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Generalizing Effective Spatial Bandwidth for Pole

Location in MAS: The Elliptic Cylinder

James E. Richie, Senior Member, IEEE

Abstract—The location of poles in the Method of Auxiliary Sources

for two-dimensional scatterers can be assisted using the effective spatial

bandwidth (EBW) of the incident and scattered fields. Previously, only

circular boundaries were considered. Here, EBW is extended to non-

circular boundaries. Calculations presented for a cylinder with elliptical

cross section verify EBW as an additional tool for pole placement for

more general geometries.

Index Terms—Boundary value problems, Electromagnetic scattering,

Electromagnetic theory

I. INTRODUCTION

The Method of Auxiliary Sources (MAS) [1] is a numerical

procedure to compute the scattering of objects. MAS is one of

several techniques that model the unknown fields using monopoles

and/or multipoles at multiple origins. Other methods include the

Multiple Multipole Program (MMP) [2], the filamentary current

method (FCM) [3] and the Generalized Multipole Technique [4]. We

shall refer to this collection of methods as “auxiliary source methods”.

The main difficulty in using auxiliary sources at multiple origins

is that the number, order, and location of the poles can have a large

effect on the accuracy of the results. Some authors have developed

rules to guide the placement of the poles for a particular problem.

For example, [5] provides a set of guidelines that are later refined in

[6]. The radius of curvature of the boundary can be useful for pole

location as well. In [7], it is shown that the poles should become

closer to the boundary and closer to each other as the radius of

curvature decreases.

However, applying the rules for pole placement does not always

provide a solution with acceptable accuracy. The use of randomly

located poles in an iterative procedure was recently proposed [8],

particularly for large scatterers where conventional methods may

require a very large number of unknowns. In [8], the only restriction

on the pole locations is that they may not be too close to the scatterer

boundary.

To further investigate difficulties in applying the MAS method,

some researchers have reported on the analysis of the MAS procedure

applied to canonical problems. In [9], a study of the accuracy and

sources of error in the MAS method is given for the problem of

a circular cylindrical scatterer. In addition, the convergence of the

fields and the pole strengths for the circular cylindrical scatterer are

analysed in [10]. In fact, there are instances where the fields converge

even though the pole strengths have large magnitudes and large phase

variations.

In [11], the concept of Effective spatial BandWidth (EBW) is

introduced and used to aid in the determination of pole locations

for the case of a perfectly conducting circular cylindrical scatterer.

The dielectric scatterer is discussed in [12].

EBW is a measure that indicates the amount of variation of a field

component along a closed boundary. For example, the incident field

in a scattering scenario has an EBW that indicates how much the

incident field varies. Then, the scattered field model should have a

similar EBW to obtain an accurate and stable solution. In auxiliary

source methods, the scattered field model consists of poles. Therefore,

pole locations can be chosen that provide a scattered field EBW along
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the boundary that is comparable to the incident field EBW. Thus,

EBW can be used as an additional guide for pole placement in the

auxiliary source methods.

In this paper, the computation of effective spatial bandwidth will

be extended to two-dimensional scatterers with non-circular cross

sections. After the fundamental procedures are discussed, they will

be applied to a scatterer with elliptical cross section. It will be seen

that the EBW calculations provide pole location information that is

beneficial to the MAS solution of the scattering problem.

II. THEORY

In this section, we explain the modifications to EBW calculations

that are used for more general boundary shapes. The theory for the

circular case is provided in [11].

Consider a perfectly conducting scatterer that has uniform cross

section in the z direction, and an incident electric field with prop-

agation vector in the x − y plane and polarized in the z direction.

Then, the scattering problem can be reduced to a two-dimensional

problem in the z = 0 plane. Such scenarios are typically denoted

two-dimensional TMz problems.

Suppose that locations on the boundary, (xb, yb), can be parame-

terized with s ∈ (0, C), so that xb = f(s), yb = g(s). Note that s
is a distance.

Let the incident electric field along the boundary of the scatterer

be E(s). This function is periodic and can be decomposed into an

expansion of spatial frequencies that includes a fundamental term and

higher order harmonics that are integer multiples of the fundamental.

The field, E(s) can be limited in spatial bandwidth to a maximum

harmonic of N using the convolution:

EN (s) =

C
∫

σ=0

KN (s, σ)E(σ)dσ (1)

where N is the maximum spatial frequency in the bandlimited

function EN (s), and

KN (s, σ) =
1

C

sin[(N + 1
2
) 2π

C
(s − σ)]

sin[ 1
2

2π
C

(s − σ)]
(2)

where C is the circumference of the scatterer boundary. The kernel,

KN (s, σ) has two properties worth mentioning. First, it must be

periodic over the boundary; second, when N = 0, the kernel is con-

stant so the integration returns the average value in the bandlimiting

operation.

Define the energy of E(s) as

E(E) =

C
∫

s=0

| E(s) |2 ds (3)

To estimate the EBW of E(s), define the bandwidth as the spatial

frequency range that contains 99.9% of the energy. That is, find the

smallest N so that

∆N =
E(E) − E(EN )

E(E)
× 100% < 0.1% . (4)

III. EBW RESULTS: ELLIPTICAL CROSS SECTION

A perfectly conducting cylindrical scatterer with elliptical cross

section will be used to illustrate the generalization of EBW to non-

circular cross sections. The EBW will be calculated for a plane wave

incident field and for an internal monopole. Results are computed for

a variety of elliptical geometries by numerically integrating (1) and

(3).
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Fig. 1. Example geometry of scatterer and auxiliary surface used in MAS.
The k vector as shown corresponds to an angle of incidence, α = 0◦.
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Fig. 2. EBW vs. b for a plane wave incident on an elliptical cylinder with
fixed a = 0.9λ. Solid: α = 0◦; Dotted: α = 90◦.

An elliptical cross section is shown in Fig. 1. The ellipse has a

major axis along x from −a to a and a minor axis along y from −b
to b. Points along the ellipse can be found using

x = a cos(2πt) y = b sin(2πt) (5)

where t is from 0 to 1. An ellipse can also be characterized by its

ellipticity, e:

e =

√

a2 − b2

a2
(6)

where e = 0 is a circle and e = 1 is a line segment. The focal points

for the ellipse are located at ±ae.

A. EBW for a Plane Wave Incident Field

A TMz plane wave incident field on the cylinder can be defined

by its amplitude E0, wavelength (λ = 2π/k) and angle of incidence

(α). Fig. 1 shows the angle of incidence at 180◦. The electric field

only has a z component given by:

EPW
z = Eoe

jk(x cos α+y sin α)
(7)

where an ejωt time dependence is assumed throughout. Note that the

EBW for the plane wave will depend on the incident angle as well

as the shape of the scatterer.

The EBW for a plane wave incident at α = 0◦ and 90◦ on an

ellipse with a = 0.9λ vs. b is shown in Fig. 2. A plane wave incident

field has a constant magnitude, so the only variation is the phase. The

phase of the incident field along the boundary for the b = 0.15λ case

is plotted in Fig. 3 for α = 0◦ and 90◦.

Near b = a = 0.9λ (the right side of Fig. 2), the EBW for the

plane wave is the same for both incident angles because the ellipse

is nearly circular. The EBW=8 result for a plane wave incident on a

0.9λ circular cylinder matches the calculations reported in [11].
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Fig. 3. Phase of plane wave incident field on an elliptic cylinder with a =
0.9λ, b = 0.15λ. solid: α = 0◦; dotted: α = 90◦.
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Fig. 4. EBW of an interior monopole at (a′, 0). Solid: a = 0.6λ, b = 0.4λ;
dotted: a = 0.9λ, b = 0.5λ.

As b decreases, the ellipse becomes thinner. For α = 90◦, the

EBW stays constant until b = 0.3λ, and then falls. For a thin ellipse

with α = 90◦, the wave fronts are parallel to the flatter portion of

the ellipse, so the variation of the incident field is small as seen in

Fig. 3. Thus, the EBW is smaller for small b.

For α = 0◦, the plane wave is perpendicular to the flatter portion

of the ellipse. The EBW shown in Fig. 2 initially drops as b decreases.

As the ellipse becomes very thin, the EBW rises. The phase of the

incident field for b = 0.15λ at an incident angle of 0◦ given in Fig.

3 shows the much larger variations in phase.

Calculations for other ellipse geometries provide similar results.

At α = 0◦, the plane wave EBW often drops below the value for

the circular case; however, at α = 90◦, the EBW typically does not

change until the drop for very low b.

B. EBW for an Internal Monopole

The MAS model for the scattered field is a collection of monopoles

inside the elliptical boundary. A monopole is a line source in the z
direction [13, Section 5.6]. The field at ~ρ of a unit strength monopole

at ~ρ ′ can be written as:

Emono
z = H

(2)
0 (k | ~ρ − ~ρ ′ |) (8)

where k is the wavenumber, and H
(2)
0 (x) is the Hankel function of

the second kind of order 0 representing outgoing waves.

The EBW for a monopole is also computed using the relations

from Section II. The EBW for a monopole along the positive x axis

(at a′) is shown in Fig. 4 for the ellipse cases a = 0.6λ, b = 0.4λ
and a = 0.9λ, b = 0.5λ.

The EBW for the monopole at small a′ in both cases has some

changes, similar to the small changes in the plane wave EBW case.

More importantly, the EBW rises quickly as a′ approaches a. At

these locations, the EBW of the monopole is reaching the location
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Fig. 5. EBW of an interior monopole at (0, b′). Solid: a = 0.6λ, b = 0.4λ;
dotted: a = 0.9λ, b = 0.5λ.

where it matches and then exceeds the EBW of an incident plane

wave.

The EBW for a monopole displaced along the y axis (at b′) using

the same scatterer parameters is shown in Fig. 5. In the case of a y-

displaced monopole, the EBW begins small and eventually increases

as b′ increases. The monotonic increase has been consistently found

for y-displaced monopoles and a variety of ellipse parameters.

IV. GMT/MAS RESULTS AND DISCUSSION

In this section we shall review the MAS method, and then

investigate simulation results with respect to the EBW data presented

in the previous section.

A. The Method of Auxiliary Sources (MAS)

The solution for two-dimensional TMz scattering for perfectly

conducting scatterers consists of computing the scattered field. The

MAS technique uses a model for the scattered field where lowest-

order poles are placed along an auxiliary surface (AS) inside the

scatterer, as shown in Fig. 1. The model for the scattered field is

written as a sum of M0 monopoles:

Es
z(~ρ) =

M0
∑

m=1

amH
(2)
0 (k | ~ρ − ~ρ ′

m |) (9)

where am is the unknown amplitude of pole m located at ~ρ ′

m.

The am coefficients are found by satisfying the boundary condi-

tion:

Ei
z(~ρ) + Es

z(~ρ) = 0 (10)

where ~ρ is on the scatterer boundary. Choosing L = M0 specific

points along the boundary (~ρℓ, ℓ = 1, 2, . . . , L), the system of

equations

−Ei
z(~ρℓ) =

M0
∑

m=1

amH
(2)
0 (k | ~ρℓ − ~ρ ′

m |) (11)

is solved to obtain am. The ~ρℓ locations are equally spaced in arc

length around the boundary.

Once the solution is found, two measures will be used to evaluate

the suitability of the result. The first is to look at the average percent

error in the boundary condition, computed as:

ε̄% =
1

P

P
∑

p=1

| Ei
z(sp) + Es

z(sp) |

| Ei
z(sp) |

× 100% (12)

where sp is a set of P equally spaced points (in arc length) on the

boundary and P is much larger than M0.
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Fig. 6. MAS results plot of log(ε̄%) (solid) and log(Ivar) (dotted) as a
function of a′ for an elliptical cross section with a = 0.6λ and b = 0.4λ.

A second measure is related to the stability of the solution, or in

other words, the convergence of the coefficients. In some cases, the

MAS coefficients have exceedingly large values and nearly opposite

phases [11]. Then, as M0 increases, the coefficients tend to diverge. A

measure was proposed in [11] to estimate the stability of the solution.

The measure used in [11] will not be used here. In [14] a more

appropriate measure is suggested:

Ivar = max{| an |} (13)

which is a simpler and equally informative measure of the suitability

of the solution.

B. EBW Verification via MAS Simulation

In this section, the MAS method will be used to test the EBW

results provided in Section III. The goal is to verify that EBW

provides useful information regarding the location of the poles to

obtain suitable solutions.

The MAS solution is also affected by the location of the poles

relative to the singularities of the scattered field [4, Ch. 5]. In general,

the auxiliary surface must enclose the singularities of the scattered

field. For the elliptical cylinder considered, the line segment between

the focal points is the locus of singularities of the scattered field.

Consider a cylindrical scatterer with elliptical cross section and

dimensions a = 0.6λ and b = 0.4λ. The plane wave is incident at

0◦. The plane wave EBW is 5. An interior monopole has EBW=5 at

a′ = 0.455λ and at b′ = 0.16λ.

The location of the poles in the simulations that follow will be on

an auxiliary surface that is an ellipse of size (a′, b′). Fig. 6 shows

ε̄% and Ivar vs. a′ for an elliptical cylinder scatterer with a = 0.6λ
and b = 0.4λ. The auxiliary surface has b′ = 0.16λ and variable a′.

The number of poles used is 40. At low a′ values, Ivar is very large.

This indicates that the coefficients are very large and do not represent

a suitable solution. If the number of poles increases, Ivar increases

as well. In short, the coefficients will diverge if Mo increases.

As a′ increases, Ivar decreases. The value of Ivar settles near

1 at a′ = 0.45λ. Since the plane wave EBW matches the interior

monopole EBW at a′ = 0.455λ, we conclude that the EBW results

have predicted the stable solution region indicated by the low Ivar.

The ellipticity e of the boundary is 0.745 so that the focal distance

is ae = 0.4472. Therefore, the a′ = 0.45λ EBW result is consistent

with the requirement that the singularities be enclosed by the auxiliary

surface. The Ivar results also confirm this requirement.

As a′ increases, The boundary error decreases and then increases.

As a′ approaches a, the poles are quite far apart compared to the

distance of each pole to the boundary. It is well known that the

distance between neighboring poles should be on the order of the
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distance from the pole to the boundary. The increase in boundary

error as a′ → a is expected because the poles are approaching the

boundary and moving farther apart.

The minimum boundary condition error is 1.82×10−6 and occurs

at a′ = 0.47λ. The boundary condition error is below 10−5 for a′

between 0.44 and 0.51 λ. This range begins near the a′ predicted

from EBW (0.455λ).

C. Discussion

The EBW data for a variety of elliptical cross sections have been

evaluated. In most cases, the EBW calculations provide an auxiliary

surface that encloses the singularities, provides a low boundary

condition error, and the coefficients are well behaved. However, for

very thin elliptical cross sections, the EBW analysis does not lead to

suitable MAS solutions. The breakdown for EBW results is estimated

to occur for ellipticities of roughly 0.9 or larger.

Cases of high ellipticity are troublesome because EBW is a global

property of the scattering problem. High ellipticity means that the

scatterer effectively has a rounded wedge. The EBW calculation

compares the energy of the initial boundary field to the band-limited

boundary field. In the case of a corner, the total energy near the corner

may be quite small and the EBW value required for the corner is not

obtained. In such cases, local techniques for corners [1] can be used

to obtain suitable solutions.

For example, consider an ellipse boundary with a = 0.6λ and

b = 0.225λ, which has a high ellipticity of 0.927. The EBW for

the +x-propagating plane wave is 6. An interior monopole displaced

along x reaches EBW = 6 near x = 0.425. An interior monopole

displaced along y reaches EBW = 6 near y = 0.1125. Using a′ =
0.425 and b′ = 0.1125 with 40 poles results in ε̄% = 20, 609 with

Ivar = 124, 730. Note that the auxiliary surface does not enclose

scattered field singularities at x = ±0.555, y = 0.

To remedy this poor solution, we first introduce an overdetermined

solution to the matrix equation by doubling the number of observation

points, i.e., L = 2Mo [5]. An overdetermined matrix solution tends

to reduce the volatility of the solution and is not necessary if the

ellipticity is smaller. In the example, using L = 2Mo results in a

boundary error ε̄% = 4.6% and Ivar = 4.05.

The error and Ivar values obtained may still be unacceptable. Lo-

cations of high curvature can be accounted for by placing additional

poles near the high curvature locations. six additional monopoles are

at the locations x = ±0.578, y = 0 and x = ±0.555, y = ±0.01.

For each additional monopole, two additional test points are added

on the boundary near the high curvature locations. The error for this

scenario is ε̄% = 0.4055% and Ivar = 0.482. These values can be

considered acceptable in many cases.

EBW calculations provide additional insight into the location of

poles for scattering problems that complements the rules provided

in [6]. Combining the local rules of [6] with the global EBW

calculations, a clearer picture of the best locations can be obtained.

The largest benefit of EBW calculations is avoiding poorly behaved

coefficients; this is demonstrated here using the Ivar measure and a

low Ivar indicates a stable solution.

The stability of the MAS solution has been verified by increasing

M0. For cases where (a′, b′) are chosen according to EBW results,

simulations indicate that Ivar is very stable and ε̄% decreases as

M0 increases.

Finally, it is important to note that the calculations used to estimate

the EBW for the boundary fields is essentially a Fourier series

calculation. Thus, the computations can be done quickly using well-

known Fourier methods and not add a heavy computational burden.

V. CONCLUSION

The EBW concept and calculations have been extended to non-

circular geometries. As an example, the EBW calculations for scat-

terers with elliptical cross sections is shown to provide pole location

information that results in accurate solutions with stable coefficients.
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