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Development of a Synchronization Coefficient 
for Biosocial Interactions in Groups and 
Teams  
 

Stephen J. Guastello 
Marquette University, Milwaukee, WI 
Anthony F. Peressini 
Marquette University, Milwaukee, WI 
 

Abstract 
Body movements, autonomic arousal, and electroencephalograms (EEGs) of group members are often 
coordinated or synchronized with those of other group members. Linear and nonlinear measures of 
synchronization have been developed for pairs of individuals, but little work has been done on 
measures of synchronization for groups. We define a new synchronization coefficient, SE, for a group 
based on pairwise correlations in time series data and employing the notions of a group driver, who 
most drives the group’s responses, and empath, who is most driven by the group. SE is developed here 
in the context of emotional synchronization based on galvanic skin response time series. A simulation 
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study explores its properties, the balance between strong versus weak autocorrelational effects, 
transfer, group size, and direct versus oscillatory functions. Distributions of SE are not affected by 
group size up to 16 members. Norms for interpreting the coefficient are presented along with 
directions for new research. 

Keywords 
group process, interactive analysis, modeling, simulations, work groups 

 

Emotions in groups can be contagious. When everyone’s positive and negative emotional tides follow 
closely together in time, they are said to be synchronized. Synchronization resembles some forms of 
coordination, such as neuromuscular coordination, where there is a relatively exact or proportional 
tracking of body sway, hand and head movements, autonomic arousal, or electroencephalogram (EEG) 
readings between two or more people. There is a theory building effort currently underway to uncover 
connections between synchronization in arousal, cognition, task structures, and performance 
outcomes in dyads and teams (Gipson, Gorman, & Hessler, 2016; Guastello et al., 2016; Salas et al., 
2015). Outcomes of interest include better therapy sessions when the therapist and client are 
synchronized with regard to autonomic arousal (Marci, Ham, Moran, & Orr, 2007; Orsucci et al., 2016), 
body movements (Ramseyer & Tschacher, 2011, 2016), or speech patterns (Reuzel et al., 2014). Better 
work performance outcomes would also be expected when teams are similarly synchronized (Elkins et 
al., 2009; Henning, Boucsein, & Gil, 2001; Stevens & Galloway, 2016). 

Studies of synchronization proceed from a broader awareness that group processes need to be studied 
as events over time (Arrow, Poole, Henry, Wheelan, & Moreland, 2004). Some perspectives go several 
steps further by using specific principles from nonlinear dynamical systems (NDS) theory such as 
attractors, bifurcations, chaos, fractals, entropy, catastrophes, phase shifts, self-organization, and 
emergence to explain the patterns in the temporal events (Arrow, 2005; Guastello, 2009; Wheelan & 
Williams, 2003). Due to length considerations, some familiarity with basic concepts from NDS (limit 
cycle attractors, oscillator dynamics, chaos, self-organization, etc.) is assumed in what follows. There is 
an extensive body of literature available; for further background details see, for example, Kaplan and 
Glass (1995), Sprott (2003), and Guastello and Liebovitch (2009), in addition to other works cited in this 
article. 

Although several computational methods have been offered for quantifying the level of 
synchronization between two people, little has been done to develop a metric that captures the overall 
amount of synchronization in a group as a whole. Such a metric would facilitate research that 
compares levels of group synchronization with interesting verbal, behavioral, and situational variables 
of interest. It would also facilitate investigations into emergent group-level phenomena that cannot be 
reduced to the contributions of individuals or dyads. Thus, the primary objective of the present study 
was to develop such a metric. 

Our approach for the group synchronization metric is to build it up from pairwise (dyadic) measures of 
influence between each pair of members in a group. A virtue of this approach is its generality: It can be 
applied to linear dyadic measurements or more sophisticated nonlinear dyadic measurements and can, 



therefore, facilitate important ongoing assessments when various nonlinear models are more 
appropriate. Once the full set of pairwise measurements of influence (pairwise synchronization 
coefficients built up from time series analysis in our case here) has been determined (according to a 
linear or nonlinear model), theses coefficients are organized as a matrix of pairwise synchronization 
coefficients (e.g., person 1 on person 2, person 1 on person 3, person 2 on person 1, person 3 on 
person 1, and so on). Thus, the matrix of pairwise synchronization coefficients can written as [Pi,j], 
where Pi,j is the ith person’s influence on the jth person, as described in a subsequent section of this 
article. 

The next step involves identifying (a) the member most influenced by the other members of the 
group—the empath—who is the person with the largest sum of pairwise synchronization coefficients 
of others on him or her and (b) the member with the most influence on the other members of the 
group—the driver—who is the person with the largest sum of pairwise synchronization coefficients of 
him or her on others. 

Finally, one sets up a problem much like an ordinary multiple linear regression. The values of the 
empath’s pairwise synchronization coefficients (others influence on the empath) are regressed as the 
dependent variables on the values of the other members’ influence on everyone else. This regression 
of how well the empath’s degree of being influenced by the others is then used to extract a metric that 
is analogous to the coefficient of determination (R2), which is a measure of the global fit, and is taken 
to be the degree of group synchronization (SE). 

In the following sections, we begin by presenting the details of the central features of synchronization, 
and then discuss the details of the statistical analyses that are used most often for dyadic analyses, and 
some findings of particular interest to emotional synchronization phenomena. Then, we develop in 
detail a new synchronization coefficient for groups and present a simulation study that explores its 
properties. We conclude with a discussion of the results, including some practical issues with utilizing 
the technique and a suggested research agenda. 

Principles of Synchronization 
The dynamics of synchronization involve self-organization and emergence constructs and bear some 
similarity to Haken’s (1984) notion of driver–slave relationships. Unlike the driver–slave relationship, 
which is unidirectional, synchronization phenomena are bi-directional or N-directional in the case of 
groups. A prototype illustration is the synchronization of a particular species of fireflies from Southeast 
Asia (Strogatz, 2003). The flies flash on and off, which is their means of communicating with each 
other. In the early part of the evening, each one flashes at its own rate. As they interact, they pulse on 
and off in greater synchrony, so that by the end of the evening, the whole forest lights up and turns off 
as if one were flipping a light switch. The common features among the many examples are that 
synchronized systems contain two oscillators, a feedback loop between them, and a control parameter 
that speeds up the oscillation. When the speed reaches a critical level, phase lock sets in and the 
synchronized pulsing can be observed. 

The prototype synchronization dynamics are not always simple and direct. The “oscillators” could be 
complex self-organized events. Galvanic skin response (GSR) time series and EEG, for instance, result 
from the combined activity of multiple neural circuits that are supposed to act chaotically over time, 



even though they might result in oscillating behavioral outcomes. From the between-person 
perspective, three coupled oscillators are sufficient to produce chaos (Newhouse, Ruelle, & Takens, 
1978). Not all possible combinations of oscillators and parameters will do so (Pikovsky, Rosenblum, & 
Kurths, 2001; Puu, 1993); they could flatten each other out, however, and some oscillators can become 
unstable in the presence of others (Puu, 2000). Thus, the assumption that the synchronizing time series 
are pure oscillators is not universally applicable. 

The level of synchronization could be matters of degree and direction. Feedback could be a one-way or 
an imbalanced two-way relationship. The feedback could be positive–positive, in which the 
participants feed off each other and their emotions go up and down at the same time. Feedback could 
also be positive–negative, such that one person tends to excite the second, but the second dampens 
the first to maintain focus or calm. There is also the possibility of negative–negative synchronization, 
which might have the appearance of two people on an emotional see-saw (Guastello, 2016). 

The task also imposes different requirements for coordination and synchronization. Dyads could be (a) 
taking turns in conversation, (b) taking different but synchronized compatible actions, or (c) working in 
parallel on a task where they can have different levels of interaction. Figure 1 contains a pair of GSR 
records for two people working on a vigilance task that required participants to look for an intruder in 
a virtual reality security camera display showing scenes from an empty building, while performing a 
second task (Guastello, 2016). The person represented in the upper chart was positively influenced by 
the person in the lower chart, meaning that arousal levels in the upper chart tended to go up and 
down within a few seconds of the movement from the person in the lower chart. The person in the 
lower chart, however, was negatively affected by the person in the upper chart, meaning that upward 
and downward fluctuations from the upper chart tended to be dampened by the person in the lower 
chart once they were experienced. 

 
Figure 1. GSR time series for a dyad performing a vigilance dual task. 
Source. Reprinted from Guastello (2016, p. 66). Copyright 2016 by the Society for Chaos Theory in Psychology 
& Life Sciences. 
Note. GSR = galvanic skin response. 
 

Teams of three or more people could be (a) synchronized with each other in any of the modes possible 
for dyads, (b) focused on an external situation that is changing, or (c) both, as depicted in the diagram 
in Figure 2. The linkage diagram in Figure 2 represents the task configuration for a team of four people 
working in an emergency response (ER) simulation against a single opponent (also human, not a 
computer-generated avatar). The activity contained a defined turn-taking process. Figure 3 is a set of 
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GSRs generated from one such simulation (Guastello et al., 2016). The upper panel of time series 
contains raw observations generated at 120 samples per second; the opponent’s data are designated 
as GSR5. The lower panel of time series contains the same raw data as the upper panel except that the 
observations were down-sampled to one observation per second. The appearance of synchronization 
was still present but less pronounced. 

 
Figure 2. Four members of an emergency response (ER) team coordinate responses and synchronize arousal 
levels as they work against a situation that is changing over time. 

 
Figure 3. GSR readings for five people playing the emergency response board game with a defined turn-taking 
sequence. 
Source. Reprinted from Guastello et al. (2016, p. 231), Copyright 2016 by the Society for Chaos Theory in 
Psychology & Life Sciences. 
Note. Upper panel: Raw data in millivolts. Lower panel: Data resampled at one observation per second. GSR = 
galvanic skin response. 
 

Dyadic Models of Synchronization 
In this section, we make use of standard time series analysis techniques (see Ozaki, 2012). It is 
assumed that the analyses of the discussed physiological metrics are performed on continuously 
streaming data, rather than discrete event-based data, to capture the nonlinear dynamics in the 
process. Although event markers could be incorporated into the experimental design as additional 
elements to create discrete event-based data, the use of such event marking is not required for basic 
modeling with the computations described next. 
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There are a few boundary conditions that need to be observed when choosing a statistical model. The 
general model for all candidate models is shown below. 

𝑋𝑋2 = 𝑓𝑓(𝑋𝑋1,𝑃𝑃1).  
 

Here X = {X1,X2, . . .} is the time series for the target person, and P = {P1,P2, . . .} is the other person. The 
statistical model needs to determine Granger causality; that is, P must explain X over and above the 
autocorrelation X (with itself). This is an important constraint to guard against spontaneous 
synchronization. Two entities can behave similarly over time for reasons that are completely 
independent of one another. One also wants point estimation and a measure of the size of 
synchronization effect, not simply a significance test. 

Several types of nonlinear analyses have been used to assess the synchronization between pairs of 
people, such as recursion quantification analysis (Delaherche et al., 2012; Orsucci et al., 2016; Reuzel et 
al., 2014), phases of oscillators (Delaherche et al., 2012; Gorman, Amazeen, & Cooke, 2010; 
Richardson, Garcia, Frank, Gergor, & Marsh, 2012), statistical models that are based on the assumption 
of pure oscillators (Butner, Amazeen, & Mulvey, 2005; Butner & Story, 2011), chaos (Guastello, 2016; 
Guastello et al., 2016; Guastello, Pincus, & Gunderson, 2006), wavelet analysis (Likens, Amazeen, 
Stevens, Galloway, & Gorman, 2014), and symbolic dynamics (Stevens & Galloway, 2016; Stevens, 
Galloway, & Lamb, 2014; Stevens, Gorman, Amazeen, Likens, & Galloway, 2013). Given the range of 
available options, we selected the exponential structure as a reference model because it can 
determine whether the time series is chaotic, self-organizing (1/f), oscillating, dampening, or moving 
toward a fixed point—providing a wide range of possible dynamics all in one analysis. Self-organized 
systems tend to produce time series of behavior that have fractal dimensions between 1.0 and 2.0 
(Bak, 1996; Guastello & Gregson, 2011). Calmer systems would fall closer to 1.0 and thus be well 
approximated by a linear time series analysis. The linear model also serves as a helpful reference 
model because it is a common choice, and it also provides the necessary elements for the new 
synchronization coefficient. More volatile systems would produce time series with higher dimensions, 
and thus be represented better by an appropriate nonlinear model. 

The simplest structure in the exponential model series (Guastello & Gregson, 2011; Guastello, Nathan, 
& Johnson, 2009) is autocorrelational, and calculated through nonlinear regression, as shown with the 
following equation. 

𝑧𝑧2 = θ1exp(θ2𝑧𝑧1) + θ3. 
 

In Equation 2, θ2 is the Lyapunov exponent. z is the time series variable X that was transformed by 
location and scale.1 When testing a model, θ1 or θ3 can be dropped to preserve the statistical 
significance of θ2. Statistical models that are calculated with a least-squares procedure are usually 
compared on the basis of R2, percentage of variance accounted for. The calculation of the 
synchronization coefficient requires the use of R (unsquared). 

Equation 2 can be used as a test for chaos by examining the signs of θ2 and θ3. Not all expanding 
functions are chaotic; chaotic processes contain both expanding and contracting trajectories. Thus, if 



the exponent is positive and the constant, θ3, is negative, one has signs of a chaotic process. The 
Lyapunov dimension, DL, is equal to exp(θ2t); t = 1 if all time intervals are equal, as they are in this 
application. However, previous work with GSR data (Guastello, 2016; Guastello et al., 2016) showed 
that θ3 should be dropped. 

The second model from the series that was adopted here is an expansion of Equation 2 in which a 
second exponential function in Equation 2 replaces the constant. 

𝑧𝑧2 = θ1exp(θ2𝑧𝑧1) + θ3exp(θ4𝑧𝑧1) + θ5. 
 

This structure has been used to assess synchronization or transfer effects from a conversation partner 
to the target person (Guastello et al., 2006), GSR series from dyads working on a vigilance task 
(Guastello, 2016), and teams playing an ER board game (Guastello et al., 2016). The data analyses 
showed that two of the regression weights were not necessary, and the model simplified to create 
Equation 4. 

𝑧𝑧2 = θ1exp(θ2𝑧𝑧1) + exp(θ4𝑃𝑃1). 
 

In Equation 4, P is the partner to the target person z, and this GSR series was also transformed by 
location and scale. The same simplification was needed in previous studies of dyads (Guastello, 2016; 
Guastello et al., 2006; Guastello et al., 2016).2 The regression weight, θ4, is the transfer coefficient that 
is used in the calculation of the synchronization coefficient. It represents the impact of a second person 
on the target person beyond the simple autocorrelation. Thus, it captures the amount of 
synchronization between P and z. 

Linear models would have a similar but simpler structure. The autocorrelation function would be as 
follows. 

𝑋𝑋𝑛𝑛 = β0 + β1𝑋𝑋𝑛𝑛−𝑗𝑗 , 
 

where X is the GSR series for a target person and j > 0 is the lag. An autocorrelation is a linear 
relationship so long as the autocorrelation is positive. Negative autocorrelations indicate an oscillation; 
an upward movement is followed by a downward movement. 

Equation 5 can accommodate synchronicity by adding the response from the second person with a 
second regression weight (β2). 

𝑋𝑋𝑛𝑛 = β0 + β1𝑋𝑋𝑛𝑛−𝑗𝑗 + β2𝑃𝑃𝑛𝑛−𝑗𝑗 . 
 

Then, the amount of synchronization between P and X is represented by the transfer function β2 and 
where j > 0 is the lag.3 

The use of any time series model requires that one determine an optimal lag length. Lag length reflects 
time required for Xn− j to produce Xn. Several methods for determining lag length are available, but the 



results do not always agree (Guastello et al., 2016; Guastello, Reiter, & Malon, 2015). For practical 
purposes of analysis, one typically commits to one of the standard methods. The issue of choosing a lag 
length is revisited later in this article. 

Group Synchronization Coefficient 
Prior Approaches 
Prior efforts to develop a synchronization coefficient for groups and teams have been predicated on 
the data sources that the researchers wanted to synchronize and the underlying assumptions about 
their dynamics. The phase clustering concept originated with the expectation that the observable 
behavior was an oscillating function such as finger tapping, rocking in a rocking chair, or the flashing of 
fireflies (Pikovsky et al., 2001; Richardson et al., 2012). The actions of any two people would be 
synchronized to the extent that their phase differences in movement were minimal. Figure 4 shows 
two perfect oscillators that are slightly out of phase even though they are completing their cycles at 
the same frequency over time. The calculation of group synchronization would involve taking a 
function of the phase of each time series, finding the average of that function across people, then 
making one more calculation to arrive at the metric. The phase cluster metric has been shown to 
differentiate experimental conditions that manipulated the likelihood of synchronization in a rocking 
chair task (Richardson et al., 2012). Richardson et al. (2012) also remarked, however, that the phase 
cluster metric did not reflect leader–follower relationships among the individuals, which could affect 
the level of synchronization of the group as a whole. 

 
Figure 4. Two oscillators that are slightly out of phase. 
 

A related idea translated the set of biometric time series into a distance coefficient. Elkins et al. (2009) 
examined synchronization in heart rate variability among team members engaged in a computer 
simulation where an ER team was cleaning a building of armed combatants. Some of the pairwise 
indicators they assessed were phase differences between dynamics such as the prototype in Figure 4. 
Their team-level metric was based on distance across N dimensions (team members). The differences 
in heart rate variability occurring over a fixed amount of time were calculated, squared, and summed 
over team members; the synchronization metric was the square root of the sum. The metric was 
successful in distinguishing high- and low-performing teams. The metric did not appear to distinguish 
autocorrelation effects from the specific impact of one person on another in any sequential analysis. 

The symbolic dynamics approach (Stevens & Galloway, 2016; Stevens et al., 2014; Stevens et al., 2013) 
was, strictly speaking, not a measurement of group synchronization. Rather, it looked for patterns of 
EEG activation across six team members, some of which could reflect synchronization, and how often 
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those patterns changed. The patterns could be represented by one of 25 symbols, an example of which 
appears in Figure 5. The symbols are calculated at very short time intervals and are expected to change 
over time. The volatility of change (in symbol codes) over the data collection period is calculated as a 
Shannon entropy coefficient. Self-organized and synchronized sequences would exhibit lower entropy 
values. Relative to occupational performance criteria, entropy was lower in high-performing groups in 
the submarine navigation simulation during epochs in which the team was focusing attention on the 
central commander, and lower among high-performing groups during epochs that demanded 
individualized action. Pairwise comparisons among team members’ sequences of EEG arousal codes 
can be evaluated with a mutual entropy coefficient, which is a variant of Shannon entropy that is 
interpreted like a correlation. 

 
Figure 5. Example of a synchronization symbol. 
Source. Reprinted from Stevens and Galloway (2016, p. 275), Copyright 2016 by the Society for Chaos 
Theory in Psychology & Life Sciences. 
 

The Shannon (1948) entropy metric was first introduced to assess the quality of long-distance 
telephone communication and quickly became the basis of a general theory of communication 
(Shannon & Weaver, 1949). It has had extensive use in the analysis communication and choice 
sequences (Attneave, 1959; Dabbs & Ruback, 1987; Griessmair, Strunk, Vetschera, & Koeszegi, 2011). 
One of its limitations, however, is that it does not take the serial dependency between system states 
into account in the calculation of entropy; a frequency distribution of categorical states that is 
executed in two or more different temporal orders would produce the same measurement of entropy. 
There are other measures of entropy that do take sequence into account, however (Guastello & 
Gregson, 2011), and importantly converge to a Lyapunov exponent under limiting conditions. 

New Coefficient 
The new synchronization coefficient builds on the statistical analysis of dyadic relationships. Within a 
team of four people, there would be 12 two-way dyadic linkages or transfer effects (N people × N − 1). 
Although there is no a priori reason to expect particular linkages to be tight, loose, positive, or 
negative, one could devise studies that search for variables that are connected to different linkage 
properties. Based on the differences among dyads that have been observed in other types of tasks, 
however, it is possible to anticipate that some team members would be more influential than others 
on their teammates, and some team members would be more responsive than others to their 
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teammates. Thus, we define two new constructs for studying synchronization in team: the drivers and 
the empaths. Drivers would be the individuals who have the strongest physiological effect on others in 
the group (i.e., other players were more likely to synchronize to their physiological behaviors). 
Empaths would be the individuals who are most responsive to other members in the group (i.e., they 
were more likely to synchronize to others’ physiological trends). 

The designations of drivers and empaths would be determined statistically as explained below in 
conjunction with Table 1. For any pair of people, the linear models in Equations 2 and 4 or the 
nonlinear models in Equations 5 and 6 can be calculated with one person’s GSR data as the target time 
series (z1 or Xn) and the partner’s data as a potentially synchronized series (Pn −j). The two series can be 
analyzed in the other direction so that the partner becomes the target and the previous target 
becomes the partner. The synchronization coefficients would be θ4 in Equation 4 and β2 in Equation 6. 

Table 1. Prototype Matrix of Synchronization Coefficients for a Group With Four Members. 
 

    To    
  𝑃𝑃1  𝑃𝑃2   𝑃𝑃3  𝑃𝑃𝑛𝑛  Driver score 

From 𝑃𝑃1  𝐀𝐀𝐀𝐀𝟏𝟏  R12   R13  R1n  ΣR1
2 

 𝑃𝑃2  R21  𝐀𝐀𝐀𝐀𝟐𝟐   R23  R2n  ΣR2
2  

 𝑃𝑃3 R31 R32  𝐀𝐀𝐀𝐀𝟑𝟑 R3n  ΣR3
2  

 𝑃𝑃𝑛𝑛 Rn1 Rn2  Rn3 𝐀𝐀𝐀𝐀𝒏𝒏 ΣR𝑛𝑛
2  

Empath score  ΣR1
2 ΣR2

2   ΣR3
2  ΣR𝑛𝑛

2   

 

For larger groups, however, there are many potential autocorrelation and transfer effects, and most of 
the transfer effects are probably not symmetrical. For instance, Gottman (1979) and Levinson and 
Gottman (1983) found in their studies of distressed married couples that the influence of one partner 
on the other was more often asymmetric in the couples who were more likely to break apart than the 
couples who remain together after therapy. In other words, one could predict the arousal level for one 
spouse during a conflict period from the arousal level of the other, but not necessarily the other way 
around. Importantly, high degrees of reactivity or synchronization were also predictive of dissolution if 
the content of the verbal exchange was negative. Guastello et al. (2006) found evidence of non-
symmetric influence to varying degrees when two people who met each other for the first time 
engaged in conversation, although the presence of any level of influence was more readily detected 
through a nonlinear analysis of GSR levels than through a linear analysis. Gottman (1979) interpreted 
the presence of a one-way influence effect as a dominance relationship. A later study that involved two 
people working together on a laboratory task showed similar asymmetries, but also other types of 
asymmetries, such that one person could have an arousing effect on the partner, while the partner 
could have a dampening effect on the other (Guastello, 2016). 

Thus, we introduce the following matrix argument to simplify the determination of the person who has 
the most influence on the rest of the group and the person who is most responsive to the other group 
members. Table 1 is a prototype matrix P of synchronization coefficients. The diagonal values are 
autocorrelations. The off-diagonal entries are synchronization coefficients. The off-diagonal elements 



are organized so that they represent the influence of the person in the row index on the person in the 
column index. The matrix can be filled with coefficients from either a linear or nonlinear analysis. 

The sum of squared coefficients in the rows can be compared so that the person with the largest value 
is the driver of others’ responses. The sum of squared coefficients in the columns can be compared so 
that the person with the largest value is the empath. The computations on the rows and columns were 
borrowed from factor analysis where the initial values of communality and eigenvalues are established. 
Psychologically, the computation on the rows implies that the drivers are driving themselves as well as 
driving other people. Each person in the group is finding a balance between driving or influencing 
others and being influenced by them. 

The empath would be most receptive and less driving than the driver in most cases, but not necessarily 
the least driving of the group. Empathy is usually defined as having a cognitive and an emotional 
component. The cognitive component is the ability of one person to see another person’s point of 
view, even though it may be different from their own. The emotional component is the ability to 
experience vicariously the emotions of other people. The latest thinking on the empathy trait is that it 
might contain other facets such as self-regulation of emotion (Gerdes, Leitz, & Segal, 2011; Lietz et al., 
2011), which makes the construct more similar to emotional intelligence. Correlations between .55 and 
.62 between emotional intelligence and empathy as defined by Gerdes et al. (2011) have been 
reported (Guastello et al., 2016). 

Responsiveness does not necessarily mean following the same direction of increasing or decreasing 
arousal. Empathetic people can also detect arousal levels and calm the others down (Guastello, 2016). 
There are also situations in which empathy in the sense of accurate detection of the partner’s 
emotional state does not produce any response at all (Winczewski, Bowen, & Collins, 2016). 

Table 2 is a set of values of synchronization coefficients that were computed from actual GSR time 
series for a group of four people participating in an ER simulation using the linear set of coefficients. In 
the example, Person 1 would be the driver of the group, and Person 2 would be the empath. 

Table 2. Sample Matrix of Coefficients Representing Autocorrelations, Drivers, and Empaths. 
 

  To person   
 

1 2 3 4 Driver score 

From Person 1 .6040 .4050 .2260 .2310 .6333 
From Person 2 .1090 .5480 .1930 .1830 .3829 
From Person 3 .0620 .1390 .3590 .1670 .1799 
From Person 4 .0330 .0710 .0980 .2920 .1010 
Empath score .3816 .4887 .2268 .2000  

 

The calculation of the team-wide measure of group synchronization, SE, is based on the logic inherent 
in multiple regression. It involves some of the matrix calculations that are present, but generally not 
seen, in standard multiple regression as performed by commonly used software; see, for example, 
Tabachnick and Fidell (2007, Appendix A) for background. The first step is to identify the empath, 
which is P2 in the example. Second, the column of coefficients for P2 is removed, the autocorrelation 
entry AR2 is dropped, and the remaining coefficients become a column vector V′. 



Third, P2’s row is also removed, leaving a square matrix M. Thus, if the original group consisted of four 
people and the empath is removed, M is a 3 × 3 matrix (and always square). 

Fourth, take the inverse of M and calculate a vector of weights: 

𝐐𝐐 = 𝐌𝐌−1𝐕𝐕′.  
 

The elements (weights) of Q are comparable in meaning to regression weights where the empath is a 
(human) dependent measure, and the other members of the group are independent variables. The 
fifth and final step is 

𝑆𝑆𝐸𝐸 = 𝐕𝐕′𝐐𝐐. 
 

In the example, reduced vector V’ is 

0.4050 

0.1390 

0.0710 

The reduced matrix M is 

  0.6040 0.2260 0.2310 

  0.0620 0.3590 0.1670 

  0.0330 0.0980 0.2920 

The vector of weights Q is 

  0.5399 

  0.2479 

  0.0989 

The synchronization coefficient SE is 0.2602. 

Even though the logic of the computation follows that of multiple linear regression, neither matrix P 
nor M contains 1.0 in the diagonal entries, and neither is symmetric as would be the case with a 
standard correlation matrix. Thus, it is not guaranteed that the range of values for SE would be 
confined between 0 and 1. Thus, the following simulation studies were conducted to determine the 
range of SE under different plausible conditions by varying diagonal values, off-diagonal values, and 
matrix size. 



Simulations 
Simulation 1: Diagonals and Off-Diagonal Ranges 
The goal of this analysis was to assess the impact of the ranges of values appearing on the diagonal and 
off-diagonal matrix entries on the size of the synchronization coefficient. This analysis examined 
combinations of diagonal values within three constrained ranges, which were realistic in light of our lab 
work in progress with GSR data, and different proportions of negative values in the starting matrix. 
Negative values of synchronization in the off-diagonal can be interpreted as inhibition effects between 
a pair of participants. All values of SE were calculated for hypothetical groups of four. There were three 
diagonal conditions (Factor A) and four off-diagonal conditions (Factor B): 

• A1: Diagonals were randomly generated values between .90 and .99. 

• A2: Diagonals were randomly generated values between .50 and .59. 

• A3: Diagonals were randomly generated values between .20 and .29. 

• B1: Off-diagonals were all positive, ranging from 0 < rij < 1. 

• B2: Off-diagonals were 1/3 negative, ranging from −.5 < rij < 1. 

• B3: Off-diagonals were ½ negative, ranging from −1.0 < rij < 1. 

• B4: Off-diagonals were 2/3 negative, ranging from −1.0 < rij < .5. 

The experimental design was fully crossed, and there were 10 replications for each combination of 
conditions. The dependent measure was the SE generated from the pairs of conditions. When 
generating the samples, one cell, A3-B2, contained an outlier value of SE > 100.00. It was replaced with 
a new sample of 10. The replacement sample did not contain such an outlier. 

Levene’s test of homogeneity of variance among the 12 cells was significant at p < .10, F(11, 108) = 
1.784, p = .065. Thus, any differences in means could be confounded with differences in variance. 
Neither of the main effects for mean differences nor the interaction was significant, however, Factor A: 
F(2, 108) = 0.435, ηp2 = .008; Factor B: F(3, 108) = 0.230, ηp2 = .006; interaction: F(6, 108) = 0.811, ηp2 = 
.043. 

The results indicate that the grand mean of SE = 1.365, 95% confidence interval (CI) = [−0.602, 2.126], 
would apply to all combinations of diagonal and off-diagonal values tested for groups of four. These 
results would not generalize to SE > |100|. A follow-up run of 100 cases of the A3-B2 condition did not 
produce any instances of values greater than |100|. Thus, a reasonable estimate for the probability of 
values that large is less than .01. 

Simulation 2: Dependent Off-Diagonals and Group Size 
The concept for the second simulation study was that the high, medium, and low ranges of the 
diagonal would be co-dependent with limited ranges of bivariate synchronization among the off-
diagonal entries. For instance, if autocorrelations were high, then there would be little room for 
influences from another person; thus, off-diagonals would be constrained to a smaller range. 



Therefore, one set of experimental conditions defined ranges of off-diagonal matrix entries that were 
dependent on the diagonal values (Factor C) as follows: 

• C1: Diagonal ARi ranged from .90 to .99, off-diagonals ranging from −.10 < rij < +.10. 

• C2: Diagonal ARi ranged from .50 to .59, off-diagonals ranging from −.50 < rij < +.50. 

• C3: Diagonal ARi ranged from .20 to .29, off-diagonals ranging from −.80 < rij < .80. 

Given that the computational model was predicated on the logic of regression analysis, the hypothesis 
arose that group size, meaning matrix size, would affect the average value of SE coefficients. In 
ordinary multiple linear regression, a trivial variable produces a nominal increase in multiple R. Thus, 
another comparison was made among group sizes (Factor D) of 4, 8, 12, and 16 members. 

The experimental design was fully crossed once again, with 10 replications for each combination of 
conditions. There were two cells, C2-D8 and C3-D16, that contained outlier values >|100|. They were 
replaced with new samples of 10 that did not contain an outlier. 

Levene’s test of homogeneity of variance among the 12 cells was significant, F(11, 108) = 3.200, p < 
.001. Thus, any apparent differences in means might result from differences in variances. However, 
neither of the main effects for mean differences was significant: Factor C: F(2, 108) = 0.744, ηp2 = .014; 
Group size: F(3, 108) = 0.319, ηp2 = .045. The interaction effect was also non-significant, F(6, 108) = 
1.569, ηp2 = .080. Thus, the grand mean of SE = 0.112 (SE = 0.650; 95% CI = [−1.177, 1.402]) would apply 
to all conditions. These results would not generalize to observed SE coefficients greater than |100|. 

A follow-up run of 100 cases from the C2-D8 condition did not produce any sync coefficients greater 
than |100|; thus, the odds of such an outlier are less than .01. However, a follow-up run of 100 cases 
from the C3-D16 condition did produce two such outliers; thus, the odds of such an outlier are .0273. 
Table 3 contains the descriptive statistics for the specific conditions in Simulation 2. 

Table 3. Descriptive Statistics for Simulation 2: Co-Dependent Diagonals and Off-Diagonals With Group 
Size. 
 

Diagonal–off-diagonal condition (C) Group size M SD n 
1 1 0.014 0.008 10 
 2 0.025 0.008 10 
 3 −1.539 9.317 10 
 4 0.062 0.010 10 
 Total −0.360 4.523 40 
2 1 1.240 0.939 10 
 2 0.029 1.358 10 
 3 −1.539 9.357 10 
 4 −1.863 13.560 10 
 Total 0.053 8.043 40 
3 1 −1.436 5.143 10 
 2 3.522 12.476 10 
 3 2.279 4.574 10 
 4 0.556 6.777 10 



 Total 1.230 7.812 40 
Total 1 −0.060 3.118 30 
 2 1.191 7.189 30 
 3 −0.267 7.983 30 
 4 −0.415 8.512 30 
 Total 0.112 6.968 120 

 

An independent-samples t test between the grand means of the two samples (Factors A and B, and C 
and D) with unequal variances assumed was significant, t = 1.658, df = 238, p < .05, one-tailed. The 
mean synchronization value for compatible levels of on- and off-diagonal values and different group 
sizes (C-D) was smaller than that obtained for scenarios based on Factors A and B. The former was 
close to 0.00 which should be a target value for the interpretation no synchronization. Thus, the 
descriptive statistics in Table 3 are provided as an interpretive guide to synchronization coefficients 
drawn from plausibly real data. 

Simulation 3: Matrix Dominated by Oscillators 
This simulation contained one scenario, which was based on the popular assumption of pure 
oscillators. Pure oscillators could be fair assumptions for finger-tapping experiments or other rhythmic 
activities such as synchronized swimming or rowing. The diagonals were relatively strong negative 
autocorrelations ranging from −1.0 to −.5. The off-diagonals were allowed to vary from −1.00 to +1.00. 
The descriptive statistics based on N = 200 simulated cases were M = −1.153, SD = 4.802. The 
distribution is shown in Figure 2. It was slightly biased toward negative synchronization, although it 
was closely packed around the mode and symmetrical (see Figure 6). 

 
Figure 6. Distribution of SE when relatively strong pure oscillators are assumed. 
 

Discussion 
There is a strong and growing interest in the synchronization of physiological events in small groups 
and the possible implications for team performance, problem solving, and other outcomes. The 
synchronization of any pair of people is an NDS phenomenon, even though some research on record 
does not refer to those underlying principles. The principles do affect the choice of statistical models 
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for analyzing pairwise synchronization, however, and there have been some clear advantages 
associated with NDS models. 

The present study responded to the need for a single measure of group synchronization that does not 
require the restrictive assumption that the contributing time series be pure oscillators. Although pure 
oscillators are apparent in some rhythmic group motions, autonomic arousal has a more complex 
structure by virtue of the contributing neural networks, which might not be exactly the same for all 
team members. In fact, there is strong evidence that the low-dimensional chaos that is characteristic of 
self-organized systems is likely present in many cases (Guastello, 2016; Guastello et al., 2016; Guastello 
et al., 2006). If the medium of synchronization (e.g., autonomic arousal) is produced by the human 
nervous system, a self-organized system is almost guaranteed because of the large number of 
excitatory and inhibitory circuits that are involved (Whittle, 2010). Furthermore, a team action might in 
fact require its members to do different things in a coordinated fashion; the arousal levels, however, 
could still reflect a pattern of synchronization. It was, thus, important to develop the SE coefficient 
developed here to be flexible with regard to contributing dynamics. SE also produces some 
intermediate calculations that identify drivers and empaths within a group, which have other uses. 

There is a loose similarity between the logic behind the SE calculation presented here, and the logic 
behind generalizability theory (Cronbach, Rajaratnam, & Gleser, 1963), which was an extension of 
Cronbach’s alpha and some intervening ideas about person perception. In generalizability theory, there 
are different perceivers (raters) and persons being perceived on rating scales (ratees), resulting in a 
rectangular matrix of ratings. One then uses the calculations from the ANOVA to assess variance 
among ratees, which should be relatively high, and variance among raters, which should be relatively 
small. The variance among raters should be relatively small due to their differing opportunities to see 
different aspects of the ratees. Then, there is the total amount of error variance that is not explicitly 
associated with either axis of the matrix, which determines the overall reliability (generalizability) of 
the rating system. 

Kenny (1994) extended the person perception concepts behind Cronbach et al.’s work to produce a 
matrix-based array of perceivers and persons perceived that would result in an assessment of how 
much variance reflects similarities among people that one would expect from a cohesive and 
homogeneous group, and how much variance reflects individual differences. The scenario in which 
perceivers are not rated and ratees do not give ratings produces a rectangular matrix similar to those 
used in applications of generalizability theory. The scenario in which everyone rates everyone else is 
considered much more complicated to compute. In the latter case, the matrix is square and 
asymmetric, and there is no diagonal. 

It should also be mentioned that Kenny’s (1994) system was not a time series, although he indicated 
that results from discrete time intervals could be compared. The SYMLOG system (Bales & Cohen, 
1979) of group evaluations also reflected this static-but-repeated perspective. Bales (1999) later 
extended the principles behind SYMLOG to continuously evolving groups with formal nonlinear 
dynamics operating, particularly self-organization (Pincus & Guastello, 2005). 

The SE coefficient presented here was not derived directly from Cronbach et al. (1963) or Kenny (1994), 
who were not studying synchronization, but rather extended from the more classical multiple linear 



regression theory. Unlike the classical scenario, however, the data matrix is square, the observations 
are continuous, and the diagonal in the matrix does not contain 1.0 except, perhaps, on rare occasions. 
The matrix entries are autocorrelations and semi-partial time series correlations rather than raw 
observation values. These computational elements prevent spurious synchronization, which could 
happen if two people are coincidentally acting the same way over time without having any direct 
interaction with each other. 

Extreme Conditions 
Simulation 2 showed that the population value of SE hovers around 0.00 meaning that no 
synchronization exists within the group when autocorrelations and linkage coefficients exist in what 
are regarded as plausible conditions. Negative values are possible, which would indicate that the 
system is tilted toward out-of-phase relationships or inhibitory relationships among the group 
members (Simulation 3). More extreme (absolute) values are possible (Simulations 1 and 3), and the 
extreme nature of some values can be attributed to combinations of low diagonal values and high off-
diagonal values. 

The extreme conditions are possible when random numbers are generated, but are much less likely 
when the probability structures associated with real living systems are involved. A very low self-
consistency combined with a very high responsivity to group members would be highly unstable 
overall, as it would indicate capricious group behavior and minimal individual control over entropic 
conditions. The personal experience in such a context would likely result in self-organizing efforts to 
maintain personal predictability. One might expect someone in the group to assume the role of the 
driver and assert some control for better or for worse. Alternatively, one might expect that an outside 
agent, such as law enforcement (also represented by the heavy black dot in Figure 1), might exercise 
control and serve as the driver. 

Although the efficacy of controlling extreme crowds depends in part on the size of the crowd, the SE 
coefficient itself is not affected by group size. Specifically, this study examined groups ranging in size 
from four to 16 members and found no significant difference in the SE coefficient due to team size. This 
is a welcome departure from what one would expect from a matrix calculation that parallels that of 
multiple linear regression. Researchers might eventually find that connections between group size and 
synchronization can attribute differences in SE to the social conditions rather than artifacts of the 
metric itself. 

Practical Use of SE 
The matrix calculations that produce SE would be very time consuming if performed by hand, 
particularly if groups larger than three members were involved. Thus, we have developed a computer 
program, SyncCalc 1.0 (Peressini & Guastello, 2016). To operate it, the researchers must first assemble 
an input matrix that is formatted like the ones shown in Tables 1 and 2. The diagonal and off-diagonal 
elements would come from analyses of pairwise linear (Equations 5 and 6) or nonlinear (Equations 2 
and 4), which can be calculated with commonly available statistical software. 

An unresolved issue concerns the relative merits of using linear versus nonlinear model coefficients to 
compose the synchronization matrix. The answer is likely connected to the physiological measurement, 
the task, and the time horizon over which group events would occur. Sometimes the nonlinear models 



are more accurate in terms of R2 than the linear models for dyadic interaction (Guastello et al., 2006). 
Sometimes the linear models are more accurate, but the nonlinear coefficients detect important 
events or dynamics that the linear coefficient cannot detect. For instance, it is unlikely that 
electrodermal responses for a group would go into true phase lock when the surrounding events 
increase in speed. It has been reported, however, that greater synchronization in dyads was obtained 
when the pace of the task increased rather than decreased (Guastello, 2016); this difference was 
detectable with the nonlinear coefficients, but not with the linear ones. 

Researchers need to make some choices regarding the lag length in the time series when calculating 
the pairwise models. In principle, physical processes require some time for the effect of one variable 
(person) to have an effect on another. The best choice would reflect this physical process, and the task 
or context could have a strong influence. Lag lengths of 1, 5, 6, and 20 s have been reported for GSR 
data (Guastello, 2016; Guastello et al., 2016; Guastello et al., 2015). Although a comparison of the 
various means for determining lag length are beyond the scope of this article, principles and 
procedures are discussed in the previous references. 

Ergodicity, also known as stationarity, is another challenging issue in time series analysis. A time series 
is stationary if the dynamics (relationships among variables or people) remain constant throughout the 
time series. Non-stationarity can be induced by transient events, or by changes that can be attributed 
to control parameters within the system (Gregson, 2011, 2013; Rabinovitch, Huerta, Varona, & 
Afraimovich, 2008). Examples might include somebody joining or leaving the group. There could be 
metastable processes in which group interaction schemata self-organize and reorganize over time, 
possibly in relationship to external conditions (Castillo, Kloos, Holden, & Richardson, 2015; Kello & Van 
Orden, 2009; Kelso, 1995). Gregson (2011) noted that, within individuals, multiple neurocognitive 
processes are operating simultaneously, but the expression of any of them in consciousness is serial; 
one idea has to wait for another. A similar process occurs in group discussions; individuals process 
ideas simultaneously, but typically one person speaks at a time, and as a result, some do not speak as 
much as they would like to do. This particular phenomenon has surfaced as time sharing demand 
(Helton, Funke, & Knott, 2014). 

According to Poole (1981), groups usually go through a series of developmental phases, but not all 
groups follow the same course of development. Another source might arise from punctuated 
equilibrium effects where a group self-organizes its social, communication, and work patterns sharply 
as it matures and moves toward its goal (Gersick, 1988). R2 values would drop to the extent that the 
time series is not stationary. Ideally, researchers should try to connect changes in autonomic arousal 
dynamics to supervening processes. 

Future Directions 
New research with SE can proceed in two groups of directions. One concerns the formal properties of 
the SE itself, and the other involves connections with external events or conditions such as group 
performance and decision-making behavior. 

The SE coefficient is based on a matrix that is composed of values from different sources, such as 
different pairs of people. The prototype scenario was that all members of the group were likely to 
interact homogeneously, which should minimize stress on the assumptions of the calculation routine. If 



homogeneity of interactions cannot be assumed, however, then the new question becomes whether SE 
of a given value (e.g., .50) has the same meaning if the whole group is working on the same task or the 
group contains subgroups working on separate subtasks that are meant to coordinate together. 
Extensions of the calculations might be needed to identify such bifurcations. Alternatively, SE might be 
further refined to produce a number that has equivalent meaning for bifurcated and homogeneous 
groups. 

Regarding the substance of synchronization, there are presently no psychological rules to define when 
synchronization is beneficial or not, but one can make some informed speculations for future research 
in this area. We are particularly concerned with the level of Emotion 1 (E1), homeostatic-adaptive 
responses generated by the autonomic or endocrine systems (Buck, 1997). Also much of the 
communication that is transpiring in our simulated situation occurs at the level of symbolic 
communication, not spontaneous communication, which is typically associated with E1 processing 
(Buck, 1997). 

Although our measure of group synchronization is indeed taken at the low level of E1 processing, it is 
not limited merely to measuring E1-level spontaneous communication. The possibility of such a level-
transcending measure residing at this low level, that is, of not merely being a function of (and 
therefore, about only) spontaneous E1 communication is compatible with, and in fact predicted by, 
Buck-style models of communication. Such models understand that the processes that make up the 
emotional, cognitive, and social “readout systems” (Buck, 1997, p. 316) are deeply inter-connected by 
inter-level and inter-system feedback, control, and suppression relations. Thus, even autonomic 
responses, when considered in a socially embedded and functioning individual must be understood 
holistically as potentially a function of the entire social system. Therefore, the ensemble of GSR time 
series of participants in such a social setting do plausibly contain information rich enough to measure 
synchronization of higher level functioning, including symbolic communication—and is not limited a 
priori to contexts in which spontaneous communication (e.g., therapy sessions) dominate. It will of 
course be a rich and open empirical question as to which types of groups synchronization measures are 
best suited. 

When coordinated action is needed, one would surmise that synchronization would be high for 
effective groups. If a problem-solving event is involved, however, some independent thought and 
action could be more beneficial. Group think and group polarization have not been studied from the 
perspective of synchronization, but there are intermediary constructs that could bridge the theoretical 
gap. 

The explanation of individual participation in group discussion, or more elaborate activities, has been 
ongoing for decades. At the individual-to-group level of analysis, game theory (von Neumann & 
Morgenstern, 1953), particularly the stag hunt game, individuals choose whether to join the group or 
act independently depending on the relative efficacy of the group versus the efficacy of their own 
initiatives for producing results. From the group’s perspective, its effectiveness depends on enough 
people contributing enough effort simultaneously. 

Differential participation in the group has been interpreted as social loafing (Latané, Williams, & 
Harkins, 1979). Differential participation is not always a result of loafing, but can be a result of poor 



group coordination (Comer, 1995; Guastello, 2009). Social loafing, furthermore, has been interpreted 
as a negative type of coordination inherent in stag hunt games. The ebb and flow of participation in the 
ongoing group activity can be traced to the ebb and flow of the group’s apparent efficacy at any given 
point in time (Guastello & Bond, 2004; Guastello, Marra, Castro, Gomez, & Perna, in press). 

The decision to participate in a group discussion at some level of involvement results from 
expectations of the other members’ performance or efficacy (Balkwell, 1991). Expectations derive from 
pairwise interactions among group members as they estimate and compare the performance efficacy 
of the other individuals. One can then frame the group’s expectations as a matrix of who or what idea 
dominates whom or alternative ideas. Differential participation then reflects a hierarchy of 
expectations regarding perception of the competence of other group members. Power and influence 
dynamics could be operating simultaneously with evaluations of competence: Some group members 
are likely to change views in response to the influence attempts of their group members whereas 
others stay with their initial position on a topic. 

The formation of expectation states could be a complex process. It would take some time to evolve 
and could be complicated further by the group members’ task or collective orientations (Correll & 
Ridgeway, 2006; Davis, 1973; Stasser, 1999). In social decision theory, a known probability distribution 
of individual preferences of the possible group responses is compared with all possible distributions (or 
a theoretically interesting subset), which correspond to social decision schemes; the probability 
distribution of individual preferences can then be compared against the predicted distributions 
associated with the social decision schemes (Laughlin, 2011). The broad objective for present purposes, 
however, is to determine how synchronization is related to these intricate group dynamics. Levels of 
synchronization could possibly vary by the level of collective orientation or affiliation motivation within 
the group (Helm, Sbarra, & Ferrer, 2012; Lumsden, Miles, Richardson, Smith, & Macrae, 2012; Vink, 
Wijnants, Cillessen, & Bosman, in press), or competition dynamics (Fallani et al., 2010). The SE 
coefficient produces weights measuring the connection between individuals and the empath. The role 
of those weights to expectation processes, the formation of hierarchies, and other group dynamics are 
yet to be determined. 

There is some preliminary evidence indicating that the driver–empath distinction can be informative 
(Guastello et al., 2016). In an experiment involving groups of three or four members playing an ER 
game, drivers were the most anxious members of the group and those less likely to participate in group 
decision making and expressions of leadership. Greater participation came from the empaths and 
whoever else was more likely to talk to the empath. Dominance issues, which on the surface would 
appear related to drivers’ behavior, could be explored further in groups with these constructs. 
Similarly, anxiety issues, which were prominent among the drivers, should also be explored further as 
they are likely to affect the tenor of the entire group’s processes. 

In conclusion, the early writers were quite correct that nonlinear processes abound in group dynamics. 
Hopefully, the development of the synchronization coefficient can propel those investigations further 
with an eye toward an integrated theory of group dynamics, communication, and performance. It 
would eventually be helpful to consider how different types of group data lend themselves to different 
types of sequence analysis that have been proposed in other contexts (Cornwell, 2015; Gottman & 
Roy, 1990; Magnusson, Burgoon, & Casarrubea, 2016) and to then consider how different data and 



analytical strategies can identify underlying nonlinear processes (Guastello & Gregson, 2011), 
particularly when qualitative and categorical data are used in conjunction with synchronization 
phenomena. 

Declaration of Conflicting Interests 
The author(s) declared no potential conflicts of interest with respect to the research, authorship, 
and/or publication of this article. 

Funding 
The author(s) received no financial support for the research, authorship, and/or publication of this 
article. 

Notes 
1.Raw observations Xi are transformed to z by subtracting the lower limit of X (lowest observed value) 

and dividing the result by the standard deviation of X. For further background on the use of 
location and scale values in nonlinear modeling, see Guastello and Gregson (2011). 

2.The inclusion of extraneous elements in a nonlinear regression model could compromise the 
apparent significance of a theoretically meaningful term. Of further importance when 
interpreting results, including an extraneous term could actually make the R2 go down, unlike 
what happens with multiple linear regression. For further explanation of the differences 
between the two types of regression procedures, see Guastello and Gregson (2011). 

3.An autocorrelation function can become nonlinear for various reasons such as autocorrelation of 
residuals, dependent errors of other forms, and a multiplicity of lag terms (Guastello & 
Gregson, 2011; Ozaki, 2012). The number of lag components can increase considerably in 
models containing two or more time series; the larger the number of parameters, the smaller 
the chance for replicating the model on another data set. 
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