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ABSTRACT 

COLLAPSIBLE SILICONE TUBES: 

AN IN VITRO MODEL FOR  

TRACHEAL TRACTION 

 

 

Kevin Garman 

 

Marquette University, 2017 

 

Obstructive sleep apnea (OSA) is characterized by recurrent episodes of airway 

collapse and airflow limitation during sleep. Fragmented sleep and reductions in blood 

oxygen saturation lead to several comorbidities, including hypertension, cardiovascular 

disease, and cerebrovascular disease. Longitudinal forces (tracheal traction) acting on the 

soft tissues surrounding the upper airway have been proposed to play a significant role in 

stabilizing the airway and preventing collapse. However, the relative contribution of 

longitudinal forces as compared to other factors that affect airway stability (airway 

geometry, tissue properties, muscle activity) remains unclear.  This in-vitro study aimed 

to investigate to what extent longitudinal forces can stabilize the upper airway against 

flow-induced collapse. 

Collapsible silicone tubes of varying lengths (L = 75 to 125mm), diameters (D = 

12.70 to 31.75mm), and wall thicknesses (h = 0.98 to 2.22mm) were fabricated in-house. 

An experimental setup was developed that included a pressure catheter to measure air 

pressure in the tube lumen, a pump that generated sinusoidal bidirectional flow, and a 

laser line scanner to monitor deformations of the tube wall. The buckling pressure 

(pressure at which the tube collapses) was quantified as a function of tube geometry and 

longitudinal stretching.  

 The silicone tubes collapsed at a similar range of transmural pressures (0 to 10 

cmH2O) and flowrates (0 to 250ml/s) as observed in the human airway during sleep. 

Tube length had no clear effect on the buckling pressure, but mechanical stability 

increased when the wall-thickness-to-radius ratio ( = 2h/D) increased. The buckling 

pressured measured experimentally was in good agreement with the theory for tubes 

exposed to transmural pressure alone (zero flow), suggesting that tube collapse was 

determined primarily by the transmural pressure (rather than by fluid-structure 

interactions). Longitudinal stretching (5% strain) reduced the buckling pressure by 0.5 to 

1.0 cmH2O, which was smaller than the effect of changes in tube diameter and wall 

thickness. 

Longitudinal stretching improved the stability of cylindrical silicone tubes, but its 

effect was smaller than the effect of changes in tube geometry. 

 

 

Keywords: obstructive sleep apnea; tracheal traction; longitudinal strain; starling 

resistor; airway collapse; buckling pressure; bidirectional cyclic flow; airflow limitation; 

silicone rubber.
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CHAPTER 1: BACKGROUND AND INTRODUCTION 

 

1.1 THE PROBLEM OF OBSTRUCTIVE SLEEP APNEA 

Obstructive sleep apnea (OSA) affects 2-14% of adults in the United States 

(White & Younes, 2012). OSA is characterized by recurring collapse of the pharyngeal 

airway during sleep.  The gold standard exam to diagnose OSA is a sleep study in which 

patients are monitored during sleep. The number of apneas and hypopneas per hour, 

known as the apnea-hypopnea index (AHI), is used to diagnose and classify the severity 

of OSA: mild OSA: AHI = 5-15, moderate OSA: AHI = 15-30, and severe OSA: AHI = 

30+ (White & Younes, 2012).  According to a recent study by White and Younes (2012), 

while an absolute cause of OSA is unknown, obesity is a strong contributor to OSA onset 

in 41% to 58% of adults suffering from this condition; moreover, due to increasing 

obesity rates, the prevalence of OSA is increasing in the United States.  In regards to 

gender, men are 2 to 3 times more likely to have OSA than pre-menopausal women 

(White & Younes, 2012). 

OSA is associated with many neurocognitive and cardiovascular consequences.  

Neurocognitive consequences of OSA include constant lethargy, lack of focus, fatigue, 

depression, and overall decreased quality of life; whereas, cardiovascular risks of OSA 

consist of hypertension, diabetes, cardiac arrhythmias, strokes, myocardial infarction, and 

increased risk of congestive heart failure (White & Younes, 2012). 

The main treatments for OSA are continuous positive airway pressure (CPAP), 

oral appliances, and upper airway surgery.  CPAP utilizes a nasal mask to deliver positive 

airway pressure that forces open the airway for uninterrupted breathing.  CPAP is very 
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effective, but is often unsuccessful due to patient non-compliance.  Oral appliance 

treatment has better patient compliance than CPAP but a lower effectiveness.  Oral 

appliances displace the mandible anteriorly to increase patency in the retroglossal 

airspace by pulling the jaw forward (White & Younes, 2012).  The final treatment option 

of upper airway surgery is the most invasive.  Surgeries consist of removing or reducing 

the tissue of the soft palate, moving the jaw anteriorly to enlarge the retroglossal airspace, 

and/or nasal surgery to reduce nasal resistance (White & Younes, 2012).  Although 

surgery reduces snoring and reduces the AHI, it is rarely a cure for OSA. 

In conjunction to the aforementioned treatments, OSA symptoms can be 

improved by life style changes, such as weight loss, reduction of alcohol consumption, 

reduction of sedative use before bed, and sleeping on the side (rather than sleeping 

supine). 

 

1.2  PATHOPHYSIOLOGY OF OBSTRUCTIVE SLEEP APNEA 

The upper airway ranges from the external nares to the epiglottis (Figure 1).  The 

main sites of upper airway collapse in OSA patients are the space behind the soft palate 

(nasopharynx), the space behind the tongue (oropharynx), and the epiglottis (Figure 1).  

The soft palate is the most common site of collapse (~80% of cases).  As the obstruction 

is caused by surrounding tissue of the pharynx, it is important to understand what the 

walls are composed of.  The anterior wall consists of the soft palate and tongue, the 

lateral walls consist mainly of muscle and adipose tissues, and the posterior wall consists 

of the 3 pharyngeal constrictor muscles.  The pharyngeal muscles surrounding the 

oropharynx have a high impact on the degree of patency seen in both healthy individuals 
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and OSA patients.  Therefore, muscle tone plays a key role in OSA pathophysiology.  

OSA patients have no obstruction while awake due to muscle activity.  However, muscle 

tone is reduced during sleep, decreasing the airway lumen and leading to airflow 

limitation. 

 

 

Figure 1:  Upper airway anatomy. 

(A) Midsagittal MRI in a normal subject, highlighting the four upper airway regions: A = 

nasopharynx, B = retropalatal nasopharynx (most common site of collapse), C = 

retroglossal region (oropharynx), and D = the hypopharynx.  (B) The diagram illustrates 

important upper airway, soft tissue, and bone structures.  Reproduced from White & 

Younes (2012). 

 

 The Starling resistor model is often used to explain the mechanism of airway 

collapse in OSA.  In this model (Figure 2), the pharynx is considered a collapsible tube 

mounted between a rigid upstream segment (the nasal cavity) and a rigid downstream 

segment (the trachea).  The collapsible tube is enclosed by a sealed box where the 

external air pressure (Pext) can be controlled.  When air pressure inside the tube becomes 

less than the external pressure, the tube collapses.  Thus, the external pressure is also 

known as the critical pressure (Pcrit) at which the tube collapses (Figure 2). 
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Figure 2:  Starling resistor model. 

Pcrit = surrounding tissue pressure determining Pharyngeal collapsibility. Pus = upstream 

pressure; Pds = downstream pressure; VImax = maximal inspiratory airflow.  Reproduced 

from Schwartz & Smith (2013). 

 

Figure 2 shows how the collapsible conduit changes as the external pressure 

changes.  In the bottom left, complete collapse occurs when both the upstream pressure 

and downstream pressure are less than Pcrit.  In the bottom right, flow-limitation occurs 

when the downstream pressure becomes less than Pcrit, while the upstream pressure 

remains above Pcrit.  During flow limitation, airflow becomes independent of the 

downstream pressure and the external pressure (Pcrit) becomes the effective downstream 

pressure.  Thus, during airflow limitation the maximal inspiratory airflow (VImax) is: 

Equation 1:  Max Inspiratory Airflow 𝑉𝐼𝑚𝑎𝑥 =
(𝑃𝑢𝑠−𝑃𝑐𝑟𝑖𝑡)

𝑅𝑢𝑠
 

where Pus is the upstream pressure and Rus is the upstream nasal resistance. 
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The Starling resistor model displays several behaviors that are similar to airway 

collapse in OSA patients, including (1) the pharynx occludes when intraluminal pressure 

falls below Pcrit, (2) higher tissue pressure (external pressure) increases collapsibility, (3) 

longitudinal stretching (tracheal traction) reduces collapsibility, (4) longer airways 

(longer tubes) are more collapsible, (5) the pressure-flow curve displays hysteresis, and 

(6) snoring (oscillations). 

In a study conducted by Wellman et al. (2014), the concept of flow limitation seen 

in the starling resistor model was discussed.  They explain that in a starling resistor model 

the upstream segment will incur a fixed amount of airflow under fixed pressure gradient 

and resistance conditions.  Additionally, the upstream and downstream segments see the 

same amount of flow, thus, the flow through a starling resistor will plateau at a maximum 

value that remains constant (Figure 3). 

 
Figure 3:  Pressure-flow relationship for six separate pressure transducers.   

Sensors P1 and P2 are located in the nares region.  Sensors P3 and P4 are located just 

upstream or at the choke point.  Sensors P5 and P6 are located downstream from the 

choke point.  Reproduced from Wellman et al. (2014). 
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In Figure 3, there is a maximum flow reached at each location along the upper 

airway the transducers are placed, which implies that pressures above a certain level will 

not augment flow.  Thus, the flow is effort independent because it has reached its 

maximal value.  Excessive airflow limitation is abnormal and can be indicative of 

pathological cases in patients with increasingly severe changes in sleep and wakefulness, 

which may lead to OSA pathogenesis (Arora, Meskill, & Guilleminault, 2015). 

The pathogenesis of OSA involves many complicated physiological phenomena, 

as illustrated in Figure 4. 

 
Figure 4:  Diagram modeling the potentially beneficial vs. destabilizing physiological 

changes linked to respiratory-induced arousals in OSA. 

During obstructed breathing, O2 levels decrease while CO2 increase in the blood.  This 

creates a deviation in blood pH balance stimulating increased breathing effort.  As the 

arousal threshold is crossed, a cortical arousal from sleep occurs (dark oval).  After 

approximately 1-2 breaths, immediate beneficial effects are sustained (left-hand side) 
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including: upper airway motoneuron recruitment, upper airway opening, increased 

airflow, and homeostasis upon dissipation of hypercapnia and reoxygenation.  However, 

secondary destabilizing effects also arise with arousal (right-hand side) including: 

disrupted sleep continuity, prevention of deeper, more stable sleep, excessive reduction in 

CO2, and decreased respiratory drive and upper airway muscle tone.  These effects are 

likely to propagate this cycle in OSA patients.  Reproduced from Eckert & Younes (2013). 

 

Figure 4 shows how arousal from sleep may have both a positive and negative 

role in OSA pathogenesis.  Rapid recruitment of inspiratory upper airway motoneurons is 

associated with the increased breathing effort as the patient is reintroduced into a wakeful 

state (Wilkinson, et al., 2008).  Upon opening of the airway, a significant increase in 

airflow is achieved coupled with restoration of blood oxygen levels and reduction in the 

carbon dioxide buildup that occurs during an obstruction.  As noted by Eckert & Younes 

(2013), OSA patients also experience a number of destabilizing effects upon arousal.  

Between two possible scenarios, it is unclear in OSA patients which of the following 

produces a greater risk of cardiovascular disease development:  1) having less arousal 

events with a lower AHI, which indicates longer obstruction times leading to more 

significant reductions in blood oxygen levels or 2) having more arousal events with a 

greater AHI, which indicates shorter obstruction times with less blood oxygen 

desaturation (Eckert & Younes, 2013).  Nonetheless, more complications are known to 

arise with sleep fragmentation as a higher number of arousal events occur.  As 

homeostasis is regained and the patient becomes less awake, the motoneuron recruitment 

subsides and the muscle tone dissipates until the cycle is repeated and an obstruction 

recurs (Figure 4). 
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1.3  RELEVANT FINDINGS FROM PREVIOUS STUDIES 

1.3.1  Tracheal Traction 

Tracheal traction plays an important role in the pathophysiology of OSA.  

Increases in lung volume have been shown to reduce pharyngeal collapsibility (White & 

Younes, 2012).  The leading hypothesis is that the effects of lung volume on upper 

airway collapsibility are mediated by longitudinal forces, i.e., when the lung inflates, 

longitudinal forces pull the trachea downwards (caudal traction) (Heinzer, et al., 2005).  

Many animal-based studies have been conducted by applying longitudinal tension to the 

specimen’s airway and observing its effect on collapsibility, which will be explored in the 

following text. 

In two separate studies by Kairaitis et al. (2006) and Amatoury et al. (2014), 

white male rabbits were anesthetized, tracheotomized, and laid on their backs for tracheal 

traction studies.  In Kairaitis et al. (2006), as tracheal traction force was increased, the 

extraluminal tissue pressure (ETP) and both the pressures required to close and reopen 

the upper airway decreased.  This suggests that by implementing caudal tracheal traction, 

the upper airway is stabilized due to reduced wall compliance and surrounding tissue 

pressure (Kairaitis, et al., 2006) (Figure 5). 
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Figure 5:  Data from 17 rabbits showing effect of caudal tracheal traction on 

Extraluminal Tissue Pressure (ETP). 

ETP is divided into two sections: (1) mean extraluminal tissue pressure of lateral airway 

walls (ETPlat) (closed symbols) and (2) mean extraluminal tissue pressure of anterior 

airway walls (ETPant) (open symbols).  *p<0.05 for the corresponding ETP compared 

with no force.  Reproduced from Kairaitis et al. (2006). 

 

The data presented in Figure 5 suggests that application of longitudinal strain 

(tracheal traction) propagates transmission of forces to the upper airway extraluminal 

tissue space and that decompression of those tissues is likely (Kairaitis, et al., 2006).  In 

Amatoury et al. (2014), additional parameters of upper airway geometry and 

displacement of the thyroid cartilage and hyoid bone were measured and recorded.  It was 

found that upper airway lumen geometry increased non-uniformly with tracheal traction 

leading to increases in upper airway midsagittal cross-sectional area, length and volume, 

axial cross-sectional area, anteroposterior diameter, and lateral diameter.  These 

measurements were taken at three regions: R1 = tongue, R2 = hyoid, R3 = epiglottis 

(Amatoury J. , Kairaitis, Wheatley, Bilston, & Amis, 2014).  Among these regions, the 

most variation due to caudal displacement of the trachea was found along R2.  Thus, in 
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addition to upper airway geometry, both the thyroid cartilage and the hyoid bone 

underwent caudal displacement when tracheal traction was applied to each animal model.  

These findings suggest that not only are the effects of tracheal traction on the upper 

airway complex, but also that the hyoid bone may play a key role due to its mobility in 

humans and mechanical attachments to the thyroid cartilage and other airway structures. 

In a study by Rowley et al. (1996), male cats were premedicated, anesthetized and 

laid supine for a tracheal and tongue displacement study.  In this study, the theory was 

developed that alterations in upper airway Pcrit may be due to changes in 1) airway wall 

intrinsic properties or 2) tissue pressure surrounding the flow limiting site, Ps.   Rowley et 

al. (1996) concluded that the response in Ps to displacement of the trachea is dependent 

on upper airway dilation caused by tongue displacement (i.e. larger dilation saw less 

effect in Ps reduction than minimal change in dilation).  The maximal inspiratory airflow 

increased through the upper airway when caudal tracheal displacement was applied.  

Furthermore, changes in airway wall longitudinal tension were directly associated with 

caudal tracheal displacement.  Based on the data presented in this study, it was concluded 

that tracheal displacement and tongue displacement had different effects.  Tracheal 

displacement caused airway lengthening and, thus, was influential on the transmural 

pressure and the luminal area within the collapsible site.  On the other hand, natural 

radially oriented forces were influenced by tongue displacement. 

In a study by Schwartz et al. (1996), cats were anesthetized, decerebrated, and 

ventilated in the supine position for an upper airway collapsibility study.  This study was 

divided into two separate testing mechanisms: airway elongation and airway dilation.  

For airway elongation, the tracheal stump (created via transection for ventilation) was 
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moved caudally along with combinations of neck flexion and extension.  It was found 

that Pcrit decreases as airway length increases, suggesting that longitudinal forces in the 

wall act as a regulator (Schwartz, Rowley, Thut, Permutt, & Smith, 1996).  For airway 

dilation, the tongue was displaced anteriorly.  However, this maneuver only reduced Pcrit 

after the airway underwent elongation and not by itself (Schwartz, Rowley, Thut, 

Permutt, & Smith, 1996).  This suggests that elongation and dilation have a complex 

interacting mechanism. 

In a study by Thut et al. (1993), male cats were premedicated, anesthetized and 

laid supine for a tracheal displacement and neck position study.  This study concluded 

that collapsibility was reduced under the conditions of neck extension and airway 

elongation. 

In two separate studies conducted by Van de Graaf (1988, 1991), mongrel dogs 

were anesthetized, tracheotomized, and laid supine for tracheal traction studies.  These 

studies showed that thoracic traction has a positive impact on opposing the collapsing 

action of upper airway negative pressure by producing increased longitudinal tracheal 

tension.  It is theorized that mechanical pull of mediastinal and diaphragmatic structures 

along with the pressure gradient between intrathroacic and extrathroacic structures 

produces this tracheal tension effect.   

Altogether, these in vivo studies with laboratory animals suggest that longitudinal 

tracheal traction plays an important role in OSA pathophysiology by reducing the upper 

airway collapsibility. 
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1.3.2  Experimental Studies in Collapsible Tubes 

Tracheal traction has been studied in many forms.  Due to the stigma and cost of 

animal testing, previous studies have developed in vitro models to observe the effects of 

tracheal traction.  Many collapsible tube-based studies have been conducted with and 

without longitudinal tension for a better understanding of the fluid mechanics of 

collapsible tubes in the human body. 

In a study by Sakurai et al. (1996), longitudinal tension was applied to five 

different silicone-rubber tubes of varying cross-sectional areas and then the collapsibility 

of each tube was observed by applying flow of a sucrose solution with a concentration of 

40.6%, density of 1160 kg/m3, and kinematic viscosity of 3.66 x 10-6 m2/s.  This 

experiment resulted in decreased collapse and restricted tube wall movement under 

applied longitudinal tension in every tube tested.  Additionally, the effect of lower tube 

compliance significantly diminished the interaction between tube deformation and flow. 

In a study by Oruç et al. (2006), tubes made of silicone rubber and latex were 

used with varying wall thicknesses to observe the effects of flow on collapsibility.  In this 

study, longitudinal tension was not applied.  This experiment was significant as one of 

the first to use air as the flowing medium instead of aqueous flow.  This study showed 

that aqueous flow in collapsible tubes has negligible fluctuations in behavior upstream 

when compared to downstream, whereas airflow has significant oscillating behavior 

upstream of the tube as well as downstream. 

In a study by Marzo et al. (2005), computational modeling of viscous fluid 

through thin-walled and thick-walled deformable tubes was conducted, and the results 

were used to compare quantitative and qualitative measurements of buckling structure, 
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location, and flow dynamics to previous literature studies.  The authors showed that 

although the maximal collapse displacement is the same between thick-walled and thin-

walled tubes, often the point of collapse is closer to the tube center in the naturally stiffer, 

thick-walled tubes than in the thinner-walled tubes.  In addition to the location of collapse 

occurring closer to the downstream end, the thinner-walled tubes also produced a 

secondary buckling pattern downstream.  Overall, it was observed that the “location of 

greatest collapse and the deformed wall shape have a direct effect on the flow patterns” 

(Marzo, Luo, & Bertram, 2005).  Regardless of wall thickness, the most collapsed section 

of the tube produces a significantly smaller cross-sectional area, which is indicative of 

higher-speed fluid flow, and, in the case of severe collapse, the flow splits into two 

separate jets to bypass the obstruction. 

Gold and Schwartz (1996) proposed that the starling resistor model is a good 

model to describe airway collapse in OSA patients.  This study recognizes that the simple 

Starling Resistor model does not resemble the exact geometry of the human upper 

airway, but does advocate that the pressure-flow relationships in humans are very similar 

to the starling resistor model.  This study found that by using the simple model, 

prediction of pressure-flow profiles of healthy sleeping subjects’ pharyngeal airway is 

possible.  Overall, the use of collapsible tubes to model flow through the pharyngeal 

airway in humans introduces the parameter Pcrit that aids in quantifying collapsibility and 

forecasting treatment outcomes for patients. 

In a study by Chouly et al. (2008), an experimental setup involving attachment of 

a water-filled, deformable latex cylinder (acting as the tongue obstruction in the airway) 

to a rigid pipe (acting as the airway) is employed to study flow-induced collapse (Figure 
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6).  This setup accounts for variations in patient tissue and bone structure causing 

different airway patency values among cases by being able to adjust the height at the 

location of collapse by adding or removing rounded, metallic plates to the “airway” pipe 

(Figure 6). 

 
Figure 6:  Experimental setup studied by Chouly et al. (2008). 

(a) schematic and (b) photograph. 

 

Results from the study by Chouly et al. (2008) show that movement of the soft palate and 

the tongue posteriorly play a major role in collapse.  However, it is also noted that the 

pharyngeal walls on either side of the airway are also involved in the collapsing 

mechanism.  Thus, this study advocates further 3D modeling and validation.  

Furthermore, since this study modeled only uni-directional flow, the authors state that 

experiments utilizing complete breathing cycles in collapsible tube models could be 
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pivotal in developing the complete spectrum of anatomical and biomechanical properties 

that correspond to healthy patients and pathological cases. 

Kozlovsky et al. (2014) conducted computer simulations to quantify the area-

pressure curve of collapsible tubes and its dependence on wall thickness.  An in vitro 

model using silicone rubber tubes was used to validate computational results by 

measuring the shape of 2D sections after the tube collapsed.  The tubes were filled with 

water and mounted inside a water-filled tank.  This study investigated tube collapsibility 

due to a transmural pressure gradient alone in the absence of fluid flow (i.e. flowrate was 

zero).  The geometry and behavior demonstrated by Figure 7 shows the pattern of 

collapse that all tubes underwent in this study. 

 
Figure 7:  Pressure-area curves of thin-walled and thick-walled collapsible tubes. 

Typical non-dimensional pressure-area curves for collapsible tubes with thin (thin line) 

and thick (thick line) walls.  The Buckling point (circle), contact point (square), and tube 

geometry are marked on the curves.  The non-dimensional pressure ( = PTM/KP) is a 

function of non-dimensional area ( = A/Ao), where PTM = transmural pressure, Kp = 

flexural rigidity of the tube, A = tube cross-sectional area, and Ao = original cross-

sectional area.  Reproduced from Kozlovsky et al. (2014). 
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 As seen in Figure 7, when the transmural pressure becomes increasingly more 

negative the tube cross-section begins to experience small, axisymmetric deformations.  

As the transmural pressure overcomes the buckling pressure (PB), the cross-section of the 

tube rapidly flattens out into an elliptical shape and eventually becomes compressed 

enough that the opposing walls contact each other (contact point =  cp, cp).  Unlike in 

human airways, the collapsible tube segment does not become fully occluded (Shapiro, 

1977).  After the contact point, the tube stiffens so that an infinitely negative pressure 

would be required to completely occlude the tube.  Therefore, the contact point seen in 

collapsible tubes has often been considered an equivalent point to full occlusion in the 

human airway.  However, this analogy is imperfect, and therefore, we must distinguish 

pressures associated with the contact point (PCP) and with full occlusion (Pclose). 

 Another factor of importance in studying collapsible tubes with relation to the 

human upper airway is compliance.  Compliance (C) is defined as the slope of a given 

pressure-area curve, or the change in pharyngeal area (ΔA) for a given change in pressure 

(ΔP) (Brown, Bradley, Phillipson, Zamel, & Hoffstein, 1985) (Equation 2). 

 

Equation 2:  Tube Compliance 𝑪 =
𝜟𝑨

𝜟𝑷
 

 

Table 1 shows the values of tube compliance in previous in vitro studies 

compared to human soft tissue compliance.  In Table 1, Amatoury et al. (2010) has a 

compliance similar to OSA patients noted by Isono et al. (1993), but most other studies 

utilize tubes that are considerably stiffer and less compliant. 
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For the studies that did not list tube compliance explicitly, a value was calculated 

based on the area-pressure relationships reported.  For those studies, compliance was 

calculated within the post-buckling region that was bounded by the buckling point and 

the contact point of each tube (i.e. area and pressure values were used after tube buckling 

but before opposite wall contact.). 

 

Table 1:  Comparison of in vitro starling resistor model compliance with airway 

compliance in healthy humans and patients with OSA. 

 = tube wall thickness-to-internal radius ratio. 
STARLING RESISTOR MODEL STUDIES 

MATERIAL TUBE COMPLIANCE MEDIUM REFERENCE 

Penrose tube At  = 0.029 0.40   cm2/cmH2O Air Amatoury et al. (2010) 

Silicone 

rubber tubes 
At  = 0.348 0.017 cm2/cmH2O 

Aqueous 

Solution 
Bertram (1987) 

Silicone 

rubber tubes 
At  = 0.167 0.026 cm2/cmH2O 

Aqueous 

Solution 

(70% Glycerin, 

30% H2O) 

Bertram & Tscherry 

(2006) 

Latex tubes 

At  = 0.019 0.141   cm2/cmH2O 

At  = 0.036 0.043   cm2/cmH2O 

At  = 0.211 0.011   cm2/cmH2O 

No Flow Dion et al. (1995) 

Silicone 

rubber tubes 

At  = 0.01 293.950  cm2/cmH2O 

At  = 0.24 0.101   cm2/cmH2O 

At  = 0.333 0.023   cm2/cmH2O 

No Flow Kozlovsky et al. (2014) 

Silicone 

rubber tubes 
At  = 0.07 0.196   cm2/cmH2O Sucrose Solution Sakurai et al. (1996) 

Latex tubes 
At  = 0.15 to 0.22  0.00035 to 0.00067  

 cm2/cmH2O 

Blood Analogue 

(33% glycerol, 

67% H2O) 

Walker et al. (1999) 

HUMAN PHARYNX STUDIES 

MATERIAL PHARYNGEAL COMPLIANCE SLEEP / AWAKE REFERENCE 

OSA patients  0.64 ± 0.49 cm2/cmH2O Sleeping Isono et al. (1993) 

Healthy 

Subjects and 

OSA patients 

Control Group ♂: 0.166 ± 0.002 cm2/cmH2O 

OSA Group ♂: 0.395 ± 0.060 cm2/cmH2O 
Sleeping Brown et al. (2015) 

Healthy 

Subjects 

Young ♂: 0.083 ± 0.005 cm2/cmH2O 

Young ♀: 0.057 ± 0.005 cm2/cmH2O 

Middle-aged ♂: 0.096 ± 0.007 cm2/cmH2O 

Middle-aged ♀: 0.078 ± 0.006 cm2/cmH2O 

Elderly ♂: 0.104 ± 0.007 cm2/cmH2O 

Elderly ♀: 0.060 ± 0.009 cm2/cmH2O 

Awake Huang et al. (1998) 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 INTRODUCTION 

The purpose of this study was to quantify the differences in the collapsibility of 

silicone tubes with and without longitudinal stretching subjected to cyclic bidirectional 

airflow.  The silicone tubes were fabricated to match the airway compliance of patients 

with obstructive sleep apnea.  Adequate airway patency is critical to preventing OSA, and 

increased airway compliance is the primary determinant of airway collapse during sleep 

in these patients.  Our goal was to quantify the tube collapsibility as a function of tube 

geometry (tube diameter, length, and wall thickness) and longitudinal stretching.  

Improved understanding of how longitudinal stretching reduces collapsibility will 

improve our understanding of OSA pathophysiology and may potentially suggest surgical 

procedures to reduce airway collapsibility in OSA patients. 

 

2.2 FABRICATION OF COLLAPSIBLE TUBES 

 Twenty-seven silicone rubber tubes were fabricated and tested in this experiment.  

Tubes were placed into three experimental groups: varied length (n = 9), varied wall 

thickness (n = 9), and varied diameter (n = 9).   Tube fabrication processes were slightly 

different between all groups, but maintained the same general procedure.  The silicone 

components were measured and mixed, poured into the mold, allowed to cure for at least 

24 hours before removal, and then allowed at least two weeks to completely cure before 

testing.  Pressure, displacement, and flow were measured on each tube tested. 
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 The XP-696 silicone rubber (Silicones, Inc., High Point, NC) is a two-component 

system (activator + base) that cures at room temperature due to a platinum-catalyzed 

addition reaction (Figure 8).  This material has a high durometer (i.e. high resistance to 

indentation), high elongation (i.e. high amount of extension under stress), good chemical 

resistance, exceptional release from molding structure, and is less prone to inhibition 

when interfaced with 3D printed parts. 

The use of 3D printing technology to make molds for uncured silicone rubber is 

our strategy to create patient-specific collapsible models in future studies.  However, 

certain silicone rubber material can be inhibited during the curing process due to support 

material residue left on the 3D printed molds.  Therefore, the XP-696 material was 

chosen after comparing its performance with other silicone materials.  This platinum-

cured silicone was specifically developed to decrease inhibition issues, especially when 

working with 3D printed parts. 

Known silicone properties are listed in Table 2 and Table 3. 

 

Table 2:  Material properties of the uncatalyzed XP-696 Silicone Rubber. 

Uncatalyzed Compound Properties 

Color 
Activator (A) = Red 

Base (B) = Translucent 

Mixing Ratio (B/A) 
By Weight: 

10/1 

Viscosity (cps) 
Mixed: 

25,000 

Working Time 35 minutes ± 5 minutes 

Cure Time 4-6 hours 

Shelf Life 6 months 
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Table 3:  Material properties of the vulcanized (cured) XP-696 Silicone Rubber. 

Vulcanized Silicone Properties 

Shore A Hardness (±4) 23 

Tear Resistance 110 ± 20 ppi 

Tensile Strength 450 ± 50 psi 

Elongation 425 ± 50% 

Shrinkage Nil 

Specific Gravity 1.08 

 

 

Before official experiments began, two separate tubes were used in a series of 

identical trials to check that results were reproducible and consistent weeks and months 

after fabrication.  These preliminary experiments demonstrated that material properties 

were not changing over time. 

 

2.2.1  Fabrication Procedure – Step-by-Step Instructions 

 All experimental procedures took place in the Biomedical Engineering Lab (BSL-

2) at the Medical College of Wisconsin (Milwaukee, WI).  Fabrication procedures were 

conducted in a conventional laboratory setting using aseptic techniques that met local 

safety guidelines. 

 Wearing the appropriate personal protective equipment (PPE) (e.g. gloves and 

eyewear), start the fabrication procedure by mixing 10 parts by weight 696 Base with 1 

part by weight 696 Activator in a container that can hold approximately 3 to 4 times the 

volume being used. 
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Figure 8:  XP-696 Silicone Rubber base (left) and activator (right). 

 

Stir the measured mixture thoroughly; making sure uniform color is apparent.  To 

remove all air bubbles, immediately after mixing place the material in a vacuum chamber 

capable of at least 28 inHg vacuum pressure (Figure 9).  The material will expand to 

double or triple its original volume and then collapse.  Maintain vacuum for at least an 

additional 2 to 3 minutes for complete removal of air bubbles, and then remove the 

silicone from the vacuum chamber. 
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Figure 9:  Vacuum chamber (Bel-Art Scienceware Desiccator) used to remove air 

bubbles after mixing the silicone base and activator. 

 

 Using caution, pour the mixed silicone into the desired mold (Figure 10).  Keep in 

mind that inhibition can occur in the presence of some 3D printed support materials or if 

the 3D printed part is not cleaned appropriately, which may affect curing time and quality 

of final model.  Additionally, if silicone specimen release is a problem post-cure, then use 

of a release silicone (e.g. Silicones, Inc. MR-15 Release Silicone) may be beneficial.  In 

this study, the release silicone was applied to the 3D printed mold with a cotton swab and 

allowed 30 minutes to dry before pouring the XP-696 silicone rubber into the mold.  It 

should be noted that the mold must be cleaned thoroughly with soap and water and dried 

prior to applying the MR-15 release silicone. 
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Figure 10:  Molding process of silicone rubber tubes. 

(A) Pouring silicone into center of mold. (B) Pushing silicone with a piston to force it 

into the narrow space between inner and outer tubes. 

 

  A piston was 3D printed to act as a plunging system to move the poured silicone 

into the gap between the inner and outer tubes by driving it down the center of the inner 

tube and up the gap between the inner and outer tubes (Figure 10B).  With great care, the 

piston was placed into the opening of the center tube at which the silicone was poured 

(Figure 10A).  Using a rod, the piston was gently pushed down the center to force the 

silicone into the gap between the inner and outer tubes (Figure 10B). 

(A) (B)
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Once the desired amount of silicone was pushed into the gap, the system was 

secured and O-rings were placed at the top edge of the gap.  This O-ring keeps the inner 

and outer tubes concentric and will ensure a uniform wall thickness. 

 

 
Figure 11:  Variations of silicone mold setup. 

(A) Mold created with off-the-shelf plastic tubes.  (B) Mold created with 3D printed parts 

and an off-the-shelf plastic tube. 

 

 Curing takes approximately 24 hours.  After curing, to remove the silicone tube, 

disconnect the mold from its base and use a needle bottle to flush soapy water in between 

the silicone and the molding walls.  The soapy water reduces friction and prevents tearing 

of the cured silicone. 

(A) (B) 



37 

 

  

 

2.3 MECHANICAL PROPERTIES OF THE SILICONE MATERIAL XP-696 

Experiments were performed to determine the Young’s Modulus and the 

Poisson’s Ratio of the two silicone rubber materials (XP-696 & P-90) that were initially 

tested.  These experiments were conducted in Marquette University’s Biomechanics Lab 

(Engineering Hall, Room 318) using their equipment and safety guidelines.  The 

mechanical properties were tested using a MTS Criterion™ Universal Testing System 

(MTS Systems Corporation; Eden Prairie, MN) set up for tensile loading at 5 mm/second. 

The mechanical tests were performed on test specimens fabricated using the 

methods described above, except that the test specimens had a flat dumbbell shape (a 

total length of 6”, thickness of ¼”, and 2” width ends with a 1” length from the end of the 

sample to the beginning of the curve inward; the middle region curves down to a 1” 

width; at least 3” of the middle section is 1” in width).  Some of the test specimens used 

in the mechanical tests are shown in Figure 12. 

 

Figure 12:  Silicone rubber specimens used in tensile testing. 
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Figure 13 and Figure 14 illustrate how the Young’s Modulus and the Poisson’s 

Ratio were calculated from the data collected in the tensile load testing.  The Young’s 

Modulus () was calculated by plotting the tensile stress () as a function of the strain () 

and fitting the data (for strain  < 0.6) with Equation 3. 

Equation 3:  Stress — Strain Relationship 𝛔 = 𝚬 ∗ 𝛆 

The Young’s Modulus values obtained by applying the discussed approach, for all 

specimens tested, are listed in Table 4 and Table 5. 

Both the P-90 and XP-696 silicone rubber withstand large deformations under 

tensile loading, hence, the calculations of the Poisson’s ratio, 𝜐, in terms of true strain 

definition is utilized here as,  

Equation 4:  Poisson’s Ratio 𝝊 = −
𝒅𝝐𝑻𝒓𝒂𝒏𝒔

𝒅𝝐𝑨𝒙𝒊𝒂𝒍
 

where 𝜖𝐴𝑥𝑖𝑎𝑙 and 𝜖𝑇𝑟𝑎𝑛𝑠 are the axial and transverse strains respectively and 𝑑 represents 

the small variations in the related quantities. For the axial tensile loading applied to the 

test specimens in this study with length, 𝐿, in the axial direction and width, 𝐷, in the 

transverse direction, the above equation can be extended to, 

Equation 5: −𝝊 ∫ 𝒅𝝐𝑳
𝑳𝒐+𝜟𝑳

𝑳𝒐
= ∫ 𝒅𝝐𝑫

𝑫𝒐+𝜟𝑫

𝑫𝒐
 

In the above equation, ΔL and ΔD are the changes in the length and width of the test 

specimen and 𝜖𝐿 and 𝜖𝐷 are the strains in the axial (length) and transverse (width) 

directions, respectively. Other forms of the above equation can also be obtained through 

applying simple mathematical operations, 
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Equation 6: −𝝊 ∫
𝒅𝒙

𝒙

𝑳𝒐+𝜟𝑳

𝑳𝒐
= ∫

𝒅𝒚

𝒚

𝑫𝒐+𝜟𝑫

𝑫𝒐
 

 −𝝊[𝒍𝒏 𝒙]𝑳𝒐

𝑳𝒐+𝜟𝑳
= [𝒍𝒏 𝒚]𝑫𝒐

𝑫𝒐+𝜟𝑫
 

 

 −𝝊 [𝒍𝒏
(𝑳𝒐+𝜟𝑳)

𝑳𝒐
] = [𝒍𝒏

(𝑫𝒐+𝜟𝑫)

𝑫𝒐
] 

 

 −𝝊 𝒍𝒏 (𝟏 +
𝜟𝑳

𝑳𝒐
) = 𝒍𝒏 (𝟏 +

𝜟𝑫

𝑫𝒐
) 

 

 
∆𝑫

𝑫𝒐
+ 𝟏 = (

∆𝑳

𝑳𝒐
+ 𝟏)−𝝊 

and 

Equation 7: 𝝊 = −
𝒍𝒏 (

∆𝑫

𝑫𝒐
+𝟏)

𝒍𝒏(
∆𝑳

𝑳𝒐
+𝟏)

 

Equation 7 implies that the Poisson’s ratio for the silicone used in this study can be 

simply determined by finding the slope of the curve obtained by plotting 𝑙𝑛(
∆𝐿

𝐿𝑜
+ 1) vs. 

𝑙𝑛 (
∆𝐷

𝐷𝑜
+ 1) (Figure 14).  The Poisson’s ratio values obtained by applying the discussed 

approach, for all specimens tested in the Biomechanics Lab at Marquette University, are 

listed in Table 4 and Table 5. 
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Figure 13:  Young’s modulus calculation of sample #8 using XP-696 Silicone Rubber. 

 

 

Figure 14:  Poisson’s ratio calculation of sample #3 using XP-696 Silicone Rubber. 

 

 

 

y = 396773x + 3725
R² = 0.9992

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

0.0 0.1 0.2 0.3 0.4 0.5 0.6

St
re

ss
 (

P
a)

Strain

XP-696 Silicone Rubber Sample #8 
Young's Modulus

y = -0.4819x - 0.0019
R² = 0.9994

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.0 0.1 0.2 0.3 0.4 0.5

lo
g 

(Δ
D

/D
0

+ 
1

)

log (ΔL/L0 + 1)

XP-696 Silicone Rubber Sample #3
Poisson's Ratio



41 

 

  

 

Table 4:  Young’s modulus and Poisson’s ratio values of XP-696 (Fast Cure) Silicone 

Rubber (Silicones, Inc., High Point, NC). 

XP-696 Silicone Rubber 

SAMPLE Young’s Modulus (MPa) SAMPLE Poisson’s Ratio 

#8 0.397 #3 0.482 

#9 0.344 #4 0.471 

#10 0.382 #5 0.496 

#11 0.327 #6 0.514 

#12 0.355 #7 0.494 

AVERAGE 0.361 AVERAGE 0.491 

STD 0.028 STD 0.016 

 

Table 5:  Young’s modulus and Poisson’s ratio of the P-90 (slow cure) Silicone Rubber 

(Silicones, Inc., High Point, NC). 

P-90 Silicone Rubber 

SAMPLE Young’s Modulus (MPa) SAMPLE Poisson’s Ratio 

#3 0.290 #3 0.504 

#5 0.304 #4 0.520 

#7 0.307 #5 0.504 

#8 0.285 #6 0.506 

#9 0.311 #7 0.504 

#10 0.311 - - 

#11 0.332 - - 

#12 0.326 - - 

AVERAGE 0.308 AVERAGE 0.507 

STD 0.016 STD 0.007 

 

The P-90 silicone was dropped from the study shortly after mechanical testing 

because it took much longer to cure than the XP-696 silicone, and it reacted with 3D 

printed parts, resulting in an unstable curing process in the mold. 

Importantly, the young’s modulus of the XP-696 silicone selected for this study is 

approximately 1 order of magnitude lower than in previous studies on collapsible tubes 

(Table 6), which allowed us to observe tube collapse at pressure gradients similar to those 

experienced by the human airway (0-10 cmH2O).  
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Table 6:  Comparison of XP-696 silicone rubber in this study with other materials used 

in the literature on collapsible tubes. 

MATERIAL GEOMETRY 
YOUNG’S 

MODULUS 
STRAIN MEDIUM 

MAX FLOWRATE 

(@ FLOW 

LIMITATION) 

REFERENCE 

XP-696 

silicone 

rubber 

L: 75-125mm 

D: 12.7-31.75mm 

H: 0.98-2.22mm 

0.361 ± 

0.028 

MPa 

0.5cm  

(4 to 6.66 %) 
Air 

Could not 

Characterize 

Flow Limitation 

This study 

Penrose 

tube 

L: 80mm 

D: 16mm 

H: 0.23mm 

1.5 to 3.5 

MPa 
0 to 62.5% Air 150 to 300 mL/s 

Amatoury et 

al. (2010) 

Silicone 

rubber 

L: 230mm 

D: 12.7mm 

3.8 to 4.0 

MPa 
0.7 to 12% Water - 

Bertram 

(1987) 

Silicone 

rubber 

L: 728mm 

D: 12.0mm 

H: 1.0mm 

Not given N/A 
70% Glycerin 

30% H2O 
42 to 65 mL/s 

Bertram & 

Tscherry 

(2006) 

Thin 

Latex tube 

filled with 

water 

D: 49mm 

H: 0.3mm 
1.68 MPa N/A Air - 

Chouly et al. 

(2008) 

Latex 

rubber 

tube 

L: 1100mm 

D: 25.4mm 

H: 0.86mm 

Not given 

Conducted 

but values not 

given 

Glycerin/ 

Water Mix 

- 

(steady, 

supercritical 

flow) 

Kececioglu 

et al. (1981) 

Silicone 

rubber 

filled with 

water 

L: At least 10x’s 

longer than DOUT 

DIN: 18-25mm 

H: 3mm 

2.4 to 4.0 

MPa 
N/A N/A 

No-Flow 

Experiments 

Kozlovsky 

et al. (2014) 

Penrose 

tube OR 

Silicone 

Rubber 

Penrose 

D: 25.4mm  

H: 0.55mm 

Silicone Rubber 

D: 25.4mm  

H: 1-3mm 

Not given N/A Air 
- 

(constant flow) 

Oruc et al. 

(2007) 

Thin-

walled 

silicone 

rubber 

L: 160mm 

D: 5.70-8.00mm 

H: 0.20-0.30mm 

Not given 0 to 100% 
Sucrose 

Solution 

N/A 

(cyclic flow) 

Sakurai et 

al. (1996) 

 

For additional comparison, the young’s modulus of the XP-696 silicone selected 

for this study was compared to the young’s modulus estimated or assumed in previous 

studies of upper airway collapse (Table 7), which allowed us to understand the difference 

in material properties and guide our decision making process in choosing tube geometry 

for our in vitro experiments. 
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Table 7:  Comparison of Young’s Modulus of the XP-696 silicone rubber used in this 

study with the Young’s Modulus of the human airway estimated or assumed in 

previous studies of upper airway collapse. 

MATERIAL EXPERIMENT TYPE YOUNG’S MODULUS REFERENCE 

XP-696 silicone rubber 
In vitro  

(benchtop) 
0.361 ± 0.028  MPa This study 

Human soft palate FEA model 
At hard palate: 100.64  kPa 

At uvula:     0.51  kPa 

Berry et al. 

(1999) 

Human soft palate FSI model 1.0 x 106  Pa 
Sun et al. 

(2007) 

Human soft palate FSI model 7539  Pa 
Zhu et al. 

(2012) 

Muscle FSI model 
Soft Palate: 0.025 MPa 

Bilateral palatal muscles: 0.98 MPa 

Wang et al. 

(2012) 

Human Tissue FEM model 

Soft tissue: 1.00 x 104   Pa 

Nasopharynx: 1.37 x 1010  Pa 

Epiglottis cartilages: 2.02 x 106   Pa 

Tracheal cartilage: 2.02 x 106   Pa 

Huang et al. 

(2013) 

Human upper airway 

tissue 
FSI model 7.54  kPa 

Zhao et al. 

(2013) 
3D Stereolithography 

(SLA) – Human upper 

airway 

In vitro  

(benchtop) 
325  kPa 

Human soft palate 
Ex vivo 

(cadavers) 

Range from Uvula to Hard Palate: 

585  Pa – 1410  Pa 

Birch & 

Srodon (2009) 

 

2.4 GEOMETRY OF THE COLLAPSIBLE TUBES 

Three (n=3) tubes were tested for each tube geometry (Table 8 and Figure 15) to 

account for variations in the fabrication process.  The standard tube dimensions chosen 

were 10cm in length, 22.22mm in diameter, and 1.60mm in wall thickness (Table 8).  

Tube dimension variances tested were then above and below this standard tube dimension 

for each given study (Figure 15). 
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Table 8:  Dimensions (length, diameter, and wall thickness) of the silicone rubber tubes 

fabricated for this study. 

 # tubes Length  

(cm) 

Diameter  

(mm) 

Wall thickness 

(mm) 

Tube length study 

n = 3 7.5 22.22 1.60 

n = 3 10.0 22.22 1.60 

n = 3 12.5 22.22 1.60 

Tube diameter study 

n = 3 10.0 12.70 1.60 

n = 3 10.0 22.22 1.60 

n = 3 10.0 31.75 1.60 

Wall thickness study 

n = 3 10.0 22.22 0.80 

n = 3 10.0 22.22 1.60 

n = 3 10.0 22.22 2.40 

 

 

Figure 15:  Comparisons of each tube geometry (length, diameter, and wall thickness). 

(★) Indicates the standard dimension tube (L = 10cm, D = 22.22mm, W = 1.60mm) for 

easier comparison with the varied dimensions in each study. 
 

The considerations for selecting these specific geometries to study were 2-fold: 

known physiological values (Table 9) and current model material properties (Table 7).  

More specifically, the range of lengths and diameters of our silicone tubes (Table 8) 

overlap with the length and diameter of the human pharynx (Table 9).  However, our 

silicone tubes had a much smaller wall thickness (0.8 to 2.4mm) than the wall thickness 

of the human pharynx (20 to 40mm, Table 9).  To match the compliance of the human 

upper airway (Table 1), we had to study tubes with relatively thin walls because the 

young’s modulus of the current study’s silicone rubber (0.361 MPa) was much higher 
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than the young’s modulus of the soft tissues surrounding the human pharynx (~0.001 

MPa) (Table 7). 

 

Table 9:  Comparison of the geometrical dimensions used in this study with the 

dimensions of the human airway. 

 Standard Dimension 

(current study) 

Measured Physiological Value 

(human measurements) 
Reference 

Airway 

Length 
L = 100mm 

♂ Airway Length1: 62 – 84mm 

♀ Airway Length1: 42 – 78mm 

Malhotra et al. 

(2002) 

Airway 

Diameter 
D = 22.22mm 

Minimum Diameter2: 8.54mm 

Maximum Diameter2: 22.07mm 

Van Holsbeke 

et al. (2014) 

Control Patients3: 26.22mm 

OSA Patients3: 22.85mm 

Bradley et al. 

(1986) 

Airway 

Wall 

Thickness 

W = 1.60mm 

Normal Patients4: 27.6 ± 7.1mm 

Mild Apnea4: 35.2 ± 6.8mm 

Apneic Patients4: 33.0 ± 8.7mm 

Schwab et al. 

(1995) 

1 Length measured from hard palate to base of epiglottis.  
2 Minimum Diameter: Minimal CSA measured between top boundary of hard palate and 

the end of the uvula to bottom boundary of epiglottis and the larynx.  

Maximum Diameter: Region between epiglottis and larynx.  
3 Control Patients: Average CSA of 9 subjects at functional residual capacity.   

OSA Patients: Average CSA of 10 subjects at functional residual capacity. 
4 All cases were measured as lateral pharyngeal wall thickness. 

 

The amount of longitudinal stretch of 0.5cm was chosen because of the past strain 

percentages seen by previous airway studies in collapsible tubes and airway muscle 

models.  Amatoury et al. (2010) conducted experiments in Penrose tubing with strain 

ranges from 0-60% of the original length, but it is speculated that beyond 25% strain the 

model underwent plastic deformation.  Fredberg et al. (1997) conducted experiments in 

bovine trachea muscle with strain ranges from 0-8% of the original length.  Kairaitis et al. 

(2012) studied pharyngeal stretch by applying average stretch of 7mm (ΔL) in rabbits, 

where the original pharyngeal length of rabbits is approximated to be 42mm (Lo) 
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(Amatoury J. , Kairaitis, Wheatley, Bilston, & Amis, 2015).  Therefore, the strain seen in 

the rabbit model is calculated by taking ΔL and dividing by the original length, Lo:  

7

42
 ≈ 17% 

Because every tube tested in the current study was subjected to a longitudinal stretch of 

0.5cm, the strain values were as follows: 6.66% at L = 7.5cm, 5.00% at L = 10cm, and 

4.00% at L = 12.5cm.  Therefore, although there is potential for future studies to be 

conducted at higher strain values, the longitudinal strain conducted in the current study 

was within the ranges seen in previous literature. 

A large quantity of tubes was fabricated for each variable being tested.  However, 

many tubes were deemed unacceptable post-fabrication because their wall thickness was 

not uniform or small air pockets had formed in the catalyzed product (Figure 16).  Those 

tubes were not used and thrown out of the study due to inhomogeneous character. 

 

Figure 16:  Examples of tubes that were thrown out of this study. 

(Left) Air pocket formation. (Right) Severe wall thickness inhomogeneity. 
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2.5 EXPERIMENTAL SETUP 

 The experimental setup is illustrated in Figure 17 and Figure 18.  A cyclic air 

pump (Harvard Apparatus, Model #607) was used to reproduce cyclic breathing 

(inspiration and expiration) with airflow rates (Q = [0, 250] mL/s) and frequency (20 

cycles/min) in the same range of breathing in adult humans (Benchetrit, 2000).  This 

pump was attached to a flexible hose with two pressure relief valves for safety measures 

in case the flow of air becomes blocked by unforeseen deterrents.  The flexible hose is 

then attached to a rigid tube that is mounted on a custom-fabricated, rigid scaffold for 

stability.  At the center of this scaffold is a gap where the XP-696 silicone rubber 

collapsible tube specimen is placed.  Approximately 1 inch away from the gap on either 

end is a pressure transducer (Omega, Model #PX409-015GUSBH), which monitors the 

pressure upstream and downstream of the collapsible tube.  On the downstream rigid tube 

segment, a small hole was drilled so that a pressure catheter (Millar, Mikro-CathTM 

Diagnostic Pressure Catheter) could be introduced into the tubing system housing the 

flow.  Before each test and after each collapsible tubing specimen was secured, the 

pressure catheter was guided to the center of the collapsible tube specimen in order to 

record pressure at the flow-limiting site.  Directly above the collapsible tube specimen is 

a laser line scanner used for displacement measurements (Micro-Epsilon, Model #2600-

100).  At the far upstream end of the scaffold, the rigid tubing converts into a short, 

flexible rubber tubing segment that connects to a flowmeter (TSI Inc., Model #4045 G), 

which is open to the atmosphere.  All aforementioned sensors are connected to a laptop 

via USB hub or a data acquisition system. 
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Figure 17:  Experimental setup design and examples. 

A) Diagram of experimental setup. B) Example of tube collapse and displacement 

measured with the laser line scanner. C) Example of collapsibility curve. 

 

 The ratio (d/D) of the minimal internal diameter (d) during a breathing cycle to 

the tube internal diameter with zero flow (D) is plotted against the mean airflow rate 

during the inspiratory phase of the breathing cycle (Figure 17C). 

Pressure 
Catheter 

Downstream Upstream 
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Figure 18:  Experimental setup. 

The air pump produces bidirectional, cyclic airflow through piston action.  The air is 

forced out the back to a flexible tubing that folds over the top of the air pump and 

connects to the tubing in line with the collapsible tube.  Pressure relief valves are directly 

upstream of pump to ensure pressure relief safety and mitigation of pump damage in case 

the flow of air is completely blocked during the experiment.  The laser line displacement 

sensor is situated directly above the collapsible tube with a vertical distance of 

approximately 1 foot away from the tube.  The flowmeter is at the opposite end of the air 

pump (upstream) and marks the end of the tubing system. 

 

  

 

 

 

AIR PUMP 

COLLAPSIBLE 
CONDUIT 

FLOWMETER 

DISPLACEMENT 
SENSOR 
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The equipment used in the experimental setup is listed in Table 10. 

Table 10:  Equipment used in the experimental setup. 

Item Company Model # Resolution 

Air Pump 
Harvard 

Apparatus 
607 N/A 

Pressure Relief Valves McMaster Carr N/A N/A 

High Speed USB Output 

Pressure Transducer 
Omega 

PX409-

015GUSBH 
Up to 1000 Hz 

Mikro-CathTM Diagnostic 

Pressure Catheter 
Millar 825-0101 

Flat to ~10kHz (Limited by 

PCU to 1 kHz) 

Pressure Control Unit 

(PCU) with Patient 

Isolation 

Millar PCU-2000 1000 Hz 

Laser Line Scanner – 

Compact Class 
Micro-Epsilon 

scanCONTROL 

2600-100 
Up to 300 Hz 

Mass Flowmeter (High 

Flow Series) 
TSI Inc. 4045 G 

250 Hz  

(Standard for steady flow) 

4 ms to 63% of full scale flow 

(Large volume fluctuations) 

 

2.6 MEASUREMENT PROTOCOL 

 All sensors were calibrated prior to beginning the experiments.  Additionally, the 

pressure catheter and the laser line scanner were placed as close to the centerline of the 

collapsible tube as possible without disrupting the sensor readings.  Therefore, both may 

need to be moved when the longitudinal tension is applied to the tube. 

 At the beginning of each experiment, the pump was off.  Recording was started in 

the pressure transducers and the flowmeter (total recording time = 1 minute) and then the 

pump was turned on shortly after the recording was initiated.  The increase in flow and 

pressure after turning on the pump was the event used to synchronize the measurements 

before beginning the data recording. 
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To quantify the stretching, a ruler was secured against the mechanical system as 

shown in Figure 19.  From the initial position, the rail car slides along the guiderails, 

which is attached to the silicone tube under examination.  The tube is then stretched 

0.5cm, which is measured via the stationary ruler. 

 

Figure 19:  A ruler was used to measure longitudinal stretching. 

 

2.7 REPRODUCIBILITY ANALYSIS 

 The reproducibility of the experiment was a concern due to the in-house 

fabrication of collapsible tubes and the possibility that the tube mechanical properties 

could be changing over time.  Therefore, the reproducibility was tested by taking five 

separately constructed silicone tubes and testing them all and comparing the results 

(Figure 20).  Additionally, the reproducibility over time was tested by taking two separate 

tubes and testing them five separate times over a period of 2 months (Figure 21). 
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Figure 20:  Reproducibility results of 5 separate silicone tubes. 

On the left, all tubes tested in the reproducibility experiments are plotted for comparison 

between each other (no stretch condition only).  On the right, the error bars indicate 

variability of independent measurements performed between tubes for the no stretch 

condition and a 0.5cm stretch condition. 

 

 

Figure 21:  Reproducibility over time experiments. 

Indicated on the left, the variability of independent measurements performed in the no 

stretch condition on the same tube (Tube #2) over a period of approximately 2 months.  

Indicated on the right, the average recordings and standard deviations for tubes #2 and 

#3 in the no stretch and stretch condition.  The averages for both tubes are based on 5 

separate testing cycles over a period of approximately 2 months.  There was no 

systematic pattern of change over time. 

 

 The analysis showed that there is no clear pattern of change over time.  Therefore, 

it was concluded that the silicone tubes were not fatigued and the mechanical properties 

were not significantly affected by conducting tests within our experimental scope.  The 
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standard deviations of the variability among tubes and within the same tube provide a 

measure of the experimental error. 

 

2.8 DATA ANALYSIS 

2.8.1  Data Collection 

 Digital recordings of the displacement taken perpendicular to flow were obtained 

for qualitative and quantitative observations.  In this experiment, collapse is seen during 

inspiration.  Therefore, “airflow” is the average airflow during the inspiratory phase of 

the pump cycle.  The displacement recordings for each tube were taken individually at 

each increment of air volume along the appropriate pump volume range tested (Table 11). 

Table 11:  Pump settings and displacement measurement parameters for each tube study. 

 
Dimension 

Tested 

Pump Volume 

Range Tested 

(ml) 

Increments 

per Test 

Increment 

Value  

(ml) 

Pump 

Frequency 

(cycles/min) 

Tube length 

study 

7.50cm 0-700 8 100 20 

10.0cm  0-700 8 100 20 

12.5cm 0-700 8 100 20 

Tube diameter 

study 

12.70mm 0-700 8 100 20 

22.22mm 0-700 8 100 20 

31.75mm 0-700 8 100 20 

Wall thickness 

study 

0.98mm 0-350 8 50 20 

1.60mm 0-700 8 100 20 

2.22mm 0-700 8 100 20 

 

From each increment of air volume tested, a recording of d/D is measured (Figure 17), 

and this measurement corresponds to the maximum value of d/D, which corresponds to 

the maximum deformation during the inspiratory phase of the pump cycle.  In addition to 

displacement, pressures were recorded upstream, downstream, and at the flow-limiting 

site. 
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2.8.2  Pressure Analysis 

  MATLAB codes were written to evaluate the data collected from the upstream 

and downstream pressure transducers and the Millar pressure catheter (Figure 22).  The 

MATLAB code identified and averaged the minimum pressure of approximately 10 

consecutive breathing cycles.  This analysis revealed that there was minimal variation 

from cycle to cycle.  

 

Figure 22:  MATLAB calculation of downstream and upstream minimum pressure. 

Starting at 30 seconds, the code finds the minimum pressure values for every cycle.  Once 

the minimum value is found the code analyzes 50 points before and 50 points after to 

make sure no other minimum values exist and calculates an average of the minimum 

values found between those cycles. 
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Figure 23:  Method to calculate buckling pressure (PB) and contact point pressure (PCP). 

 

Additionally, another code was written to evaluate the buckling pressure and 

contact point pressure (PB and PCP, respectively) associated with each study (Figure 23).  

Both the graphs presented here are for the no stretch condition.  The red square on each 

graph displays the calculated PB (left) and PCP (right).  The PB is calculated on a curve 

formed from a linear piece function.  The PCP is calculated on a curve formed from the 

Michaelis-Menten function.  The buckling pressure was defined as the catheter pressure 

corresponding to d/D = 0.96.  The contact point pressure was defined as the catheter 

pressure corresponding to d/D = 0.02. 
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2.9 STATISTICAL ANALYSIS 

 For each tube geometry (diameter, length, and wall thickness), the results were 

averaged for the n=3 tubes studied and the associated standard deviations were 

calculated.  Additional statistical analysis was conducted in the form of a paired two 

sample t-test on all three tube geometries.  These tests were an analysis of the difference 

between the 0.5cm stretch versus no stretch on buckling pressure for each geometry.  For 

these tests, a sample population of n=9 was utilized for both the length and wall thickness 

studies, and a sample population of n=7 was utilized for the diameter study.  Further 

analysis employed calculation of the average difference and standard deviation within 

each geometrical case to analyze the effect of applying 0.5cm stretch on buckling 

pressures for each tube dimension. 
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CHAPTER 3: RESULTS 

  

 
 

Figure 24:  Synchronized catheter profiles for non-stretch length study, (10cm) tube #2. 

Pressure at the center of a 10cm silicone tube as a function of time with pump at 20 

cycles/min and tidal volumes of 100mL, 300mL, 500mL, and 700mL. 

 

 

Figure 25:  Averages of all 3 tubes at 10cm length. 

(Left) Pressure at center of silicone tube as a function of flowrate. (Right) Pressure Drop 

across silicone tube.  Opposite walls touched each other for flowrates above 200 mL/s. 
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The pressure recordings were consistent with an increase in airflow as the pump 

tidal volume was increased (Figure 24).  Typical curves for the relationship between 

flowrate and pressure are displayed in Figure 25.  The pressure at the center of the tube 

increased almost linearly with the flowrate (Figure 25, left panel).  The pressure drop 

across the tube was nearly zero (within experimental error) until opposite walls touched 

each other (Figure 25, right panel).   

 

Figure 26:  Comparison between tubes – length study with 10cm tubes. 

The ratio (d/D) of the minimal diameter (d) during a breathing cycle to the tube diameter 

with zero flow (D) is plotted against the minimum pressure at the center of the tube 

(catheter pressure) during the inspiratory phase of the breathing cycle. 

 

 For each tube geometry, we fabricated and measured n=3 tubes to account for 

imperfections in the fabrication process that could affect tube collapsibility.  Figure 26 

illustrates typical variability among tubes with the same geometry. 
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3.1 TUBE LENGTH STUDY 

 

Figure 27:  Effects of tube length (L) on tube collapsibility.  

(Top) No longitudinal stretch. (Bottom) With 0.5cm longitudinal stretch.  Each curve is 

an average for n=3 tubes.  Error bars indicate standard deviations. 

 

Figure 27 displays the effects of length and the effects of 0.5cm longitudinal 

strain on an average of three 22.22mm diameter silicone tubes with 1.59mm wall 

thickness at lengths of 7.5cm, 10cm, and 12.5cm.  The left column displays diameter 

ratio (see Figure 17C) as a function of airflow rate.  The right column displays the 

diameter ratio (d/D) as a function of the pressure at the center of the silicone tube.  Tube 

length had no clear pattern on the collapsibility curves.  Longitudinal strain had a greater 

effect on the shorter tube (L = 7.5cm), while it had almost no effect on the longer tube (L 

= 12.5cm).   
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 The average buckling pressure (PB) for a tube length of 7.5cm was -1.5 ± 0.2 

cmH2O without stretch and -2.38 ± 0.09 cmH20 with stretch (Table 12).  For the 10cm 

tubes, the average PB increased its magnitude to -3.36 ± 0.61 cmH20 without stretch and 

-4.04 ± 0.53 cmH2O with stretch.  Almost a two-fold increase from 7.5cm tube length to 

10.0cm tube length for each scenario.  For the 12.5cm tubes, the average PB was similar 

to the 10cm tubes with values of -3.39 ± 0.51 cmH2O without stretch and -3.52 ± 0.27 

cmH2O with stretch.  Figure 28 shows the tube length effect on average buckling 

pressure, PB. 

The overall paired t-Test results show significant difference for the buckling 

pressure with longitudinal stretch and without longitudinal stretch (p ≤ 0.0108 at  = 0.05 

at n=9).  We defined the change in buckling pressure caused by 0.5cm stretch as ΔPB = 

(PB)No Stretch - (PB)Stretch.  The average change in PB was ΔPB = 0.87 ± 0.17 cmH2O for 

7.5cm length tubes, ΔPB = 0.65 ± 0.50 cmH2O for 10cm length tubes, and ΔPB = 0.13 ± 

0.41 cmH2O for 12.5cm length tubes. 
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Figure 28:  Effect of tube length on average buckling pressure at tube lengths of 7.5cm, 

10cm, and 12.5cm with 0.5cm stretch (red) and without stretch (blue). 

Error bars indicate standard errors, where 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 =  
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
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Table 12:  Tube length study results. 

Abbreviations: L = Length; D = diameter; H = wall thickness; PB = Buckling pressure; QB = 

Flowrate at buckling; PCP = Contact point pressure; QCP = Flowrate at contact point. 

Tube Length = 7.5 cm 

No Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

1cut 

7.5 22.22 1.59 

-1.64 43.9 -10.96 272.0 

2cut -1. 60 46.0 -8.15 210.5 

3cut -1.28 38.4 -12.72 271.3 

Average    -1.5 ± 0.2 42.8 ± 3.9 -10.96 ± 2.31 251.3 ± 35.3 

0.5 cm Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

1cut 

7.5 22.22 1.59 

-2.34 65.6 -20.00 363.7 

2cut -2.48 74.2 -17.33 322.6 

3cut -2.31 65.1 -20.00 408.1 

Average    -2.38 ± 0.09 68.3 ± 5.1 -19.11 ± 1.54 364.8 ± 42.8 

Tube Length = 10 cm 

No stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

1 

10 22.22 1.59 

-3.59 90.9 -8.81 229.3 

2 -3.83 102.8 -8.30 225.1 

3 -2.67 72.7 -10.01 232.6 

Average    -3.36 ± 0.61 88.8 ± 15.2 -9.04 ± 0.88 229.0 ± 3.8 

0.5 cm Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

1 

10 22.22 1.59 

-4.65 115.9 -11.91 275.0 

2 -3.78 98.4 -11.88 261.4 

3 -3.68 98.4 -14.11 285.9 

Average    -4.04 ± 0.53 104.2 ± 10.1 -12.63 ± 1.28 274.1 ± 12.3 

Tube Length = 12.5 cm 

No stretch 

No 

stretch 

L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

1 

12.5 22.22 1.59 

-2.85 82.6 -8.88 215.3 

2 -3.87 108.1 -7.46 216.9 

3 -3.44 105.0 -15.51 281.4 

Average    -3.39 ± 0.51 98.6 ± 13.9 -10.62 ± 4.30 237.9 ± 37.7 

0.5 cm Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

1 

12.5 22.22 1.59 

-3.24 87.8 -10.93 239.4 

2 -3.53 98.9 -9.50 227.9 

3 -3.78 98.4  -9.54 234.6 

Average    -3.52 ± 0.27 95.0 ± 6.3 -9.99 ± 0.81 234.0 ± 5.8 
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3.2 TUBE DIAMETER STUDY 

 

Figure 29:  Effects of tube diameter (D) on tube collapsibility. 

(Top) No longitudinal stretch. (Bottom) With 0.5cm longitudinal stretch.  Each curve is 

an average for n=3 tubes.  Error bars indicate standard deviations. 

 

Figure 29 displays the effects of diameter and the effects of 0.5cm longitudinal 

strain on 10cm long silicone tubes with 1.59mm wall thickness and diameters of 

12.70mm, 22.22mm, and 31.75mm.  The left column displays the diameter ratio (d/D) as 

a function of airflow rate (see Figure 17C).  The right column displays the diameter ratio 

as a function of the pressure at the center of the silicone tube.  Tube diameter had a clear 

effect on the collapsibility curves.  Tubes with larger diameters had greater collapse. 

 The buckling pressure (PB) for a tube diameter of 12.70mm was less than -12.00 

cmH20 and less than -15.00 ± 0.09 cmH20 without stretch and with stretch, respectively 

(Table 13).  For the 22.22mm tubes, the PB was -3.36 ± 0.61 cmH20 without stretch and -

4.04 ± 0.53 cmH20 with stretch, respectively.  Thus, at least a three-fold reduction in the 



64 

 

  

 

PB magnitude was observed when tube diameter increased from 12.70mm to 22.22mm 

(Figure 30).  For the 31.75mm tubes, the magnitude of buckling pressure decreased 

slightly as compared to the 22.22mm tubes with buckling pressures at -1.29 ± 0.40 

cmH20 and -2.34 ± 0.44 cmH20 without stretch and with stretch, respectively. 

 The overall paired t-Test results show significant difference between all points (p 

≤ 0.0064 at  = 0.05 at n=7).  We defined the change in buckling pressure caused by 

0.5cm stretch as ΔPB = (PB)No Stretch - (PB)Stretch.  The average change in PB was ΔPB = 2.21 

cmH2O for 12.70mm diameter tubes, ΔPB = 0.65 ± 0.50 cmH2O for 22.22mm diameter 

tubes, and ΔPB = 1.05 ± 0.35 cmH2O for 31.75mm diameter tubes. 
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Figure 30:  Effect of tube diameter on average buckling pressure at diameters of 

12.70mm, 22.22mm, and 31.75mm with 0.5cm stretch (red) and without stretch (blue).  

Error bars indicate standard errors, where 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 =  
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
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Table 13:  Tube diameter study results. 

Abbreviations: L = Length; D = diameter; H = wall thickness; PB = Buckling pressure; QB = 

Flowrate at buckling; PCP = Contact point pressure; QCP = Flowrate at contact point. 

Tube Diameter = 12.70 mm 

No Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

d1 

10 12.70 1.59 

< -11.00 >250 <-20.00 >500 

d2 -13.49 263.3 <-20.00 566.8 

d3 < -12.00 >250 <-20.00 >500 

Average    - - - - 

0.5 cm Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

d1 

10 12.70 1.59 

< -13.00 >250 <-20.00 >500 

d2 -15.70 296.6 <-20.00 530.6 

d3 < -13.00 >250 <-20.00 >500 

Average    - - - - 

Tube Diameter =  22.22 mm 

No Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

1 

10 22.22 1.59 

-3.59 90.9 -8.81 229.3 

2 -3.83 102.8 -8.30 225.1 

3 -2.67 72.7 -10.01 232.6 

Average    -3.36 ± 0.61 88.8 ± 15.2 -9.04 ± 0.88 229.0 ± 3.8 

0.5 cm Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

1 

10 22.22 1.59 

-4.65 115.9 -11.91 275.0 

2 -3.78 98.4 -11.88 261.4 

3 -3.68 98.4 -14.11 285.9 

Average    -4.04 ± 0.53 104.2 ± 10.1 -12.63 ± 1.28 274.1 ± 12.3 

Tube Diameter =  31.75 mm 

No Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

D1 

10 31.75 1.59 

-1.08 36.1 -11.33 325.2 

D2 -1.04 32.5 -7.51 253.7 

D3 -1.75 52.7 -11.38 294.2 

Average    -1.29 ± 0.40 40.4 ± 10.8 -10.07 ± 2.22 291.0 ± 35.9 

0.5 cm Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

D1 

10 31.75 1.59 

-2.53 71.7 -14.02 317.5 

D2 -1.84 57.6 -9.49 265.4 

D3 -2.66 76.7 -9.59 260.2 

Average    -2.34 ± 0.44 68.7 ± 9.9 -11.03 ± 2.59 281.0 ± 31.7 
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3.3 TUBE WALL THICKNESS STUDY 

 

Figure 31:  Effects of tube wall thickness (H) on airflow rate and catheter pressure. 

(Top) No longitudinal stretch. (Bottom) With 0.5cm longitudinal stretch.  Each curve is 

an average for n=3 tubes.  Error bars indicate standard deviations. 

 

Figure 31 displays the effects of wall thickness and the effects of 0.5cm 

longitudinal strain on 10cm long silicone tubes of 22.22mm diameter with wall 

thicknesses of 0.98mm, 1.59mm, and 2.22mm.  The left column displays the diameter 

ratio (d/D) as a function of airflow rate (see Figure 17C).  The right column displays the 

diameter ratio as a function of the pressure at the center of the silicone tube.  Wall 

thickness also had a clear effect on tube collapsibility.  Tubes with thinner walls had 

greater collapse. 

The buckling pressure (PB) for a tube wall thickness of 0.98mm averages -0.47 ± 

0.20 cmH20 without stretch and -0.91 ± 0.27 cmH20 with stretch, respectively (Table 14).  

For tubes with 1.59mm wall thickness, the PB was more negative with values of -3.36 ± 
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0.61 cmH20 and -4.04 ± 0.53 cmH20 without stretch and with stretch, respectively.  Thus, 

the buckling pressure magnitude increased nearly 3-fold when the wall thickness 

increased from 0.98mm to 1.59mm (Figure 32).  For the 2.22mm wall thickness, the 

buckling pressure was slightly more negative with values of -3.70 ± 0.84 cmH20 without 

stretch and -4.27 ± 1.05 cmH20 with stretch (Table 14 and Figure 32). 

The overall paired t-Test results show significant difference between all points (p 

≤ 0.0015 at  = 0.05) at n=9.  We defined the change in buckling pressure caused by 

0.5cm stretch as ΔPB = (PB)No Stretch - (PB)Stretch.  The average change in PB was ΔPB = 0.44 

± 0.13 cmH2O for 0.98mm wall thickness tubes, ΔPB = 0.65 ± 0.50 cmH2O for 1.59mm 

wall thickness tubes, and ΔPB = 0.57 ± 0.24 cmH2O for 2.22mm wall thickness tubes. 
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Figure 32:  Effect of tube wall thickness on average buckling pressure at wall thicknesses 

of 0.98mm, 1.59mm, and 2.22mm with 0.5cm stretch (red) and without stretch (blue). 

Error bars indicate standard errors, where 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 =  
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
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Table 14:  Tube wall thickness study results. 

Abbreviations: L = Length; D = diameter; H = wall thickness; PB = Buckling pressure; QB = 

Flowrate at buckling; PCP = Contact point pressure; QCP = Flowrate at contact point. 

Tube Wall Thickness = 0.98 mm 

No Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

D 

10 22.22 0.98 

-0.70 26.4 -4.23 108.2 

E -0.35 18.0 -3.52 99.7 

F -0.37 16.3 -2.73 86.6 

Average    -0.47 ± 0.20 20.2 ± 5.4 -3.49 ± 0.75 98.2 ± 10.9 

0.5 cm Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

D 

10 22.22 0.98 

-1.18 35.9 -5.03 139.2 

E -0.64 21.3 -5.50 143.6 

F -0.92 27.3 -6.63 187.6 

Average    -0.91 ± 0.27 28.2 ± 7.3 -5.72 ± 0.82 156.8 ± 26.8 

Tube Wall Thickness = 1.59 mm 

No Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

1 

10 22.22 1.59 

-3.59 90.9 -8.81 229.3 

2 -3.83 102.8 -8.30 225.1 

3 -2.67 72.7 -10.01 232.6 

Average    -3.36 ± 0.61 88.8 ± 15.2 -9.04 ± 0.88 229.0 ± 3.8 

0.5 cm Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

1 

10 22.22 1.59 

-4.65 115.9 -11.91 275.0 

2 -3.78 98.4 -11.88 261.4 

3 -3.68 98.4 -14.11 285.9 

Average    -4.04 ± 0.53 104.2 ± 10.1 -12.63 ± 1.28 274.1 ± 12.3 

Tube Wall Thickness = 2.22 mm 

No Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

A 

10 22.22 2.22 

-3.27 98.4 -17.43 324.3 

B -4.67 130.0 -13.49 303.3 

C -3.17 87.8 -20.00 480.2 

Average    -3.70 ± 0.84 105.4 ±22.0 -16.97 ± 3.28 369.3 ± 96.6 

0.5 cm Stretch 

Tube 
L 

(cm) 

D 

(mm) 

H 

(mm) 
PB (cmH2O) QB (mL/s) PCP (cmH2O) QCP (mL/s) 

A 

10 22.22 2.22 

-3.86 110.0 -20.00 485.7 

B -5.46 148.4 -17.66 351.0 

C -3.49 98.4 -20.00 700.0 

Average    -4.27 ± 1.05 118.9 ± 26.2 -19.22 ± 1.35 512.2 ± 176.0 
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3.4 BUCKLING PRESSURES VS. GAMMA 

The experimental buckling pressures measured from every tube in this study were 

compiled and displayed in Figure 33 (blue dots).  Theoretical buckling pressures were 

calculated from Kozlovsky et al. (2014) and displayed in Figure 33 (black bars) for 

comparison to the experimental results.  The buckling pressure was calculated using the 

following equation: 

Equation 8:  Buckling Pressure 𝑃𝐵 = (−3)(𝐾𝑃) 

where the flexural rigidity (𝐾𝑃) increases as the wall thickness-to-radius ratio increases 

(Kozlovsky, Zaretsky, Jaffa, & Elad, 2014).  𝐾𝑃 in the above equation can be defined as, 

Equation 9:  Flexural Rigidity 𝐾𝑃 =
Ε

12(1−𝜈2)
(ln(1 + 𝛾))3 

Which includes the Young’s Modulus (Ε), the Poisson’s Ratio (ν), and the wall 

thickness-to-radius ratio (γ).  By substituting Equation 9 into Equation 8 for 𝐾𝑃, the 

following equation can be utilized to calculate theoretical values of buckling pressure: 

Equation 10:  Buckling Pressure 𝑃𝐵 = (−3)(
Ε

12(1−𝜈2)
(ln(1 + 𝛾))3) 
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Table 15:  Theoretical buckling pressures for each tube study (black bars on Figure 33). 

 = H/Ri = the ratio of the wall thickness to the radius. 

Study Type 
Length 

(cm) 
Radius 
(mm) 

Wall Thickness 
(mm) 

 
PB  

(MPa) 
PB 

(cmH2O) 

Length  
Study 

7.5 

11.11 1.6 

0.144 -0.000289627 -2.95 

10 0.144 -0.000289627 -2.95 

12.5 0.144 -0.000289627 -2.95 

Diameter 
Study 

10 

6.35 

1.6 

0.252 -0.001349461 -13.76 

11.11 0.144 -0.000289627 -2.95 

15.875 0.101 -0.000105297 -1.07 

Wall Thickness 
Study 

10 11.11 

0.8 0.072 -0.000039978 -0.41 

1.6 0.144 -0.000289627 -2.95 

2.4 0.216 -0.000889724 -9.07 

 

 

Figure 33:  Comparison of experimental values (blue) to theoretical values (black) and 

the effects of  on the buckling pressure. 

 = H/Ri = tube wall thickness-to-internal radius ratio.  
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CHAPTER 4: MAJOR FINDINGS AND FUTURE DIRECTIONS 

 

4.1 DISCUSSION 

 This study was conducted on an experimental setup that was designed, fabricated, 

and validated in-house.  The experimental setup was developed to quantify the 

collapsibility of cylindrical silicone tubes that behave similarly to the human pharynx in 

OSA patients.  A significant part of this project was devoted to designing and fabricating 

this new experimental setup. 

Additionally, a large part of this project was also devoted to identifying the proper 

material for fabricating the collapsible tubes and, once a material was chosen, developing 

methods for a fabrication process and performing mechanical testing to quantify the 

material properties.  It is important to note that the compliance of the silicone tubes 

investigated was in the same range of airway compliance found in the human upper 

airway (Oliven, et al., 2010).  The tubes tested collapsed with transmural pressures in the 

range of 0 to 15 cmH20 and flowrates in the range of 0 to 250 mL/s, like in OSA patients. 

 

4.1.1  Summary of Major Findings 

 As the tube length increased from 7.5 cm to 10 cm, the buckling pressure (PB) 

decreased from -1.5 ± 0.2 cmH20 to -3.36 ± 0.61 cmH20.  However, as the length 

increased from 10 cm to 12.5 cm, PB did not change.  In theory, longer tubes are expected 

to be more collapsible.  In contrast with this expectation, the shorter tube (L=7.5cm) was 

the most collapsible in this study.  Meanwhile, there was no substantial difference 
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between tubes with lengths of 10cm and 12.5cm.  These results contradict our 

preliminary results (Figure 34). 

 

Figure 34:  Preliminary results showing expected effect of length on tube collapsibility. 

 

Longitudinal strain had greater effects on the shorter tube (PB reduced from -1.5 ± 0.2 

cmH20 without stretching to -2.38 ± 0.09 cmH20 with 0.5cm stretching in the 7.5cm tube) 

than in longer tubes (PB reduced from -3.4 ± 0.5 cmH20 without stretching to -3.5 ± 0.3 

cmH20 with 0.5cm stretching in the 12.5cm tube).  The greater effect of longitudinal 

stretching in the shorter tube was expected given that 0.5cm stretch caused a higher strain 

in the shorter tube. 

As the tube diameter increased from 12.70 mm to 31.75 mm, the magnitude of PB 

was markedly decreased (Figure 30).  The greatest effect was seen as the diameter 

increased from 12.70 mm to 22.22 mm, where the buckling pressure decreased nearly 

three-fold.  As the diameter increased from 22.22 mm to 31.75 mm, the magnitude of PB 

decreased in half approximately.  The trend arises that naturally narrower airways tend to 

have more structural support from surrounding tissues.  However, this conclusion needs 

further testing to corroborate the claim that tissues in the airway do provide this structural 
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support, and behave similarly to silicone tubes.  It is important to note that the wall 

thickness of the tissue surrounding the human pharynx is much greater than in our 

silicone tubes and that the soft tissue is not expected to behave as a homogenous material 

(Brown, Bradley, Phillipson, Zamel, & Hoffstein, 1985).  Longitudinal strain increased 

airway stability at all diameters by requiring higher buckling pressures to achieve 

collapse, and the magnitude of buckling pressure change was nearly the same for all 

diameters (Figure 30). 

 As the tube wall thickness increased from 0.98 mm to 2.22 mm, the magnitude of 

buckling pressure increased.  The greatest effect was seen as the wall thickness increased 

from 0.98 mm to 1.59 mm, where the buckling pressure decreased from -0.47 ± 0.20 

cmH20 to -3.4 ± 0.6 cmH20.  When wall thickness increased from 1.59 mm to 2.22 mm, 

the magnitude of PB increased only slightly.  The trend arises that tubes with thicker walls 

are more stable.  Longitudinal strain reduced collapsibility at all wall thicknesses. 

 

4.1.2  Relationship to Previous Work & Unique Contribution 

 To the best of our knowledge, this study is the first to investigate cyclic, bi-

directional airflow (modeling the complete breathing cycle) through collapsible silicone 

tubes in reference to modeling tracheal traction in OSA patients.  This is not the first 

study to model tracheal traction in collapsible silicone tubes, but may be the first to do so 

using cyclic airflow.  The findings suggest that applying a longitudinal strain or “tracheal 

traction” reduces airway collapsibility.  This supports previous studies showing 

reductions in airway collapsibility in models with collapsible tubes (Sakurai, Ohba, 
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Futagami, & Tsujimoto, 1996).  The current model suggests that tracheal traction 

produces a stabilizing effect in the human airways. 

Some interesting observations can be made when we compare findings from our 

in vitro study with in vivo observations in OSA patients.  First, OSA severity is 

correlated with body mass index (BMI).  Obese OSA patients have narrower airway 

lumens and thicker soft tissue walls as compared to non-obese OSA patients.  Weight 

loss has been shown to decrease OSA severity by reducing the pharyngeal critical 

pressure (Gold & Schwartz, 1996).  In our experiments, the silicone tubes became more 

collapsible when wall thickness decreased.  However, the opposite seems to occur in 

humans, namely obese patients have a more collapsible airway but thicker soft tissue 

walls.  We speculate that the greater stability provided by thicker walls in obese OSA 

patients is counter-balanced by a greater tissue pressure.  In our experiments, air pressure 

external to the tube was kept constant (atmospheric pressure).  We speculate that in obese 

patients the tissue pressure is greater than in non-obese patients, in such a way that the 

greater stability of thicker soft tissue walls is offset by a higher tissue pressure that 

induces airway collapse at lower lumen pressure. 

A second interesting observation is regarding the effect of upper airway surgery 

on pharyngeal collapsibility.  Often, surgical intervention for OSA is aimed at removing 

tissue, such as tonsillectomy, Uvulopalatopharyngoplasty (UPPP).  In our experiments, a 

reduction in wall thickness increased the collapsibility of silicone tubes.  This contrasts to 

the observation that removal of soft tissue surrounding the human pharynx via UPPP 

surgery either reduces pharyngeal collapsibility (reduces Pcrit) or does not affect it (Gold 

& Schwartz, 1996).  Thus, we speculate that the beneficial effect of UPPP surgery is not 
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the reduction in wall thickness itself, but rather it is due to a reduction in soft tissue 

pressure. 

 The current experiment produced pressure-flowrate curves representative of a 

flowrate limitation study.  Figure 35 displays a previous study’s flowrate-limitation curve 

produced by testing collapsible Penrose tubing under varying external pressures (PC = 

Chamber Pressure).  Our results (Figure 25) look similar to the low range of pressure 

drops across the tube in Figure 35. 

 

 

Figure 35:  Flowrate limitation (or pressure drop-independent flowrate) relationship. 

Reproduced from Amatoury et al. (2010). 

 

 Tube wall thickness is a highly important parameter that determines collapsibility 

of flexible tubes.  As the wall thickness-to-radius ratio (γ) increases, the flexural rigidity 

increases and the tubes become more and more resistant to bending (Kozlovsky, 

Zaretsky, Jaffa, & Elad, 2014).  This phenomenon has been simulated numerically with 

finite element analysis (FEA) in ADINA software in a study by Kozlovsky et al. (2014) 

(Figure 36). 
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Figure 36:  Non-dimensional pressure-area curves as obtained from computer 

simulations (circles) for tubes with different wall thickness ratios, . 

The wall thickness-to-radius ratio is defined as,  = 
𝐻

𝑅𝑖
, where H = wall thickness and Ri 

= tube radius.  Reproduced from Kozlovsky et al. (2014). 

 

The results from the current study agree with their conclusions.  As wall thickness 

increases a greater magnitude of negative pressure is required to buckle the collapsible 

tube (Equation 10).  Moreover, in the tube diameter study, it was observed that the small 

diameter tubes were significantly more rigid than all other conduits tested.  This is due to 

the larger wall-thickness-to-radius ratio of a tube of constant wall thickness but 

decreasing diameter. 

 

4.1.3  Study Limitations 

Results from this study should be interpreted within the constraints of potential 

limitations, including small inconsistencies in tube placement (rotation, stretching) when 

being put onto the experimental setup, lack of airflow measurements in the flowmeter to 
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validate the flowrate set in the pump, measuring catheter pressure at the exact tube center, 

and relatively low sample sizes. 

Tube placement was accomplished in the same manner every time a tube was 

placed within the experimental setup.  However, because this was done by hand, 

inconsistencies in placement (minor rotation, minor stretching) were inevitable. 

The airflow measurement data recorded produced choppy results.  This is 

speculated to have been partially due to the fact that the flowmeter available was a 

flowmeter for measuring uni-directional flow, and not cyclic flow. 

The Mikro-CathTM Diagnostic Pressure Catheter used in this experiment was fed 

into the collapsible silicone tube by penetrating the wall of the downstream rigid tubing 

and then being pushed upstream until resting right next to the measurement site of the 

displacement line scanner.  However, the catheter was simply resting on the bottom of the 

lumen and not placed concentrically within the tube lumen. 

The sample size of the current study was limited (n=3 tubes for each geometry).  

This study was meant to be exploratory.  However, our significant findings and the 

validation of the experimental setup and its capabilities have allowed for further interest 

and exploration with a larger more anatomically-correct collapsible silicone airway study 

to be conducted. 

 

4.2 CONCLUSION & FUTURE DIRECTIONS 

This study suggests that tube length, diameter, and wall thickness have an effect 

on the collapsibility of silicone rubber tubes.  Additionally, this study also suggests that 

longitudinal strain increases lumen patency in cylindrical silicone rubber tubes.  These 
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findings coupled with the results found in animal models and other collapsible tube 

experiments, support previous evidence that tracheal traction in the human upper airway 

could decrease the severity of OSA by stabilizing peripharyngeal tissues and reducing 

airway collapse. 

Future research in cylindrical tubes could explore the effects of constant airflow 

experiments and the theory of negative effort dependence (Owens, et al., 2014).  Other 

areas of interest could look into the effects of zero airflow experiments (transmural 

pressure alone) and quantifying the tube law or pressure-area relationship and measure 

the buckling pressure in these conditions and how it compares to cyclic flow experiments 

(Genta, et al., 2016) (Kozlovsky, Zaretsky, Jaffa, & Elad, 2014).  In regards to cyclic 

flow experiments, there is potential to study pump frequency and its effect on buckling 

pressure, because it has been noted that fluid-solid coupling in shells conveying viscous 

flow can have a substantial impact on the location and behavior of buckling deformation 

(Heil & Pedley, 1996). 

Future research also includes assessing effects of greater longitudinal strains and 

the impact on buckling pressure.  Moreover, assessing length, diameter, wall thickness, 

and longitudinal strain in silicone rubber patient-specific models and comparing with the 

results of this study.  Additionally, future studies could look into fabrication of patient-

specific models with homogenous wall thickness, wall thickness that varies along the 

perimeter, greater wall thickness as seen in the human airway, and varying elastic 

properties (young’s modulus, etc.) along the perimeter or longitudinally.  
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APPENDIX 

MATLAB CODE 

Downstream & Upstream Pressure Code  

Code #1 – Convergence Identification 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%AUTHOR: Masoud Moghaddam, Ph.D. 
%LAST MODIFIED: 6/16/2017 by Kevin Garman 
%DESCRIPTION: This code is a function that conducts analysis of 
%downstream and upstream pressures measured by two separate OMEGA High  
%Speed USB Output Pressure Transducers on either end of the collapsible 
%conduit implemented in the experimental setup.  Outputs are graphical  
%representations of average mean pressure and standard deviation 

%associated with taking varying numbers of points around the minimum 

%pressure value of each cycle after 30 seconds of run time. 
%Specifically, this studies the variation between 1 - 100 points to 

%allow the user to identify what range would be best to set for each 
%case. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
clear all; 
clc; 
close all; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%    Inputs    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
file1='D+UPress_Diameter_12,70_Tube#d1_100_NoStretch';  

  
threshold_time=30; 

  
%%%inputs related to the polynomial fit 
num_points_before_after_min_for_polyfit=100; 
studied_points_num=1:5:num_points_before_after_min_for_polyfit;  
%For the given range of points you can check the variations in minimum  

%pressure and Standard Deviation for the upstream and Downstream the  
%given points are the chosen number of points for the curve fit before 
%and after the minimum pressure of the cycles in the original data set!  
%so num_point 

  
fit_order=3; 
cycle_per_min=20; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%   Reading from the files    %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
file_size=size(xlsread(file1)); 
rows_in_text=num2str(file_size(1)); 
file_range=strcat('A13:H',rows_in_text); 
imported_data=xlsread(file1, file_range); 

  
%%%% reading the time, downstream pressure and upstream pressure 
time=imported_data(:,3); 
pressure_downstream=imported_data(:,5); 
pressure_upstream=imported_data(:,8); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%    Finding the minimum pressure     %%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%% assigning a starting time_Threshold (neglecting the cycles before  

%%%% that threshold) and finding the indices corresponding to the  
%%%% start of the cycles. 

  
threshold_time_indice=find(time>threshold_time,1); 
period_cycle_sec=60/cycle_per_min; 
time_cycles=threshold_time:period_cycle_sec:max(time); 
num_cycles_after_threshold_time=size(time_cycles,2); 
for i=1:num_cycles_after_threshold_time 
    time_cycle_start_indice(i)=find(time>time_cycles(i),1); 
end 

  
%%%% Finding the minimum pressure in each of the cycles 

  
for j=1: num_cycles_after_threshold_time-1 

  
% This section looks for the minimum values in each cycle starting from 
% 10 indices after the initial index of start of the cycle 
% 10 is added here because in some cases the start of the cycle  

% coincides with the minimum pressure value (resulting in some errors)     
    

cycles_minpressure_downstream(j)=min(pressure_downstream((time_cycle_st

art_indice(j)+10):time_cycle_start_indice(j+1)));  
    

cycles_minpressure_upstream(j)=min(pressure_upstream(time_cycle_start_i

ndice(j)+10:time_cycle_start_indice(j+1))); 

     
% finding the indices corresponding to the min pressure 
%%% The min pressure value found in each of the cycles (in previous  

%%% step) can be "not unique" and there is a chance that pressure with  

%%% such value exit in other cycles as well. However, we are only  

%%% interested in the index corresponding to the minimum pressure in  
%%% the associated cycle. The find (...,10) finds the possible existing  

%%% 10 indices corresponding to each minimum pressure and then the  

%%% commands afterward make sure that the chosen index falls in the  
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%%% range of the corresponding cycle. 

 
temp_downstream=find(pressure_downstream==cycles_minpressure_downstream

(j),10); %saving the index temporarily 
temp_upstream=find(pressure_upstream==cycles_minpressure_upstream(j),10

); %saving the index temporarily 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Downstream  %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    if j==1 
       for k=1:size(temp_downstream,1) 
            if temp_downstream(k)>time_cycle_start_indice(j)  
                 min_pressure_indice_downstream(j)=temp_downstream(k); 
                 break 
            end 
       end 
    else 

             
        for k=1:size(temp_downstream,1) 
            if temp_downstream(k)>=time_cycle_start_indice(j) && 

temp_downstream(k)>min_pressure_indice_downstream(j-1) 
                 min_pressure_indice_downstream(j)=temp_downstream(k); 
                 break 
            end 
        end 
    end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Upstream  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
    if j==1 
       for k=1:size(temp_upstream,1) 
            if temp_upstream(k)>time_cycle_start_indice(j)  
                 min_pressure_indice_upstream(j)=temp_upstream(k); 
                 break 
            end 
       end 
    else 

             
        for k=1:size(temp_upstream,1) 
            if temp_upstream(k)>=time_cycle_start_indice(j) && 

temp_upstream(k)>min_pressure_indice_upstream(j-1) 
                 min_pressure_indice_upstream(j)=temp_upstream(k); 
                 break 
            end 
        end         
    end 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%          PLOTTING Original DATA         %%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
set(0,'DefaultAxesFontSize', 18); 

  
%%% Original data 
xlabel('Time (s)') 
ylabel('Pressure (cmH2o)') 
figure(1) 
plot(time,pressure_downstream, 'g') 
xlabel('Time (s)') 
ylabel('Pressure (cmH2o)') 
legend('Downstream') 

  
hold on 
figure(2) 
plot(time,pressure_upstream, 'g') 
xlabel('Time (s)') 
ylabel('Pressure (cmH2o)') 
legend('Upstream') 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%   Making cuts and fitting a polynomial curve and plot   %%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% In this section a range of points before and after the priorly found  
% indices corresponding to the minimum pressure in each cycle is  
% considered ( a cut of the data around minumum pressure in each  

% cycle). This would allow fitting a polynomial in that smaller range  

% of data (in order to remove the noise and getting a smoother curve 

% and finally a more accurate minimum value for the pressure in each of 
% the cycle) 

     
counter=0;     
for kk=studied_points_num; 

     
    counter=counter+1; 

      
    

time_polyfit_downstream=zeros(size(min_pressure_indice_downstream,2), 

2*kk+1); 
    

pressure_polyfit_downstream=zeros(size(min_pressure_indice_downstream,2

), 2*kk+1); 
    p_downstream=zeros(size(min_pressure_indice_downstream,2), 

fit_order+1); 
    

polynomial_fit_curve_downstream=zeros(size(min_pressure_indice_downstre

am,2), 2*kk+1); 
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    time_polyfit_upstream=zeros(size(min_pressure_indice_upstream,2), 

2*kk+1); 
    

pressure_polyfit_upstream=zeros(size(min_pressure_indice_upstream,2), 

2*kk+1); 
    p_upstream=zeros(size(min_pressure_indice_upstream,2), 

fit_order+1); 
    

polynomial_fit_curve_upstream=zeros(size(min_pressure_indice_upstream,2

), 2*kk+1); 

     

    
%%%%%%%%%%%%%%%%%%%%%%%%%     Downstream      %%%%%%%%%%%%%%%%%%%%%%%%% 

  
    for i=1:size(min_pressure_indice_downstream,2) 

  
        %%% defining the cut range 
        

cut_range_in_each_cyle_downstream=(min_pressure_indice_downstream(i)-

kk):(min_pressure_indice_downstream(i)+kk); 

  
        %%% time and pressure in the cut range 
        

time_polyfit_downstream(i,:)=time(cut_range_in_each_cyle_downstream);  
        

pressure_polyfit_downstream(i,:)=pressure_downstream(cut_range_in_each_

cyle_downstream);  

  
        %%% plotting the time and pressure in the cut range 
        figure(1) 
        hold on 
        

plot(time_polyfit_downstream(i,:),pressure_polyfit_downstream(i,:), 

'b*') 
        hold on 

  
        %%% polynomially fitting the time and pressure in the cut range 
        p_downstream(i,:)=polyfit(time_polyfit_downstream(i,:), 

pressure_polyfit_downstream(i,:), fit_order); 
        

polynomial_fit_curve_downstream(i,:)=polyval(p_downstream(i,:),time_pol

yfit_downstream(i,:)); 

  
        %%% plotting the polynomial fit of the time and pressure in the 

cut range 
        figure(1) 
        hold on 
        

plot(time_polyfit_downstream(i,:),polynomial_fit_curve_downstream(i,:), 

'r') 
        hold on 
    end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Upstream  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
    for j=1:size(min_pressure_indice_upstream,2) 

 
        

cut_range_in_each_cyle_upstream=(min_pressure_indice_upstream(j)-

kk):(min_pressure_indice_upstream(j)+kk); 
        

time_polyfit_upstream(j,:)=time(cut_range_in_each_cyle_upstream); 
        

pressure_polyfit_upstream(j,:)=pressure_upstream(cut_range_in_each_cyle

_upstream);  

  
        figure(2) 
        hold on 
        plot(time_polyfit_upstream(j,:),pressure_polyfit_upstream(j,:), 

'b*') 
        hold on 

  
        p_upstream(j,:)=polyfit(time_polyfit_upstream(j,:), 

pressure_polyfit_upstream(j,:), fit_order); 
        

polynomial_fit_curve_upstream(j,:)=polyval(p_upstream(j,:),time_polyfit

_upstream(j,:)); 

  
        figure(2) 
        hold on 
        

plot(time_polyfit_upstream(j,:),polynomial_fit_curve_upstream(j,:), 

'r') 
        hold on 
    end 
  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%  Final average min pressure   %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%    Downstream    %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
min_fit_pressure_downstream=min(polynomial_fit_curve_downstream,[],2); 
average_min_pressure_downstream(counter)=mean(min_fit_pressure_downstre

am); 
STD_min_pressure_downstream(counter)=std(min_fit_pressure_downstream); 

  
%%%%%%%%%%%%%%%%%%%%%%%%       Upstream       %%%%%%%%%%%%%%%%%%%%%%%%% 

  
min_fit_pressure_upstream=min(polynomial_fit_curve_upstream,[],2); 
average_min_pressure_upstream(counter)=mean(min_fit_pressure_upstream); 
STD_min_pressure_upstream(counter)= std(min_fit_pressure_upstream); 
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end 

  
figure (3) 
plot(studied_points_num, average_min_pressure_downstream) 
hold on 
plot(studied_points_num, average_min_pressure_upstream) 
xlabel('Number of Points') 
ylabel('Average Mean Pressure') 
legend('downstream','upstream') 

  
figure (4) 
plot(studied_points_num, STD_min_pressure_downstream) 
hold on 
plot(studied_points_num, STD_min_pressure_upstream) 
xlabel('Number of Points') 
ylabel('Standard Deviation') 
legend('downstream','upstream') 

 

 

Code #2 – Downstream & Upstream Pressure Analysis 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%AUTHOR: Masoud Moghaddam, Ph.D. 
%LAST MODIFIED: 6/16/2017 by Kevin Garman 
%DESCRIPTION: This code is a function that conducts quantification of 
%downstream and upstream pressures measured by two separate OMEGA High  
%Speed USB Output Pressure Transducers on either end of the collapsible 
%conduit implemented in the experimental setup.  Outputs are an average 

%of ten cycles' minimum pressure values and the the associated standard  
%deviation. Outputs from this code are used to acquire data for all 
%post-analysis calculations and discussion. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
clear all; 
clc; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%     Inputs     %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
file1='D+UPress_Diameter_12,70_Tube#d3_700_Stretch';  

  
threshold_time=30; 

 
%%%inputs related to the polynomial fit 
num_points_before_after_min_for_polyfit=50; 
fit_order=3; 
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cycle_per_min=20; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%   Reading from the files    %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
file_size=size(xlsread(file1)); 
rows_in_text=num2str(file_size(1)); 
file_range=strcat('A13:H',rows_in_text); 
imported_data=xlsread(file1, file_range); 

  
%%%% reading the time, downstream pressure and upstream pressure 
time=imported_data(:,3); 
pressure_downstream=imported_data(:,5); 
pressure_upstream=imported_data(:,8); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%    Finding the minimum pressure     %%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%% assigning a starting time_Threshold (neglecting the cycles before 

%%%% that threshold) and finding the indices corresponding to the  
%%%% start of the cycles 

  
threshold_time_indice=find(time>threshold_time,1); 
period_cycle_sec=60/cycle_per_min; 
time_cycles=threshold_time:period_cycle_sec:max(time); 
num_cycles_after_threshold_time=size(time_cycles,2); 
for i=1:num_cycles_after_threshold_time 
    time_cycle_start_indice(i)=find(time>time_cycles(i),1); 
end 

  
%%%% Finding the minimum pressure in each of the cycles 

  
for j=1: num_cycles_after_threshold_time-2 

     
% This section looks for the minimum values in each cycle starting from 
% 10 indices after the initial index of start of the cycle 10 is added  

% here because in some cases the start of the cycle coincides with the  

% minimum pressure value (resulting in some errors)     

  
    

cycles_minpressure_downstream(j)=min(pressure_downstream((time_cycle_st

art_indice(j)+10):time_cycle_start_indice(j+1)));  
    

cycles_minpressure_upstream(j)=min(pressure_upstream(time_cycle_start_i

ndice(j)+10:time_cycle_start_indice(j+1))); 
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% finding the indices corresponding to the min pressure 

 
%%% the min pressure value found in each of the cycles (in previous  

%%% step) can be "not unique" and there is a chance that pressure with  
%%% such value exit in other cycles as well. However, we only are  

%%% interested in the index corresponding to the minimum pressure in  

%%% the associated cycle. The find (...,10) finds the possible existing 

%%% 10 indices corresponding to each minimum pressure and then the  

%%% commands afterward makes sure that the chosen indice falls in the  

%%% range of the corresponding cycle 

 
temp_downstream=find(pressure_downstream==cycles_minpressure_downstream

(j),10); %saving the indice temporarily 
temp_upstream=find(pressure_upstream==cycles_minpressure_upstream(j),10

); %saving the indice temporarily 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%    Downstream     %%%%%%%%%%%%%%%%%%%%%%%%%% 
    if j==1 
       for k=1:size(temp_downstream,1) 
            if temp_downstream(k)>time_cycle_start_indice(j)  
                 min_pressure_indice_downstream(j)=temp_downstream(k); 
                 break 
            end 
       end 
    else 

            
        for k=1:size(temp_downstream,1) 
            if temp_downstream(k)>=time_cycle_start_indice(j) && 

temp_downstream(k)>min_pressure_indice_downstream(j-1) 
                 min_pressure_indice_downstream(j)=temp_downstream(k); 
                 break 
            end 
        end       
    end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%     Upstream     %%%%%%%%%%%%%%%%%%%%%%%%%% 
    if j==1 
       for k=1:size(temp_upstream,1) 
            if temp_upstream(k)>time_cycle_start_indice(j)  
                 min_pressure_indice_upstream(j)=temp_upstream(k); 
                 break 
            end 
       end 
    else 

             
        for k=1:size(temp_upstream,1) 
            if temp_upstream(k)>=time_cycle_start_indice(j) && 

temp_upstream(k)>min_pressure_indice_upstream(j-1) 
                 min_pressure_indice_upstream(j)=temp_upstream(k); 
                 break 
            end 
        end         
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    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%   PLOTTING Original DATA   %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
set(0,'DefaultAxesFontSize', 18); 

  
%%% Original data 
xlabel('Time (s)') 
ylabel('Pressure (cmH2o)') 
figure(1) 
plot(time,pressure_downstream, 'g') 
xlabel('Time (s)') 
ylabel('Pressure (cmH2o)') 
legend('Downstream') 

  
hold on 
figure(2) 
plot(time,pressure_upstream, 'g') 
xlabel('Time (s)') 
ylabel('Pressure (cmH2o)') 
legend('Upstream') 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%   Making cuts and fitting a polynomial curve and plot   %%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%% In this section a range of points before and after the prior found  
%%% indices corresponding to the minimum pressure in each cycle is  

%%% considered (a cut of the data around minimum pressure in each  

%%% cycle). This would allow fitting a polynomial in that smaller range  

%%% of data (in order to remove the noise and getting a smoother curve  

%%% and finally a more accurate minimum value for the pressure in each  

%%% of the cycle) 

     
%%%%%%%%%%%%%%%%%%%%%%%%%     Downstream      %%%%%%%%%%%%%%%%%%%%%%%%% 

  
for i=1:size(min_pressure_indice_downstream,2) 

  
    %%% defining the cut range 
    

cut_range_in_each_cyle_downstream=(min_pressure_indice_downstream(i)-

num_points_before_after_min_for_polyfit):(min_pressure_indice_downstrea

m(i)+num_points_before_after_min_for_polyfit); 

     
    %%% time and pressure in the cut range 
    

time_polyfit_downstream(i,:)=time(cut_range_in_each_cyle_downstream);  
    

pressure_polyfit_downstream(i,:)=pressure_downstream(cut_range_in_each_

cyle_downstream);  
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    %%% plotting the time and pressure in the cut range 
    figure(1) 
    hold on 

    

plot(time_polyfit_downstream(i,:),pressure_polyfit_downstream(i,:), 

'b*') 
    hold on 

     
    %%% polynomially fitting the time and pressure in the cut range 

p_downstream(i,:)=polyfit(time_polyfit_downstream(i,:), 

pressure_polyfit_downstream(i,:), fit_order); 
    

polynomial_fit_curve_downstream(i,:)=polyval(p_downstream(i,:),time_pol

yfit_downstream(i,:)); 

  
% Plotting the polynomial fit of the time and pressure in the cut range 
    figure(1) 
    hold on 
    

plot(time_polyfit_downstream(i,:),polynomial_fit_curve_downstream(i,:), 

'r') 
    hold on 
end 
  

 
%%%%%%%%%%%%%%%%%%%%%%%%%      Upstream       %%%%%%%%%%%%%%%%%%%%%%%%% 

  
for i=1:size(min_pressure_indice_upstream,2) 

    

  
    cut_range_in_each_cyle_upstream=(min_pressure_indice_upstream(i)-

num_points_before_after_min_for_polyfit):(min_pressure_indice_upstream(

i)+num_points_before_after_min_for_polyfit); 
    time_polyfit_upstream(i,:)=time(cut_range_in_each_cyle_upstream); 
    

pressure_polyfit_upstream(i,:)=pressure_upstream(cut_range_in_each_cyle

_upstream);  

     
    figure(2) 
    hold on 
    plot(time_polyfit_upstream(i,:),pressure_polyfit_upstream(i,:), 

'b*') 
    hold on 

     
    p_upstream(i,:)=polyfit(time_polyfit_upstream(i,:), 

pressure_polyfit_upstream(i,:), fit_order); 
    

polynomial_fit_curve_upstream(i,:)=polyval(p_upstream(i,:),time_polyfit

_upstream(i,:)); 
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    figure(2) 
    hold on 
    plot(time_polyfit_upstream(i,:),polynomial_fit_curve_upstream(i,:), 

'r') 
    hold on 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%  Final average min pressure   %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Downstream  %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
min_fit_pressure_downstream=min(polynomial_fit_curve_downstream,[],2); 
average_min_pressure_downstream=mean(min_fit_pressure_downstream) 
STD_min_pressure_downstream=std(min_fit_pressure_downstream) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%   upstream    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
min_fit_pressure_upstream=min(polynomial_fit_curve_upstream,[],2); 
average_min_pressure_upstream=mean(min_fit_pressure_upstream) 
STD_min_pressure_upstream = std(min_fit_pressure_upstream) 

  
%%%% Printing the data %%%% 

  
file_out = fopen('min_pressure_upstream_downstream.txt','a'); 
results_print=strcat(file1,... 
    ', downstream_min_pressure(cmH2o),  ', 

num2str(average_min_pressure_downstream),... 
    ', downstream_min_pressure_STD,  ', 

num2str(STD_min_pressure_downstream), ... 
    ', upstream_min_pressure(cmH2o),  ', 

num2str(average_min_pressure_upstream),... 
    ', upstream_min_pressure_STD,  ', 

num2str(STD_min_pressure_upstream),... 
    ', Threshold_time, ', num2str(threshold_time),... 
    ', Total_number_of_points_for_the_polynomial_fit, ', 

num2str(2*num_points_before_after_min_for_polyfit+1),... 
    ', number_of_cylcles_included_downstream, ', 

num2str(size(min_pressure_indice_downstream,2)),... 
    ', number_of_cylcles_included_upstream, ', 

num2str(size(min_pressure_indice_upstream,2)), '\n'); 
fprintf(file_out,results_print); 
fclose(file_out); 
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Catheter Pressure Code  

Code #3 – Catheter Pressure Analysis 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%AUTHOR: Masoud Moghaddam, Ph.D. 
%LAST MODIFIED: 6/16/2017 by Kevin Garman 
%DESCRIPTION: This code is a function that conducts quantification of 
%downstream and upstream pressures measured by two separate OMEGA High  
%Speed USB Output Pressure Transducers on either end of the collapsible 
%conduit implemented in the experimental setup.  Outputs are an average 

%of ten cycles' minimum pressure values and the the associated standard  
%deviation. Outputs from this code are used to acquire data for all 
%post-analysis calculations and discussion. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  

clear all; 
clc; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%     Inputs      %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
file1='Cath&Flow_Diameter_12,70_Tube#d3_700_Stretch';  

  
threshold_time=31; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%   Reading from the files    %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
cycle_per_min=20; 
file_size=size(xlsread(file1)); 
rows_in_text=num2str(file_size(1)); 
file_range=strcat('A2:H',rows_in_text); 
imported_data=xlsread(file1, file_range); 

  
%%%% reading the time, Catheter pressure 
time=imported_data(:,2); 
pressure_Catheter=imported_data(:,4); 
  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%    Finding the minumum pressure     %%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%% assigning a starting time_Threshold (neglecting the cycles before 

%that threshold) and finding the indices corresponding to the start of 
%the cycles. 
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threshold_time_indice=find(time>threshold_time,1); 
period_cycle_sec=60/cycle_per_min; 
time_cycles=threshold_time:period_cycle_sec:max(time); 
num_cycles_after_threshold_time=size(time_cycles,2); 
for i=1:num_cycles_after_threshold_time 
    time_cycle_start_indice(i)=find(time>time_cycles(i),1); 
end 

  
%%%% Finding the minimum pressure in each of the cycles 

  
for j=1: num_cycles_after_threshold_time-1 
%     for j=1: 2 

  
% This section looks for the minimum values in each cycle starting from 
% 10 indices after the initial index of start of the cycle 
% 10 is added here because in some cases the start of the cycle  

% coincides with the minimum pressure value (resulting in some errors)     
    

cycles_minpressure_Catheter(j)=min(pressure_Catheter((time_cycle_start_

indice(j)):time_cycle_start_indice(j+1)));  

     
% finding the indices corresponding to the min pressure 

  
% the min pressure value found in each of the cycles (in previous  

% step) can be "not unique" and there is a chance that pressure with  

% such value exit in other cycles as well. However, we only are  

% interested in the index corresponding to the minimum pressure in the 

% associated cycle. The find (...,5000) finds the possible existing  
% 5000 indices corresponding to each minimum pressure and then the  
% commands afterward make sure that the chosen index falls in the  
% range of the corresponding cycle. 
 

temp_Catheter=find(pressure_Catheter==cycles_minpressure_Catheter(j),50

00); %saving the index temporarily 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%   Downstream   %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    if j==1 
       for k=1:size(temp_Catheter,1) 
            if temp_Catheter(k)>time_cycle_start_indice(j)  
                 min_pressure_indice_Catheter(j)=temp_Catheter(k); 
                 break 
            end 
       end 
    else 

             
        for k=1:size(temp_Catheter,1) 
            if temp_Catheter(k)>=time_cycle_start_indice(j) && 

temp_Catheter(k)>min_pressure_indice_Catheter(j-1) 
                 min_pressure_indice_Catheter(j)=temp_Catheter(k); 
                 break 
            end 
        end    
    end    
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end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%  PLOTTING Original DATA   %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
set(0,'DefaultAxesFontSize', 18); 

  
%%% Original data 
figure(1) 
plot(time,pressure_Catheter, 'g') 
xlabel('Time (s)') 
ylabel('Pressure (cmH2o)') 
legend('Catheter') 

  
%%% this part of the code shows beginning of each cycle (to check) 

  
for i=1:size(time_cycle_start_indice,2) 
 hold on    
plot(time(time_cycle_start_indice(i)), 

pressure_Catheter(time_cycle_start_indice(i)), 'r*') 
hold on 
end  

  
for i=1:size(min_pressure_indice_Catheter,2) 
 hold on    
plot(time(min_pressure_indice_Catheter(i)), 

pressure_Catheter(min_pressure_indice_Catheter(i)), 'bo') 
hold on 
end  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%  Final average min pressure   %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
average_min_pressure_Catheter=mean(cycles_minpressure_Catheter) 
STD_min_pressure_Catheter=std(cycles_minpressure_Catheter) 

  
%%%% Printing the data %%%% 

  
file_out = fopen('min_pressure_Catheter.txt','a'); 
results_print=strcat(file1,... 
    ', Catheter_min_pressure(cmH2o),  ', 

num2str(average_min_pressure_Catheter),... 
    ', Catheter_min_pressure_STD,  ', 

num2str(STD_min_pressure_Catheter), ... 
    ', Threshold_time, ', num2str(threshold_time) ,'\n'); 
fprintf(file_out,results_print); 
fclose(file_out); 
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Collapsible Tube Buckling & Contact Point Code 

Code #4 – Buckling Pressure/Flowrate & Contact Point Pressure/Flowrate Analysis 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                      ESTIMATE BUCKLING PRESSURE                         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   THIS MATLAB CODE ESTIMATES THE BUCKING PRESSURE FROM KEVIN'S DATA     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%AUTHOR: Guilherme Garcia, Ph.D. 
%LAST MODIFIED: 6/18/2017 by Kevin Garman 
%DESCRIPTION: This code is a function that conducts analysis of 
%collapsible conduit pressures measured by the Millar Pressure Catheter  
%measured at the center of the collapsible tube implemented in the  
%experimental setup.  Outputs are graphical representations of the 

%Buckling and Contact Point Pressures & Flowrates for the stretch and 
%non-stretch %cases.  The Contact Point Curve is formed via Michaelis- 

%Menten Function. The Buckling Point Curve is formed via Linear Piece 

%Funtion. Specifically, this allows the user to accurately conduct 
%analysis to estimate the Buckling Pressures/Flowrates and the Contact 
%Point Pressures and Flowrates.  After processing, statistical analysis 

%can be implemented. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

clear all; %CLEARS ALL VARIABLES% 
close all; %CLOSES ALL FIGURES% 
clc; %CLEARS ALL INPUT AND OUTPUT FROM THE COMMAND WINDOW DISPLAY% 

  
Buckling_threshold = 0.96; 
Contact_point_threshold = 0.02; 
  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                          READ DATA FROM FILE                            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%filename = 'L_7.5_Tube_3cut.csv'; 
%filename = 'H_2.2_TUBE_B.csv'; 
%filename = 'H_0.98_TUBE_E.csv'; 
filename = 'L_7.5_Tube#1cut.csv'; 

  
Npoints = 8; % Number of flowrates measured; Kevin used Volume of air 

(ml) = 0, 100, 200, 300, 400, 500, 600, 700 
P = zeros(2,Npoints); 
rR_ratio = zeros(2,Npoints); 

  
% Read flowrate 
ROW=6; COL1=1; COL2=Npoints; % Row and column where data is located 
Q = csvread(filename,ROW,COL1,[ROW COL1 ROW COL2]); 
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% Read Catheter Pressure - No stretch 
ROW=8; % Row where data is located 
P(1,:) = csvread(filename,ROW,COL1,[ROW COL1 ROW COL2]); 

  
% Read Relative Displacement - No stretch 
ROW=15; % Row where data is located 
rR_ratio(1,:) = csvread(filename,ROW,COL1,[ROW COL1 ROW COL2]); 

  
% Read Catheter Pressure - 0.5cm stretch 
ROW=17; % Row where data is located 
P(2,:) = csvread(filename,ROW,COL1,[ROW COL1 ROW COL2]); 

  
% Read Relative Displacement - 0.5cm stretch 
ROW=24; % Row where data is located 
rR_ratio(2,:) = csvread(filename,ROW,COL1,[ROW COL1 ROW COL2]); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                       ESTIMATE BUCKLING PRESSURE                         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
P_Fit = 0:0.01:20; 
Npoints_P_Fit = size(P_Fit,2); 
rR_ratio_Fit_P1 = zeros(2,Npoints_P_Fit) + 2; 
rR_ratio_Fit_P2 = zeros(2,Npoints_P_Fit) + 2; 

  
Q_Fit = 0:0.1:700; 
Npoints_Q_Fit = size(Q_Fit,2); 
rR_ratio_Fit_Q1 = zeros(2,Npoints_Q_Fit) + 2; 
rR_ratio_Fit_Q2 = zeros(2,Npoints_Q_Fit) + 2; 

  
P_buckling = zeros(2,1);  
rR_ratio_buckling_P = zeros(2,1); 
Q_buckling = zeros(2,1);  
rR_ratio_buckling_Q = zeros(2,1); 

  
P_contact_point = zeros(2,1);  
rR_ratio_contact_point_P = zeros(2,1); 
Q_contact_point = zeros(2,1);  
rR_ratio_contact_point_Q = zeros(2,1); 

  
Buckling_threshold = Buckling_threshold + 0.001; 
Contact_point_threshold = Contact_point_threshold + 0.001; 

  
for i=1:2 % No stretch: i=1; 0.5cm stretch: i=2 

     
    % Truncate data to range of d/D > 0 
    index_end = find(rR_ratio(i,:) < 0,1)-1; 
    if isempty(index_end)==1 % If array is empty 
        index_end = 8; 
    end 
    Truncated_rR_ratio = rR_ratio(i,1:index_end); 
    Truncated_P = -P(i,1:index_end); 
    Truncated_rR_ratio_Q1 = rR_ratio(i,2:index_end);  
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% For Michaelis-Menten fitting, I need to remove point Q=0 
    Truncated_Q1 = Q(2:index_end);                    

% For Michaelis-Menten fitting, I need to remove point Q=0 
    Truncated_rR_ratio_Q2 = rR_ratio(i,1:index_end); 
    Truncated_Q2 = Q(1:index_end); 

     
    x = Truncated_P'; 
    y = Truncated_rR_ratio'; 
    xQ1 = Truncated_Q1'; 
    yQ1 = Truncated_rR_ratio_Q1'; 
    xQ2 = Truncated_Q2'; 
    yQ2 = Truncated_rR_ratio_Q2'; 

  

    % Michaelis-Menten fit - Works best for rR_ratio near zero 
    % Michaelis-Menten fit - Pressure vs. rR_ratio 
    ft = fittype('Michaelis_Menten_Function(x,Km,m)'); 
    f = fit(x,y,ft,'StartPoint',[1,4],'Upper',[20,10],'Lower',[0,0]); 
    best_m = f.m; 
    best_Km = f.Km; 

rR_ratio_Fit_P1(i,:) = 

Michaelis_Menten_Function(P_Fit,best_Km,best_m); 

  
    % Michaelis-Menten fit - Flowrate vs. rR_ratio 
    ft = fittype('Michaelis_Menten_Function(x,Km,m)'); 
    f =  

fit(xQ1,yQ1,ft,'StartPoint',[100,4],'Upper',[350,10],'Lower',[0,0]); 
    best_m = f.m; 
    best_Km = f.Km; 
    rR_ratio_Fit_Q1(i,:) =  

Michaelis_Menten_Function(Q_Fit,best_Km,best_m);    
    %f = fit(xQ1,yQ1,'smoothingspline','SmoothingParam',0.8); 
    %rR_ratio_Fit_Q1(i,:) = f(Q_Fit); 

     
    % Polynomial fit 
    %poly_coefficients = polyfit(x,y,6); 
    %rR_ratio_Fit_2(i,:) = polyval(poly_coefficients,P_Fit); 

  
    % Smoothing spline fit 
    %f = fit(x,y,'smoothingspline','SmoothingParam',0.8); 
    %rR_ratio_Fit_2(i,:) = f(P_Fit); 

     
    % Piecewise linear interpolation - Works best for rR_ratio near 1.0 
    % Piecewise linear interpolation - Pressure vs. rR_ratio  
    f = fit(x,y,'linearinterp'); 
    rR_ratio_Fit_P2(i,:) = f(P_Fit); 

  
    % Piecewise linear interpolation - Flowrate vs. rR_ratio     
    fQ = fit(xQ2,yQ2,'linearinterp'); 
    rR_ratio_Fit_Q2(i,:) = fQ(Q_Fit); 

     
    % Find the Buckling pressure 
    index_P_buckling = find(rR_ratio_Fit_P2(i,:)<Buckling_threshold,1); 
    P_buckling(i) = -P_Fit(index_P_buckling); 
    rR_ratio_buckling_P(i) = rR_ratio_Fit_P2(i,index_P_buckling); 
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    % Find the Contact Point pressure 
    index_P_contact_point =  

find(rR_ratio_Fit_P1(i,:)<Contact_point_threshold,1); 
    if isempty(index_P_contact_point)==1 % If array is empty 
        index_P_contact_point = Npoints_P_Fit; 
    end     
    P_contact_point(i) = -P_Fit(index_P_contact_point); 
    rR_ratio_contact_point_P(i) =  

rR_ratio_Fit_P1(i,index_P_contact_point); 

  
    % Find the Buckling flowrate  
    index_Q_buckling = find(rR_ratio_Fit_Q2(i,:)<Buckling_threshold,1); 
    Q_buckling(i) = Q_Fit(index_Q_buckling); 
    rR_ratio_buckling_Q(i) = rR_ratio_Fit_Q2(i,index_Q_buckling); 

     
    % Find the Contact Point flowrate 
    index_Q_contact_point = find(rR_ratio_Fit_Q1(i,:)<0.02,1); 
    if isempty(index_Q_contact_point)==1 % If array is empty 
        index_Q_contact_point = Npoints_Q_Fit; 
    end     
    Q_contact_point(i) = Q_Fit(index_Q_contact_point); 
    rR_ratio_contact_point_Q(i) =  

rR_ratio_Fit_Q1(i,index_Q_contact_point);  
end 
  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        PRINT RESULTS ON SCREEN                          
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
'****************** BUCKLING PRESSURE *******************'  

  
'BUCKLING PRESSURE (cmH2O) - NO STRETCH' 
P_buckling(1) 

  
'BUCKLING PRESSURE (cmH2O) - 0.5 cm STRETCH' 
P_buckling(2) 

  
'**************** CONTACT POINT PRESSURE ****************' 

  
'CONTACT POINT PRESSURE (cmH2O) - NO STRETCH' 
P_contact_point(1) 

  
'CONTACT POINT PRESSURE (cmH2O) - 0.5 cm STRETCH' 
P_contact_point(2)  

  
'****************** BUCKLING FLOWRATE *******************'  

  
'BUCKLING FLOWRATE (ml/s) - NO STRETCH' 
Q_buckling(1) 

  
'BUCKLING FLOWRATE (ml/s) - 0.5 cm STRETCH' 
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Q_buckling(2) 

  
'**************** CONTACT POINT FLOWRATE ****************' 

  
'CONTACT POINT FLOWRATE (ml/s) - NO STRETCH' 
Q_contact_point(1) 

  
'CONTACT POINT FLOWRATE (ml/s) - 0.5 cm STRETCH' 
Q_contact_point(2) 

  

  
P_Fit = - P_Fit; 
  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
               FIGURE 1 - NO STRETCH - BUCKLING PRESSURE                 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
figure(1);  
plot(P(1,:),rR_ratio(1,:),'sk','MarkerSize',8,'MarkerFaceColor','k'); 

hold on; 
plot(P_Fit,rR_ratio_Fit_P2(1,:),'-b'); hold on; 
plot(P_buckling(1),rR_ratio_buckling_P(1),'sr','MarkerSize',8,'MarkerFa

ceColor','r'); hold on; 

  
xlabel('Catheter pressure (cmH_2O)','FontWeight','bold','FontSize',14); 
ylabel('d/D','FontWeight','bold','FontSize',14); 

  
title('No stretch'); hold on; 

  
xlim([-8 0]); 
ylim([0.75 1]); 
  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             FIGURE 2 - 0.5 cm STRETCH - BUCKLING PRESSURE               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

figure(2); 
plot(P(2,:),rR_ratio(2,:),'sk','MarkerSize',8,'MarkerFaceColor','k'); 

hold on; 
plot(P_Fit,rR_ratio_Fit_P2(2,:),'-b'); hold on; 
plot(P_buckling(2),rR_ratio_buckling_P(2),'sr','MarkerSize',8,'MarkerFa

ceColor','r'); hold on; 

  
xlabel('Catheter pressure (cmH_2O)','FontWeight','bold','FontSize',14); 
ylabel('d/D','FontWeight','bold','FontSize',14); 

  
title('0.5 cm stretch'); hold on; 

  
xlim([-8 0]); 
ylim([0.75 1]); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            FIGURE 3 - NO STRETCH - CONTACT POINT PRESSURE               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
figure(3);  
plot(P(1,:),rR_ratio(1,:),'sk','MarkerSize',8,'MarkerFaceColor','k'); 

hold on; 
plot(P_Fit,rR_ratio_Fit_P1(1,:),'-b'); hold on; 
plot(P_contact_point(1),rR_ratio_contact_point_P(1),'sr','MarkerSize',8

,'MarkerFaceColor','r'); hold on; 

  
xlabel('Catheter pressure (cmH_2O)','FontWeight','bold','FontSize',14); 
ylabel('d/D','FontWeight','bold','FontSize',14); 

  
title('No stretch'); hold on; 
  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
           FIGURE 4 - 0.5 cm STRETCH - CONTACT POINT PRESSURE            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
figure(4);  
plot(P(2,:),rR_ratio(2,:),'sk','MarkerSize',8,'MarkerFaceColor','k'); 

hold on; 
plot(P_Fit,rR_ratio_Fit_P1(2,:),'-b'); hold on; 
plot(P_contact_point(2),rR_ratio_contact_point_P(2),'sr','MarkerSize',8

,'MarkerFaceColor','r'); hold on; 

  
xlabel('Catheter pressure (cmH_2O)','FontWeight','bold','FontSize',14); 
ylabel('d/D','FontWeight','bold','FontSize',14); 

  
title('0.5 cm stretch'); hold on; 
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             FIGURE 5 - NO STRETCH - FLOWRATE AT BUCKLING                
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
figure(5);  
plot(Q,rR_ratio(1,:),'sk','MarkerSize',8,'MarkerFaceColor','k'); hold 

on; 
plot(Q_Fit,rR_ratio_Fit_Q2(1,:),'-b'); hold on; 
plot(Q_buckling(1),rR_ratio_buckling_Q(1),'sr','MarkerSize',8,'MarkerFa

ceColor','r'); hold on; 

  
xlabel('Flowrate (ml/s)','FontWeight','bold','FontSize',14); 
ylabel('d/D','FontWeight','bold','FontSize',14); 

  
title('No stretch'); hold on; 

  
xlim([0 250]); 
ylim([0.75 1]); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            FIGURE 6 - 0.5cm STRETCH - FLOWRATE AT BUCKLING              
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
figure(6);  
plot(Q,rR_ratio(2,:),'sk','MarkerSize',8,'MarkerFaceColor','k'); hold 

on; 
plot(Q_Fit,rR_ratio_Fit_Q2(2,:),'-b'); hold on; 
plot(Q_buckling(2),rR_ratio_buckling_Q(2),'sr','MarkerSize',8,'MarkerFa

ceColor','r'); hold on; 

  
xlabel('Flowrate (ml/s)','FontWeight','bold','FontSize',14); 
ylabel('d/D','FontWeight','bold','FontSize',14); 

  
title('0.5 cm stretch'); hold on; 

  
xlim([0 250]); 
ylim([0.75 1]); 
  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            FIGURE 7 - NO STRETCH - CONTACT POINT FLOWRATE               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
figure(7);  
plot(Q(:),rR_ratio(1,:),'sk','MarkerSize',8,'MarkerFaceColor','k'); 

hold on; 
plot(Q_Fit,rR_ratio_Fit_Q1(1,:),'-b'); hold on; 
plot(Q_contact_point(1),rR_ratio_contact_point_Q(1),'sr','MarkerSize',8

,'MarkerFaceColor','r'); hold on; 

  
xlabel('Flowrate (ml/s)','FontWeight','bold','FontSize',14); 
ylabel('d/D','FontWeight','bold','FontSize',14); 

  
title('No stretch'); hold on; 

  
%xlim([0 350]); 
%ylim([0 1]); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
           FIGURE 8 - 0.5 cm STRETCH - CONTACT POINT FLOWRATE            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
figure(8);  
plot(Q(:),rR_ratio(2,:),'sk','MarkerSize',8,'MarkerFaceColor','k'); 

hold on; 
plot(Q_Fit,rR_ratio_Fit_Q1(2,:),'-b'); hold on; 
plot(Q_contact_point(2),rR_ratio_contact_point_Q(2),'sr','MarkerSize',8

,'MarkerFaceColor','r'); hold on; 

  
xlabel('Flowrate (ml/s)','FontWeight','bold','FontSize',14); 
ylabel('d/D','FontWeight','bold','FontSize',14); 

  
%xlim([0 350]); 
%ylim([0 1]); 

  
title('0.5 cm stretch'); hold on; 

 

 

Code #5 – Michaelis Menten Function used in Buckling and Contact Point Flowrate 

Analysis 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             ESTIMATE BUCKLING AND CONTACT POINT FLOWRATE                
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

THIS MATLAB CODE ESTIMATES THE FLOWRATE FROM KEVIN'S DATA 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%AUTHOR: Guilherme Garcia, Ph.D. 
%LAST MODIFIED: 6/19/2017 by Kevin Garman 
%DESCRIPTION: This code is used in analysis of buckling and contact 

%point flowrate values. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function y = Michaelis_Menten_Function(x,Km,m) 

  
    y = zeros(size(x)); 

  
    for i=1:length(x) 
        y(i) = 1 - x(i)^m /((Km)^m + x(i)^m); 
    end 
end 
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