benefit both the simulations and

controls fields. By bridging the gap between these two areas, those designing the

control algorithms have a quicker and less expensive method of testing a control

algorithm on a full vehicle on a variety of landscapes to gain quick understanding of
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how well their controller behaves. On the other hand, developing this sort of

simulation improves the amount of applications Chrono::Parallel can be used in.

This research has performed higher fidelity testing of the control algorithm than has

previously been accomplished, a step which is necessary if this algorithm is to

eventually be implemented in an actual vehicle.

The uniqueness of this research comes from two areas: controls and simulation.

Most Chrono simulations created so far do not test a complex control algorithm for

an autonomous vehicle. More interest is placed in understanding vehicle mobility

over different terrains. However, this research tests an autonomous vehicle and its

ability to navigate around local sensed obstacles. Therefore, a framework has been

developed to allow the simulated vehicle to sense obstacles in the area and generate

its own commands while it navigates across the terrain instead of relying on

externally supplied commands. Can this MPC control algorithm generate the

appropriate commands to navigate a vehicle through an obstacle field? On the

controls side, this is a unique effort as well. As mentioned, the MPC algorithm has

yet to be tested on granular terrain. However, considering an AGV will be driving

off road on soil or sand, this is an appropriate next step for testing. This research

answers the question of if simulation can be used to effectively test an autonomous

vehicle on granular terrain. Computationally this requires a lot of resources, but if a

team can test their control algorithm virtually before going out to the test field with

a vehicle, this could save both time and money for that team.

1.2 Literature Review

1.2.1 Early Obstacle Avoidance Algorithms: Artificial Potential Field, Vector Field

Histogram, and Dynamic Window Approaches

Many obstacle avoidance algorithms have been developed in the past that allow

for smooth, continuous, fast motion of an AGV through an obstacle field. Early
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algorithms were primarily developed and tested on small ground robots and mainly

focused on finding a collision free path. However, they did not necessarily guarantee

optimality or the vehicle’s ability to achieve that prescribed collision-free path.

Some early researched algorithms were developed using artificial potential methods.

Applied to a manipulator moving through space, the philosophy of the potential

field approach can be summarized as: “The manipulator moves in a field of forces.

The position or target to be reached is an attractive pole while all obstacles are

repulsive surfaces for the manipulator parts” [7]. Khatib described the formulation

and implementation of the artificial potential field concept towards obstacle

avoidance. Using the kinematic relationships of the system to be controlled, a

Lagrangian formulation is used to develop the equations of motion of the system.

An artificial potential field is created that is non-negative continuous and

differentiable whose value goes to infinity as the vehicle approaches an obstacle. The

overall artificial potential function is then a sum of the contributing potential fields

caused by each of the obstacles within the obstacle field. Each of the obstacles are

modeled as a composition of primitives with analytical equations representing their

collision envelopes. Khatib successfully implemented this obstacle avoidance

algorithm real-time in an experimental manipulator programming system Control in

Operational Space of a Manipulator with Obstacles System (COSMOS) with links

and moving obstacles [7].

Rimon and Koditschek then presented a technique for constructing artificial

potential fields that could bring a bounded-torque actuated robot to a desired

configuration without hitting obstacles [8]. Their formulation works for any n-DOF

robot whose configuration space happens to be a generalized sphere world. However

as with [7], this formulation requires a priori knowledge of the topology of the

obstacle field. Therefore the implementation of the algorithm at the point of

publication of [8] is infeasible for unknown obstacle fields.



6

Vector Field Histogram methods were then researched due to their ability to to

navigate a robot through an unknown environment where topology is not known a

priori. The Vector Field Histogram (VFH) method allows the detection of unknown

obstacles and avoids collisions as it steers a mobile robot to some end destination

[9]. The VFH method models the world as a two-dimensional Cartesian histogram

grid and continuously updates the grid based on the input on-board sensor data.

The algorithm reduces the histogram to a one-dimensional polar histogram around

the current robot location such that each sector of the polar histogram has a polar

obstacle density associated with it. The algorithm then selects the sector with a low

obstacle density and aligns the robot’s steering with that sector [9]. The VFH

method outlined in [9] successfully navigated a mobile robot though an obstacle

field at an average speed of 0.6-0.7 m/s. This method is a local path planner, so

there is no way of it purposefully following a globally optimal path. This algorithm

and artificial potential field methods are susceptible to dead end situations and local

minima [9].

In a much more recent study, Gong and Duan proposed a multi-strategy

navigation method to combat some common problems with autonomous vehicle

navigation [10]. The two common problems addressed were the vehicle reaching a

local minimum and the vehicle navigating into a dead end. Both scenarios result in

the vehicle remaining stuck forever with many algorithms. The proposed

multistrategy algorithm identifies the current state of the vehicle and determines

which navigation strategy is best for the current moment. Vector Polar Histogram is

used until the vehicle gets stuck at a dead end or local minimum. The controller

then switches modes to a wall-following algorithm, forcing the vehicle to find a wall

and follow it until out of the dead end. If the vehicle is stuck in a local minimum,

the controller may switch to a move-towards-goal algorithm forcing the vehicle to

progress straight to the goal if not blocked by obstacles for a short time until away
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from the local minimum. The move-towards-goal algorithm would also apply to the

situation where a vehicle’s path to the goal is clear, but the goal is right next to a

obstacle and therefore the Vector Polar Histogram prevents that path from being

considered as a possibility. This method successfully navigated a vehicle in both

simulation and real life at a top speed of 1 m/s [10].

Dynamic Window approaches at their roots are most similar to the MPC

algorithm used for the research of this thesis. Fox, Burgard, and Thrun focus

specifically on the reactive avoidance of collisions with obstacles by a robot [11]. A

dynamic window approach is proposed that deals with constraints imposed by

velocity and acceleration limits. Steering commands are computed periodically thus

avoiding the complexity of a general motion planning problem. First, they consider

velocities that result in circular trajectories. Then, only velocities that can be

reached within the next time window are considered, largely decreasing the search

space forming the dynamic window. Admissible velocities are weighed by an

objective function. In experiments, this method successfully navigated a B21 mobile

robot at a top speed of 0.95 m/s [11].

Brock and Khatib then proposed a global dynamic window approach to obstacle

avoidance that combines path-planning and real-time obstacle avoidance algorithms

to generate robot motions to complete a task and still remain safe in an unknown

environment [12]. As the robot moves through the environment, it builds an

occupancy grid based off sensor input data to represent the connectivity of free

space, allowing the robot to learn about its environment without any global a priori

knowledge of the obstacles. The global dynamic window approach combines the

reactive collision avoidance of the dynamic window approach of [11] with a global,

local minima-free navigation function NF1. An objective function is developed to

choose the best path forward. This global dynamic window approach was

successfully tested with a synchro-driven mobile robot Nomad XR4000 at 1.0 m/s
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[12].

Kunchev, Jain, Ivancevic, and Finn presented a review and comparison of path

planning and obstacle avoidance techniques including those previously mentioned.

Each obstacle avoidance method has its own benefits and disadvantages. The issue

of local minima is significant for all developed obstacle avoidance algorithms. All

the mentioned techniques need more development to be applied to a car-like vehicle

at higher speeds [13]. More recent research aims to take these early collision

avoidance algorithms and adapt them towards the navigation of high speed AGV’s.

The motion of these AGV’s is not as simple as the small robots the algorithms were

initially developed for in that the AGV cannot instantaneously move in any

direction. Ignoring the effects of slip, a car-like AGV will move in its heading

direction. Newer research has aimed to build upon or even combine previously

mentioned algorithms for the application towards car-like AGV’s.

Shimoda, Kuroda, and Iagnemma proposed a potential field based method of

navigating an unmanned ground vehicle at high speeds across sloped and rough

terrains [14]. With this proposed method, a potential field is generated in a two

dimensional trajectory space of the path curvature and longitudinal velocity. The

potential field is generated based on dynamic constraints, terrain slopes, obstacle

proximities, and the target location. A maneuver is selected within a set of

performance bounds based on the local potential field gradient. Each maneuver is

mapped to the low level commands necessary to execute that maneuver. This

method has successfully been tested at a speed of 7 m/s [14].

Koren and Borenstein then performed a study presenting a systematic overview

of the downfalls of potential field methods [15]. Four main drawbacks are noted and

described. First, a well-documented issue is trap situations due to local minima.

Second, even though the controlled robot may be slightly smaller than a certain gap

between two obstacles, the combined repulsive force from the two obstacles prevents
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the robot from passing through gaps it should be able to. Third, the robot motion

exhibits oscillatory behavior near obstacles. This same behavior is seen in the

fourth noted downfall where if a robot is moving through a narrow-walled passage,

the robot will oscillate close to each wall throughout the whole passage again due to

the nature of the developed potential field and repulsive forces. For certain

applications, potential field methods may be appropriate due to simple, elegant, and

quick navigation of the robot through the obstacle field. However, Routh stability

criterion presented in [15] prove this method would not be stable as vehicle mass

and speed increase. Overall these drawbacks make the artificial potential field

method unsuitable for the research of this study. These drawbacks have been

experimentally proven and motivated a move by Koren and Borenstein away from

potential field methods [15].

A summary and comparison of the explored Artificial Potential Field, Vector

Field Histogram, and Dynamic Window Approach are presented in Figure 1.1. Each

of the methods has their own advantages and disadvantages. The Artificial

Potential Field and VFH methods are both quick and simple which is desirable for

realtime implementation. Potential field methods however often rely on known a

priori information about the environment which will not always be available. The

VFH method is quick,simple, and allows the vehicle to navigate around obstacles as

it encounters them, but provides limited support for inclusion of safety constraints

and obstacle avoidance of more complex systems such as car-like vehicles. The

Dynamics Window approaches, though more complex, support the inclusion of

multiple safety related constraints, solve an optimal control problem over a smaller

finite time window, and can be applied to multiple different systems so long as they

can be modeled mathematically.
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Figure 1.1: Comparison from Literature Review of Artificial Potential Field, Vector Field
Histogram, and Dynamic Window Approaches to local obstacle avoidance
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1.2.2 MPC Algorithms

To address the issue of optimality, more rigorous approaches have been

developed leveraging the Model Predictive Control approach. With this method,

control action is obtained by solving a finite horizon open-loop optimal control

problem over a receding horizon.

Findheisen and Allgöwer provide an introduction to nonlinear Model Predictive

Control [16]. Nonlinear MPC methods are being explored due to the method’s

ability to incorporate design driven constraints into the robot control. As time goes

on, systems are becoming subject to more safety and environmental constraints

making the application of previously mentioned methods difficult. With nonlinear

MPC, it is not too difficult to add more system constraints to the optimal control

problem solved each time step. Multiple applications and derived nonlinear MPC

methods are presented as well in [16]. MPC is therefore a promising approach for

obstacle avoidance due to its capability to handle input saturation, system

nonlinearities, and design state constraints in a dynamic environment.

Ogren and Leonard present the Dynamic Window Approach for fast and safe

obstacle avoidance in unknown environments and recast the approach in a

continuous nonlinear framework, drawing many similarities to MPC [17]. A method

for generating a navigation function with a single unique minimum is presented. In

this study, the control input space is discretized for a computationally tractable

version of MPC, and exhaustive search is used to identify the best control input

choice. Of all the control input possibilities, there always exists one such that the

robot will be able to stop before hitting any obstacle to insure safety [17].

Primbs, Nevisti, and Doyle explore Control Lyapunov Functions (CLF) and

MPC approaches to nonlinear control [18]. Comparisons are made between the two

methods and it is noted that they seek to solve the same problem optimally and
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some properties of each method are complementary to one another. The CLF

methods are best interpreted in the context of Hamilton-Jacobi-Bellman equations

while MPC relates more closely to a Euler-Lagrange framework. The CLF provides

a global optimal solution, but the partial differential equation one must solve is very

difficult and computationally infeasible. The MPC approach instead allows for

on-line computation of an optimal solution locally, and resolves this problem every

time step specified. The problem is only solved over a fixed time horizon. However,

it is difficult to apply Lyapunov Stability Theory to this MPC method where

numerical techniques are used to solve for optimal solutions. Also, the relation

between time horizon length and stability are not necessarily linear as noted by

results from experiments [18].

Tahirovic and Magnani proposed a passivity based MPC control for Robot

Navigation through rough terrain [19]. This method boasts simplicity of application

for all vehicles as long as one can accurately model them. A virtual model of the

vehicle is then made using shaped energy. The algorithm quantifies roughness of the

terrain and uses this parameter when analyzing the cost of a specified path. The

roughness is expressed as the relative height of the terrain locally. Simulations have

proven successful navigation of a vehicle through hilly terrain, yet there is no

mention of how the terrain data would actually be obtained [19]. This passivity

based MPC method can be applied on-line, but this would only be feasible if there

was some sort of sensor and data analysis algorithm which can sense the local

terrain roughness.

Bevan, Gollee, and O’Reilly proposed a new method for trajectory generation for

road vehicle obstacle avoidance using convex optimization [20]. The dynamics of a

vehicle is a very nonlinear case which on the surface poses a non-convex

optimization problem when searching for an optimal path trajectory. This study

used their method on a vehicle performing an aggressive double lane change
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maneuver with the intent of designing a quick emergency obstacle avoidance

algorithm for when cars either need to stop immediately or turn to move around an

incoming obstacle. Most avoidance systems solely slow the vehicle down to prevent

collision with a hazard in the vehicle heading direction. The optimization is

performed in three stages in which each stage includes different assumptions to

frame the problem as a convex optimization problem. The first stage solves for a

trajectory assuming no slip, the second assumes slip but constant speed, and the

third uses the values from the previous stages to insert to non-convex expressions

and holds those terms constant. This study successfully simulated a general wheeled

vehicle performing an optimal double lane change maneuver [20].

Nanao and Ohtsuka presented a nonlinear MPC algorithm which finds a

solutions using continuation/generalized minimal residual (C/GMRES) algorithm to

find a solution [21]. The algorithm was tested successfully in simulation and though

runtimes are not yet quick enough for real-time implementation, they expect it in

the near future of this paper. Tire ground interactions are modeled using the

Pacejka Magic Formula. A friction circle is used to quickly determine the maximum

friction force able to be generated and this is used to create an “unavoidable region”

in which the vehicle is unable to avoid hitting the obstacle [21]. However, this

method relies heavily on accurate modeling of the ground tire interactions.

Gao, et al. presented and tested two different MPC algorithms for obstacle

avoidance [22]. The first algorithm is a one level MPC algorithm. The algorithm

combines the requirements of obstacle avoidance and the optimal trajectory

planning into one step, solving a highly nonlinear optimal control problem within

the horizon each time step. The objective function includes a proximity term which

increases as the vehicle approaches an obstacle. The second algorithm is a two-level

approach. A high-level path planner calculates an optimal trajectory for the vehicle

disregarding any obstacle information. A low level algorithm then calculates the
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optimal control inputs that both route the vehicle around obstacles and maintain

the vehicle along the desired trajectory. While both algorithms were implemented in

real-time successfully on an icy road performing a double lane change maneuver, the

two-level approach was successful at speeds of 55 kph while the one level could only

be implemented up to 40 kph. Computational runtimes were compared and show

the two-level approach runs much quicker than the one-level approach and shows

promise for hierarchical MPC methods in the future [22].

The two-level MPC method was developed further and addressed the issue of the

vehicle model predicting infeasible trajectories for the vehicle in the high-level

planner [23]. Instead, motion primitives are used to develop a high-level trajectory

assembled from trims which are connected by maneuvers. Possible trims are

straight, left turn, right turn, drift left, and drift right. Maneuvers connect two

trims. The possible maneuvers include straight to left turn, left turn to straight,

straight to drift right, etc. This method proved successful in simulation. In

experiments, a vehicle was able to successfully avoid obstacles, but no mention is

made of the vehicle speed [23].

1.2.3 MPC Algorithms for Car-Like Vehicle

Several studies have been performed examining MPC-based techniques for

car-like vehicle collision avoidance. A MPC algorithm was developed that

commands the braking and steering inputs to better control the vehicle during a

double lane change maneuver [24]. This algorithm was tested on a snowy road. In

experiments, a controller that controlled both braking and steering performed better

than an algorithm commanding steering alone [24].

Abbas, Eklund, and Milman analyzed the possible real-time implementation of a

nonlinear MPC algorithm for obstacle avoidance using Simulink and simulating the

vehicle as a full Carsim nonlinear multibody vehicle [25]. Offline a trajectory is

generated guiding the vehicle from a start point to the desired end location. Then
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on-line each controller time step a cost function is used to weigh possible

trajectories and deviations from the reference trajectory are penalized. A pointwise

potential function is used to increase cost as the vehicle gets closer to any obstacle.

Simulation results showed the vehicle is capable of navigating around a single

obstacle. The cost function is minimized using the gradient descent optimization

method. The amount of time to find an optimal path in the simulation varies

depending on the scenario the vehicle is in at each time step. A vehicle in close

proximity to an obstacle will take longer to pick the best path than a vehicle in free

space pointed towards the goal. Warm starting is used during the optimization

routine to help quicken the optimization process, but there are still many time step

scenarios where the amount of time needed to calculate a best path exceeds the

available time the controller has to find that path [25].

Researchers have proposed a fast motion planner that uses a half-car dynamical

model for a wheeled vehicle [26]. A fast local steering algorithm was developed to

improve runtimes. The algorithm splits into a geometric path planning step and

then an optimal time parameterization step. The three control inputs are steering

angle and the longitudinal slips of the front and rear tires much like a rally car

driver would control the vehicle. Simulation results support the real-time

implementations of this obstacle avoidance controller [26].

Gray, et al. used a MPC algorithm to maintain driver safety by keeping a vehicle

within its lane [27]. The controller has an internal four wheel vehicle model as well

as a driver model, allowing the controller to predict driver commands and intentions.

The controller aims to minimize its own input so that only when the driver is in

danger such as departing from the lane will the controller take action. Otherwise, it

seeks to maintain safety constraints so that the controller only intervenes when it

senses safety constraints may be violated. Simulation results proved successful, but

when implemented in real life at a Volvo facility, the only issue encountered was
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minor breaking of a safety constraint. This safety violation was due to sensor delay

and in the future this delay will be accounted for in the algorithm [27].

Beal and Gerdes proposed a solution to the issue of vehicle stabilization control

near the limits of handling [28]. Normally, an Electronic Stability Control (ESC)

system works by using a linear model of a vehicle to predict driver intent and when

the vehicle deviates past a threshold of the allowed deviation between driver intent

and vehicle behavior, then the controller activates and stabilizes the vehicle.

However, this method does not work when the vehicle is being operated near the

stable vehicle limits such as by an experienced driver because the linearized vehicle

model is linearized about a conservative point for production level cars. The vehicle

behavior near its dynamic limits is nonlinear and does not match the linearized

model. Therefore, an MPC based controller was proposed and tested that operates

at two levels and quickly enough for real-time implementation. The controller has

two objectives. The first is to keep the vehicle inside of the safe-handling envelope

and respond appropriately in case the vehicle leaves this safe envelope. The second

objective is to allow the controller to track the driver’s intended trajectory. Overall

the controller was able to successfully achieve these objectives through experiments

with Stanford’s PI vehicle testbed [28].

Ersal, et al. developed a constant speed LIDAR-based local obstacle avoidance

controller using an MPC algorithm and performed a study on the role of model

fidelity with this controller [5]. The internal vehicle models used for this study were

2-DOF and 14-DOF constant speed vehicle models while lateral tire forces were

modeled either using the pure slip Pacejka Magic Formula or a linearized version of

the Pacejka Magic Formula. All of these tests were performed on rigid ground and a

14-DOF vehicle model was used as the plant vehicle. The vehicle when controlled

by the controller with the 14-DOF model with nonlinear tire forces performed

marginally better in this study than all other vehicle and tire force model



17

combinations, but runtimes were sacrificed to achieve this boost of performance.

However, the 2-DOF models with linear tire forces did perform successfully in most

tests which led to the conclusion that using this controller would be appropriate due

to the benefits of quicker runtimes. The 14-DOF model can then be used to

determine appropriate safety constraints to include in the optimal control problem

formulation [5].

Ersal, et al. also developed a combined speed and steering local obstacle

avoidance controller using an MPC algorithm which is an improvement on the

controller from [5]. A multi-phase optimal control problem was formulated to

optimize speed and steering within the prediction window [4]. A powertrain model is

used to determine acceleration capabilities as a function of speed of the vehicle and

safety constraints to prevent tire lift-off are imposed in the optimal control problem

formulation. The vehicle does not need a priori knowledge of the obstacle field and

instead develops a safe area polygon from LIDAR points. Simulation results from

this study show this newer controller is capable of navigating through more obstacle

distributions and sharper turns than the constant speed controller. A 3-DOF vehicle

model is used as the internal controller model used to predict vehicle states [4].

1.2.4 Extending Rigid Ground Tests to Granular Terrain

A common aspect to all of the previously mentioned papers and studies is that

they were performed on rigid ground. Some sources used height maps to test the

vehicle over hilly terrain or used a roughness factor to quantify any deviations from

flat terrain. However, most of the previous studies had been primarily focused on

the case where a vehicle needs to move to a target location on rigid terrain.

Depending on the application, this sort of testing may be appropriate such as for a

car driving on a paved road. For applications such as military, agricultural, off-road

sport, and mining this rigid ground assumption does not hold. Therefore a

fundamental understanding of the relationship between vehicle performance and
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terrain characteristics is necessary. The testing performed previously in [5] should

be extended to granular terrain. Extending the experimentation and simulation to

granular terrain leads to another two questions. What is the best way to simulate

granular terrain and what effect do the granular terrain parameters have on vehicle

performance?

1.2.5 Simulating Granular Terrain for Vehicular Applications

The first question depends on the application and the computational resources

available for the study. Some methods are quicker than others yet do not completely

capture exactly what is happening at the tire ground contact patch while other

methods more accurately model that interaction but are computationally

exhausting. Generally in terramechanics there are two high fidelity techniques to

model soft soils for a vehicle on granular terrain applications: finite element models

and particle or mesh-free models.

Finite Element (FE) soil models model the soil by discretizing it into a FE mesh

and use some elasto-visco-plastic continuum mechanics constitutive material model

to approximate the behavior of the soil such as yielding, flow, cohesion, and internal

friction. A review of basic soil constitutive models was compiled in [29]. These

models aim to approximate the Mohr-Coulomb yield behavior of the soil. Most FE

soil studies model the soil deformation using the motion of the FE nodes using a

Lagrangian formulation. However, the Lagrangian method requires remeshing when

deformations approach moderate to large values which are both computationally

expensive and still may not prevent element distortion. The deformation of the FE

mesh also fails to capture effects of soil deformation such as bulldozing or soil

separation. High fidelity FE simulation of soil to include bulldozing and soil

separation is an active area of research where there is even an effort to develop a soil

continuum mechanics model which includes cohesion and can properly account for

soil flow, plasticity, inter-particle friction, cohesion, and the effect of current stress
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values on the material properties.

The high fidelity alternative to FE soil models is mesh-free particle-based models

where instead of treating the terrain as a continuum, the terrain consists of a set of

particles with inter-particle forces then representing the soil mechanical behavior. A

brief summary of three different particle-based methods is presented in [30]. These

methods are successfully able to capture the effects of soil flow, bulldozing, and ruts.

Though particle-based methods are computationally expensive since typically they

can have millions of particles, the benefits of handling bulldozing, separation, flow,

and ruts make it a desirable method. They may even be less expensive than an FE

method which is constantly being remeshed. One common particle-based method is

the Discrete Element Method (DEM) where the soil is modeled as a large number of

individual bodies which collide and roll along each other to simulate bulk soil

material behavior. Normal contact forces generally in this method prevent particles

from penetrating one another. Often DEM soil models include tangential contact

forces, cohesive forces such as if the soil had some water content, or even distance

dependent forces such as gravitational or electrostatic interactive forces.

Jayakumar, et al. performed a simulation study to understand the effects of soil

characteristics on vehicle mobility over granular terrain [30]. Different cohesive and

non-cohesive soils were modeled using DEM. Cone penetrometer simulations were

performed to study the effect of the inter-particle friction coefficient and cohesion on

soil strength measured using the cone index (CI). A multibody dynamics model of a

vehicle was developed consisting of 33 rigid bodies connected with spherical,

revolute, prismatic, and constant velocity joints. To simulate the vehicle over

granular terrain, a moving soil patch was used which takes particles behind the

vehicle, deletes them, and then re-emits them in front of the vehicle and compresses

them before the vehicle moves over them again. This patch is implemented in the

x-direction. This research group was able to conclude from their results that for
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non-cohesive or weakly cohesive particles when particle size increases, wheel slip and

sinkage decreases, vehicle speed increases, and tractive force slightly decreases. As

soil cohesion increases, soil cone index increases resulting in vehicle speed

increasing, wheel slip and sinkage decreasing, and tractive force decreasing. For

weakly cohesive soil, inter-particle friction and soil density have a big influence on

mobility parameters. Mobility parameters seem to level off once inter-particle

friction reaches a certain point [30].

1.2.6 Summary

The performed literature review has assisted with refining the goals and means

for achieving the goals of this research. Researchers for decades have been exploring

obstacle avoidance techniques to navigate vehicles operating at their dynamic limits.

However, the next logical step forward from this point is to implement these control

algorithms on granular terrain. This task will be accomplished virtually by creating

a test environment to perform both rigid ground and granular simulations using

Chrono.

1.3 Objectives and Methodology

From extensive literature review, the goal of this research is to first understand

how model fidelity of the controller model affects overall performance of the obstacle

avoidance controller so that an improved controller can be developed to navigate a

vehicle on granular terrain. The initial controller considered is a MPC LIDAR-based

constant speed local obstacle avoidance controller presented in [5]. Identifying the

role of model fidelity leads to a better understanding of vehicle dynamics and

performance on granular terrain as well as promotes the development of a controller

designed for general terrain travel in the future. From this understanding, the

controller and internal models were improved to allow for better controlled vehicle

performance on granular terrain. Simulating a vehicle on granular terrain in such
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scenarios introduces additional challenges related to the sheer number of necessary

particles required to properly model the desired terrain patch. This challenge has

been addressed by employing a simulation framework for granular terrain described

later in this thesis.

The present study has the following five objectives:

1. Develop a robust simulation environment using Chrono to simulate granular

terrain efficiently over large terrains without actually modeling every single

particle over the large terrain.

2. Study the performance of the MPC Controller on granular terrain compared

to that on rigid terrain.

3. Analyze the impact of fidelity of the internal controller model on speed and

performance of the obstacle avoidance controller.

4. Improve the controller for better performance on granular terrain.

5. Showcase the potential of controller testing in a high fidelity virtual test

environment with Chrono to assist with initial control algorithm development

before physical implementation for vehicular applications.

From previous literature research, this MPC algorithm has been tested

successfully on flat rigid terrain. However, using Chrono::Parallel one has the

capabilities to develop a simulation of a vehicle on hilly, deformable, and even

granular terrain. In this research, Chrono::Parallel is used to develop a simulation of

an AGV driving on customizable granular terrain through a user defined obstacle

field to a defined target location. Chrono already possesses the ability to create new

geometries easily with a modular framework, so one will then be able to easily

create their own obstacle field for the vehicle to maneuver through. Using theory

and developments from [5], the MPC algorithm has been implemented in the
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simulation to determine optimal steering commands for the AGV. Tests similar to

those executed in [5] were conducted within this simulation on rigid flat terrain for

the two models presented previously to confirm the controller operates

appropriately. The algorithm was then tested on granular terrain to understand how

controlled vehicle performance changes on granular terrain versus previously tested

rigid ground simulations. The MPC algorithm solves a very large optimization

problem to determine the quickest safe path to the destination. An exhaustive

search based method was used to solve this optimal control problem. Improvements

were explored to boost vehicle performance on granular terrain. A second virtual

experiment was conducted using the improvements to the controller and those

results are discussed at the end of this thesis.
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2 THEORETICAL BACKGROUND

This chapter provides an overview of theoretical topics relevant to this research.

To accomplish the objectives of this study, a virtual simulation environment was

developed in C++ using Chrono, the multibody physics API, to handle simulation

of multibody systems and contact force calculation using the Penalty Method. The

MPC LIDAR-based constant speed local obstacle avoidance controller used for this

research is also outlined as well as the internal vehicle models used by the controller

to predict future vehicle trajectories. The developed methods of implementing a

perfect planar LIDAR sensor, the formulation of an optimal control problem, and

the exhaustive search space method used in this research are presented as well.

2.1 Multibody Dynamics Background

Multibody Dynamics allows one to use a system of equations to represent the

kinematic and dynamic behavior of a system of bodies. This section outlines the

formulation of multibody dynamics implemented in Chrono. A system of index 3

Differential Algebraic Equations (DAE’s) are used to characterize the dynamics of a

system composed of rigid and flexible bodies as presented in [1].

q̇ = L (q)v (2.1)

M (q) v̇ = f (t, q,v)− gT
q (q, t) λ̂ +

∑
i∈A(q,δ)

(γ̂i,nDi,n + γ̂i,uDi,u + γ̂i,wDi,w) (2.2)

0 = g (q, t) (2.3)

i ∈ A (q (t)) :


0 ≤ Φi (q)⊥γ̂i,n ≥ 0

(γ̂i,u, γ̂i,w) = argmin√
γ̄2i,u+γ̄2i,w≤µiγ̂i,n

vT · (γ̄i,uDi,u + γ̄i,wDi,w)
(2.4)
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Equation (2.1) relates the time derivative of the generalized coordinates q to the

velocities v using a linear transformation defined by L (q). Equation (2.2) relates

the inertial forces of the system to the applied forces f (t, q,v) and constraint forces

−gT
q (q, t) λ̂. λ̂ appears due to the constraints restricting the kinematic behavior of

joined bodies in the system. Equation (2.3) is a set of bilateral constraints imposed

on the system that enforce the kinematic behavior of all the bodies in the system

and restrict their relative motion. The bilateral constraints of Equation (2.3) can

then be augmented by unilateral constraints due to contact/impact phenomena.

This point allows the concept of equations of motion to be extended to include

differential inclusions [31]. A simple example that outlines this concept is of a single

body that interacts with the ground through both friction and contact and the

equations of motion become an inclusion Mq̈ − f ∈ F (q, t). In this case M is the

inertia matrix of the body, q̈ is the body acceleration, f is the external force, and

F (q, t) is some set-valued function. This inclusion then states that the frictional

contact force remains somewhere inside of a friction cone with a not yet determined

value controlled by the stick or slip state of the interaction between the body and

the ground. The red terms in Equations (2.1-2.4) are introduced when in multibody

dynamics the differential inclusion is posed as a differential variational inequality

problem. The unilateral constraints then presented in Equation (2.4) define a set of

contact complementarity conditions 0 ≤ Φi (q)⊥γ̂i,n ≥ 0. These conditions make

the following simple point regarding contact forces. For a potential contact i in the

active set, i ∈ A (q (t)), either the gap Φi between two geometries is zero and

therefore the normal contact force γ̂i,n is greater than zero, or Φi is greater than

zero meaning two geometries are not in contact and therefore γ̂i,n is zero. Equation

(2.4) then poses an optimization problem whose first order Karush-Kuhn-Tucker

optimality conditions are equivalent to the Coulomb dry friction contact model [32].

Therefore in Equation (2.2) the force associated with contact i leads to the red
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generalized forces obtained by using projectors Di,n, Di,u, and Di,w.

2.2 Dealing with Contacts: The Penalty Method

The method of modeling the equations described above is implemented in

Chrono to analyze the dynamics of large multibody systems and granular media in a

DEM framework. This method uses the complementarity conditions in Equation

(2.4) to enforce non-penetration of bodies that come into contact. This method is

then referred to as DEM-C. This research however does not use the DEM-C

method, but instead employs a Penalty (P) method that accounts for partial body

deformations in mutual contact to calculate contact forces and thus this method is

referred to as DEM-P. Therefore the Penalty Method is used to calculate contact

forces one body exerts on another within the DEM simulation framework in Chrono

chosen for this research [1]. With this DEM-P approach or soft-body approach,

bodies are considered “soft” in that their collision geometries are able to overlap

each timestep or experience local deformation. A collision detection algorithm is

used to find when and where these overlaps δn occur. Contact force vectors F n and

F t normal and tangential to the contact plane respectively at the point of contact

are calculated using a chosen constitutive law based on the local body deformations

at the point of mutual contact. In the contact-normal direction n, this local body

deformation is defined as the overlap of the two quasi-rigid bodies un = δnn. Then

in the contact-tangential direction, the deformation is defined by the vector ut that

keeps track of the total tangential displacement of the initial contact points on the

two quasi-rigid bodies while in contact, projected onto the current contact plane.

An example of a DEM-P contact constitutive law similar to one implemented in

Chrono is a viscoelastic model based on either Hookean or Hertzian contact theory

outlined in Equations (2.5) and (2.6). Here u = un + ut is the overlap or local

contact displacement of two interacting bodies. The quantities

m̄ = mimj/ (mi +mj) and R̄ = RiRj/ (Ri +Rj) are the effective mass and effective
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Figure 2.1: Reproduced from [1]. DEM-P contact model with normal overlap distance δn,
contact-normal unit vector n, and tangential displacement vector ut (top), and a Hookean-
linear contact force-displacement model with constant Coulomb sliding friction (bottom)

radius of curvature respectively for bodies i and j in contact. The vectors vn and vt

are the normal and tangential components respectively of the relative velocity at the

contact point. For a Hookean contact model, f
(
R̄, δn

)
= 1 while for a Hertzian

contact model, f
(
R̄, δn

)
=
√
R̄δn [33, 34, 35]. The normal and tangential stiffnesses

and damping coefficients, kn, kt, γn, and γt, respectively are obtained through

various constitutive laws derived from contact mechanics and physically measurable

properties of materials of the contacting bodies such as Young’s Modulus, Poisson’s

ratio, coefficient of restitution, etc.

F n = f
(
R̄, δn

)
(knun − γnm̄vn) (2.5)

F t = f
(
R̄, δn

)
(−ktut − γtm̄vt) (2.6)

The component of the contact displacement vector u in the contact normal
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direction un = δnn is obtained directly from the contact detection algorithm which

identifies and quantifies the magnitude of body overlap between interacting bodies.

The tangential contact displacement vector ut is a bit more complicated and

formulated in Equation (2.7). In Equation (2.7), t is the current time and t0 is the

time when the contact was initiated. Then for a true tangential contact

displacement history model, the vector ut must be stored and updated at each time

for each contact point from the time when contact is initiated up until the contact is

terminated. A visualization of the Penalty method is presented in Figure 2.1.

ut =

∫ t

t0

vtdt−
(
n ·
∫ t

t0

vtdt

)
n (2.7)

To enforce the Coulomb friction law, if |F t| > µ|F n| at any given time step,

before the contact forces are added to the resultant force and torque on each body,

the stored value of |ut| is scaled such that |F t| = µ|F t|, where µ is the Coulomb

friction coefficient. An example of how |ut| is scaled is presented in Equation (2.8) if

a Hookean contact model is used and f
(
R̄, δn

)
= 1 in Equations (2.5) and (2.6).

kt|ut| > µ|F n| ⇒ ut ← ut
µ|F n|
kt|ut|

(2.8)

Through the processes described above, once the contact forces F n and F t are

computed for each contact and their contributions are summed to obtain resultant

forces and torques for each interacting body, the Newton-Euler equations of motion

are integrated subject to the Courant-Friedrichs-Lewy (CFL) stability condition.

The CFL stability condition limits the integration time step-size h to

h < hcrit ∼
√
mmin/kmax [36]. Here hcrit is the critical integration step size h must

stay below to maintain simulation stability, mmin is the smallest mass in the

simulation, and kmax is the largest stiffness in the simulation. For multibody

dynamics simulations with frictional contact modeled using the penalty approach as
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with this research, Chrono implements index 3 DAE solutions [1].

2.3 Chrono Multibody Physics Package

The physics modeling and simulation capabilities are provided by the

multiphysics open-source package Chrono [1]. The core functionality of Chrono

provides support for the modeling, simulation, and visualization of rigid multibody

systems, with additional capabilities offered through optional modules. These

modules provide support for additional classes of problems (e.g., finite element

analysis and fluid-solid interaction), for modeling and simulation of specialized

systems (such as ground vehicles and granular dynamics problems), or provide

specialized parallel computing algorithms (multi-core, GPU, and distributed) for

large-scale simulations.

2.3.1 Vehicle Modeling

Built as a Chrono extension module, Chrono::Vehicle [37] is a C++ middleware

library focused on the modeling, simulation, and visualization of ground vehicles.

Chrono::Vehicle provides a collection of templates for various topologies of both

wheeled and tracked vehicle subsystems, as well as support for modeling of rigid,

flexible, and granular terrain, support for closed-loop and interactive driver models,

and run-time and off-line visualization of simulation results.

Modeling of vehicle systems is done in a modular fashion, with a vehicle defined

as an assembly of instances of various subsystems (suspension, steering, driveline,

etc.). Flexibility in modeling is provided by adopting a template-based design. In

Chrono::Vehicle, templates are parameterized models that define a particular

implementation of a vehicle subsystem. As such, a template defines the basic

modeling elements (bodies, joints, force elements), imposes the subsystem topology,

prescribes the design parameters, and implements the common functionality for a

given type of subsystem (e.g., suspension) particularized to a specific template (e.g.,



29

double wishbone). Finally, an instantiation of such a template is obtained by

specifying the template parameters (hardpoints, joint directions, inertial properties,

contact material properties, etc.) for a concrete vehicle (e.g., the HMMWV front

suspension).

For wheeled vehicle systems, templates are provided for the following

subsystems: suspension (double wishbone, reduced double wishbone using distance

constraints, multi-link, solid-axle, McPhearson strut, semi-trailing arm); steering

(Pitman arm, rack-and-pinion); driveline (2WD and 4WD shaft-based using

specialized Chrono modeling elements, simplified kinematic driveline); wheel (simply

a carrier for additional mass and inertia appended to the suspension’s spindle body);

brake (simple model using a constant torque modulated by the driver braking input).

In addition, Chrono::Vehicle offers a variety of tire models and associated

templates, ranging from rigid tires, to empirical and semi-empirical models (such as

Pacejka and Fiala), to fully deformable tires modeled with finite elements (using

either an Absolute Nodal Coordinate Formulation or a co-rotational formulation).

Driver inputs (steering, throttle, and braking) are provided from a driver subsystem

with available options in ChronoVehicle including both open-loop (interactive or

data-driven) and closed-loop (e.g., path-following based on PID controllers).

2.4 MPC LIDAR-Based Local Obstacle Avoidance: History and Current Algorithm

The concept of MPC is to use an internal model of the system one desires to

control to predict and optimize future system behavior from the current system

state and inputs [16]. The system behavior is predicted over some defined finite

time horizon and the optimal control sequence over the prediction horizon is output.

The control sequence is executed for an execution time smaller than the prediction

horizon, and the whole process is repeated. The repetition of this process over time

creates a feedback loop which continually controls the system, pushing it towards an

optimal path.
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Figure 2.2: Schematic of MPC LIDAR-Based Constant Speed Local Obstacle Avoidance
Controller

For this study, the system to be controlled is an AGV. Consider an AGV located

in a level environment without roads or any other structures to guide its motion and

assume the AGV has a known global target position. Between the target position

and the current vehicle position there may or may not be obstacles of unknown size.

Using the MPC formulation outlined in [5], the vehicle can navigate from the

current position to the provided target position while avoiding obstacles as they are

encountered. Obstacle information is assumed to be unknown a priori and only

obtained through a planar LIDAR sensor. The MPC schematic is presented in

Figure 2.2.

The planar LIDAR sensor, mounted at the front center location of the vehicle,

returns the closest obstacle boundary in all radial directions of the sensor at an

angular resolution ε. The sensor has a maximum range past which it cannot sense

any obstacles. Therefore, if the closest obstacle boundary is greater than the

LIDAR radius RLIDAR, then the sensor returns RLIDAR. The LIDAR sensor range is

[0◦, 180◦], with 90◦ being the vehicle heading direction. Since the AGV considered

here is driving along level ground, whether granular or rigid, a planar LIDAR sensor

is sufficient. The sensor is assumed to have no delay and zero noise and can

therefore instantaneously generate a safe area polygon assembled from the returned

points from the LIDAR. An overhead view of the AGV encountering an obstacle
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(a) 3D Visualization of LIDAR Encoun-
tering Obstacle

(b) LIDAR Sensed Safe Area

Figure 2.3: Sample obstacle field and LIDAR output

and the generated LIDAR safe area polygon are presented in Figure 2.3.

In this research, all of the obstacles are upright cylinders so a ray-circle

intersection algorithm is used to determine when each LIDAR ray intersects with a

nearby obstacle. The ray-circle intersection algorithm is presented in Appendix A.

This algorithm does a quick and efficient job of simulating a perfect LIDAR sensor

encountering upright cylinders when the algorithm is performed on a set of rays all

sweeping iteratively from the vehicle’s location.

For the purpose of these simulations, the only outputs of the MPC algorithm are

the steering signals since the plant vehicle maintains a near constant speed

controlled by a PID speed controller. As shown in Figure 2.2, the MPC algorithm is

made up of the internal controller vehicle model, the cost function and constraints,

and the dynamic optimizer. The internal controller vehicle model predicts the

future states of the AGV for a given steering sequence. Herein, the internal

controller vehicle model is varied from test to test between a 2-DOF vehicle model

and a 14-DOF vehicle model, as detailed in further sections. Cost functions and

constraints are used to formulate the optimal control problem using the equations

from the vehicle model, and the resulting optimal control problem is solved using

dynamic optimization.

Since the ability of finding and executing an optimal solution, rather than



32

solution speed, is the primary focus here, an exhaustive search is used to find the

optimal solution to the problem at hand. With this method, the steering sequence is

discretized and a finite set of path possibilities are tested and weighed by a cost

function.

The MPC controller as formulated in [5] is used for this study. The cost function

and constraints need to be specified to avoid collisions with obstacles and guarantee

vehicle dynamical safety. The optimal control problem solved at each MPC time

step consists of the following set of equations:

minimize
J

J = sT + wd (2.9)

subject to ξ̇ = v [ξ (t) , ζ (t)] (2.10)

ξ (0) = ξ0 (2.11)

S̃ [x (t) , y (t)] ≤ 0 (2.12)

|δf (t)| ≤ δ̃f,max (U0) (2.13)

|ςf (t)| ≤ ςf,max (2.14)

t ∈ [0, TP ] . (2.15)

Equation (2.9) defines the cost function for this optimal control problem where J is

the cost of a path. This equation is a soft requirement which defines how the

separate path possibilities are weighed against each other and how to determine

which path is actually optimal. The cost function is comprised of two terms defined

as:

sT =

√
[xG − x (TP )]2 + [yG − y (TP )]2 (2.16)

d =

TG∫
0

|ς (t)| dt . (2.17)
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Here, sT seeks to minimize the distance between the prediction end-location

(x (TP ) , y (TP )) and the target position (xG, yG). A prediction path that guides the

vehicle towards the closest location to the target will have the smaller sT term. The

second term, d, aims to minimize the change in steering angle so that smoother,

straighter paths are preferred over windy paths. A weighting factor w is used to

scale the influence of d in the total cost.

Equations (2.10-2.15) are the constraints for this optimal control problem and

represent hard requirements for vehicle safety and collision avoidance. Any paths

that violate these constraints are not considered safe paths and are eliminated as

potential options in this prediction window. Equation (2.10) defines a set of

differential equations that describe the internal controller vehicle model where ξ is

the set of system state variables and ζ is the set of input command variables, with

the initial conditions at the start of the time horizon set by Equation (2.11).

Equation (2.12) defines a safe area polygon, constructed from LIDAR data and

including an additional safety buffer to account for vehicle size and to prevent

collisions of the vehicle corners. All points along paths found from Equations (2.10)

and (2.11) must fall inside this safe area polygon.

Equation (2.13) imposes a maximum limit on the front steering angle δf , based

on vehicle longitudinal speed. This value is obtained from a lookup table which can

be generated either experimentally or from simulation. Equation (2.14) imposes a

maximum limit on front steering rate ς. Equation (2.15) defines the time horizon TP

over which this optimal control problem is solved.

To determine if any point along the path is within the LIDAR sensed safe area

polygon, a point in polygon algorithm is used. The algorithm developed for this

research is similar to the winding method where the winding method tracks how

many times the edges of the polygon wind around the current point of interest.

However, the algorithm developed and used in this research is much simpler and
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quicker and is very similar to that provided in [38]. This algorithm checks the

quadrant where each vertex of the polygon is located in a frame with origin at the

current point of interest. The algorithm then counts the number of times that

quadrant changes as the algorithm cycles through all of the vertices to determine if

the point of interest is inside the polygon. The motivation for this actually comes

from real life. Imagine sitting in a closed room. A way one could test if they were

actually in the room would be to iteratively look at all the corners of the room in

sequence. In the person’s relative reference frame fixed in its orientation, cycling

through the corners of the room one would note the net quadrant change is 4,

regardless of how many corners there are. Now if the person were standing outside

of the room and performed this same test, they would note that the net quadrant

changes was a number other than 4 meaning the room did not enclose them and

therefore they are outside of the room. Again the method is similar to the winding

method but the algorithm performs and checks different aspects to reach the same

conclusion quicker. This research uses a planar LIDAR sensor. Thus, this algorithm

is only developed in two dimensions in the x-y plane. Further development of this

point in polygon algorithm can be found in Appendix B.

2.5 Multi-DOF Vehicle Dynamics Models

Equation (2.10) refers to an analytical vehicle model expressed as a set of

differential equations which allow the controller to predict vehicle performance

within the prediction horizon. The accuracy of the internal vehicle controller model

should directly influence the driven vehicle’s controlled performance. If the internal

vehicle controller model poorly predicts a vehicle’s response to inputs from the

driver or the environment, then these deficiencies will be witnessed when attempting

to control the driven vehicle and result in incorrect trajectories that may lead to

collisions. On the other hand, a highly complex internal vehicle controller model

may provide accurate trajectory and vehicle response predictions, but with an
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unacceptable time required to solve the optimal control problem. An ideal controller

should not only accurately predict vehicle responses, but also do it quickly enough

to insure vehicle safety. The vehicle models embedded in the MPC are

simplifications of the full, multi-body based, Chrono wheeled vehicle model which is

being controlled. Two models were considered initially, providing different levels of

fidelity, as described below.

2.5.1 2-DOF Vehicle Model

The standard vehicle model used in recently developed MPC obstacle avoidance

algorithms such as [5] is the 2-DOF yaw plane vehicle model. These models

normally either assume constant cornering stiffness or the nonlinear Pacejka Magic

Formula Tire Model [39] to predict the ground tire interaction forces. For this

study, the Pacejka Magic Formula is used to predict tire forces in the vehicle

models. This force model will be presented in Section 2.6.

A visual representation of the 2-DOF yaw plane vehicle model can be found in

Figure 2.4. The 2-DOF model is described by the following first-order ordinary

differential equations:

V̇ = (Fy,f + Fy,r) /M − U0r (2.18)

ṙ = (Fy,fLf − Fy,rLr) /Izz (2.19)

ψ̇ = r (2.20)

ẋ = U0 cosψ − (V + Lfr) sinψ (2.21)

ẏ = U0 sinψ + (V + Lfr) cosψ , (2.22)

where Fy,f and Fy,r are the lateral tire forces at the front and rear axles,

respectively. U0 and V are the longitudinal speed and lateral speed of the vehicle in

the vehicle’s coordinate frame. ψ is the yaw angle and r is the yaw rate. (x, y)
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Figure 2.4: 2-DOF Vehicle Model

represent the front center location of the vehicle expressed in global coordinates. M

is vehicle mass, Izz is the moment of inertia of the vehicle about the CoG and the

z-axis, Lf is the distance from the front axle to the vehicle CoG, and Lr is the

distance from the rear axle to the vehicle CoG.

For this research, the model is constrained to a constant longitudinal speed.

Then the planar 3-DOF body with one constraint results in the 2-DOF model used

for this study.

2.5.2 14-DOF Vehicle Model

A 14-DOF model is often used in studies such as these to test the obstacle

avoidance controller with a higher fidelity vehicle model [3, 5]. A benefit of using

the 14-DOF in the controller is the model’s ability to predict tire liftoff and account

for dynamic effects from suspension systems. For this research, it is appropriate to

also compare performance of the local obstacle avoidance controller running an

internal 14-DOF on rigid terrain versus granular terrain.
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Figure 2.5: Reproduced from [2]. 14-DOF Vehicle Model

The 14-DOF vehicle model consists of one sprung mass connected above four

unsprung masses [2]. The sprung mass is allowed to roll, pitch, and yaw while also

displacing laterally, vertically, and longitudinally. This sprung mass contributes six

DOF to the model. Each of the four wheels are allowed to bounce vertically and

rotate about the wheel horizontal axis. The front two wheels are also free to steer.

Each wheel then contributes two DOF to the 14-DOF model. The model is

constrained at a constant longitudinal speed of 8.1 m/s used for this research. The

equations used for this model, as well as their derivation can be found in [2] and

visualized in Figure 2.5.

2.6 Tire Ground Force Model: Pacejka Magic Formula

The Pacejka Magic Formula is a semi-empirical tire model developed in 1987 by

Hans B. Pacejka from Delft University of Technology, Egbert Bakker from Volvo
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Cars, and Lars Nyborg from Volvo Cars [40]. This model was developed further by

Pacejka and commercially known as the “MF-Tire.” The Magic Formula is capable

of characterizing a tire with a large set of coefficients obtained from experiments.

These coefficients are then used to calculate lateral, longitudinal forces as well as

the self aligning torque experienced by a tire interacting with the ground.

A = B (Fz) · α (2.23)

Fy = D (Fz) · sin {C (Fz) · atan [A− E (Fz) · A+ E (Fz) · atan (A)]} (2.24)

The lateral forces at a wheel used in the previously described 2-DOF vehicle

model are calculated using Equations (2.23) and (2.24) for the case of pure lateral

slip. Fz is the vertical load at the axle. α is the lateral tire slip angle. B (·), C (·),

D (·), and E (·) are functions of the tire vertical load Fz and these relationships are

described in [39]. The slips at a front and rear tire are calculated using Equations

(2.25) and (2.26) respectively where δf is the steering angle of the front wheel.

αf = tan−1

(
V + Lfr

U0

− δf
)

(2.25)

αr = tan−1

(
V − Lrr
U0

)
(2.26)

The tire vertical load is then required as an input to Equations (2.23) and

(2.24). Longitudinal load transfer is accounted for when calculating front and rear

tire vertical loads. Justification for this inclusion can be found in [5]. Equations

(2.27) and (2.28) are then used to calculate the front and rear tire loads Fz,f and

Fz,r and input into Equations (2.23) and (2.24).

Fz,f =
MgLr +MV rhCG

Lf + Lr
(2.27)



39

Fz,r =
MgLf −MV rhCG

Lf + Lr
(2.28)

The Magic Formula characterizes the tire’s interaction with rigid ground with a

set of coefficients and uses those coefficients to match the Magic Formula with

experimental data. Then a tire interacting with one type of pavement will have

different Magic Formula parameters than the same tire interacting with a different

type of pavement. However, the Magic Formula models tire ground interactions on

rigid ground, not granular terrain i.e., there is not a granular terrain Magic

Formula. There is then a mismatch between the internal controller models and the

plant vehicle when controlling the vehicle on granular terrain, but this research first

seeks to identify what role that mismatch plays in controller performance.

Improvements presented in Chapter 5 address this model mismatch in order to

better account for the granular terrain interaction.

2.7 Optimization Problem: Exhaustive Search Space

When this controller is implemented in real-time on a physical vehicle, it will use

some high efficiency optimization algorithm to compute which steering sequence is

best for the HMMWV to follow. For this research, that is not the case because the

interest lies in analyzing the role and effect of model fidelity on the controller

performance. When the system dynamics are represented using the 14-DOF

analytical vehicle model, the optimization problem becomes very difficult to solve

and the techniques to perform such a complex optimal control problem quickly are

still the subject of ongoing research. Considering this observation, an exhaustive

search space approach is used for this research to solve the optimal control. This is

the same technique used in [5].

Using this exhaustive search space method, the steering search space is

discretized instead of considering the entire continuous steering search space. Some

discrete steering angles are considered which include the maximum safe steering
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(a) Sample Steering Sequence (b) Visualization of Exhaustive Search
Method using ns = 3 and np = 4

Figure 2.6: Exhaustive Search Space Simplified Visualization

angle, negative maximum steering angle, and zero steering. The set of discrete

steering angles is then denoted as the steering angle pool, represented by Equation

(2.29). The prediction horizon is divided into intervals of equal length. Then at each

interval, a steering angle from the steering pool is selected and held constant for that

interval. A zero-order hold approach is used to develop a steering angle sequence

from the steering angle of each interval. Ramp transitions join two different steering

angles so that the slope is the maximum steering rate. The prediction horizon is

divided into np intervals and the number of steering angles considered in the

steering pool is ns. Therefore the total size of the search space or number of

different possible steering sequences considered is n
np
s . The steering sequence is then

executed over the execution horizon TE which is set equal to or less than the

interval length TP/np. For this research, the parameters used are np = 4, ns = 5,

and TE = 0.5s. The discretization of the search space allows for a simplification of

Equation (2.17) from the cost function which yields Equation (2.30).

©steer = [−δ̃f,max (U0) · · · 0 · · · δ̃f,max (U0)] (2.29)

d =

np∑
i=1

|δi − δi−1| (2.30)
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(a) All Possible Path Possibilities (b) All Path Possibilities Determined if Safe
or Not

Figure 2.7: Exhaustive Search Space Paths Checked with Point in Polygon Algorithm

The control sequences are compared against each other using the cost function.

The optimal control sequence that minimizes the cost function and satisfies the

constraints of the optimal control problem is selected from the steering pool and

executed over the execution horizon. Starting at the initial state, control commands

from the steering pool are applied to the analytical vehicle model and the resulting

trajectories are checked for constraint violation. If the constraints are violated, that

search branch is terminated. Else, the next step prediction is performed by using

the end state of the last analytical evaluation as the new initial state and applying

commands from the steering pool. This process is repeated for all intervals and until

the prediction horizon window has been reached. Once all control sequences have

been evaluated, they are compared using the cost function. The control sequence

that minimizes the cost function is considered the optimal control sequence. The

optimal control sequence is executed over the execution window and the whole

process is repeated. Refer to Figure 2.6 for an example implementation of this

exhaustive search method. Figure 2.7 presents the full set of different path

possibilities considered and how they are eliminated based on the LIDAR safe area

polygon. For this research, the steering space is discretized into five steering angles,

while the prediction horizon is split into four intervals, yielding 625 different

steering sequence possibilities and therefore 625 different path possibilities that are
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weighed by the controller to determine the optimal steering sequence.
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3 EXPERIMENTAL SETUP

Based on the identified objectives of this research, a series of numerical

simulations were setup to examine the role of model fidelity and the influence of

terrain type on controlled vehicle performance. To accomplish this task, a robust

simulation environment was developed in C++ that leverages the multibody

capabilities provided by Chrono to test the previously described MPC controllers on

a multibody physics model of a HMMWV. This environment allows a user to

simulate their complex multibody HMMWV model on either rigid ground or a

customizable granular terrain and test the obstacle avoidance capabilities of their

desired controller. This sort of initial algorithm testing would save a controller

design team time by allowing for quick execution of high fidelity virtual

experimentation to verify initial control algorithm functionality. Then physical

experiments on a real vehicle can be performed on controllers that perform

successfully in this virtual environment. The overall goal for any controller is

eventual successful real-time implementation, so this method of virtual

experimentation provides a design team a powerful tool to quicken the process from

theoretical controller to physically installed obstacle avoidance controller on a

HMMWV. This chapter consists of descriptions of the experiments designed for

execution in this virtual environment to analyze the role of model fidelity and

influence of terrain type on controlled vehicle performance. The HMMWV, used as

the plant vehicle for this study, is described as well as the newly developed method

of simulating granular terrain that made this sort of virtual experimentation

possible.

3.1 Controlled Chrono HMMWV Vehicle

The model to be controlled (the plant) is a full-vehicle Chrono::Vehicle model of

a HMMWV, which includes multi-body subsystems for the suspensions, steering,
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Figure 3.1: Full-vehicle HMMWV multibody model.

driveline, and powertrain, and is available in the Chrono package.

This vehicle model (see Figure 3.1) has a curb weight of 2, 550 kg. It includes

independent front and rear double wishbone suspensions and a Pitman arm steering

mechanism. The shock absorber and coil spring, mounted between the lower control

arm and the chassis, are modeled with Chrono nonlinear force elements and include

the effects of bump stops.

The All Wheel Drive (AWD) driveline is modeled using Chrono shaft elements

and includes three power splitting elements (a central differential and front/rear

differentials), as well as conical gears connected through 1-dimensional shaft

elements which carry rotational inertia. The powertrain is also modeled using

1-dimensional shaft elements and includes models for a thermal engine specified

through speed-torque maps for power and engine losses, a torque converter specified

via maps for the capacity factor and the torque ratio, and an automatic transmission
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Test Terrain Controller Vehicle
Number Type Model

1 Rigid 2-DOF
2 Rigid 14-DOF
3 Granular 2-DOF
4 Granular 14-DOF

Table 3.1: Individual Simulation Test Information

gearbox with three forward gears and a single reverse gear. The connection between

powertrain and driveline is a force-displacement interface at the driveshaft (with

torque applied from the powertrain and angular velocity provided by the driveline).

For mobility studies on deformable terrain, provided that the tire inflation

pressure is comparable or larger than the average ground pressure, according to the

postulate by Wong [41], the tire can be considered in a so-called rigid regime. As

such, tire deformation can be ignored and the vehicle’s tires are modeled using rigid

contact shapes. The HMMWV tire model used here is thus represented by a

cylinder with a radius of 0.47 m (18.5 in) and a width of 0.254 m (10 in).

3.2 Simulation Parameters

Simulations on both rigid and granular terrain were compared to understand

how the controller performs on non-ideal surfaces. The two internal controller

vehicle models studied in these tests were the previously described 2-DOF and

14-DOF vehicle models. All other controller parameters were kept unchanged over

all tests. This experiment takes the form of a two level, two factor statistical design

of experiments. Referring to Table 3.1, the effect of model fidelity on controller

performance was gauged by comparing test 1 with 2 and test 3 with 4, for rigid flat

and granular terrain, respectively. Similarly, comparing test 1 with 3 and test 2 and

4 allowed evaluating the performance of each internal vehicle model on rigid and

granular terrain.
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(a) Field 1 (b) Field 2
Figure 3.2: Obstacle Fields

x y Radius
(m) (m) (m)

Field 1
Target Location 200.0 0.0 -

Obstacle 1 100.0 0.0 15.0

Field 2
Target Location 550.0 0.0 -

Obstacle 1 100.0 0.0 15.0
Obstacle 2 200.0 -50.0 30.0
Obstacle 3 300.0 55.0 30.0
Obstacle 4 425.0 0.0 50.0

Table 3.2: Obstacle Field Parameters

Each of the above four tests consisted of runs on two fields with different

obstacle distributions. The first one, depicted in Figure 3.2a, contains a single large

circular obstacle located along the initial heading of the vehicle, with the target

location at a large distance behind the obstacle. The second obstacle field (see

Figure 3.2b) consists of four circular obstacles of varying sizes placed in the vehicle’s

initial heading direction, and provides a more realistic obstacle-avoidance scenario.

Table 3.2 summarizes the obstacle locations and dimensions, as well as the target

location for the above two scenarios.

The following vehicle parameters are maintained throughout all of the executed

tests. A PID speed controller is used to maintain a near constant speed of 8.1 m/s
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longitudinally for the simulated plant Chrono wheeled vehicle. This constant speed

is also enforced in the analytical models internal to the MPC controller. The

LIDAR sensor has a maximum range RLIDAR = 129.6 m and is sampled

instantaneously at increments of ε = 2.5◦. The vehicle is limited to a maximum

steering angle of δf = 10◦, with a maximum steering rate of ςf = 70◦/s.

3.3 Evaluation Metrics

Five evaluation metrics will be used to compare one test performance to the

other. Using the DEM-P method of simulation results in noisy acceleration data.

To address this, acceleration data is filtered to remove noise. First, all test runs will

be compared based on the time to reach the target, Ttarget, to determine which

controller leads the vehicle to the target point quickest. Second, the closest distance

the vehicle reaches to any obstacle, dmin, will be measured. Third, the control effort

will be calculated and compared between test cases. The better test case will have a

lower controller effort value. Finally, the maximum and average lateral accelerations

will be calculated and compared. The lateral accelerations are calculated at the

driver’s position in the chassis. These five evaluation metrics provide a consistent

methodology for comparing one test case with another, regardless of the terrain

type and underlying analytical controller model.

3.4 Granular Terrain Simulation

Due to the large-scale nature of the simulations in this study, generating

granular particles distributed across the entire obstacle field is both computationally

exhausting and unreasonable. Instead, a moving-patch approach was developed.

Consider an AGV on a large terrain patch of 100 by 100 meters. Since the vehicle

behavior and performance is of primary interest and not explicitly the terrain

behavior, only a small patch of granular terrain underneath and around the vehicle

is assumed significant. This idea promoted the development of a new relocating
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Figure 3.3: Relocating Granular Patch that follows the vehicle

granular patch which enables simulations of a vehicle traversing granular terrain

over a large area, without the need to generate particles everywhere throughout that

area.

This mechanism allows a user to generate granular particles within a specified

distance of the vehicle’s CoG. Figure 3.3 presents the patch of granular terrain

underneath the Chrono HMMWV that moves with the vehicle. The particles are

contained within four rigid walls to prevent them from escaping the desired terrain

area. As the vehicle moves across the terrain, this patch maintains granular material

underneath the vehicle by consistently relocating particles that are too far away

from it. When the vehicle location comes within a certain predefined distance of any

of the walls, a band of particles half the length of the HMMWV thick from the

opposite end of the granular patch are relocated past the closest wall and all of the

walls are shifted in that direction. Each of these relocation steps keeps the vehicle

on top of granular terrain at all times. Depending on the vehicle, this granular

patch can be resized for both computational efficiency and to guarantee the vehicle
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(a) Vehicle Approaches front wall just before
relocation algorithm triggered

(b) Particles behind the vehicle are relocated
to in front

Figure 3.4: Granular relocation algorithm

maintains a reasonable distance from the walls to prevent any boundary effects.

This newly developed method of simulating granular terrain for AGV’s is

omnidirectional in the ground plane, allowing the vehicle to move in any direction

while the terrain patch relocates and responds to that movement, thus enabling

simulations over arbitrarily large areas. This algorithm was newly developed for the

purpose of this research and without which this study would not have been possible.

This algorithm is visualized in the x-direction in Figure 3.4.

For these simulations, the granular patch was maintained at a size of roughly 6.6

by 6.6 meters. This number was assigned as two times the largest dimension of the

vehicle. The dimensions of the patch are not constant, however, since the patch

expands in the direction of relocation by two times the largest particle radius every

time the advancing wall is shifted. This extra radius is added on the relocation

distance in order to avoid particle overlap, since the relocated particles are moved to

a position that is shifted one largest particle radius ahead of the particles adjacent
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to the advancing wall. After relocation, the walls of the granular patch are given a

recovery velocity such that the granular patch regains its original dimensions in 0.1

seconds. This recovery time should be small relative to the duration of the

simulations, and in general it will also depend on the velocity of the vehicle, since

the granular patch should completely recover its dimensions between subsequent

relocations.

To prevent the granular patch from colliding with the obstacles in the field, each

body (particles, ground, containing walls, obstacles) in the simulation is designated

a family. Then within the simulation the user can designate which families collide

with which other families. So the particles and their walls are all members of the

same family. This family interacts only with the family containing the bodies of the

HMMWV and not with the obstacle family. This framework allows the vehicle to

approach and collide with the obstacles without the terrain actually experiencing

that obstacle collision. Figure 3.5 presents the vehicle on the granular patch

maneuvering around an obstacle and though the terrain overlaps with the obstacle,

no collision forces are calculated or applied between those families of bodies.

Figure 3.4 presents the single granular patch used for all granular simulations in

the presented experiments of this thesis. The granular terrain is colored based on

the particle global z location so that blue particles are low and red particles are

high. An improved alternative to this single relocating granular patch was explored

as well in an attempt to both speed up simulation runtimes and allow for simulation

of smaller particles. Instead of simulating a single large granular patch underneath

the vehicle center, four individual granular patches are simulated underneath each

of the vehicle wheels. This concept is visualized in Figure 3.6. This concept would

allow for a much smaller number of particles to be simulated because resources

again are not being wasted for particles sitting too far away from the wheels. Each

smaller patch works the same as the large single granular patch where they are
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Figure 3.5: HMMWV navigating around obstacle, granular Patch does not collide with
obstacles
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provided a location on the body to follow. As that point on the body moves a

certain distance towards any of the walls holding the small patch of particles

together, particles near the opposite wall are relocated to in front of the closer wall,

the walls shift and compress to account for the patch growth to prevent particle

overlaps during relocation. To prevent particles from one wheel patch from colliding

with particles from another wheel patch, bodies are designated as members of a

family depending on which patch they were generated in. Particles then only collide

with the walls, particles, and wheel that are members of its own family, allowing

patches to overlap without actually colliding with each other.

This new concept was implemented in simulations to test its potential as a

method for simulating granular terrain moving forward. Comparing the results of

simulations using these four individual patches to those that used the single large

patch, there were not significant differences in results or vehicle trajectories. The

individual patches method even allowed for simulations with particles of diameter

0.05 m without sacrificing larger amounts of simulation time to perform these

simulations. One note that supports the use of larger particles was even by reducing

the particle size by that large of a factor, there was no significant difference in

vehicle performance. However, a concern with using these smaller patches was that

there was a much more significant boundary effect each relocation step due to the

smaller distance between the tire contact patch and the walls containing the

particles. Figure 3.6 presents a visualization of the four independent relocating

patches explored. This concept shows promise but for consistency and more

confidence in the fidelity of the simulation results, all recorded and presented

simulations in this study use the single large relocating patch. The independent

patches are considered for future research.

Within the granular patch, the granular terrain was modeled by 55, 931 uniform

spherical particles, with a micro-scale inter-particle sliding friction coefficient of
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(a) Initial four relocating
granular patches

(b) Forward relocation step
for the right wheel patches

(c) Patches follow wheels as
vehicle heading changes

Figure 3.6: Independent four granular relocating patches explored to improve simulation
speeds, HMMWV chassis not visualized

µ = 0.8, and particle diameter of 0.1 m to model a stiff railroad ballast. Previous

studies [42] have shown that a randomly packed assembly of as few as 3, 000 -

30, 000 uniform spheres will exhibit macro-scale bulk granular material yield

behavior (due to inter-particle sliding) that closely matches the Lade-Duncan yield

surface, which is a well-established yield criterion in the field of geomechanics,

where the macro-scale friction angle φ for the bulk granular material can be

determined as a function of the inter-particle friction coefficient µ.

Referring to Figure 10 of [42], a randomly packed assembly of uniform spheres

with an inter-particle friction coefficient of µ = 0.8 will exhibit macro-scale yield

behavior corresponding to a bulk granular material with a macro-scale friction angle

between roughly 35◦ ≤ φ ≤ 40◦ if particle rotation is allowed (6-DOF particles), or

with a macro-scale friction angle between roughly 65◦ ≤ φ ≤ 70◦ if particle rotation

is prohibited (3-DOF particles). Since the granular patch used in these simulations

contains more than 50, 000 uniform spheres, this simulated terrain model is

accurately modeling the yield behavior of a true granular material on the

macro-scale: either with a macro-scale friction angle of 35◦ − 40◦ if particle rotation

is allowed, which is typical of a wide range of dry natural and crushed sands [43]; or

with a macro-scale friction angle of 65◦ − 70◦ if particle rotation is prohibited, which



54

is typical of crushed or fragmented rock, such as railway track ballast [44].

In the case of the HMMWV, the vehicle tire width is equal to only

approximately 2.5 particle diameters in the granular patch which is less than ideal.

However, a more suited value of 10 particle diameters per tire width would increase

the number of particles in the granular patch to more than 3 million, which would

result in prohibitively slow simulations, particularly for events corresponding to

physical time durations on the order of 10 seconds or more.

3.5 Hardware and Materials

The simulations throughout this research were performed on a Quantum

TXR430-512R computer with Scientific Linux 7.2 installed as the primary operating

system and an Ubuntu 16.04 virtual machine. The specifications of the computer

are outlined in Table 3.3. MATLAB 2015b was used to generate all plots in a

post-processing script and determine evaluation metrics from each test case.

POVRAY was used to generate visualizations of the performed simulations. Due to

the long runtimes of each granular simulation, real-time visualization is not possible

or necessary. Therefore, visualization with POVRAY is used. Simulations output

large POVRAY data files that describe the body locations, sizes, and orientations at

each time step. A set of scripts in Python 2.7 were developed to generate images

from the POVRAY output data files and then stitch the images together to create a

60 fps video with a prescribed camera angle. The user could define using the scripts

the location and orientation of the camera, what point the camera should look at,

and if the camera should follow the vehicle throughout the video. This tool allows

for simple and effective development of videos and images as a post-processing

method. Overall, all work will be accomplished using this computer and resources

accessible on this computer.
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Identifier Basic Informa-
tion

Additional Information Quantity

Architecture Quantum
TXR430-512R

· Tower / 4U Convertable Chassis
· Supports 2x E5-2600 v3 Proces-
sors
· DDR4 Memory
· Supports Up To 3x 5.25IN Bays
· 8x 3.5IN Hot-Swap HDD Bays
· Up To 4x Double-Width GPU
· Up To 1TB DDR4 Memory
· Dual Gigabit Ethernet LAN
· 2000W Redundant Power Sup-
plies

1

Processor Intel Xeon E5-
2687W v3

10C, 3.1 GHz 25M, Support
DDR4-2133

2

Memory 32GB DDR4 2133MHz LR ECC LRDIMM 8
Primary
Storage

512 GB 2.5 SATA
III

Internal Solid State Drive (SSD)
** OS DRIVE **

1

Secondary
Storage

1.8 TB SAS 12Gb/s 2.5InternalHard-
Drive**RAID10**

8

RAID
Controller

LSI 9300
MegaRAID SAS
9361-8i (LSI00417)
PCI

· Express 3.0x8 Low Profile
SATA/SAS
· 1 GB Cache
· High Performance Eight-Port 12
Gb/s RAIDController

1

RAID
Cache

LSI LSICVM02 (LSI00418) CacheVault Accessory
Kit for 9361 Series)

GPU Nvidia Tesla K80 24 GB GDDR5 384-bit PCI Ex-
press 3.0 - Passive Cooling

3

GPU Cool-
ing

Passive Cooling Passive GPU Kit for 4U 4GP
USystem

1

Power PC Smart UPS X
3000VA

Rack/Tower LCD100-127V 1

Internal Cabling
0.6m Internal Cable SFF8643 to
x4 SATA HDD (mini SASHD to
SATA data port)

2

2.5” to 3.5” SATA/SAS6Gb SSD
Hard Drive Converter / Adapter
/ Bracket

9

Additional Components
4U / Tower Conversion Kit / Rail
Kit

1

Windows 8.1 Professional 64Bit 1
Samsung S24D300H 24IN LCD
Monitor

1

Table 3.3: Hardware Components of Computer Used for Parallel Simulations
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4 FIRST EXPERIMENTAL RESULTS AND DISCUSSION

This section summarizes the results of the four tests listed in Table 3.1. The

trajectories for the four performed tests are presented in Figures 4.1a and 4.2a, for

obstacle fields 1 and 2, respectively. The associated steering commands generated

by the controller are presented in Figures 4.1b and 4.2b. The results of this first

experiment are published in [45].

The evaluation metrics for each test, as defined in Section 3.3, are tabulated for

each obstacle field in Tables 4.1 and 4.2.

(a) Vehicle trajectories. (b) Steering commands.
Figure 4.1: Experiment 1 Test results on Obstacle Field 1

Test Number 1 2 3 4
Controller Model 2-DOF 14-DOF 2-DOF 14-DOF
Terrain Rigid Rigid Granular Granular
Time to Target (s) 26.67 26.15 28.32 28.03
Minimum Obstacle Distance (m) 0.897 5.462 3.491 4.721
Controller Effort 0.0340 0.0340 0.0340 0.0306
Max. Lateral Acceleration (m/s2) 2.78 1.57 2.47 2.33
Avg. Lateral Acceleration (m/s2) 0.54 0.51 0.55 0.46

Table 4.1: Experiment 1 Test Evaluation Metrics Summary on Obstacle Field 1
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(a) Vehicle trajectories. (b) Steering commands.
Figure 4.2: Experiment 1 Test results on Obstacle Field 2

Test Number 1 2 3 4
Controller Model 2-DOF 14-DOF 2-DOF 14-DOF
Terrain Rigid Rigid Granular Granular
Time to Target (s) 73.85 71.55 76.64 74.70
Minimum Obstacle Distance (m) 0.331 2.599 1.083 1.152
Controller Effort 0.0510 0.0680 0.0714 0.0612
Max. Lateral Acceleration (m/s2) 2.92 2.51 2.55 2.45
Avg. Lateral Acceleration (m/s2) 0.41 0.43 0.53 0.58

Table 4.2: Experiment 1 Test Evaluation Metrics Summary on Obstacle Field 2

4.1 Influence of Model Fidelity

Assessing the effect of internal vehicle model fidelity on controller performance

when the vehicle navigates on rigid terrain (comparison of tests 1 and 2), the

following observations are made:

• the 14-DOF model leads to marginally faster travel to the target location;

• the 2-DOF model leads to trajectories with lower obstacle clearance;

• the two models result in the same controller effort on the first obstacle course;

however, the higher-fidelity 14-DOF model requires 33% more controller effort
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on the second obstacle course, a consequence of its decision of performing a

course change to negotiate the last obstacle;

• the two models result in approximately the same number of command changes

on both obstacle courses;

• the 14-DOF model results in lower maximum lateral accelerations.

Overall, while the higher-fidelity internal model leads to marginally better

performance, the 2-DOF model is perfectly suitable for use in MPC-based local

obstacle avoidance on rigid terrain at non-extreme speeds, as it can safely navigate

the vehicle to its end goal. These results support the findings and conclusions in [5]

even though a different AGV is considered here.

A similar comparison can be made for the case of obstacle avoidance on granular

terrain (tests 3 and 4). As on rigid terrain, the higher fidelity model leads to faster

travel to the end goal, larger clearances to the obstacles, and lower maximum lateral

accelerations. However, on granular terrain, the controller effort required by using

the 14-DOF model is always lower than that required by the 2-DOF model.

Therefore, using a higher-fidelity internal controller model leads to overall

marginally better performance.

The 2-DOF and 14-DOF internal vehicle models were derived using rigid ground

assumptions, yet they are still capable of successfully and safely navigating the

simulated vehicle through an obstacle field on granular terrain. The monitored

metrics indicate a slight drop in controller performance when using the 2-DOF

model. However, these gains are outweighed by the benefits, in terms of required

computational effort, offered by implementing the lower-fidelity 2-DOF model.

4.2 Influence of Terrain Type

Turning next to evaluating the 14-DOF internal controller model when

navigating on rigid versus granular terrain (comparison of tests 2 and 4), the
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following conclusions are drawn:

• on both obstacle courses, the target can be reached faster when navigating on

rigid terrain;

• the resulting trajectories are slightly closer to the obstacles when navigating

on granular terrain;

• the required controller effort is lower when navigating on granular terrain;

• the maximum lateral accelerations are similar on both types of terrain.

A similar analysis can be performed on the 2-DOF model when used to control a

vehicle on either rigid or granular terrain (comparison of tests 1 and 3). Unlike the

14-DOF model, the simpler 2-DOF model does a better job of approaching the

obstacles more closely when controlling a vehicle on rigid rather than on granular

terrain. Related to this, the controller effort on rigid terrain (test 1) is lower than

that required on granular terrain (test 3).

The forces the vehicle experiences from driving on granular terrain can be much

different than forces on simple rigid ground. Examining Figures 4.1a and 4.2a, the

vehicle navigating on granular terrain does not turn as sharply for a given steering

command as the vehicle does on rigid ground terrain. To understand the different

behavior between a vehicle driving on rigid and granular terrain, a parametric study

should be performed analyzing the vehicle driving on a variety of granular terrains

with different granular parameters.

Tests 3 and 4 were performed on granular terrain modeled as randomly packed

uniform spheres with an inter-particle friction coefficient of µ = 0.8, diameter of

0.1m, and a macro-scale friction angle roughly in the range 65◦ ≤ φ ≤ 70◦, with

particle rotation prohibited. This granular material resembles railway track ballast.

These same tests were attempted on the the same randomly packed uniform spheres
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with particle rotation allowed resulting in a macro-scale friction angle between

35◦ ≤ φ ≤ 40◦. This granular material resembles a dry sand. The results of this

second set of tests on dry sand are not plotted or tabulated because the vehicle

failed to move from the initial position. Instead, the vehicle spins its wheels in place

at its initial location, making no progress forward as the wheels slowly dig

themselves down into the granular terrain. However, this may be due to the too

large diameter spheres used for this study for computational reasons. Generally the

MPC LIDAR-based constant speed local obstacle avoidance controller used in this

study is not yet appropriate for use on all granular terrains. There are situations

where a combined speed and steering controller similar to that described in [4], or

even some new speed and steering controller which accounts for terrain parameters

and mobility information to better predict vehicle movement, would be required.

Neither of the models used in this first experiment, the rigid ground 2-DOF yaw

plane model nor the rigid ground 14-DOF vehicle models, were appropriate for

predicting vehicle behavior and performance on dry sand. Based on these findings,

improvements were made to the 2-DOF and controller and are discussed below.
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5 IMPROVED VEHICLE MODEL ON GRANULAR MATERIAL

Based on the results of the first experiment, the current MPC LIDAR-based

constant speed local obstacle controller requires improvements that allow the vehicle

and controller to perform better on granular terrain. Using the current internal

vehicle models and Magic formula, the controller does not use any information

about the terrain to predict vehicle trajectories and estimate tire forces. The

current controller would estimate that the vehicle would have the same trajectory

on loose soil as on stiff railroad ballast. The controlled vehicle can not in general

navigate on multiple different granular terrains because the controller predictions

are not influenced by any granular terrain parameters.

This chapter presents the improvements made to the controller by developing a

simplified lateral force model for the 2-DOF vehicle model allowing more accurate

lateral force estimations at the tire ground contact patch. This new model is derived

from terramechanics relations developed by Bekker and Wong. With this new

simplified lateral force model, the controller can now take into account the

interparticle friction coefficient, friction angle, and cohesion of the soil to better

estimate the tractive capabilities of the vehicle. To understand how interparticle

friction coefficient affects the trajectory of a vehicle for a given steering sequence, a

set of open loop simulations were executed varying interparticle friction coefficient.

This set of open loop simulations was also used to verify the new force model does

actually predict more accurate vehicle trajectories based on granular parameters. In

the future, a MPC algorithm using the 2-DOF model using this new lateral force

model will be capable of navigating across multiple different granular terrains by

using dynamic terrain data to better estimate vehicle trajectories.
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Figure 5.1: Terrain interactions on a single wheel on soft soil

5.1 Bekker/Wong Load Sinkage Relationship

To improve the current controller, a new lateral force model was developed using

work from Bekker and Wong as motivation. Often the interaction between a rigid

tire and soft soil is modeled using terramechanics relations originating from the work

of Bekker and Wong [41]. Penetration tests were performed to simulate the contact

area of a tire or track interacting with soft ground and the pressure p and sinkage z

were measured for the array of experiments. Based on this experimental data,

Bekker proposed the well known load-sinkage relationship in Equation (5.1) [41].

p =

(
kc
b

+ kφ

)
zn (5.1)

n is an exponent of deformation, b is the width of the tire, kc is the cohesive

modulus of deformation, and kφ is the frictional modulus of deformation.

If the normal stress σ is modeled anywhere along the wheel-terrain interface as

Bekker proposed, then Equation (5.1) becomes Equation (5.2) where θ and wheel
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sinkage ζ are defined in Figure 5.1.

σ (θ) =

(
kc
b

+ kφ

)
ζ (θ)n (5.2)

Using terramechanics relations as in [41], the shear stress τ can then be

determined along the wheel-terrain interface with Equation (5.3)

τ (θ) = [c+ σ (θ) tanφ][1− e−r[θ1−θ−(1−i)(sinθ1−sinθ)]/K ] (5.3)

i =
(rω − vt)

rω
(5.4)

where c is the terrain cohesion, φ is the internal friction angle of the granular

terrain, r is the wheel radius, K is the shear deformation modulus, and i is the

wheel slip ratio defined in Equation (5.4). ω is the angular speed of the wheel and vt

is the speed of its center [46].

5.2 New Simplified Force Model

The results in Chapter 4 promote the need for a simple yet improved method of

estimating the tire forces at the ground tire contact patch when a vehicle is

operating on soft or granular terrain. A benefit to the Pacejka Magic Formula

presented in Section 2.6 was the tire force calculation was backed by experimental

data and the functions were shaped by a large number of experimentally determined

parameters. However, the Magic Formula was derived for rigid ground applications

only and does not succeed in estimating tire forces on granular terrain [40]. The

Magic Formula overestimates the lateral and longitudinal tire forces the vehicle

experiences for any given slip angle as it does not take into account the shear

strength of the soil. Therefore a simplified method of estimating the lateral tire

forces at a tire ground contact patch was developed. This model is then used on the

2-DOF analytical vehicle model to estimate lateral tire forces and better predict
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Figure 5.2: Comparison of Magic Formula Lateral Force Prediction to New Force Model

vehicle trajectories on granular terrain.

Rather than using Equation (5.2) to calculate the normal stress at the tire

ground contact patch, the normal load is calculated using Equations (2.27) and

(2.28). Then the following assumptions are made. First, the tire ground contact

patch is assumed to be square of side length b which represents the width of the

tire. Second, a constant normal stress σ throughout the contact patch is assumed

such that the total force contribution from this normal stress is equal and opposite

the normal load calculated in Equations (2.27) and (2.28) which leads to the

simplified estimate of tire ground patch normal stress in Equation (5.5).

σ =
Fz
b2

(5.5)

Third, the tangential stress along the tire contact patch is assumed to be

constant as well. These assumptions lead to the simplification of (5.3) and when
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Figure 5.3: Effect of varying internal friction angle φ on lateral force prediction

only the pure lateral slip case is considered simplifies to Equation (5.6).

τ = [c+ σtanφ][1− e−r[
b
r
−sin( b

r )]/K ] (5.6)

Using the simplified constant stress relations and trigonometry, the lateral force

is then calculated using Equation (5.7).

Fy = −τb2sin (α) (5.7)

Though this development is the result of a handful of simplifying assumptions,

the results of the formulation should make sense. A comparison between the force

prediction as a function of slip as predicted by the Magic Formula and this new

force model prediction is shown in Figure 5.2. Intuitively one would expect these

results because on granular terrain the tire ground contact patch is subject to a

much more limited shear strength than a tire operating on rigid ground. This new
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force model then takes into account the cohesion and internal friction angle of the

granular terrain in a meaningful way. The new model predicts higher lateral forces

when a more cohesive soil or terrain with higher friction angle is used and vice versa

as shown in Figure 5.3.

5.3 Open Loop Comparisons

To justify that the new force model better models the lateral ground interaction

force between a tire and granular terrain, a set of open loop simulations were

performed on the HMMWV. In these simulations, the HMMWV was initialized at

rest, quickly accelerated to 8.3 m/s, and continued at this speed until the simulation

had run for 10 seconds. The vehicle then undergoes the steering sequence presented

in Figure 5.4 which consists of the vehicle steering left with a steering angle of 10

degrees for 5 seconds followed by steering right at a steering angle of -10 degrees for

another 5 seconds. In this open loop test only the vehicle’s trajectory for the last 10

seconds of the simulation is of interest so only this time frame is considered and

shown in plots.

Figure 5.5 presents the resulting trajectories of 7 different open loop simulations

run with this steering sequence with the parameters just discussed. One simulation

was run on rigid flat ground while the other 6 were run on granular terrain

consisting of non-rotating particles of inter-particle friction coefficients varying from

µ=0.66 to µ=0.9. Lower values of µ were considered and tested, but these

simulations resulted in the vehicle simply initializing and remaining stuck at the

location where it started, constantly spinning its tires without making any forward

progress. From these results it is shown that a vehicle operating on granular terrain

will steer less sharply than the same vehicle operating on rigid ground undergoing

the same steering sequence at the same speed. From these simulations there are

clear differences in how a vehicle performs on rigid ground versus on granular

terrain and this difference needs to be accounted for when attempting to model
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Figure 5.4: Steering Sequence used for Open Loop Simulations

vehicle dynamic performance using simplified analytical equations.

The new force model developed in the previous section seeks to address this

difference in vehicle performance based on terrain type. To confirm the new force

model does a better job of modeling the lateral force experienced by a tire at the

ground tire contact patch, two more open loop simulations were performed. If the

2-DOF model using the new lateral force model does actually do a better job of

predicting vehicle trajectories on granular terrain, then the trajectories of the

2-DOF model using the new lateral force model should line up more closely with the

trajectories of the HMMWV than the 2-DOF using the Magic formula. This would

mean the new lateral force model does a better job of predicting the tractive

capabilities of the HMMWV on granular terrain than the Magic formula does.

The 2-DOF analytical yaw plane vehicle model was simulated for 10 seconds

while undergoing the same steering sequence shown in Figure 5.4. In one

simulation, the 2-DOF model uses the Pacejka Magic Formula to estimate lateral
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Figure 5.5: Open Loop Trajectory of HMMWV over non-rotating granular terrains with
different inter-particle friction coefficients µ

Figure 5.6: Comparison of Trajectory Predicted by 2-DOF model using the Magic Formula
to estimate Tire Forces and the 2-DOF model using the new simplified force model
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tire forces experienced by the vehicle. The second simulation uses the new force

model to estimate the lateral tire forces experienced by the vehicle. These

simulation trajectories are presented in Figure 5.6 along with the Chrono open loop

simulation trajectories on rigid ground and non-rotating granular terrain with

µ=0.8. The 2-DOF vehicle model using the new force model to predict tire forces

matches the Chrono simulation on granular terrain much more closely than the

2-DOF model using the Magic formula. Instead the 2-DOF model with the Magic

Formula matches the Chrono simulation on rigid ground much better. Therefore, the

new lateral force model does a better job of predicting vehicle trajectories on

granular terrain and even uses granular terrain parameters to better estimate the

tractive capabilities of the vehicle. Even though the results in Chapter 4 show the

controlled HMMWV was still able to successfully navigate to a target location while

avoiding obstacles on granular terrain, there was a clear model mismatch between

the internal vehicle controller model and the actual plant vehicle. The 2-DOF model

using the Pacejka Magic Formula was overestimating the lateral tire forces because

it did not take into account the granular terrain. This new force model does account

for the granular terrain parameters and based on Figure 5.6 does a better job of

predicting vehicle trajectories on granular terrain.
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6 SECOND EXPERIMENTAL RESULTS TO TEST IMPROVED VEHICLE

MODEL

6.1 Experimental Setup

Another set of simulations were performed outlined in Table 6.1. This

experiment consisted of four simulations on the same two obstacle fields as the

previous experiment. Two analytical controller models are considered for this

experiment, namely the 2-DOF model using the Pacejka Magic Formula to estimate

lateral tire forces on the tires and another 2-DOF yaw plane vehicle model using the

newly developed force model to estimate lateral tire forces. As was shown in Section

5.3, open loop simulations enforced that this 2-DOF vehicle model with the new

force model does a better job of predicting vehicle trajectories on granular terrain

than the previously used Magic Formula 2-DOF models. The same evaluation

metrics summarized in Section 3.3 are used in this experiment to compare

simulation runs and determine which controller actually worked best. However, the

Time to Target evaluation metric in this experiment is deemed the most important

metric and therefore this will be the most influential factor in determining which

controller worked best because the cost function actively works to minimize the

distance to the target each iteration. The other metrics aside from controller effort

are not present in the cost function and mainly describe the qualitative conditions

of the trajectories.

Test Obstacle Terrain Controller Vehicle
Number Field Type and Force Model

1 1 Granular 2-DOF Magic
2 2 Granular 2-DOF Magic
3 1 Granular 2-DOF New Model
4 2 Granular 2-DOF New Model

Table 6.1: Compared Simulations for Second Experiment
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6.2 Results

The trajectories for the four performed tests are presented in Figures 6.1a and

6.2a, for obstacle fields 1 and 2, respectively. The associated steering commands

generated by the controller are presented in Figures 6.1b and 6.2b. The evaluation

metrics for each test, as defined in Section 3.3, are tabulated for each obstacle field

in Tables 6.2 and 6.3.

(a) Vehicle trajectories. (b) Steering commands.

Figure 6.1: Experiment 2 Test results on Obstacle Field 1

Test Number 1 3
Controller Model 2-DOF 2-DOF
Terrain Granular Granular
Force Model Magic Formula New Force Model
Time to Target (s) 28.32 28.15
Minimum Obstacle Distance (m) 3.491 2.837
Controller Effort 0.0340 0.0381
Max. Lateral Acceleration (m/s2) 2.47 2.69
Avg. Lateral Acceleration (m/s2) 0.55 0.53

Table 6.2: Experiment 2 Test Evaluation Metrics Summary on Obstacle Field 1
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(a) Vehicle trajectories. (b) Steering commands.

Figure 6.2: Experiment 2 Test results on Obstacle Field 2

Test Number 2 4
Controller Model 2-DOF 2-DOF
Terrain Granular Granular
Force Model Magic Formula New Force Model
Time to Target (s) 76.64 75.58
Minimum Obstacle Distance (m) 1.083 1.440
Controller Effort 0.0714 0.0952
Max. Lateral Acceleration (m/s2) 2.55 2.75
Avg. Lateral Acceleration (m/s2) 0.53 0.51

Table 6.3: Experiment 2 Test Evaluation Metrics Summary on Obstacle Field 2

From the results summarized in the plots and tables, the 2-DOF model using the

new force model to predict lateral tire forces results in the HMMWV navigating to

the target quicker than the 2-DOF controller using the Magic Formula to estimate

tire forces. This improved performance is witnessed on both obstacle fields. On

obstacle field 1, the new force 2-DOF model navigates closer to the single obstacle

than the 2-DOF Magic model but the opposite occurs on obstacle field 2. On both

obstacle fields, the controller effort of the new force 2-DOF model is slightly higher

than the controller effort of the 2-DOF Magic controller. Finally, the average and
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lateral accelerations experienced by the vehicle when controlled by each different

2-DOF model are similar and the magnitude differences are negligible.

Qualitatively examining the trajectories of all four tests, the trajectory of the

2-DOF new force model controller appears to be much smoother on both obstacle

fields than its 2-DOF Magic controller counterpart which is evident when looking at

the runs on the first obstacle field. The 2-DOF Magic model commands result in

the HMMWV taking a much wider turn followed my a more aggressive turning

maneuver to reach the target position. However, when the vehicle is controlled by

the 2-DOF model with the new force model, the HMMWV takes a more direct

route to the target position and this improved performance is expressed in the

decreased Time to Target. This difference is due to the Magic Model’s

overestimation of lateral tire forces that the HMMWV experiences. Since the

2-DOF vehicle model using the Magic formula estimates the vehicle can turn

sharper at a given steering angle than the terrain actually allows, the predicted

trajectories for any given steering angle are wrong and the HMMWV ends up

changing its heading less than the controller predicts.

This improvement in the trajectory smoothness can be seen comparing the

trajectories on obstacle field 2. Both controllers command the HMMWV to follow

similar trajectories, navigating the HMMWV in the same direction around all of the

obstacles. Again though the 2-DOF new force model controller trajectory seems

smoother of the two. The internal analytical vehicle model matches the plant

vehicle better which leads to predicted trajectories that match the actual behavior

of the HMMWV. These two facts combined lead to a better controlled HMMWV

that navigates the the target quicker than if its trajectories were predicted using the

2-DOF Magic formula model.

Overall based on the comparison of evaluation metrics and qualitative

comparison of the trajectories, in this experiment the controller with the 2-DOF
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vehicle model using the new force model performed better than the controller using

a 2-DOF model with the Magic formula. The trajectories of the controlled

HMMWV are smoother and result in quicker Time to Target metrics. It is therefore

possible to develop a tire force model which takes into account the soil parameters

to estimate the lateral forces at the tire ground contact patch and use this new tire

model to better predict vehicle trajectories in a MPC controller. In the future, this

2-DOF vehicle model with the new force model should be used or developed further

to better control a wheeled vehicle on flat granular terrain of varying cohesive and

shear strengths as well as inter-particle friction coefficients.
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7 CONCLUSIONS

In this study, using the multibody physics API Chrono, a simulation has been

developed of a HMMWV driving through a user specified obstacle field towards a

defined target location. Within this simulation, a MPC LIDAR based local obstacle

avoidance controller has been implemented to navigate the vehicle around obstacles

as it encounters them. The controller itself uses a simplified analytical vehicle model

to predict the actual controlled Chrono vehicle states within a finite prediction

horizon in order to determine the optimal path and steering sequence forward from

the current vehicle state. A method of simulating granular terrain for this large

obstacle field was developed and implemented for this study. Two separate MPC

Algorithms were developed initially, one that uses a 2-DOF vehicle model using the

Pacejka Magic Formula as a tire model to predict Chrono vehicle states and a

14-DOF model to do the same. These two controllers were used to navigate a

Chrono HMMWV through two obstacle courses on both rigid terrain and then on

granular terrain. The results were compared to understand what if any

improvements need to be made to the MPC LIDAR based local obstacle avoidance

controller to successfully control a vehicle on granular terrain.

As in [5], the controller with the 14-DOF internal vehicle model performs

marginally better than the controller with the 2-DOF internal vehicle model in all

situations. However, tests with the 2-DOF controller prove that this controller can

still successfully navigate a vehicle through an obstacle field when the vehicle is

moving at non-extreme speeds. Using the 2-DOF controller also allows for faster

calculation of optimal steering sequences which is required for eventual real-time

implementation. Both of the controllers navigated the vehicle worse on granular

terrain than on rigid ground terrain, but this is expected since the internal vehicle

controller models were derived using rigid ground assumptions.
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This study also highlights the complexities introduced to vehicle modeling when

the terrain is no longer rigid. Looking at the vehicle trajectories and lateral

accelerations on granular terrain, there are clear differences in tire ground

interactions when the terrain is now granular. The terrain granular parameters

affect the turning characteristics of the vehicle, acceleration abilities, and overall

vehicle dynamic performance which is not control predictive with the currently used

2-DOF and 14-DOF analytical vehicle models.

From the results of the first experiment, a new lateral tire force model was

developed using common terramechanics relationships developed by Wong and

Bekker. This new force model uses the cohesive strength and internal friction angle

of the granular terrain to calculate the lateral forces experienced by a tire provided

the current slip angle and wheel speed. From the first experiment, it was

determined that though the 14-DOF internal vehicle model resulted in better

controller performance, the complexity of this model made it undesirable for

real-time implementation. Though the 2-DOF controller navigated to the target

marginally slower, it still did succeed in reaching the target. Therefore the 2-DOF

model was deemed desirable for future studies due to its success in reaching the

target as well as the quicker runtime speeds necessary to determine an optimal path.

For these reasons then a second experiment was conducted using two different

controllers. The first is the same controller from the first experiment consisting of

an internal 2-DOF vehicle model using the Pacejka Magic Formula to predict

vehicle trajectories. The second controller uses the 2-DOF vehicle model but with

the new lateral force model to better predict trajectories on granular terrain. These

controllers were tested on the same two obstacle fields from the first experiment but

solely on a granular terrain resembling a stiff railroad ballast, the same granular

terrain as from the first experiment. The new controller performed better than the

old controller using the Magic formula to predict tire forces and this improvement is
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shown by a lower Time to Target as well as qualitatively smoother trajectories with

the second controller. This new intermediate analytical model is not as complex as

the 14-DOF model but does take into account granular parameters such as the

internal friction angle to result in more accurate vehicle trajectory predictions on

granular terrain and ultimately a better controlled HMMWV.

Each of the five objectives have been accomplished through the development and

execution of the experiments described in this study. For clarification, a summary of

each of the five objectives and how they were accomplished are presented as follows.

1. Develop a robust simulation environment using Chrono to simulate granular

terrain efficiently over large terrains without actually modeling every single

particle over the large terrain. This was accomplished by leveraging the

multibody and parallel computational abilities provided by Chrono. A novel

relocating soil patch was developed to make simulation of a vehicle traversing

large granular terrains possible without requiring months of runtime per

experiment.

2. Study the performance of the MPC Controller on granular terrain as

compared to that on rigid terrain. The results of this specific performance

analysis are summarized in Chapter 4. These results enforced the need for

more research into a better method of predicting tire forces at the tire ground

patch in a simple manner.

3. Analyze the impact of fidelity of the internal controller model on speed and

performance of the obstacle avoidance controller. These results are

summarized in Chapter 4 for Experiment 1. Overall similar conclusions were

made to those drawn in [5]. Namely, the controller using the more complex

14-DOF model resulted in marginally quicker Time to Target metrics than the

2-DOF controller model, but the increased complexity of the 14-DOF model



78

increased controller runtimes making the 14-DOF model an undesirable choice

for real-time implementation. The 2-DOF controller did still perform

successfully and was chosen for more development to improve its performance

in Experiment 2. The 14-DOF model should be used to determine safety

constraints to impose on a 2-DOF model used as the controller model.

4. Improve the controller for better performance on granular terrain. Chapter 5

presents the development of this improved 2-DOF vehicle model which uses a

newly developed lateral force model stemming from Bekker and Wong’s

terramechanics relations to more accurately predict vehicle trajectories on

granular terrain. Chapter 6 presents the results of a second experiment run to

confirm the newly developed vehicle model results in better controlled

HMMWV performance.

5. Showcase the potential of controller testing in a high fidelity virtual test

environment with Chrono to assist with initial control algorithm development

before physical implementation for vehicular applications. All of the

simulations and experiments from this study support and prove this objective.

Using Chrono to create a virtual testing environment made it possible to

quickly change aspects of the controller design to understand specific aspects

of the control algorithm such as model fidelity or terrain’s effect on controller

performance. Testing the controller through simulation allowed for quicker

and safer experiments than if one were to attempt to run each of these

experiments in real life. Though the goal of these virtual experiments is to

eventually prepare the controller for real life implementation and tests, these

virtual tests should speed up the design process and make real life experiments

that much more beneficial and meaningful to the design team.

Richard Hamming once said the purpose of computing is insight, not numbers
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[47]. All mathematical models are an abstraction of reality, so what the user is

interested in exploring or modeling should drive the complexity of the model.

Detailed analysis of vehicle performance requires sophisticated high fidelity models

often leveraging complex contact algorithms and sophisticated tire behavior

representations. Control engineers make use of mathematical models to describe the

dynamics of the system they are attempting to control. Linearizations, model

simplifications, and other assumptions allow the controller to increase its speed

while still describing the desired aspect of the system appropriately. This point is

important when considering all of the research and work done to achieve the results

of this study. Computer simulations can be extremely beneficial to the design

process as long as the user has a strong understanding of the background,

mathematical models, and methods that have driven the simulations. However,

simulation simply cannot and more importantly should not replace all real life

experimentation. No matter how complex a developer makes their simulation, it will

still always be an abstraction of reality to some degree. However, it can be an

extremely powerful tool in the design process, allowing a user to test core

functionalities of their mechanical or controller design to gain insight towards how

to improve their design. When used in this manner, virtual and real life

experimentation can cooperatively contribute to quicker and more effective design

processes. If more tests are run virtually then this saves money and time for the

team that then runs physical tests on the most promising designs from virtual

experimentation.

This applies directly to all of the work and research performed in this study.

This research has provided insight into the MPC LIDAR-based local obstacle

avoidance controller. Due to this experiments outlined in this thesis, there is now a

better understanding of how model fidelity and terrain affect the performance of

this researched controller. From the insight gained from the first experiment, the
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controller and internal model were improved and tested virtually. The results of the

second experiment emphasized that it is possible to develop a simplified vehicle

model that predicts its lateral tire forces using simple terramechanics relations and

allow the controlled vehicle to better navigate on granular terrain of varying

cohesive strength and frictional properties. In these experiments, a high fidelity

sophisticated multibody physics model of a HMMWV was used as the plant vehicle

due to the goal of this simulation which is to analyze vehicle performance when

controlled by different MPC controllers. Inside of the controller then, simplified

analytical vehicle models are used which are another level of abstraction in order to

quickly predict the trajectory of the simulated HMMWV based on terrain

parameters. As simulation methods improve and computational speeds continue

increasing, simulation’s role in the design process will increase which can lower

design costs and improve design speeds as well.

7.1 Future Work

The results of this study are promising. Since the 2-DOF controller is able to

navigate the Chrono vehicle on this study’s granular terrain, then there is some

small set of granular terrain on which a 2-DOF model using the Magic formula is

sufficient for predicting vehicle performance well enough to guide the vehicle

successfully and safely to a target point. However, a new force model was developed

using terramechanics relations to better approximate the lateral tire forces

experienced by the 2-DOF vehicle model which results in better approximations of

vehicle trajectories on granular terrain.

This research opens up many opportunities and avenues for future research

topics. This research lends itself to a variety of different parametric studies to

understand how changing aspects of the terrain or controller affects the overall

vehicle performance. For example, parametric studies examining controller

performance on a wider array of granular terrains would allow for insight into how
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granular terrain parameters affect vehicle performance. In this research exhaustive

search space was used to find an optimal solution. In the future though, a much

quicker optimization method would be necessary to solve the optimal control

problem each time step and ultimately implement the controller in real-time

applications.

A newer control algorithm could be developed all together with the goal of

navigating a vehicle on all sorts of terrains. If instead of using a constant speed

internal vehicle model and searching for an optimal steering sequence only, a

controller could search for an optimal steering and acceleration input. If this were

the case then the terrain parameters would impose constraints on how quickly a

vehicle could actually accelerate on the terrain thus constraining the search space

and resulting in a much smarter granular terrain navigation controller. To

accomplish this, the vehicle would need to obtain information about the terrain

either dynamically through sensors or in the form of a data map where the vehicle is

able to see what qualities the terrain has at any physical location a priori.

Another avenue of research would be to explore improvements to the granular

simulations developed in this study. To simulate granular terrain, in this study a

novel relocating granular patch mechanism was developed that simulates a

significant thickness of granular terrain underneath the vehicle at all times and

relocates particles in front of the vehicle as it moves in any direction. This research

would not have been feasible without the development of this mechanism, but as

with any research topic there are further improvements that could help simulation

speeds for these sorts of experiments. One possible improvement would be the

implementation of periodic boundary conditions at the walls of the relocating patch

to minimize any boundary effects at the tire ground contact patch. The

independent four granular patches described in this thesis as well could be explored

and tested further as a method to improve simulation speeds. That combined with
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(a) HMMWV stuck in terrain of 6-DOF par-
ticles

(b) HMMWV remains in initial location spin-
ning wheels and spraying particles backwards

Figure 7.1: HMMWV unable to make forward progress in 6-DOF particle field

periodic boundary conditions could potentially result in a quick and robust method

for simulating granular terrain.

Future research can explore the cases where the vehicle remained stuck in its

initial location. This occurred when the terrain was modeled as full 6-DOF spheres

instead of rotation restricted 3-DOF spheres. When simulations were performed to

test vehicle performance on these rotating spheres with a macro-scale friction angle

of 35◦ − 40◦ which is typical of a wide range of dry natural and crushed sands, the

vehicle initialized and dropped onto the terrain normally, but throttle commands

simply resulted in the vehicle spinning its tires in place. The vehicle would make no

forward progress and instead continue to spin its tires while launching particles

backwards. This case is visualized in Figure 7.1.

This behavior provides an interesting research topic. The issue of the vehicle

being unable to move from this point can be attributed to four possible different

reason. First, this method of modeling dry sand with 6-DOF particles is incorrect

and therefore not accurately simulating dry sand. The potential modeling error is

possible since particles are not actually smooth spheres but instead have coarser

jagged geometries which would result in more rolling friction. Second, the vehicle

tires are not modeled correctly and something other than rigid tires should be used.



83

Third, the controller does not account for how much tractive capabilities the terrain

provides and is simply failing to pull the vehicle out of the sand trap. Finally

fourth, all of the modeling in this scenario is correct and this behavior is what one

would actually experience if they attempted to drive a HMMWV on loose dry sand

aggressively. Research devoted to modeling and simulating dry loose sands as well

as developing a controller to navigate the vehicle out and along that terrain would

be an important development in the terramechanics and controls community.

The research performed here would benefit greatly from physical tests to

compliment the results of this study. Insight would be gained relating to hardware

and computational speeds necessary to implement this controller on a physical

vehicle. Overall the terramechanics field is a highly active and current area of

research. The research performed in this study promotes the opportunity for many

equally exciting research opportunities relating to terramechanics, simulation, and

controls.
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APPENDIX A: RAY-CIRCLE INTERSECTION ALGORITHM

Figure 9.2: Ray-Circle Intersection Visualization

A ray-circle intersection algorithm was implemented in this research to simulate

a perfect planar LIDAR sensor and allow the AGV to sense its local surroundings.

Consider a two dimensional ray in the x-y plane with the start point E and L some

point along the length of the ray of interest. For this research, this point is the

LIDAR radius. Also consider a circle with a center point defined as C and radius r.

These points are visualized in Figure 9.2. The following vectors are then formed:

d = L−E (9.1)

f = E −C (9.2)

P = E + td (9.3)

Here, d is a vector describing the ray from its start point to end point. f is a

vector from the circle center to the start of the vector d. P is the location of the

point where the ray intersects with the circle. t is a scalar which defines how far
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along the length of d the intersection between the ray and the circle actually occurs.

The circle is then defined by:

(x− Cx)2 + (y − Cy)2 = r2 (9.4)

x2 − 2Cxx+ C2
x + y2 − 2Cyy + C2

y − r2 = 0 (9.5)

Equation (9.3) also defines the point or points where the ray intersects with the

circle. Noting this yields:

x = Ex + tdx (9.6)

y = Ey + tdy (9.7)

Substituting Equations (9.6) and (9.7) into (9.5) results in the following.

(Ex + tdx)
2−2Cx (Ex + tdx)+C2

x+(Ey + tdy)
2−2Cy (Ey + tdy)+C2

y−r2 = 0 (9.8)

Expanding and grouping like terms yields the following.

t2
(
d2
x + d2

y

)
+2t (Exdx + Eydy − Cxdx − Cydy)+E2

x+E
2
y−2ExCx−2EyCy+C

2
x+C2

y−r2 = 0

(9.9)

Equation (9.9) can be simplified further by identifying previously defined vectors

and dot products can be substituted in.

t2 (d · d) + 2t (f · d) + f · f − r2 = 0 (9.10)

Equation (9.10) is a quadratic equation that can be solved for two values of t.

The ray-circle intersection algorithm then implemented for this research checks the

discriminant of Equation (9.10). If the discriminant is less than zero, then the roots

of this quadratic are imaginary and there is no intersection with the circle. If the
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discriminant is greater than zero, then there is an intersection and the quadratic

formula is used to solve for the two values of t that satisfy Equation (9.10). Of the

two solved t values, the lower value is checked to see if it is less than one but greater

than zero. If so, this t value is the ray-circle intersection point used as the LIDAR

detected point for the algorithm for this specific ray. Otherwise, the algorithm

returns the maximum LIDAR radius.
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APPENDIX B: POINT IN POLYGON ALGORITHM

Figure 9.3: Visualization of Point in Polygon Algorithm Working Successfully

The point in polygon was developed to check that all points along a predicted

vehicle trajectory fall within the LIDAR safe area represented as a polygon

assembled from LIDAR points. To start, the polygon is simply an ordered list of its

vertices. Edges are line segments connecting one vertex to the next. The first vertex

of the list and the last vertex of the list are also connected to close the polygon.

Next, consider a reference frame at the point being tested and express all of the

vertices in this relative reference frame. The first vertex is chosen and the quadrant

that it resides in is identified. Then the next vertex is chosen and its quadrant is

identified as well. If the two points fall in the same quadrant, then nothing happens

and the next vertex in the list is checked. However, if the quadrant is different from

the previous vertex quadrant, this change is noted and a net quadrant change

counter records this change. Clockwise is positive so changes in this direction result

in +1 being added to the net quadrant change counter while counterclockwise

changes result in -1 being added to the counter. In the case where the quadrant

changes by two such as quadrant 1 changes to 3 or 2 to 4 or vice versa, a vector is

expressed connecting the old vertex and new vertex. Depending on the direction of
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the vector and if the y-intercept is above or below zero determines if +2 or -2 is

added to the net quadrant change counter. Once the algorithm cycles through all of

the vertices, it checks the original vertex in order to close the polygon. If the net

quadrant change is 4 or -4, then the point is in the polygon. Any other situation

means the point is outside of the polygon. This algorithm is efficient, simple, and

has been implemented successfully for use in this research. However, this algorithm

would need to be rethought for application in 3D space. Figure 9.3 presents a set of

sample points used to show the algorithm effectively checks to see if the points fall

within a sample LIDAR safe area polygon.
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