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On Characterizations and Infinite Divisibility of
Recently Introduced Distributions

G. G. Hamedani

Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI

Abstract

We present here characterizations of the most recently introduced continuous univariate
distributions based on: (i) a simple relationship between two truncated moments; (ii) truncated
moments of certain functions of the 1th order statistic; (iii) truncated moments of certain functions of
the nth order statistic; (iv) truncated moment of certain function of the random variable. We like to
mention that the characterization (i) which is expressed in terms of the ratio of truncated moments is
stable in the sense of weak convergence. We will also point out that some of these distributions are
infinitely divisible via Bondesson’s 1979 classifications.
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1. Introduction

In designing a stochastic model for a particular modeling problem, an investigator will be vitally
interested to know if their model fits the requirements of a specific underlying probability distribution.
To this end, the investigator will rely on the characterizations of the selected distribution. Generally
speaking, the problem of characterizing a distribution is an important problem in various fields and has
recently attracted the attention of many researchers. Consequently, various characterization results
have been reported in the literature. These characterizations have been established in many different
directions. The present work deals with the characterizations of sixty five new univariate continuous
distributions. These characterizations are based on: (i) a simple relationship between two truncated
moments; (ii) truncated moments of certain functions of the 1st order statistic; (iii) truncated moments
of certain functions of the nth order statistic; (iv) truncated moment of certain function of the random
variable.

The presentation of the content of this work is as follows: In Section 2, we present our
characterization results in four subsections representing directions (i/)—(iv) mentioned above. Infinite
divisibility is an important property which is shared by certain distributions. Section 3 is devoted to
infinite divisibility of some of these distributions via Bondesson’s 1979 classifications. Section 4 deals
with a very short concluding remarks. For further information regarding the domain of applicability of
the distributions mentioned in the following section, we refer the interested readers to their
corresponding papers cited in the references.

2. Characterization Results

In this section we present characterizations of sixty five recently introduced univariate
continuous distributions in four different directions (i)—(iv) mentioned in the Introduction.

2.1. Characterizations based on two truncated moments

In this subsection we present characterizations of these distributions in terms of a simple
relationship between two truncated moments. We like to mention here the works of Galambos and
Kotz [29], Kotz and Shanbhag [43], Glanzel ([31, 32]), Glanzel et al. [33], Gldanzel and Hamedani [34] and
Hamedani ([36]—[38]) in this direction. Our characterization results presented here will employ an
interesting result due to Glanzel [31] (Theorem 2.1.1 below).

THEOREM 2.1.1. Let (2, F, P) be a given probability space and let H = [a, b] be an interval for
somea < b(a = —oo,b = oo might as well be allowed). Let X : ) — H be a continuous random
variable with the distribution function F and let g and h be two real functions defined on H such that

ElglX)|X 2 x] = E[h(X) | X = x]n(x), X € H,

is defined with some real function 1. Assume that g, h are continuous functions,  has continuous
derivative and F is twice continuously differentiable and strictly monotone function on the set H.



Finally, assume that the equation hn = g has no real solution in the interior of H. Then F is uniquely
determined by the functions g, h and n, particularly

X
n'(w)
F(x) = J- C exp(—s(u))du,
J " In@h@) ~ g P(=sw)
where the function s is a solution of the differential equation s' = % and C is a constant, chosen to

make [ dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated moments
is stable in the sense of weak convergence, in particular, let us assume that there is a sequence {X,,} of
random variables with distribution functions {F,} such that the functions g,,, h, andn,, (n € N)
satisfy the conditions of Theorem 2.1.1 and let g,, — g, h, — h for some continuously differentiable
real functions g and h. Let, finally, X be a random variable with distribution F'. Under the condition
that g,,(X) and h,,(X) are uniformly integrable and the family {E,} is relatively compact, the sequence
X, converges to X in distribution if and only if n,, converges ton, where

_ElgX) X
CE[hX) | X

x]

n(x)

=
= x|

This stability theorem makes sure that the convergence of distribution functions is reflected by
corresponding convergence of the functions g, h and n, respectively. It guarantees, for instance, the
‘convergence’ of characterization of the Wald distribution to that of the Lévy—Smirnov distribution if
a — o, as was pointed out in Glanzel and Hamedani [34].

A further consequence of the stability property of Theorem 2.1.1 is the application of this
theorem to special tasks in statistical practice such as the estimation of the parameters of discrete
distributions. For such purpose, the functions g, h and, specially, n should be as simple as possible.
Since the function triplet is not uniquely determined it is often possible to choose 1 as a linear
function. Therefore, it is worth analyzing some special cases which helps to find new characterizations
reflecting the relationship between individual continuous univariate distributions and appropriate in
other areas of statistics.

REMARK 2.1.2. In Theorem 2.1.1, the interval H need not be closed since the condition is only
on the interior of H.

We will take up the distributions discussed in this section in the alphabetical order rather than
their order of importance. In expressing these distributions we will use the same symbols for the
parameters as employed by the original authors. We shall use f( -) for pdf (probability density
function) and F( -) for its corresponding cdf (cumulative distribution function). The advantage of this
kind of characterization is that the cdf, F( - ) does not have to have a closed form as long as its
corresponding pdf has a closed form.

1) Beta Pareto (BPa) Distribution (Akinsete et al., [1]): (2.1.1)



k
fx)= f(x; a,p,0,k) = W[l — (x/0)7 1Bt (x/0) k21 x > 9,

and

(2.1.2) F(x) = F(x; a,B,6,k) = f(li)_kB(;ﬁ)u“‘l(l— WP ldu, x > 9,
x ,

where a, 8, 8, k are all positive parameters and

1

B(a,p) = J-x“‘l(l — x)B1 dx.

0

PROPOSITION 2.1.3. Let X : 2 — (60, ) be a continuous random variable and let h(x) =
o\ k(a=1) o\ —k 1-B
%) [1 - () ] and
2-6

o= [t -G) ]

forx € (6,). The pdf of X is (2.1.1) if and only if the function n defined in Theorem 2.1.1 has the
form

nx)=1 - %(f)—k, x > 0.

PROOF. Let X have density (2.1.1), then

(1 = FOO)ELR() | X 2 2] = — (f)_k x>0
- B(a,p)\0/ '
and
1 xy k(a—1) x\—k
(1 - F(x))E[g(X) |X = X] ZW(E) [2 - (5) ], x >0,
and finally
a—2 —kq1-B
n(x)h(x) — gx) = %(g)k( : [1 — (g) k] > 0 for x > 6.
Conversely, if n is given as above, then
o M@R@ kg
e e e B O A
and hence
s(x) = kln (%),x > 6.

Now, in view of Theorem 2.1.1, X has density (2.1.1).



COROLLARY 2.1.4. LetX : 2 — (6, ) be a continuous random variable and let h(x) be as in
Proposition 2.1.3. The pdf of X is (2.1.1) if and only if there exist functions g and n defined in Theorem
2.1.1 satisfying the differential equation

n'(x)h(x) _ k sx\71
n()h(x) — gx) 5(5) ’

REMARKS 2.1.5. (a) The general solution of the differential equation in Corollary 2.1.4 is

x > 0.

k 1-B

=) -] g(g)_(kaﬂ) [1—(2)_k] g(dx + D|,

forx > 6, where D is a constant. One set of appropriate functions is given in Proposition 2.1.3 with

D =-
2

(b) Clearly there are other triplets of functions (h, g, n) satisfying the conditions of Theorem
2.1.1. We presented one such triplet in Proposition 2.1.3.

A Proposition, a Corollary and Remarks similar to Proposition 2.1.3, Corollary 2.1.4 and Remarks
2.1.5 can be stated for each of the following remaining distributions. For each of these distributions,
however, we give below, the pdf f, cdf F and functions h, g, corresponding to Theorem 2.1.1.

2) Beta Burr XII (BBXII) Distribution (Paranaiba et al., [63]):

FO) = 06 abycs,k) = et 1+ ({)C]_(kb“) § {1 . G)C]_k}a—l,

s¢B(a,b) s
x > 0Oand
1—[1+(§)C]_k
- . - — 1 a-1 — b-1
F(x) = F(x; a,b,c,s,k) Il_[1+(§)c]—k (a,b) Ba.b) J- w1 (1 - w)’ dw,

1-a

c1—k
0, where a, b, ¢, s, k are all positive parameters. Taking, e.g., h(x) = {1 - [1 + G) ] } [1 +

=
v

—kb

o and g(x) = {1 - [1 + (E)C]_k}l—a, we haven(x) = 2 [1 + (f)c] forx > 0.

)]

v IR

3) Beta-Cauchy (BC) Distribution (Alshawarbeh et al., [4]):
fQ a,B,4,0)

A 1
nB(a B) [2
B-1 1

1 x — O\1%71
— arctan ( )]
T
X
X [— — arctan ( )] 2+ (x - 0)2'

A




x € R, where @, 3,1 all positive and & € R are parameters. Taking, e.g., h(x) = E +

% arctan (#)]B_l and g(x) = h(x) E +% arctan (#)]a, we will have n(x) =

%{1 + [E+% arctan (x;l—g)]a}, ford € R.

4) Beta-Dagum (BDa) Distribution (Domma and Condino, [25]):

fx) = f(x; B,A,6,a,b) = ij6b)x_(6+1)(1 n /—Lx_(s)—aﬁ—l [1 _(+ Ax“s)_ﬂ]b_l’

x > 0andp,A,8,a,b are all positive parameters. Taking, e.g., h(x) = [1 - (1 + Ax‘S)_ﬁ]l_b and
glx) = h(x)(l + Ax‘S)_aB, we will have n(x) = %{1 + (1 + Ax‘S)_aB}, forx > 0.

5) Beta Exponentiated Pareto (BEP) Distribution (Zea et al., [75]):

This distribution is the same as (BGP) distribution of (8) below.

6) Beta Generalized Half-Normal (BGHN) Distribution (Pescim et al., [65]):

f&x) = f(x; a,b,a,6)

a2b b—1

- e (G b6 o))

x > 0and

zrb[(%)a]— 1

1
P = Fx 0,5,0,6) = 5o f 011 — @)l ldw,  x 20

0

where a, b, a, 8 are all positive parameters and @ is the cdf of the standard normal distribution. Taking,

et h() = 20[(2)]- 1} and g0 = h0)0 [(2) ] we have () = {1 + b0 [(2)]}for
x > 0.

7) Beta Generalized Pareto (BGP) Distribution (Mahmoudi, [50]):

B 13 @1
1 — (?)_1 _ z
) = f a,B0,u8) =ml1 _M] ) _Il B ml |
x > pand
F(x) = F(x’ alﬁl O—r.urf) = I 1(“!)8)1 X g u

[1 - we
o

where a, 8, 0 all positive, u € Rand & € R{0} are parameters. Taking, e.g., h(x) =

1-a

1
{1— [1—@]6} and g(x) = h(x) [1—@],we have n(x) =% [1—@]forx > U



8) Beta Generalized Pareto (BGP) Distribution (Nassar and Nada, [57]):

b-1

14 -(B+1 e i x\~B1Y
R R et M = M R EI [ 9 R

b-1
-B Y
x > aanda,pB,y,a,b are all positive parameters. Taking, e.g., h(x) = {1 — [1 — (g) ] } and

—B1%Y

g(x) = h(x) [1 — (g) ﬁ] , we haven(x) = %{1 + [1 — (g)_ﬁry} forx > a.

9) Beta Log-Logistic (BLLog) Distribution (Lemonte, [44]):

B/ (/)

f) = flx; a,B,ab) = B(a,b)[1 + (x/a)B]a+b’

x>0,

and

F(x)= F(x; a,f,a,b) =1 5 (a,b),x =20

aB+xB
where a, 8, a, b are all positive parameters. Taking, e.g., h(x) = x‘“ﬁw[l + (x/a)ﬁ]_z,g(x) =
x‘“ﬁw[l + (x/a)ﬁ]_l, we have

(a+b+1)

@+ D) [1 + (x/a)ﬂ]

n(x) =

forx > 0.

10) Beta Power (BP) Distribution (Cordeiro and Brito, [16]):

F@) = fGi @ fiab) = s @PE0“ L - (09,0 < x <
and
(Bx)*
F(x) = F(x; a,B,a,b) = 1 t1(1 — )’ 1dt,0 £ x él
B(a,b) ) I

where a, 8, a, b are all positive parameters. Taking, e.g.,

hG) =[1 - B>, gl =1[1 - B0,

we have n(x) = 2[1— (Bx)¥] for0 < x < r

11) Compound Exponentiated Logarithmic (CEL) Distribution (Hakamipour et al., [35]; Personal
Communication):

_a = pgi MG )]
(logp) log{p + (1 — p)[G(x)]*}’

f)= f(x a,p) = x>0,



and

F(x) = F(x; a,p) = 1 —

ogp 8 + (1 = MG} x 20

wherea > 0,0 < p < 1 are parameters and G, (x) is a cdf on [0, o) with the corresponding pdf
91(x). Taking, e.g., h(x) = {p + (1- p)[G:(x)]*}and g(x) = [G:()]*{p + (1 - p)[G1(x)]*}, we
have n(x) = %{1 + [G,(x)]*} forx > 0.

12) Compound Rayleigh (CR) Distribution (Khan, [42]):

Y& x

fO) = flv,8) = —, x>0,
(2 + x1z™
and
24
Fx)=Fxyd=1-—""-, xZ0
(&% + x?)2
wherey > 0andé > 0 are parameters. Taking, e.g., h(x) = (¢ + x2)§—2 and g(x) =

2 2\5-1 _ 2 2
(&% + x%)2 ", wehaven(x) = 2(&* + x*)forx > 0.
We can also characterize this distribution based on the hazard function as follows: The random
variable X has a CR distribution if and only if its hazard function A(x) satisfies the following differential

. , 2x _ Y
equation A'(x) + @ixd) Alx) = (£2+x2)

13) Exponentiated Exponential-Geometric (EEG) Distribution (Louzada et al., [48]):

aAHe‘Ax(l — e"b‘)a_1
[1-@0-6000->0- e’

f) = fx; a,4,0) = x>0,

and

1-[1-(1 — e™)] =0

F(x) = F(x; a,1,0) = -1 -0)(1 - (- e™a)] =

wherea > 0,4 > 0,0 < 6 < 1 are parameters. Taking, e.g., h(x) = [1 -(1-
9)(1 - (1 - e"b‘)a)]z and g(x) = h(x)(l - e"lx)a, we have n(x) = %[1 + (1 - e"lx)a] forx >
0.

14) Exponentiated Generalized Inverse Gaussian (EGIG) Distribution (Lemonte and Cordeiro,
[46]):

f) = fx; Lwé&B)= CPx* T exp[— (Ex + wx )] x {1 — CT(A,&x; Ew)}FT,
x > 0and

F(x) = F(x; L w,&B) ={1 — CT(L,éx; Ew)}P~1,  x20



where 4, w, &, B are all positive parameters, C is a normalizing constant and I'(4, éx; éw) =
ffj tA~1e=(t+80t™) gt Taking, e.g., h(x) = 1and g(x) = {1 — CT (4, &x; w)}?, we have n(x) =

% [1 +{1- CT, &x; Ew)}F~] forx > 0.

15) Exponentiated Generalized (EG) Distribution (Cordeiro et al., [17]):

f) = fl aB) = afg (1 -G ' [1-{1-6,)}1", xeR,
and
FO)=F(x ap)=[1 -{1 - G(x)}*]’, xeR

where a, 8 are positive parameters and G, (x) is a cdf with support in R and with the corresponding
pdf g, (x). Taking, e.g, h(x) = [1 —{1 =G, (x)}*]* Pandg(x) = [1 — {1 — G, (x)}*]*>7F, we
have n(x) = % [1 —{1 —G,(x)}*]forx € R.

Some Special Cases of Exponentiated Generalized Distribution:

(/) Exponentiated Generalized Fréchet Distribution:

G,(x; Ao) = exp{— (a/x)l},

x 2 0and A, o are positive parameters.

(if) Exponentiated Generalized Normal Distribution:

X — U
Gy (x; u,0) = CD( - ),
x € Ru € Ro > 0and®( - )is cdf of standard normal random variable.

(iii) Exponentiated Generalized Gamma Distribution:

1
Gi(x; a,b) = @Y[G; bx],

x 2 0 and a, b are positive parameters.

(iv) Exponentiated Generalized Gumbel Distribution:

G 1) = exp {—exp (~ZL))

x € Randu € R,0 > 0 are parameters.

16) Exponentiated Generalized Gamma (EGG) Distribution (Cordeiro et al., [21]):

-1 A-1
= s =g 6) oG Yo [ )

x>0,

-

and



1 BN
F(x) = F(x; a,B,k, 1) ={mylk,(a) l} , x=0

where a, 8, k, A are all positive parameters and y[k; t] = fot uk~le % du.

Taking, e.g., h(x) = (3)3(1—10 {ﬁy [k, (i)ﬁ]}l—/1 and

B-Kk) (1 I
& )

B
we haven(x) = 1+ (g) forx > 0.

17) Exponentiated Lomax Poisson (ELP) Distribution (Ramos et al., [68]):
flx) = fx; a,ﬁ;%il)
= (@A + B TL — (A + O]

et — 1
xexp{ —A[1 — (1 + Bx)77]%},

x > 0,and

A
F(x)= F(x; a,B,v,1) = ;—_1[1 —exp{-A[1-(1 + Bx)77]9}], «x=0,

where a, 8,7, A are all positive parameters. Taking, e.g., h(x) = exp{A[1 — (1 + Bx)7¥Y]*}and
gx) = h)[1—-@A + Bx)7Y]% wehaven(x) = %{1 + [1-1 + Bx) Y%} forx > 0.

18) Extended Lomax (EL) Distribution (Lemonte and Cordeiro, [45]):

f&) = f(x a,B,nac0)
_ caf® g\ B ")
" B(ac™L,n + DB + x)”‘“{1 _<,8 + x) } xll _{1 _(ﬁ + x) }l

x > 0,and
F(x) = F(x; a,B,1m,a,c) = I{l_ﬁa(ﬁ_l_x)—a}c(ac_l,]] + 1), x=20
ﬁ a~c1~ M
where a, 8,1, a, ¢ are all positive parameters. Taking, e.g., h(x) = [1 — {1 — (B +x) } ] and
_ ,B a~\a _ 1 B a\a
glx) = h(x){l —([Hx) } , we have n(x) = > [1+{1 —(ﬁ+x) } ]forx > 0.

19) Extension of the Exponential (EE) Distribution (Nadarajah and Haghighi, [53]):
f(x)= flx; a,2) = ald(1 + )% Lexp{l — (1 + Ax)?%}, x >0,
and

F(x)= F(x; o, 1) = 1 — exp{l — (1 + Ax)%}, x=20



where a and A are positive parameters. Taking, e.g., h(x) = 1and g(x) = (1 + Ax)%, we have
nx)=1+ (1 + Ax)*forx > 0.

20) Four-Parameter Generalized Gamma (FPGG) Distribution (Ali et al., [3]):

X y—-1
— — '3 a’ _ a—1 —ﬂ(x 6) 'Ba a-1,-B(t-0)
FO) = £ @ y,0) = s (6 = 0) x Jr(a) Ya-1g-B(E=6) gy
x>0,
and
x @ y—1
F(x) = F(x; a,B,7,0) = L Fﬂ(a) (t — )@l Blt-0) dt] , x=0

where a, B,y all positive and 0 are parameters Without loss of generality we take 8§ = 0. Then taking,

e.g., h(x) = [f B a-1p-pt dt] and g(x) = [fo ta-le-Bt dt] 7 , we have n(x) =

0 I'(a) I'(a)

{ [OF()tal ‘ﬁtdt]}forx>0.

21) Gamma Pareto (GP) Distribution (Alzaatreh et al., [6]):

1/c

fe = @8,c)= c"‘;(a:)x_1 (g) [log (g)]a_l' x >0,

and

F(x)= F(x; a,0,c) = %y{a,c‘l log(%)}, x=0

-
where a, 6, c are all positive parameters. Then taking, e.g., h(x) = x~! [log (g)] and g(x) =
x 1-a
-1 [log (5)] ,we haven(x) = (c+ Dx forx > 6.
22) Gamma Extended Fr’echet (GEF) Distribution (da Silva et al., [23]):

f&) = f(x; a,4,0)

T e[ @ - e[ O]
a~ a—1
o -l
forx > 0Oand

1 o\ A
F(x) = F(x; a,4,0) =my<a,—alogl1 - exp(—(;) )D,xgo




1-a

2 a
where a, A, g are all positive parameters. Taking, e.g., h(x) = {— log [1 — exp (— (%) )] } and

g(x) = h(x) {1 - exp [— (%)A]}, we have n(x) = ﬁ{l - exp [— (g)l]} forx > 0.

23) Gamma Extended Weibull (GEW) Distribution (Nascimento et al., [56]):
o

%) hy (c; ©)[Hy (; )1°7* exp[— aHy (x; €)],

fG) = fx 6,a,8) =

fora < x < band
F(x) = F(x; §,a,8) = y[0,aH.(x; ©)],a=x=b

where &, a are positive and ¢ is a vector of parameters. H, (x; &) corresponds to a special distribution
whose cdf is given by G (x; §,a,&) = 1 - exp[— aH,(x; )] and hy(x; &) = ;—le(x; £). We like to

mention here that H; (x; &) is a non-negative function of x satisfying the following conditions
lim,_,H,(x; &) = 0andlim,_,H,(x; §) = woandyd,[ aH.(x; §)] =

[T(6)]™? faaHl(x;f) t5-1e~t dt . Taking, e.g., h(x) = [H;(x; )]1% and g(x) = [Hy(x; )]%7%, we
haven(x) = Hy(x; &) + ifora < x < b.
24) Gamma Weibull (GW) Distribution (Razaq, [69]):

x)= f(x; B,v,u, b k) = kx? +B-2 = (wx+bxF) x>0,
f)= flx By.u

and

X

F(x) = F(x; B,y,u b k) = kfu“ﬁ‘ze‘(’“‘”’”ﬁ) du, x20
0

where B,v, i, b, k are all positive parameters. Taking, e.g., h(x) = x2 =B ebxf 3ng glx) =

x3V=Bebf \ve have n(x)=x + ulforx > 0.
25) Generalized Beta Generated (GBG) Distribution (Alexander et al., [2]):

f() = f(x; 7,a,b,¢) = c[B(a,b)] ' g(x; ©)[G(x; T)]°7 x {1 —[G(x; )]},

where a, b, c are all positive parameters, G(x; 7),x € £ is parent cdf with parameter vector 7 and pdf
g(x; 7). Taking, e.g., h(x) = {1 —[G(x; T)]°}*?, and g(x) = h(x)[G(x; T)]%, we have n(x) =
%{1 + [G(x; T)]% Yorx € 2.

26) Generalized Class (GC) of Distributions:

[QEI* 1 — QWIFTQ'(x), xE€ R,

1
)= f0s @) =5

and



Q(x)

1
j t 11 — )f1dt, x€eR

F(x) = F(x; a,B) =B(a )
0

where a and  are positive parameters and Q (x) is an absolutely continuous cdf. Taking, e.g., h(x) =

[Q()]*™® and g(x) = [Q()]*™* [1 - Q(x)], we have n(x) = % [1-Q()]forx € R.

XrH
g
R,0 > 0and ®( * ) is the cdf of standard normal random variable. The properties and other

important features of this special case have been discussed in (Eugene et al., [28]).

An interesting special case of the above distribution appears to be when Q(x) = @ ( ),u €

27) Generalized Exponential Model (GEM) Distribution (Mabrouk, [49]):

f(x)= f(x; §6,v,7,p) = cx§+8 o= (vxd+xP) x>0,
where all five parameters are positive and c is the normalizing constant. Taking, e.g., h(x) =

x5 1™ and g(x) = x$*5-1e™” we have n(x) = x% + %forx > 0.

Some special cases of (GEM) Distribution given in (Mabrouk, [49]) are: Gamma; Weibull;
Maxwell; Half-Normal; Chi-square; Rayleigh; Inverse Gaussian; Generalized Inverse Gaussian.
28) Generalized Log-Logistic (GLL) Distribution (Hanagal and Pandey, [39]):
fx) = flx; a,y,1) = ayA®?x"1(1 + (Ax)Y)"*71, x >0,
and
F(x)= F(x; a,y,4) = (1)1 + (Ax)¥)7¢, x=0
where @, > 0,y = 1 are parameters. Taking, e.g., h(x) = xY1~® and g(x) = h(x)xY, we have

fora > 1,n(x) = (a—11)/17 (1 + (Ax)Y) forx > 0.

29) Generalized Logistic Type | (GLTI) Distribution (Johnson et al., [41]):
fx)= f(x; @) = ae™*(1 + e™™)7 %71, x € R,
and
F(x)= F(x; a) = (1+e¥)77, x€ER

where ¢ > 0 is a parameter. Taking, e.g., h(x) = land g(x) = (1+e7*)™%, we haven(x) =
%{1 + (1+e*) %} forx € R.

30) Generalized Modified Weibull (GMW) Distribution (Carrasco et al., [13]):

afx¥ 1y + Ax)exp{ix — ax exp(ix)}
[1 — exp — axY exp (Ax)_}]*~#

f(x): f(x; 0(,,3,)/,1)= ) x>0,

and

F(x)= F(x; a,8,y,1) = 1 — [1 — exp(— ax? exp(Ax))}]%,x = 0



wherea > 0,8 > 0,y 2 0,4 = 0 are parameters. Taking, e.g., h(x) =
[1- exp(— ax” exp(1x))}]*~# and g(x) = h(x) exp(1x), we have n(x) = % + x¥ exp(Ax) forx >
0.

31) Generalized Weibull Linear (GWL) Distribution (Prudente and Cordeiro, [67]):

f0) = fos 1) = cprtxte(3) x50

and

x\®
Fx)= F(x; 1) =1 — (), x=zo0

where ¢, A are positive parametersand C = el™",y = 0.577215. .. is the Euler’s constant. Taking,
e.g, h(x) = 1and g(x) = x?, wehaven(x) = x® +C~'A? forx > 0.

32) Inverted Gamma-Inverted Weibull (IGIW) Distribution (Razag, [69]):
FO) = fO Boa,u b k) = kx~@B2e=(wx7+0xF) 5

and
X
F(x) = F(x; B,a,p, b, k) = kju‘“‘ﬁ‘ze‘(””_l”’"_ﬁ) du, x20
0

where B, a, , b, k are all positive parameters. Taking, e.g., h(x) = x@+Bebx™F gng glx) =

x@+Be=mx 1 +bx™F e have n(x) = %1 + e # forx > 0.
33) Inverted Weibull (IW) Distribution (Razaq, [69]):

FO) = f; a,B) = apxle=>? x>0,

and
X
F(x)= F(x; a,p) = j aﬁu‘“‘le‘“"_ﬁdu, x=0
0

_ax_ﬁ

wherea > 0,8 > 0 are parameters. Taking, e.g., h(x) = x*F and g(x) = x*Pe , we have

n(x) = %(1 + e‘“x_B) forx > 0.
34) Inverted Weibull-Gamma (IWG) Distribution (Razagq, [69]):

x)= f(x; B,a,u b k) = kx@—B-2¢=(wx+bxF) x >0,
f&x) = f(x; Ba,u

and

b
F(x) = F(x; B,a,u,b, k) = kju“‘ﬁ‘ze‘(’“”b“_ﬁ) du, x=0
0



where B, a, i, b, k are all positive parameters. Taking, e.g., h(x) = x
—a+ﬁ+3ebx_

X

—a+B+2,bx7F g g(x) =
# we have n(x)=x + utforx > 0.
Special cases of IWG as appeared in Razaq, [69]:
i) Two-parameter IW distribution with pdf,
fO) = f(x; B,6) = Box—F1e=*", x>0

ii) The inverse Maxwell distribution with pdf,

V2 x?

x te 297

Jng? '

iii) The inverse half-normal distribution with pdf,

x> 0.

fG) = flx; ¢) =

fx) = flx; @) = %X‘Ze_x_?zrd)2 ,  x>0.

iv) The inverse Rayleigh distribution with pdf,
x) = f(x; 8) = 20x 37077 x > 0.
flx) = f(

35) Kumaraswamy Generalized Gamma (KGG) Distribution (Pascoa et al., [64]):

fx)= f(x; a,k,A,¢,7)

and

where a, k, A, ¢, T are all positive parameters. Taking, e.g., h(x)

Tk—1

APt x
- am; (E)
x>0,

F(x) = F(x; a,k, 4, 9,7) = ll _{%V[k, (E)T]}’ll x=20

land g(x) =

1- {ﬁy [k, (g)T]}A, we have n(x) = ﬁ 1 - {ﬁy [k, (i)T]}Al forx > 0.

fGo) = flx a,b,a,u)=%e o exp{—ae 7 }X[l - eXp{‘“e_@}]

and

36) Kumaraswamy Gumbel (KGu) Distribution (Cordeiro et al., [19]):

b-1

_(x=w) (x=w)

-

_G=wy 1P
F(x) = F(x; a,b,o,u) =1 —[1 — exp{—ae o }] , x € R

ol b @) [ - @]



@-wy 11P
where a, b, o (all positive) and u € R are parameters. Taking, e.g., h(x) = [1 - exp {—ae_ o }]

D) D)

2-b
and g(x) = [1— exp{—ae o }] , we have n(x) = % [1— exp{—ae o }]forx € R.

37) Kumaraswamy Log Logistic (KLL) Distribution (de Santana et al., [24]):

a<b-1

pe0= st v =g e i (] e[ - (0 @) T

a
x>0,

and

a\b

F(x) = F(x; a,y,ab) = 1 —{1 —[1 —(1 +(§)y)_1l } . xZ0

where a, y, a, b are all positive parameters. Taking, e.g.,

e o) )

and

a<1-b

b

A more general case of Kumaraswamy Log Logistic distribution was introduced by Paranaiba et
al. ([62]) called “Kumaraswamy Burr XII” distribution with cdf F given below

N
F(x) = F(x; a,v,k,a,b) = 1 {1 —ll —(1 +(§)y) kl } ,x 0

where the extra parameter k is positive as well. For k = 1, we have cdf of Kumaraswamy Log Logistic
distribution. The characterization of this generalized version will be similar to the above.

sor= e T -f-(+ )

we have n(x) = ﬁ [1 + (g)y]_l forx > 0.

38) Kumaraswamy Modified Weibull (KMW) Distribution (Cordeiro et al., [15]):

fx)= f(x a,v,4ab)
= aba(y + Ax)x¥ {exp[Ax — ax? exp(Ax)]} X [1 — exp{— ax exp(1x)}]¢1
x {1 — [1 — exp{— ax” exp(Ax)}]*}*~1,

forx > 0and

F(x)= F(x; a,y,A4,a,b) = 1 —{1 —[1 — exp{—ax” exp(1x)}]¢}*71, x=0



where a,v, a, b are all positive and A = 0 are parameters. Taking, e.g., h(x) =
{expax? exp(Ax)H1 - [1 - exp{— ax? exp(Ax)}|*}* P and g(x) = h(x)[1 —
exp{—ax? exp(1x)}]%, we have n(x) = %{1 + [1 — exp{—ax? exp(Ax)}]*} forx > O.

39) Kumaraswamy Pareto (KwP) Distribution (Bourguignon et al., [12]):

bk Bk ka-1 kb1
fx) = f(x; ,[i',k,a,b)=axk—+ﬁ1[1 _<§> l {1 —[1—({%) l } ,x > B,
and
k19)?
F&x) = F(x; B kab) = 1 —{1 —[1—(%) ] } . xZpB
b-1

k a
where B, k, a, b are all positive parameters. Taking, e.g., h(x) = {1 - [1 - (g) ] } and g(x) =

a

k1 k
h(x) [1 — (g) ] , we have n(x) = %{1 + [1 — (g) ] }forx > B.
40) Kumaraswamy Quadratic Hazard Rate (KQHR) Distribution (Elbatal and Aryal, [27]):
fx)= f(x; a,0,8,a,b)
—(ax+2x2+£x3)
= ab(a + Ox + Bx?)e 27 '3

R

X

forx > 0and
_ 0.2.8,3\1" b
F(x)= F(x; @,6,B,a,b) = 1 —{1 —Il — e (ax+2x t3x )l } ' x =0
—(ax+gx2+Ex3) n'r
where a, 8, B, a, b are all positive parameters. Taking, e.g., h(x) = {1 - [1 -e 27 '3 ] }

2 B a 2 B a
and g(x) = h(x) [1 - e_(ax+5x2+?x3)] , we have (x) = %{1 + [1 - e_(ax+5x2+?x3)] }forx >

0.

Special cases of KQHR mentioned in Elbatal et al. (see [27]):

Quadratic Hazard Rate; Kumaraswamy Linear failure rate; Kumaraswamy Rayleigh;
Kumaraswamy exponential; Linear failure rate; Rayleigh and Exponential.

41) Log [-Birnbaum-Saunders (LBBS) Distribution (Ortega et al., [60]):



f&) = f(x; a,b,a,p,0)

2 cosh(— & 2 —u\?
\/_Bga b)oc) exp {_ ﬁ(sinh (¥)> }

x [q: Gsinh (Z = “))la_l [1 —® Gsinh (Z - “))lb_l,

F(x)= F(x; a,b,a,p,0) =1 ,
CD(asmh( > )

where a, b, a, o are all positive and u € R are parameters and @ is the cdf of the standard normal
1-b a
distribution. Taking, e.g., h(x) = [1 - o (% sinh (%))] and g(x) = h(x) [CD (% sinh (%))] ,

we have n(x) = %{1 + [CD (g sinh (%))]a} forx € R.

x € Rand

>(ab) x€ R

42) Log Beta Weibull (LBW) Distribution (Ortega et al., [61]):

a—1

f(x) = f(x; a,b,o,u) = —JB(la, ) exp {(%) — bexp (x ; Il)} { exp [—exp (x - ﬂ)]} '

forx € R and

F(x) = F(x; a,b,o,u) = I{l—exp[ exp( )]}(a b), x€ R

where a, b, g are all positive and u € R are parameters. Taking, e.g., h(x) = {1 -
— 1-a -
exp [— exp (%)]} and g(x) = h(x)exp (xo ) we haven(x) = = + exp( )forx € R.

43) Log-Burr XII (LBXII) Distribution (Silva et al., [70]):

£ = £ ko = wexp () 1+ e (B
x € Rand

F(x) = F(x; kau)—l—[1+exp( ;M)] , xER

_\1-1
where k, o (both positive) and u € R are parameters. Taking, e.g., h(x) = [1 + exp (%)] and

g(x) = 1, we haven(x) = [1 + exp( ;“)] forx € R.
44) Log-Dagum (LDa) Distribution (Domma and Perri, [26]):

fx)= f(x; B,A,6) = ﬁA(Se_‘Sx(l + Ae‘Sx)_ﬁ_l, x € R

and



F(x) = F(x; B,A,6) = (1 +/19‘5x)_ﬁ, xER

where 3, 4,8 are all positive parameters. Taking, e.g., h(x) = 1and g(x) = (1 + Ae“sx)_ﬁ, we have
n(x) = %{1 + (1 +Ae‘5x)_ﬁ} forx € R.

45) Log-Exponentiated Weibull (LEW) Distribution (Hashimoto et al., [40]):

fx)= f(x Ao,u = g[l _ exp{_e(x;m}r-lexp I(x;“) ) e@l

x € Rand

RN
F(x) = F(x; A,o,u) = [1 — exp{—e o }] , x € R

@-w)1t=4
where A, g (both positive) and u € R are parameters. Taking, e.g., h(x) = [1 - exp {—e a }] and

(x—p) (x—p)
g(x) = h(x)e v ,wehaven(x) = 1+e o« forx€ R.
46) Log Extended Weibull (LEW) Distribution (Silva et al., [71]):

X —

A
@) = fx Ao,m) = ~exp (—

=)

M) X exp {y + exp (%) + Aet ll — exp [exp(

x € Rand

F(x)= F(x; L,o,u) =1 — exp{le” ll — exp [exp (X;M)”},x €ER

where 4, o (both positive) and 4 € R are parameters. Taking, e.g., h(x) = exp {(Ae” - 3)exp (ﬂ)}

o
and g(x) = exp {(Ae” - 2)exp (x?T”)}, we have n(x) = 2 exp {exp (%)} forx € R.
47) Log-Modified Weibull (LMW) Distribution (Carrasco et al., [14]):
fO) = flx; as,0,p)
= {% + exp(x — u)} X exp {al + (%) +exp(x — u) + %}
X exp [—exp {al + (g) +exp(x — w) + g}],

x € Rand

X —

F(x) = F(x; A,o,u) = 1— exp [—exp{oz1 +( #)+exp(x — u)+g}],x€ R

whereo > 0and aq, 14 € R are parameters. Taking, e.g.,

h(x) = exp {—3 (g) — 3exp(x — y)}



and
g(x) = exp {—2 (%) — 2exp(x — u)},
we have n(x) = 2 exp {(%) + exp(x - y)} forx € R.

48) Marshall-Olkin Extended Lomax (MOEL) Distribution (Ghitany et al. [30]):
f) = fOs a,By)=afy(l + px)7HA + px) — (1 — &)]72, x>0,
and
FxX)= F(x; o,y )=1— a1 + )Y — (1 —a)]™', x=20
where a, 8,y are all positive parameters. Taking, e.g.,
h() =[(1 + px) — (1 — )] ?andg(x) = [(1 + )Y = (1 — )],

we have n(x) = %(1 + Bx)Y - (1- a)forx > 0.

49) McDonald Weibull (McW) Distribution (Cordeiro et al., [18]):

f(x) = f(x; a,b,c,y, )
cyAY _ ~
= xV 1 x exp[— (Ax)Y]{1 — exp[— (Ax)¥]}*?

7(C)

x {1 —[1 = exp[- ()]}

b-1

forx > 0and

a
F(x) = F(x; a,b,c, ]/,A) = I[l—exp[—(/lx)y]]c (Z,b), x=0

cy1-b

where a, b, ¢, v, A are all positive parameters. Taking, e.g., h(x) = {1 — [1 - exp[— (Ax)y]] } , and
g(x) = h(x){1 - exp[— (Ax)Y]}%, we have n(x) = %{1 +1 [— exp[— (Ax)”]]a} forx > 0.

50) New Four-Parameter Lifetime (NFPL) Distribution (Nadarajah et al., [55]):

f&x) = f(x a,b,a,p)

= a(a + bx)(1 — p) o Sxpl-lax + (b/2)x*}3{1 — exp(=[ax + (b/2)x*D}**

{1 —pl1 = {1 — exp(=[ax + (b/2)x*])}*]}? '

x > 0and

{1 — (exp—[ax + (b/2)x*]D}*
— p[1 — {1 — (exp —[ax + (b/2)x*D}*T

F(x) = F(x; a,b,a,p) = 1



x 2 0, where a, b, « (all positive) and 0 < p < 1 are parameters. For simplicity, we take @ = 1.
Then taking, e.g., h(x) = exp{ - [ax + (g) xz]} {1 —-p [ exp (— [ax + (g) xz])]}z and g(x) =
{1 —p [ exp (— [ax + (g) xZD]}Z, wehaven(x) = 1-p [ exp (— [ax + (g) xz])] forx > 0.
51) Perturbed Weibull (PW) Distribution (Mirhosseini and Lalehzari, [52]):

fx) = f(x; a,B, 1) = Aﬁxﬁ‘le‘lxﬁ [(1 —a)+ Zae"lxﬁ], x>0,

and
F(x)= F(x; a,f,A) = 1+ (a — De 2 _ ge=244F x=20

where 8, A (both positive) and —1 = a = 1 are parameters. Taking, e.g., @ # 0,h(x) = 1and
glx) = [(1 -a)+ Zae"“‘ﬁ]_l, we have n(x) = [(1 —a)+ 2ae — /bcﬁ]_1 forx > 0.

52) Skewed Cauchy (SC) Distribution (Behboodian et al., [7]):

Ax
— (1 + ,  x€R,
m(1 + xz)( J1+Q +,12)x2>

f)=flx A=

and

1 1 X1+ (14+2%)x%2 — A
F(x) = F(x; 1) = =+ —arctan \/ ( ) , x€ R
2w J1+ (1+22)x2 — Ax

Ax

-1

J1+ (1+Az)x2) and g(x) -
-1

) , we have n(x) = % E + arctan(x)] forx € R.

where A > 0is a parameter. Taking, e.g., h(x) = <1 +

Ax

J1+ (1+22)x2
53) The Additive Weibull (TAW) Distribution (Lemonte et al., [47]):

arctan(x) (1 +

f(x) = f(x; a,b,c,d) = (abx?™! + cdx? Vexp(— ax? — cx?), x>0,
and
F(x)= F(x; a,b,c,d) =1 — exp(—ax? — cx?),x =0

where a, b, ¢, d are all positive parameters. Taking, e.g., h(x) = 1 and g(x) = exp{ — 2(ax? +

cx®)}, we have n(x) = %exp{ —(ax? + cx%)}forx > 0.
54) The Arc Tan-Exponential Type (ATET) Distribution (Phani et al., [66])

cvl exp [—2/1 tan~! (#)]
2 + (x — w?) '

fG)=flxuv)=

x € R,

and



1 - exp{~[m2 + 22 tan~* (X=2)]}

1 —exp(—2mA) ’

F(x) = F(x; u,v,A) = x€ R

2 exp(—mA)

whereu € R,v,4 > 0 are parametersand c =
1—exp(—27mA)

is the normalizing constant. Taking, e.g.,

h(x) = exp [2& tan™! (%)] and g(x) = h(x) (tan_1 (x ; u)>,

we have n(x) = % E + tan~! (%)] forx € R.

55) The Gamma-Lomax (GL) Distribution (Cordeiro et al., [20]):

a—1

f) = f(x a,pB,a) :I‘(a)(ﬁaﬁ-l- e exp{—alog[ﬁ f_ x]} , x>0,

and

r(o—atog =)
I'(a) ’

where a, ,a > 0 are parameters. Taking, e.g., h(x) = g(x)(8 + x)"tand g(x) =

F(x) = F(x; a,B,a) = x=20

1-a
exp{— alog[%]} , we have n(x) = a7+1 (B + x)forx > 0.

56) The Mc-Dagum (Mc-Da) Distribution (Oluyede and Rajasooriya, [59]):
This distribution is the same as (BDa) distribution in which £ is replaced with cf.

57) The Weibull-G (W-G) Distribution (Bourguignon et al., [11]):

_ _ K 1P K(x; 61
x € R, and
_ . _ K(x; 67
F(x)= F(x; a,B,§) = 1 — exp _alK(x; 3 }, x€ R

where a, 8 > 0 are parameters, K(x; &) is a baseline cdf with corresponding pdf k(x; &), which

K(x; &)
K(x; &)

B
depends on a parameter vector &. Taking, e.g., h(x) = exp {—a [ ] } and g(x) = 1, we have

K(x; &)
K(x; &)

n(x) = 2exp{a[ ]B}forx € R.

58) Three-Parameter Lognormal (TPL) Distribution (Bilkova and Mal3, [8]):

— flx: — 1 _ [log(x — 6) — u]?
f(X) - f(xr ﬂ,O',G) _\/%a(x . H)exp{ 20_2 }, x > 9;




and

log(x —6) —
F(x) = F(x; p0,0) =% - x>0,
0 x=0

where 4,0 € R,0 > 0 are parameters and ®(x) is the cdf of the standard normal distribution.
Taking (for simplicity) 8 = u = 0,0 = 1,h(x) = 1and g(x) = x, we haven(x) =
1/2 [1—d>(logx—1)
1-®(logx)
random variable.

] forx > 0, where @ is the cumulative distribution function of the standard normal

59) Transmuted Additive Weibull (TAW) Distribution (Elbatal and Aryal, [27]):
fx) = f(x; a,B,7,0,1) = (abx~t + yﬁxﬂ‘l)e‘“xe"’xﬁ (1 -1+ 2/19‘“"6‘”3), x>0,
and
F(x)= F(x; a,B8,7,0,2) = (1 — e‘“"g"’xﬁ) (1 + Ae“"xe‘”ﬁ) , x=20
where a, 8,7, 0 all positive and |A| = 1 are parameters. Taking, e.g., h(x) = (1 -1+ 2de —ax? —

yxh )_1 and g(x) = (axe + yxﬁ)(l — A+ 2e —ax? — ]/xﬁ’)_1 ,wehaven(x) = 1+ ax® + yxP
forx > 0.

Special cases of TAW as appeared in Elbatal et al. ([27]):
i) Transmuted modified Weibull (TMW) distribution with cdf,
F(x) = (1 — e‘“x_yxﬁ) (1 + le —ax — yxﬁ), x 2 0.
ii) Transmuted linear failure rate (TLFR) distribution with cdf,
Fix) = (1 — em @)1 4 Qe~ ¥ x 20,
iii) Transmuted modified exponential (TME) distribution with cdf,
F(x) = (1 — e™™")(1 4+ Ae ™YY, x = 0.

iv) Additive Weibull (AW) distribution with cdf,

Fx)=1 - e‘“xg_yxﬁ, x

1\
o

v) Modified Weibull (MW) distribution with cdf,

Fx)=1 - e‘“x‘y"ﬁ, X

1\
o

vi) Modified Rayleigh (MR) distribution with cdf,

Flx)=1 - gax—yx? X

v
o

vii) Modified Exponential (ME) distribution with cdf,



F(x) =1 — e~ ®*77rx, x 2 0.
viii) Transmuted Weibull (TW) distribution with cdf,
F(x) = (1 - e"’xﬁ) (1 + Ae"’xﬁ) , x=0.
ix) Transmuted Rayleigh (TR) distribution with cdf,
Fx)=(1 - e‘sz)(l + Ae"’xz), x = 0.
x) Transmuted Exponential (TE) distribution with cdf,
F(x)= (1 — e ™)1 + 2e77), x = 0.
xi) Weibull (W) distribution with cdf,
Fix)=1 - e v x = 0.
xii) Rayleigh (R) distribution with cdf,
Fx)=1-—e", x20.
xiii) Exponential (E) distribution with cdf,
F(x)=1 — e 7%, x = 0.

60) Transmuted Modified Rayleigh (TMR) Distribution (Merovci, [51]):

2

fx)= f(x; a,1) =% exp(— %)(1 -1+ 2/1exp( xz) ), x>0,

" 202

F(x) = F(x; J,A)=<1—exp(—%>)<1+lexp<— %)), x=0

2\ —1
where ¢ > 0 and |1]| = 1 are parameters. Taking, e.g., h(x) = (1 -1+ 2Aexp (— ;7)) and

and

-1
2
gx) = x? <1 — A+ 21 exp (— %)) ,we haven(x) = x? + 202 forx > 0.

61) Truncated Exponential Power (TEP) Distribution:

1
rkr

)

f(x)= fQ; ur k)= exp{— k(u —logx)"},0 < x < e¥,

and

1 1
F(x) = F(x; u,r, k) = ——y" [;;—k(u —logx)"|,0=x = et

r(7)



where u € R, 1,k (both positive) are parameters and
via; t] = f utle % du.
t

Taking, e.g., h(x) = (u-logx)"1and g(x) = (u-logx)"~le k108" e have n(x) =
% [1 + e klu—logx)" ] for0 < x = e*.We like to mention here that the above distribution is a

truncated version of the distribution introduced by Vianelli ([72, 73]).

62) Truncated-Exponential Skew-Symmetric (TESS) Distribution (Nadarajah et al., [54]; Personal
Communication):

A
fx)= f( A) = T o7 g1(x)e 0™, xe R,

and
1 —_ e_lal(x)

F(x) = F(x; ﬂ)=ﬁ

, x € R

where 4 € Ris a parameter and g, (x) and G, (x) are, respectively, the pdf and cdf of a symmetric
random variable. Taking, e.g., h(x) = e*61™) and g(x) = G,(x)e?®, we have n(x) =
% (1 + Gl(x)) forx € R.
63) Very Skewed Cauchy (VSC) Distribution (Nasseri et al., [58]):
f(x) = f(x; 2) = exp{— Aarctan(x)}, x € R,
and

C s Am
F(x)= F(x; ) = 2(97 — exp{— Aarctan(x)}),x € R

where A > 0is a parameter and C is a normalizing constant. Taking, e.g., h(x) = exp{Aarctan(x)}

and g(x) = arctan(x) exp{A arctan(x)}, we have n(x) = % E + arctan(x)] forx € R.

64) Weighted Generalized Beta of the Second Kind (WGBSK) Distribution (Ye et al., [74]):

fx) = f(x; a,b,p,q,k) = a - _ Lap k-1 [1 N (%)a]—(pﬂl),
b B (p + G.a )
x > 0,and
[ a £\ @~ P+

[roso+ E0- D



where a, b, p, q (all positive) and —ap < k < aq are parameters. Taking, e.g., h(x) =

a p+q-3 ap+q-2 a
x*(1-P)k [1 + (%) ] and g(x) = x*(-P)7k [1 + (%) ] , we have n(x) = 2 [1 + (%) ]
forx > 0.

65) Weibull Pareto (WP) Distribution (Alzaatreh et al., [5]):

f(x)= f(x; B,c,8) = %ﬁ log (g)c_l exp {— <ﬁ log (g))c}, x >0,

and
x Cc
F(x) = F(x; B,c,0) =1 —exp{—(ﬁlog(5)> }, xZ6

c
where 3, ¢, 0 are all positive parameters. Taking, e.g., h(x) = 1 and g(x) = exp {— <,6’ log (g)) }, we
c
have n(x) = % exp {— <,6’ log (g)) }forx > 6.

2.2. Characterizations based on truncated moment of certain functions of the 1st order

statistic

Let X1, = Xop =...= X,., be n order statistics from a continuous cdf F. We present here
characterization results based on some functions of the 1st order statistic. Our characterizations will be
a consequence of the following proposition, which is similar to the one appeared in our previous work
(Hamedani, 2010).

PROPOSITION 2.2.1. Let X : Q — (a, b) be a continuous random variable with cdf F. Let 1(x) and
q(x) be two differentiable functions on (a, b) such that lim,_,, — Y(x)[1 - F(x)]* = 0and

b q'(®) .
fa mdt = oo. Then

(221)E[¢(X1n) |X1:n > t] = Q(t): t > a,

implies

'
(222)F(x) = 1- exp{— f;m dt},a =x < b.

We list below the distributions from subsection 2.1 with their corresponding numbers and
abbreviations which are characterized in this subsection. We would only mention some appropriate
functions 1 and g for each case. Clearly, there are other choices for these functions as well.

11) CEL: Take, e.g.,

1
Y(x) = 2(loglp + (1 — p)[G:(0)]*N" and q(x) = ZP(x).

12) CR: Take, e.g.,



P = EE + T and g = 5900
13) EEG: Take, e.g.,
p@ =076 — 1+[1 - (1 - e™)] ) andq) =%¢(x).
19) EE: Take, e.g.,
»(x) =%exp{n(1 + A0 and g(x) = 2(x).

31) GWL: Take, e.g.,

x\ P

1
Y(x) = exp {nC (A) }and q(x) = El,b(x).

35) KGG: Take, e.g., ¢ # 1,

R R (g)’]f]n and () = L=y,

36) KGu: Take, e.g., b # 1,

Y(x) = bb;l[l — exp {—ae_(x;m}]n and q(x) = bbjtp(x).

37) KLL: Take, e.g., b + 1,

b — 4" b
Y(x) =T1{1 — [1 —<1 +(§)> ] } and q(x) =mz/)(x).

38) KMW: Take, e.g.,b_=1,

b -1 b
Y = —— (1 — [1 - exp — ax’ exp(A0)]°}" and (x) = ;=7 Y(@).

39) KwP: Take, e.g.,

nb
k1 2
Y(x) = {1 — ll — (g) l } and q(x) = 2y (x).
46) LEW: Take, e.g.,
Y(x) = exp {—nle” [1 — exp [exp (%)]l} and q(x) = %z/)(x).

47) LMW: Take, e.g.,

Y(x) = exp [n exp {al + (%) +exp(x — p) + %}]



and 4() = 2 ().
48) MOEL: Take, e.g.,
P = 201 + fY — (1 = O and ql) = 30,
53) TAW: Take, e.g.,
W(x) = 2explnfaxt + cx4]}and q(x) =%1/)(x).
57) W-G: Take, e.g.,

K(x; )]
K(x; &)

Y(x) = 2exp {an[ } and q(x) = %w(x).

60) TMR: Take, e.g.,
Y(x) = {e‘xz/"zl -1+ Ae‘xz/"z}n and q(x) = 2y (x).

65) WP: Take e.g.,

x C
Y(x) = exp {—n <,8 log (5)> } and q(x) = 2y (x).

2.3. Characterizations based on truncated moment of certain functions of the nth order

statistic

We present here characterization results based on some functions of the nth order statistics.
Again, our characterizations will be a consequence of the following proposition, which is similar to the
one appeared in our previous work (Hamedani, [38]).

PROPOSITION 2.3.1. Let X : Q — (a, b) be a continuous random variable with cdf F. Let ¥, (x)
and q,(x) be two differentiable functions on (a, b) such that lim,_,, ¥, (x)[F(x)]* = 0and

b qi(® _
Ja a4t = - Then

(2.3.1) E[lpl(Xn:n) | Xnn < t] = Ch(t): t>a,

implies

_ b q1(t)
(2.3.2) F(x) = exp {— fx m dt},a =x < b.

Again, we list below the distributions from subsection 2.1 with their corresponding numbers
and abbreviations which are characterized in this subsection. We would only mention some
appropriate functions 1 and g for each case. Clearly, there are other choices for these functions as
well.

1) BPa: Take, e.g.,



n
1

\
1 1
V1) = zi [ 3@ - witduf andae) = 39,0
(

-k
)

9) BLLog: Take, e.g.,

" 1
PY1(x) = 2{1 xB (a, b)} and g, (x) = §¢1(x)-

aB+xB
10) BP: Take, e.g.,
(Bx)* n )
Yy (x) = 2{ f u® (1 — U-)b_l du} and q;(x) = 51/)1(35)

0
15) EG: Take, e.g.,

B+ 1
B

P1(x) = {1 -{1 - G()}*}"and q;(x) = Y1 ().

g+ 1
16) EGG: Take, e.g.,

A+ 1 " A
Y10 = {y[k,(g) ]} and ¢, (%) = 7= ¥ ().

17) ELP: Take, e.g.,

1
Y1(0) = [1 —exp{— A1 — (1 + f)7]*}" and g, (%) = 91 (x).

20) FPGG: Take, e.g.,

n

i) = V;—l{ f (t — 6)« e dt} and ¢, () = —
0

y +1

P1(x).
21) GP: Take, e.g.,

Pi(x) = {y {a ctlog (g)}}" and g5 () = 41 (2).

22) GEF: Take, e.g.,

2 n
Pi (o) = {y (a, ~a log [1 - exp (— ) )])} and 4,00 = 591 ().

24) GW: Take, e.g.,



nk

Pi(x) = 2 {f ur+h-2¢-(nutbuf) du} and q;(x) = %wl(x).
0

26) GC: Take, e.g.,

G(x) n
Pi(x) = z{f us1(1 — wh? du} and q;(x) = %lpl(x)
0
28) GLL: Take, e.g.,

(Ax)”

na 1
TW] and q;(x) = E%(x)-

Pi(x) =

29) GLTI: Take, e.g.,
Y,(x) = (an — 1)e™ —1andq,(x) = ane™.
30) GMW: Take, e.g.,

1
P1(x) = [1 — exp(— ax” exp(Ax))}]"F and g, (x) = S P (%).

32) IGIW: Take, e.g.,

nk

Py (x) = 2{ f umaB-2g=(mu+buh) du} and q; (x) =%w1<x>.
0

33) IW: Take, e.g.,

X n

P (x) = 2 {f afu " le — au‘ﬁdu} and q;(x) = %lpl(x).

0
34) IWG: Take, e.g.,

nk

P(x) = 2{f u%=B-2g=(wurbuF) du} and q;(x) = %1/;1(x).
0

44) LDa: Take, e.g.,

n
(x—u)

A 1
i () = 2{[1 —exp{—c 7 }]} and g, () = 5 (o).
45) LEW: Take, e.g.,

-n 1
PaG) = 2(1+ ) and q: () = 591 ().



51) PW: Take, e.g.,

P, (x) = 2{1 + (@ — De*F — ae‘z’“‘ﬁ}n and g, (x) =%1/)1(x).

60) TMR: Take, e.g.,

i (%) = 2{(1 — exp-— (;%))(1 . <%;>)}

1
and q;(x) = 51/)1(35)

62) TESS: Take, e.g.,

n 1
P1(x) = 2{1 - exp(— 101(36))} and q;(x) = §¢1(x)-

64) WGBSK: Take, e.g.,

X

() = 2{ f et (1 +(§) ) o dt} and g (x) =%¢1(x).

0

We shall characterize distributions [52), SC] and [63), VSC] via the following Proposition.

PROPOSITION 2.3.2. Let X : Q — R be a continuous random variable with cdf F. Let i, (x)

and q,(x) be two differentiable functions on R such that lim,_,_., Y, (x)[F(x)]* = 0, (% ) >
2

0and [~ Y2O-%O 41— o Then
—®  qa(t)

(2-3-3) E[lpz(Xn:n) |Xn:n < t] = ¢z(t) - QZ(t): te R
implies

_ o0 5 (8)- q5(t)
(2.3.4) F(x) = exp{ J, e dt} € R.

Proof. If (2.3.3) holds, then using integration by parts on the left hand side of (2.3.3) and the
assumption lim,_,_,, ¥, (x)[F(x)]* = 0, we have

[wa(F@)" dx = aO(F®)"

Differentiating both sides of the above equation with respect to t, we arrive at

@ _ $a)-a3(®)

(23575 F()  ngy®

, t€ R

Y5 ()-q5(t)

e ) > (0 and

Now, integrating (2.3.5) from x to oo, we have, in view of (

f_ I/)Z(c?z(tq)zu) dt = oo, a cdf F given by (2.3.4).



REMARKS 2.3.3. (i) Taking, e.g.,

xJ1 + (14+212)x2 — 2 1
and q;(x) =

Y,(x) = (n + 1)arctan
’ J1+ (1+212)x2 — Ax n+1

P, (x)

in Proposition 2.3.2, we arrive at cdf of [52), SC].
(ii) Taking, e.g.,
Y,(x) = (n + 1)exp{— Aarctan(x)}

and

A
q,(x) = (exp{— Aarctan(x)} — eT)
in Proposition 2.3.2, we arrive at cdf of [63), VSC].
(iii) Clearly there are other functions (2 and g2 which can be employed in both cases.

2.4. Characterization based on single truncated moment of certain function of the

random variable

We like to point out that Propositions 2.2.1 and 2.3.1 hold true (with of course appropriate
modifications) if we replace X;., and X,,.,, with the base random variable X. In this subsection we
employ a single function ¥ of X and characterize the distribution of X in terms of the truncated
moment of Y¥(X). The following propositions have already appeared in our previous work, so we will
just state them here which can be used to characterize some of the above mentioned distributions.

PROPOSITION 2.4.1. Let X : Q — (a, b) be a continuous random variable with cdf F. Let i (x)
be a differentiable function on (a, b) with lim,_,,, Y(x) = 1. Then for 6 + 1,

E[Y(X) X > x] = syY(x), x € (a,b),
if and only if

P = (1 — F(x))%_l, x € (a,b).

PROPOSITION 2.4.2. Let X : Q — (a, b) be a continuous random variable with cdf F. Let 1, (x)
be a differentiable function on (a, b) with lim,._,,,_ 1,(x) = 1. Then for §; # 1,

E[Y;(X) |X <x]= 6;91(x), x€ (ab)
if and only if
Py = (FCO) ", xe (@b

3. Infinite Divisibility

Bondesson ([9]) showed that all the members of the following families

(B1)f(x)= CxP'(1 + cx®)7Y, x >0,0 < a =1,



(3.2) f(x) = CxP~Lexp{—cx®}, x > 0,0 < |a]| = 1,

(3.3) f(x) = CxPlexp{—cix + c;x71},x > 0,—0 < < oo,
_ 2
(3.4) f(x) = Cx71 exp{—M}, x > 0,

202

where the natural restrictions are put on the unspecified parameters, are infinitely divisible. The last
one is the lognormal density.

REMARK 3.1. Bondesson ([10, Theorem 6.2.4]) pointed out that multiplying densities (3.1)—(3.4)
by C;(6 + x)"Vfor§d > 0andv > 0, will result in densities which are also infinitely divisible.

We list below the distributions from subsection 2.1 with their corresponding numbers and
abbreviations which either themselves or certain transformations of them can be expressed as one of
the forms (3.1)—(3.4) mentioned above.

6) BGHN: Fora = b = 1and0 < a = -, the pdf of BGHN is of the form (3.2).

N |-

16) EGG:ForA = 1and 0 < B = 1, pdf of EGG is of the form (3.2).
19) EE: LettingY = 1+ AXand 0 < a = 1, the pdf of Y is of the form (3.2).

20) FPGG: LettingY = X — B andy = 1, the pdf of Y is actually a Gamma pdf and clearly of
the form (3.2).

22) GEF: For A = 1, the pdf of GEF has the form (3.3).

24)GW:Foru = 0,0 < B = 1, the pdf of GW has the form (3.2).

27) GEM: For§ = p = 1, the pdf of GEM has the form (3.3).

28) GLL: For y = 1, the pdf of GLL has the form (3.1).

29) GLTI: Letting Y = e~ %, the pdf of Y is of the form (3.1).

31) GWL: For0 < ¢ = 1, the pdf of GWL has the form (3.2).

32) IGIW: LettingY = X L,y = 0and0 < B = 1, the pdf of Y has the form (3.2).
33) IW: The pdf of IW is of the form (3.3).

34) IWG: For § = 1, the pdf of IWG is of the form (3.3).

35) KGG: For A = ¢ = 1, the pdf of KGG is of the form (3.2).

37)KLL: Forb = 1and 0 < y = 1, the pdf of KLL is of the form (3.1).

38) KMW:Fora = b = 1,1 = 0and0 < y = 1, the pdf of KMW is of the form (3.2).
44) LDa: LettingY = e ¥ and0 < § = 1, the pdf of Y is of the form (3.1).

48) MOEL: For a = 1, the pdf of MOEL is of the form (3.1).

49) McW:Fora = b = 1and0 < y = 1, the pdf of McW is of the form (3.2).



51)PW:Fora = 1and 0 < B = 1, the pdf of PW is of the form (3.2).
58) TPL: LettingY = X — 6, the pdf of TPL is of the form (3.4).
61) TEP: Forr = 2, the pdf of TEP is of the form (3.4).

64) WGBSK: For0 < a = 1, the pdf of WGBSK is of the form (3.1).

65) WP: LettingY = log (%) and 0 <c _ 1, the pdf of Yis of the form (3.2).

4. Concluding Remarks

In designing a stochastic model for a particular modeling problem, an investigator will be vitally
interested to know if their model fits the requirements of a specific underlying probability distribution.
To this end, the investigator will vitally depend on the characterizations of the selected distribution. A
good number of recently introduced distributions which have important applications in many different
fields have been mentioned in this work. Certain characterizations of these distributions have been
established. We hope that these results will be of interest to the investigators who may believe their
models have distributions mentioned here and are looking for justifying the validity of their models. It
is known that determining a distribution is infinitely divisible or not via the existing representations is
not easy. We have used Bondesson’s classifications to show that some of the distributions taken up in
this work are infinitely divisible or a transformation of them are infinitely divisible. This could be
helpful to some researchers.
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