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Abstract 
Intense colorations and new charge‐transfer absorption bands are observed upon addition of a halide 
(Cl−, Br−, I−) to neutral organic π acceptors with electron‐deficient olefinic and aromatic centers. These 
phenomena results from noncovalent anion–π interactions (shown schematically), which were 
confirmed by X‐ray crystallography. 

 

Noncovalent interactions of anions have become one of the most actively explored areas of 
supramolecular chemistry.1, 2 Indeed, recent quantum‐mechanical calculations suggest the possibility 
of anion binding to uncharged organic π receptors.3, 4 However, experimental (X‐ray) verification of 
such direct noncovalent interactions is lacking, and the few observations of anion–π bonding are 
limited to metal coordination compounds.1, 5 

Despite numerous examples of analogous cation–π interactions in a variety of organic and biochemical 
systems,6 anion sensing or recognition have heretofore relied primarily on electrostatic binding or 
hydrogen bonding to the organic receptor.1, 2, 7 Thus, to experimentally characterize direct anion–π 
interactions in the most unambiguous way, we now turn to a series of neutral organic π acceptors with 
electron‐deficient olefinic and aromatic centers (Scheme 1). The recognition of halide anions X− (X=Cl, 
Br, I) is established by 1) isolation and X‐ray structure determination of a series of well‐defined 1:1 salt‐
admixed complexes, and 2) definitive spectral assignments of each of their diagnostic charge‐transfer 
absorption bands.8 

 

Scheme 1 Neutral organic π acceptors investigated in this study. 
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Typically, an aromatic π acceptor such as tetracyanopyrazine (TCP) shows a characteristic UV/Vis 
spectrum with a strong absorption at λ=220–300 nm (shoulder at 350 nm); in acetonitrile the 
tetraalkylammonium salts of Cl−, Br−, and I− show no absorption beyond 300 nm. However, when a 
bromide salt is added to TCP,9 a new absorption band appears immediately at λmax=400 nm and grows 
with increasing concentration of halide (Figure 1). Job's procedure10 reveals the 1:1 stoichiometry of 
the [TCP/Br−] complex (see the Supporting Information). 

 

Figure 1 Spectral changes upon incremental addition of Pr4N+Br−—0 mM (line 1), 4.9 mM (line 2), 19 
mM (line 3), 46 mM (line 4), 83 mM (line 5), 208 mM (line 6)—to the 5 mM solution of TCP in 
acetonitrile. Inset: Mulliken dependence of the energy of absorption band (νCT) with the reduction 
potential of the π acceptor. 

 

Intense colorations are also observed upon addition of chloride and iodide, and these directly relate to 
the appearance of new absorption bands that are red‐shifted for [TCP/I−] and blue‐shifted in [TCP/Cl−] 
relative to that of [TCP/Br−]. Close scrutiny of the spectra of all three complexes reveals that the visible 
absorption bands consist of two Gaussian components (see the Supporting Information). Most 
important is the clear Mulliken correlation8 between the energy of the low‐energy band and the 
oxidation potential of the anion (see the Supporting Information), which establishes the charge‐
transfer (CT) character of these complexes.11 

In a similar way, addition of halide to the other π acceptors from Scheme 1 results in a change in color 
from yellow to red and appearance of new absorption bands in the electronic spectra (see the 
Supporting Information).12 The increase in acceptor strength (characterized by a positive shift of the 
reduction potential) is accompanied by the bathochromic shift of this band, and the Mulliken 
correlation (inset of Figure 1) further confirms the charge‐transfer character of these complexes. 

The spectral data thus indicate that halide salts form well‐defined electron donor–acceptor complexes 
with organic π acceptors, as typified by Equation (1). Quantitative analyses of the intensity of the new 
absorption band as a function of the concentration of bromide and π acceptor (by the Drago 
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procedure9) lead to the formation constants KCT=1–10 M−1 and the extinction coefficients εCT=500–
5000 M−1 cm−1 that are typical of charge‐transfer complexes (see the Supporting Information).10, 13 

 

Br− + TCP
𝐾𝐾CT
↔

[TCP/Br−] 

(1) 

Slow diffusion of hexane into 1:1 mixtures of TCP with Cl−, Br−, or I− (as alkyl ammonium salts) in 
CH2Cl2/CH3CN results in the formation of yellow to dark‐red crystals. The X‐ray crystal‐structure 
analysis reveals that the overall stoichiometry of the [TCP/X−] associates varies from 4:1 to 1:1 
(Table 1).14 For example, if chloride is taken in the form of its Pr4N+ salt, the 4:1 [TCP/Cl−] complex is 
isolated in which the anion is surrounded by four acceptors and the cation lies outside the cavity. The 
same structure is found for [TCP/Br−] when propyl‐ or butylammonium salts are used. If Et4N+Br− is 
added, the 3:2 [TCP/Br−] complex precipitates with anions surrounded by three TCP molecules. Close 
TCP–X− contacts with X−⋅⋅⋅C distances of up to 0.4 Å shorter than the sum of the van der Waals radii 
(Table 1) confirm the strong TCP–X− intermolecular attraction. The solid‐state electronic spectra are 
closely related to those in solution (see the Supporting Information) and thus verify the common 
charge‐transfer nature of the complexes. 

 

Table 1. Solid‐state characteristics of halide associates with π acceptors. 
 

Molar ratio Counterion X−⋅⋅⋅C [Å][a] 
TCP/Br− 3:2 Et4N+ 3.16  

4:1 Pr4N+ 3.15 
TCP/I− 2:1 Et4N+ 3.52  

1:1 Bu4N+ 3.49[b] 
TCP/Cl− 4:1 Bu4N+ 3.07 
TCNE/Br− 1:2 Et4N+ 3.20[b]  

1:1 Pr4N+ 3.11 
o‐CA/Br− 1:1 Pr4N+ 2.93 

[a] The X−⋅⋅⋅C distance in closest contacts; note that the sums of the van der Waals radii are 3.45 Å (Cl−⋅⋅⋅C), 3.55 
(Br−⋅⋅⋅C), and 3.68 Å (I−⋅⋅⋅C). [b] The average of the distances to the two or three neighboring acceptors is given. 
 

In a similar manner, mixtures of the bromide salt and the olefinic acceptors o‐CA and TCNE in 
CH2Cl2 yield brown‐red crystals. The X‐ray structure analysis reveals that in the 1:1 complex with o‐CA, 
bromide is located over the center of the CC bond. The Br−⋅⋅⋅C contacts are shortened by as much as 
0.6 Å relative to the sum of the van der Waals radii (see the Supporting Information). The location of 
the anion relative to the acceptor varies in bromide complexes with TCNE. Thus, if Et4N+Br− is used, the 
1:2 [TCNE/Br−] complex is isolated in which both anions reside over the olefinic bond, whereas in the 
1:1 Pr4N+ complex, the bromide is shifted toward the cyano substituents (see the Supporting 



Information). In both cases, however, short intermolecular separations that are characteristic of π–π 
bonded CT complexes13 indicate strong anion–TCNE interactions (Table 1). 

The recognition of halides by the π acceptors in Scheme 1 is visually apparent by the color resulting 
from the diagnostic charge transfer (λCT, see the Supporting Information). By the same token, the 
isolation and X‐ray crystallography of mixed salts (Table 1) identifies the pertinent separation of the 
halide donor from the π acceptor, which is responsible for the electronic (charge‐transfer) transition. 
Most importantly, the global Mulliken correlation (inset of Figure 1) underscores the common π‐
acceptor properties of all the electron‐deficient olefinic and aromatic centers. As such, the molecular 
structure responsible for the color as a result of charge transfer can be gleaned from the X‐ray 
structure data. The composites are schematically presented in Scheme 2 for visualizing the pertinent 
anion–π interactions.13d 

 
Scheme 2. Schematic drawing of the anion–π interactions. The sphere representing the van der Waals 
radius of bromide (taken as an example) is drawn to scale relative to the electron‐deficient olefinic and 
aromatic centers. 
 

Thus, the general structural feature of the noncovalent (anion–π) interaction with olefinic acceptors 
holds the bromide ion at roughly 3 Å over the double bond. Similarly, in anion–π interactions of 
electron‐deficient aromatic π acceptors, the bromide ion lies 3 Å over the periphery of the aromatic 
ring. Indeed, such structures differ from quantum‐mechanical calculations that largely show the anion 
to lie somewhere along the centroid of the aromatic ring in π complexes with 1,3,5‐triazine or 
hexafluorobenzene.3, 15 Furthermore, the possibility of multiple halide–π interactions leads to the 
formation of three‐dimensional solid‐state structures in which anions reside in the cavities created by 
the multiple TCP receptors (Figure 2). 
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Figure 2. X‐ray structure of the 4:1 [TCP/Cl−] complex (counterions omitted for clarity). 
 

In summary, the formation constants of the halide complexes with neutral π acceptors, together with 
the intense absorptions and compression of the intermolecular separations found by X‐ray structural 
analysis,14 indicate the existence of substantial anion–π interactions. Spectral, thermodynamic, and 
structural properties of these associates are closely related to those of the classical donor–acceptor 
complexes,10, 13 which indicates the common charge‐transfer origin of the seminal anion–π 
interactions. The formation of relatively strong complexes together with the distinctive colorations of 
various anion–π interactions encourage their use in the design of anion‐sensing receptors, provided 
systems with multicentered binding sites are chosen for optimum recognition (compare the Venus fly 
trap).16 X‐ray crystallography of the halide complexes with TCP (see Figure 2 and the Supporting 
Information) provides insight into the desirable features of such π receptors. 

References 
1. P. D. Beer, P. A. Gale, Angew. Chem. 2001, 113, 502; Angew. Chem. Int. Ed. 2001, 40, 487. 
2. Supramolecular Chemistry of Anions (Eds.: ), Wiley‐VCH, New York, 1997. 
3a. D. Quiñonero, C. Garau, C. Rotger, A. Frontera, P. Ballester, A. Costa, P. M. Deyà, Angew. 

Chem. 2002, 114, 3539; Angew. Chem. Int. Ed. 2002, 41, 3389; 3b. M. Mascal, A. Armstrong, M. 
D. Bartberger, J. Am. Chem. Soc. 2002, 124, 6274; 3c. I. Alkorta, I. Rozas, J. Elguero, J. Am. Chem. 
Soc. 2002, 124, 8593; 3d. C. Garau, A. Frontera, D. Quiñonero, P. Ballester, A. Costa, P. M. 
Deyà, ChemPhysChem 2003, 4, 1344; 3e. C. Garau, D. Quiñonero, A. Frontera, A. Costa, P. 
Ballester, P. M. Deyà, Chem. Phys. Lett. 2003, 370, 7; 3f. D. Kim, P. Tarakenshwar, K. S. Kim, J. 
Phys. Chem. A 2004, 108, 1250. 

4See also 4a. C. Garau, A. Frontera, D. Quiñonero, P. Ballester, A. Costa, P. M. Deyà, Chem. Phys. 
Lett. 2003, 382, 534; 4b. S. Demeshko, S. Dechert, F. Meyer, J. Am. Chem. Soc. 2004, 126, 4508; 
4c. I. Alkorta, J. Elguero, J. Phys. Chem. A 2003, 107, 9428; 4d. C. Garau, D. Quinonero, A. 
Frontera, P. Ballester, A. Costa, P. M. Deyà, New J. Chem. 2003, 27, 211. 

https://onlinelibrary.wiley.com/cms/asset/a77104f2-cf01-4a21-9422-9ab5fb9df856/mfig002.jpg


5. H. Lee, M. Diaz, C. B. Knobler, M. F. Hawthorne, Angew. Chem. 2000, 112, 792; Angew. Chem. Int. 
Ed. 2000, 39, 776, and references therein. 

6. Reviews: 6a. E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. 2003, 115, 4254; 
Angew. Chem. Int. Ed. 2003, 42, 1210; 6b. H.‐J. Schneider, A. Yatsimirsky, Principles and Methods in 

Supramolecular Chemistry, Wiley, Chichester, 2000; 6c. J. C. Ma, D. A. Dougherty, Chem. 
Rev. 1997, 97, 1303. 

7.  7a. J. L. Sessler, D. An, W.‐S. Cho, V. Lynch, Angew. Chem. 2003, 115, 2380; Angew. Chem. Int. 
Ed. 2003, 42, 2278; 7b. F. P. Schmidtchen, M. Berger, Chem. Rev. 1997, 97, 1609; 7c. K. J. 
Wallace, W. J. Belcher, D. R. Turner, K. F. Syed, J. W. Steed, J. Am. Chem. Soc. 2003, 125, 9699; 
7d. E. M. Kosower, J. C. Burbach, J. Am. Chem. Soc. 1956, 78, 5838; 7e. A. Nakahara, J. H. 
Wang, J. Phys. Chem. 1963, 67, 491. 

8.  8a. R. S. Mulliken, W. B. Person, Molecular Complexes, Wiley, New York, 1969; 8b. although there 
are a few sporadic reports of charge‐transfer absorptions of halide salts,[6c‐e] no definitive X‐ray 
structures have been reported; 8c. G. Briegleb, W. Liptay, R. Fick, Z. Elektrochem. 1962, 66, 859; 
8d. K. M. C. Davis, J. Chem. Soc. B 1967, 1129 and K. M. C. Davis, J. Chem. Soc. B 1969, 1020; 8e. 
J. A. A. de Boer, D. N. Reinhoudt, J. W. H. M. Uiterwijk, S. Harkema, J. Chem. Soc. Chem. 
Commun. 1982, 194. 

9. In form of the Pr4N+Br− salt; values for Et4N+Br− or Bu4N+Br− are within the error limit (Table S2). 
10. R. S. Drago, Physical Methods in Chemistry, Saunders, Philadelphia, 1977. 
11.  11a. High‐energy components are tentatively assigned to the transition from the subjacent HOMO‐

1 of the halide since the difference between two components in the [TCP/Br−] absorption of 
3.5×103 cm−1 is comparable to the difference (3.9×103 cm−1) between the two highest Br− levels 
(4p3/2 and 4p1/2); 11b. J. Overton, J. P. Hernandes, Phys. Rev. B 1973, 7, 778. 

12.  12a. Use of KBr leads to the same absorption maximum for the [TCNE/Br−] complex (see the 
Supporting Information); 12b. if TCNE and Pr4N+Br− are simply ground together under an argon 
atmosphere, the colorless mixture changes to dark purple. The diffuse reflectance spectrum 
confirms the presence of [TCNE/Br−]. 

13.  13a.  Organic Charge‐Transfer Complexes (Ed.: ), Academic, New York, 1969; 13b. Molecular 
Complexes (Ed.: ), Crane, Russak, 1973; 13c. A. V. Vasilyev, S. V. Lindeman, J. K. Kochi, New J. 
Chem. 2002, 26, 582; 13d. for the precise location of the halide anions in the CT complexes, see 
the Cartesian coordinates in the X‐ray (CIF) files.[14] 

14. The intensity data for all compounds were collected with a Siemens SMART APEX diffractometer 
using MoKα radiation (λ=0.71073 Å) at −150 °C. Structures were solved by direct methods and 
refined by full matrix least‐squares procedure with IBM Pentium and SGI O2 computers. Crystal 
data for [(TCP)4Cl−]Bu4N+ (C48H36ClN25): M=998.47, tetragonal space 
group I4, a=b=13.181(1), c=15.288(1) Å, V=2656.0(1) Å3, ρcalcd=1.248 g cm−1, Z=2, 2θmax=63.71. 
Of 14 580 reflections measured 4309 were symmetrically nonequivalent. R1=0.057 
and wR2=0.153 for 4132 reflections with I>2σ(I). For the crystal data of the other complexes 
from Table 1, see the Supporting Information. CCDC 236236 ([(TCP)4Br−]Pr4N+⋅CH2Cl2), 236 237 
([(o‐CA)Br−]Pr4N+), 236 238 ([(TCNE)Br−]Pr4N+), 236 239 ([(TCNE)(Br−)2](Et4N+)2), 236 240 
([(TCP)3(Br−)2](Et4N+)2), 236 241 ([(TCP)I−]Bu4N+), 236 242 ([(TCP)2I−]Et4N+), 236 243 
([(TCP)4Cl−]Bu4N+) contain the supplementary crystallographic data for this paper. These data 
can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the 
Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: 
(+44) 1223‐336‐033; or deposit@ccdc.cam.ac.uk). 



15.  15a. However, the energy difference between the over‐ring versus over‐center structures in arene 
π complexes is likely to be small and subject to crystal‐packing forces. This has been noted in 
other donor–acceptor pairs, see: 15b. S. M. Hubig, S. V. Lindeman, J. K. Kochi, Coord. Chem. 
Rev. 2000, 200–202, 831; 15c. ref [13c] and G. Fukin, S. V. Lindeman, J. K. Kochi, J. Am. Chem. 
Soc. 2002, 124, 8329; 15d. theoretical calculations[3b] of 1,3,5‐triazine and fluoride, chloride and 
azide anions also show this ambiguity. 

16. See, for example, S. V. Rosokha, S. V. Lindeman, R. Rathore, J. K. Kochi, J. Org. 
Chem. 2003, 68, 3947. 

 


	Halide Recognition through Diagnostic “Anion–π” Interactions: Molecular Complexes of Cl−, Br−, and I− with Olefinic and Aromatic π Receptors
	Recommended Citation

	Abstract
	References

