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Abstract 

A multicomponent droplet vaporization model which combines the 
computational efficiency of continuous thermodynamic approaches with the 
detailed species information provided by discrete component models has been 
developed. The Direct Quadrature Method of Moments (DQMoM) is used to 
efficiently solve for the evolution of the nodes and weights of the equivalent 
liquid-phase mole fraction distribution without assuming any functional form. 
The novelty of the approach is an inexpensive delumping procedure that is 
used to reconstruct the time-dependent mole fractions and fluxes for all 
discrete species. When applied to a vaporizing kerosene droplet, agreement 
between the full discrete component model, which solves ODEs for every 
individual species, and DQMoM with delumping, which solves only a few 
ODEs, is excellent. This computationally inexpensive model is well-suited for 
implementation in CFD codes with detailed kinetic mechanisms, as it enables 
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accurate calculation of species source terms from the droplets without 
incurring an unrealistic computational cost. 

Keywords: Multicomponent droplet vaporization, Delumping, Continuous 
thermodynamics, Quadrature Method of Moments (QMoM), Direct Quadrature 
Method of Moments (DQMoM) 

Nomenclature 

A group of variables in Eq. (30) 
a recursion coefficient in Eq. (13) 
b recursion coefficient in Eq. (13) 
BM Spalding mass transfer number 
BT Spalding heat transfer number 
C concentration, or group of variables in Eq. (30) 
cp specific heat capacity 
D diffusion coefficient, or group of variables in Eq. (30) 
E group of variables in Eq. (30) 
f function multiplying weight function in Eq. (11) 
I distribution variable 
J integral in Eq. (38) 
k thermal conductivity 
lv latent heat of vaporization 
MW molecular weight (molar mass) 
m moment 
N number of nodes 
Nu Nusselt number (based on droplet diameter) 
n ̇ molar flow rate 
n number of discrete species 
P pressure 
PN polynomial in Eq. (13) 
p integrand in Eq. (38) 
R radius of droplet 
Re Reynolds number (based on droplet diameter and slip velocity) 
Rf radius of gas film in modified Sherwood number 
S source term in CTM species equation 
𝑆𝑆̅ source term in moment transformed species equation 

Sc Schmidt number 
Sh Sherwood number (based on droplet diameter) 
T temperature 
t time 
u integrating factor 
w weight 
x mole fraction 
δ delta function 
ρ density 
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Superscripts 
∗ modified (Sherwood number, Nusselt number) 
crit critical 
i discrete species index 
k moment order index 
tot total (for all species or nodes) 
Subscripts 
g gas 
i discrete species index 
j node index 
l liquid 
nb normal boiling 
ref reference value for gas-phase calculated using 1/3 rule 
s at droplet surface 
sat Saturation 
v vapor (as in cp,v and lv) 
∞ at far-field boundary 

 

1. Introduction 

Vaporization of multicomponent liquid droplets occurs in a 
variety of engineering devices, such as engines and turbines. Such 
applications are often analyzed using computational fluid dynamics 
(CFD), with the behavior of the individual liquid droplets incorporated 
as a sub-model. Given the computational expense associated with CFD 
simulations, it is important that sub-models for droplet vaporization 
remain computationally inexpensive. At the same time, vaporization 
models that fail to provide information on the vaporization behavior of 
individual species reduce the accuracy of CFD simulations and may 
preclude the use of detailed chemical kinetic mechanisms that account 
for a large number of species. 

Discrete component models (DCM) employ either ordinary 
differential equations (ODEs) or partial differential equations (PDEs) 
for each individual species within a vaporizing multicomponent 
droplet.1,2 Given that common fuels typically consist of hundreds of 
components, this highly accurate approach is also the most 
computationally expensive, and in practice, cannot be applied to every 
species. To reduce computational cost, quasi-discrete models 
represent the mixture using a reduced number of quasi-components, 
each representing a range of species in terms of carbon number.3 This 
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approach can be extended to include several different groups of 
molecules, each divided into quasi-components.4 The quasi-
components are then treated as discrete species in a multicomponent 
vaporization model. Surrogate mixture approaches, which attempt to 
replicate the vaporization (and/or combustion) behavior of complex 
fuels with several strategically chosen components1,5 can also be 
considered a type of quasi-discrete approach. 

In contrast to discrete approaches, continuous thermodynamic 
models (CTM) treat the composition of the multicomponent mixture as 
a continuous distribution function, often of molecular weight or normal 
boiling point.6 Rather than solving PDEs/ODEs for every single species, 
classical CTM solve equations for the evolution of a distribution 
function of an assumed functional form, such as a gamma 
distribution.7,8 However, assuming a specific functional form for the 
species distribution can lead to inaccuracies, especially as the 
distribution evolves in time. This prompted Laurent et al. to apply the 
Quadrature Method of Moments (QMoM) to droplet vaporization,9 
following the idea of Lage, who was the first to apply QMoM to a 
continuous mole fraction distribution, for the purpose of modeling flash 
vaporization.10 

Similar to the original Method of Moments,11 QMoM applies a 
moment transform to the species evolution equations and solves for 
the first k moments of the evolving distribution.12 To deal with the 
closure problem – the appearance of moments of order higher than k 
in the evolution equations – QMoM employs a Gaussian quadrature 
approximation to express the unclosed integral terms as a function of 
moments order k and lower.12 The Gaussian quadrature is written in 
terms of N weights and nodes, the latter corresponding to the roots of 
the polynomial of order N that is orthogonal to the weight function (the 
distribution function).13 The product-difference algorithm14 is often 
used as part of the procedure to determine the nodes at every time, 
although in some cases the product-difference algorithm can become 
unstable,15 particularly as the order of the quadrature approximations 
increases.16 

The Direct Quadrature Method of Moments (DQMoM) is an 
alternative approach that does not require the product-difference 
algorithm, or an analogue, at every time step.17 DQMoM directly solves 
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evolution equations for an equivalent distribution function consisting of 
a summation of delta function with positions (nodes) and heights 
(weights) identical to the nodes and weights of the Gaussian 
quadrature approximation used in QMoM.17 For univariate distributions, 
QMoM and DQMoM yield equivalent results, but DQMoM does not 
require the potentially unstable product-difference algorithm.17 

The distillation curve method is a simpler implementation of a 
CTM approach. The distillation curve method accounts for 
multicomponent vaporization by varying a single progress variable, the 
mean molecular weight of the droplet, during vaporization, in 
accordance with data derived from distillation curves of various fuels.18 
In general, all CTM approaches reduce computational expense 
compared to DCM approaches, but information on the behavior of 
individual species is lost. 

In addition to the question of how to represent the many 
chemical components present in liquid fuel droplets (DCM vs. CTM), a 
second issue that often arises is the treatment of temperature and 
species gradients within the droplets in a computationally efficient 
manner. Approaches range from assumptions of negligible internal 
temperature19 and species gradients,1,9,20 to analytical8,21–23 or semi-
analytical solutions23 for internal temperature and species profiles, to 
discretization of the droplet interior.24,25 CPU requirements for models 
requiring internal discretization of the droplets likely render them 
impractical as sub-models for CFD simulations. 

The approach presented in this paper is concerned only with 
efficiently representing the multicomponent nature of the droplets and 
is compatible with more than one method for representing 
temperature and species gradients within the droplet. However, as will 
be seen below, not every treatment of internal species gradients is 
compatible with the delumping procedure described in this paper. 

The model presented in this paper combines the computational 
efficiency of continuous thermodynamic models with the detailed 
species information provided by discrete component models. The 
starting point for the model is the work on kerosene droplets by 
Laurent et al. using QMoM9,20 and Bruyat et al. using DQMoM,15 to 
efficiently solve for the evolution of the liquid-phase mole fraction 
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distribution without assuming any functional form. The critical insight 
of this paper is that it is possible to develop a delumping procedure 
that can be used to obtain the time-dependent mole fractions and 
fluxes for all individual species with excellent accuracy and minimal 
computational cost. The delumping approach is compatible with any 
CTM, including QMoM and DQMoM, though DQMoM is implemented 
here and the overall method is referred to as “DQMoM with 
delumping.” 

The DQMoM with delumping approach will be demonstrated 
using the modeling framework of Laurent and coworkers9,15,20 for the 
vaporization of well-mixed kerosene droplets. It is emphasized, 
however, that DQMoM with delumping is not necessarily restricted to 
well-mixed droplets. In Section 2.1, the full discrete form of the model 
is outlined, followed by the QMoM and DQMoM versions of the same 
model in Section 2.2, following Laurent and coworkers.9,15,20 The 
novelty of the approach is the delumping strategy presented in Section 
2.3. Results for a kerosene droplet with 36 components9,15,20 and for a 
hypothetical droplet with 200 components are presented in Section 3, 
followed by conclusions and prospects for future applications in Section 
4. 

2. Droplet vaporization model 

2.1. Discrete component model 

Laurent and coworkers9,15,20 begin with a classical DCM 
description7 for the multicomponent vaporization of a spherically 
symmetric droplet of radius R without internal concentration gradients. 
Incorporating the results of Abramzon and Sirignano26 for the gas film 
using a single averaged diffusion coefficient, Dg, and Sherwood 
number, Shg, for all components, ODEs for the evolution of each 
discrete liquid mole fraction, 𝑥𝑥𝑖𝑖𝑙𝑙 , are given by:9,15,20 

(1) 𝑑𝑑𝑑𝑑𝑖𝑖𝑙𝑙
𝑑𝑑𝑑𝑑

= 3𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡

4𝜋𝜋𝑅𝑅3𝐶𝐶𝑙𝑙 
(𝑥𝑥𝑖𝑖𝑙𝑙 −

𝑑𝑑𝑖𝑖𝑔𝑔,𝑠𝑠 (1+𝐵𝐵𝑀𝑀)−𝑑𝑑𝑖𝑖𝑔𝑔,∞

𝐵𝐵𝑀𝑀
) 

The total molar flow rate of vapor is 

(2) �̇�𝑛𝑑𝑑𝑡𝑡𝑑𝑑 = 2𝜋𝜋𝜋𝜋𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ∗𝑔𝑔 ln(1 + 𝐵𝐵𝑀𝑀) 
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The definition of all symbols is provided in the nomenclature. The 
non-dimensional modified Sherwood number, 𝑆𝑆ℎ∗𝑔𝑔, and Spalding mass 
transfer number in molar units, 𝐵𝐵𝑀𝑀, are given by 

(3)  𝑆𝑆ℎ∗𝑔𝑔= 2𝑅𝑅𝑓𝑓
𝑅𝑅𝑓𝑓−𝑅𝑅

= 2 + 0.6𝑅𝑅𝑅𝑅
1
2�  𝑆𝑆𝑆𝑆

1 3�

(1+𝐵𝐵𝑀𝑀)0.7 ln (1+𝐵𝐵𝑀𝑀)
𝐵𝐵𝑀𝑀

 

      

(4) 𝐵𝐵𝑀𝑀 =  𝑑𝑑
𝑡𝑡𝑡𝑡𝑡𝑡

𝑔𝑔,𝑠𝑠− 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔,∞ 
1−𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔,𝑠𝑠

 

It is noted that 𝑥𝑥𝑖𝑖𝑔𝑔1𝑠𝑠 , the gas-phase mole fractions at the droplet 
surface and 𝑥𝑥𝑖𝑖𝑔𝑔1∞ , the gas-phase mole fractions at the far-field 
boundary, do not sum to unity, since they exclude non-condensable 
species that do not appear in the liquid phase (e.g. N2 and O2).  

In most droplet vaporization models, including the present 
model,9,15,20 vapor–liquid equilibrium at the droplet surface is treated 
using Raoult’s Law, assuming an ideal gas and ideal solution: 

(5) 𝑥𝑥𝑖𝑖𝑔𝑔,𝑠𝑠 =  𝑥𝑥𝑖𝑖𝑙𝑙
𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡(𝑇𝑇)
𝑃𝑃∞

 

Combining Eqs. (1)–(3) and rearranging yields the final discrete 
governing ODEs for each liquid species (mole fraction): 

(6) 𝑑𝑑𝑑𝑑𝑖𝑖𝑙𝑙
𝑑𝑑𝑑𝑑

= 3𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔 𝑆𝑆ℎ∗𝑔𝑔
2𝑅𝑅2𝐶𝐶𝑙𝑙

ln(1 + 𝐵𝐵𝑀𝑀) (𝑥𝑥𝑖𝑖𝑙𝑙 − 𝑥𝑥𝑖𝑖𝑔𝑔,𝑠𝑠 + 𝑑𝑑𝑖𝑖𝑔𝑔,∞−𝑑𝑑𝑖𝑖𝑔𝑔,𝑠𝑠

𝐵𝐵𝑀𝑀
 

Solving Eqs. (3)–(6) for every species present in a multicomponent 
droplet constitutes a discrete component method. The flux of each 
discrete vapor component from the droplet to the surrounding gas, 𝑛𝑛𝑖𝑖 , 
can be shown to be 

(7) 𝑛𝑛𝑖𝑖 =  𝑛𝑛𝑑𝑑𝑡𝑡𝑑𝑑 (𝑑𝑑
𝑖𝑖
𝑔𝑔,𝑠𝑠 (1+𝐵𝐵𝑀𝑀)−𝑑𝑑𝑖𝑖𝑔𝑔,∞

𝐵𝐵𝑀𝑀
) 

The governing differential equations, Eq. (6), are non-linear, due to 
the dependence of 𝐵𝐵𝑀𝑀 , and potentially 𝑆𝑆ℎ∗𝑔𝑔, on 𝑥𝑥𝑖𝑖𝑙𝑙 , via the vapor–
liquid equilibrium relation at the droplet surface, Eq. (5). 
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2.2. Continuous thermodynamics model 

To reduce the computation time, Laurent and coworkers employed 
either QMoM9,20 or DQMoM.15 Rather than solving Eq. (6) for every 
discrete species present in the droplet, the droplet composition is 
assumed to be a continuous function of the distribution variable, I. In 
this case, I was chosen as the normal boiling point, Tnb. Both QMoM 
and DQMoM begin with a continuous version of Eq. (6), without 
assuming a functional form for the distribution of the liquid phase mole 
fraction, 𝑥𝑥𝑙𝑙(𝐼𝐼), which is free to evolve into any shape 

(8) 𝑑𝑑𝑑𝑑𝑙𝑙(𝐼𝐼)
𝑑𝑑𝑑𝑑

= 𝑆𝑆(𝐼𝐼, 𝑡𝑡) 

The source term, S(I, t), on the right-hand side, is 

(9) 𝑆𝑆(𝐼𝐼, 𝑡𝑡) = 3𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ∗𝑔𝑔
2𝑅𝑅2𝐶𝐶𝑙𝑙

ln(1 + 𝐵𝐵𝑀𝑀) (𝑥𝑥𝑙𝑙(𝐼𝐼) − 𝑥𝑥𝑔𝑔,𝑠𝑠(𝐼𝐼) + 𝑑𝑑𝑔𝑔,∞(𝐼𝐼)−𝑑𝑑𝑔𝑔,𝑠𝑠(𝐼𝐼)
𝐵𝐵𝑀𝑀

) 

Thermo-physical properties, such as Dg, Cg, Cl and Psat, for the 
continuous mixture are also functions of the distribution variable, I. 
For the test cases described in Section 3, the correlations for physical 
properties as a function of normal boiling point are identical to those 
used by Laurent et al.20 and are described in Appendix A. 

When a droplet is composed of species with very different 
properties, it is possible to treat each group of species (e.g. alkanes, 
alcohols, etc.) as its own distribution and apply a continuous 
thermodynamic approach to each group. In this way, the accuracy of 
property correlations and the properties of the groups as a whole could 
be improved. While this approach could be used with the method 
described in this paper, it is assumed here that kerosene can be 
modeled with sufficient accuracy using a single distribution with 
properties dependent on Tnb, similar to Laurent et al.20 

2.2.1. Quadrature Method of Moments (QMoM) 

QMoM applies a moment transformation to Eq. (8) by 
multiplying both sides by Ik, for k = 0:2N − 1, and integrating with 
respect to I. This yields 2N ODEs for the moments, 𝑚𝑚𝑘𝑘

𝑙𝑙 , 
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(10) 𝑑𝑑𝑑𝑑𝑘𝑘
𝑙𝑙

𝑑𝑑𝑑𝑑
= 𝑆𝑆�̅�𝑘 = ∫ 𝑆𝑆(𝐼𝐼)𝐼𝐼𝑘𝑘  𝑑𝑑𝐼𝐼∞

0  

The source terms in these k equations, 𝑆𝑆�̅�𝑘, require a closure - a 
method for evaluating them without introducing additional unknowns. 
This will be accomplished using a Gaussian quadrature approximation 
to the integral that appears in Eq. (10).12 For the terms requiring a 
closure, it is possible to factor the integrand into a product of the 
original distribution function, 𝑥𝑥𝑙𝑙(𝐼𝐼) , and everything left over, f(I) 

(11) 𝑆𝑆�̅�𝑘 =  ∫ 𝑆𝑆(𝐼𝐼)𝐼𝐼𝑘𝑘𝑑𝑑𝐼𝐼 = ∫ 𝑥𝑥𝑙𝑙(𝐼𝐼)𝑓𝑓(𝐼𝐼)𝑑𝑑𝐼𝐼∞
0

∞
0  

In this integral, the original distribution, 𝑥𝑥𝑙𝑙(𝐼𝐼) , serves as the 
weight function. The quadrature is accurate if f(I) is approximately 
polynomial.13 The quadrature approximation is given by 

(12) ∫ 𝑥𝑥𝑙𝑙(𝐼𝐼)𝑓𝑓(𝐼𝐼)𝑑𝑑𝐼𝐼 ≈ ∑ 𝑤𝑤𝑗𝑗𝑓𝑓(𝐼𝐼𝑗𝑗)𝑁𝑁
𝑗𝑗=1

∞
0  

 
with weights, wj, and nodes, Ij. The quadrature is exact if is a 
polynomial of order 2N − 1 or lower. The nodes, 𝐼𝐼𝑗𝑗 , of the Gaussian 
quadrature correspond to the roots of an Nth order polynomial, 𝑃𝑃𝑁𝑁(𝐼𝐼) , 
that is orthogonal with respect to the weight function, 𝑥𝑥𝑙𝑙(𝐼𝐼) , on the 
interval (0,∞) . Finding the roots of this polynomial is most often 
accomplished using a recursion relation for orthogonal polynomials,13 

 
(13) 𝑃𝑃 − 1(𝐼𝐼) = 0,𝑃𝑃0(𝐼𝐼) = 1𝑃𝑃𝑗𝑗+1(𝐼𝐼) = �𝐼𝐼 − 𝑎𝑎𝑗𝑗�𝑃𝑃𝑗𝑗(𝐼𝐼) − 𝑏𝑏𝑗𝑗𝑃𝑃𝑗𝑗−1(𝐼𝐼), (13) 𝑗𝑗 =

0,1,2 … 

The r elation can be expressed in matrix form with the eigenvalues 
of the matrix corresponding to the roots of 𝑃𝑃𝑁𝑁(𝐼𝐼) and thus, the nodes, 
𝐼𝐼𝑗𝑗 , of the quadrature. The weights, 𝑤𝑤𝑗𝑗 , are related to the first 
component of the eigenvector of the matrix.13 However, applying this 
procedure requires the determination of the coefficients aj and bj from 
the orthogonality condition, which in turn is expressed in terms of the 
moments, 𝑚𝑚𝑘𝑘

𝑙𝑙. The latter is accomplished with either the product-
difference algorithm14 or Wheeler’s algorithm.27 Wheeler’s algorithm 
has better stability characteristics than the product-difference 
algorithm.16 
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2.2.2. Direct Quadrature Method of Moments (DQMoM) 

DQMoM is a stable alternative to QMoM that solves directly for 
the weights and nodes of the quadrature approximation in Eq. (12) 
and is mathematically equivalent to QMoM for univariate 
distributions.17 DQMoM recognizes that the Gaussian quadrature 
approximation, Eq. (12), is equivalent to assuming that the (liquid 
mole fraction) distribution consists of a summation of N delta function 
located at nodes (normal boiling points), Ij, and with weights (mole 
fractions), 𝑤𝑤𝑗𝑗, 

(14) 𝑥𝑥𝑙𝑙(𝐼𝐼) = ∑ 𝑤𝑤𝑗𝑗𝛿𝛿(𝐼𝐼 − 𝐼𝐼𝑗𝑗)𝑁𝑁
𝑗𝑗=1  

Substituting this distribution function, Eq. (14), into the governing 
Eq. (8) yields 

(15) ∑ 𝜕𝜕
𝜕𝜕𝑑𝑑

𝑁𝑁
𝑗𝑗=1 �𝑤𝑤𝑗𝑗𝛿𝛿�𝐼𝐼 − 𝐼𝐼𝑗𝑗�� = 𝑆𝑆(𝐼𝐼, 𝑡𝑡) 

Using the product rule, the chain rule and some rearrangement, the 
following equation is obtained:13 

(16) ∑ 𝑑𝑑𝑑𝑑𝑗𝑗

𝑑𝑑𝑑𝑑
𝑁𝑁
𝑗𝑗=1 �𝛿𝛿�𝐼𝐼 − 𝐼𝐼𝑗𝑗� + 𝐼𝐼𝑗𝑗𝛿𝛿′�𝐼𝐼 − 𝐼𝐼𝑗𝑗�� − ∑ 𝑑𝑑�𝑑𝑑𝑗𝑗𝐼𝐼𝑗𝑗�

𝑑𝑑𝑑𝑑
𝑁𝑁
𝑗𝑗=1 �𝛿𝛿′�𝐼𝐼 − 𝐼𝐼𝑗𝑗�� = 𝑆𝑆(𝐼𝐼,𝑇𝑇) 

Applying a moment transformation by multiplying both sides of Eq. 
(16) by 𝐼𝐼𝑘𝑘 for k = 0:2N − 1, integrating with respect to I from 0 to ∞, 
and using the rules 

(17) ∫ 𝐼𝐼𝑘𝑘𝛿𝛿�𝐼𝐼 − 𝐼𝐼𝑗𝑗�𝑑𝑑𝐼𝐼 = 𝐼𝐼𝑘𝑘𝑗𝑗
∞
0    

(18)  ∫ 𝐼𝐼𝑘𝑘𝛿𝛿′�𝐼𝐼 − 𝐼𝐼𝑗𝑗�𝑑𝑑𝐼𝐼 = −𝑘𝑘𝐼𝐼𝑘𝑘−1𝑗𝑗
∞
0  

one obtains 2N differential equations for 𝑑𝑑(𝑤𝑤𝑗𝑗)
𝑑𝑑𝑡𝑡�  and 𝑑𝑑(𝑤𝑤𝑗𝑗𝐼𝐼𝑗𝑗)

𝑑𝑑𝑡𝑡�  that 
can be solved directly for the N time-dependent nodes, 𝐼𝐼𝑗𝑗 , and N time-
dependent weights, 𝑤𝑤𝑗𝑗 , of the equivalent distribution 𝑥𝑥𝑙𝑙(𝐼𝐼):13 
 

(19) (1 − 𝑘𝑘)∑ 𝐼𝐼𝑘𝑘𝑗𝑗
𝑑𝑑𝑑𝑑𝑗𝑗

𝑑𝑑𝑑𝑑
+ 𝑘𝑘 ∑ 𝐼𝐼𝑘𝑘−1𝑗𝑗

𝑑𝑑(𝑑𝑑𝑗𝑗𝐼𝐼𝑗𝑗)
𝑑𝑑𝑑𝑑

𝑁𝑁
𝑗𝑗=1 = ∫ 𝑆𝑆(𝐼𝐼)𝐼𝐼𝑘𝑘𝑑𝑑𝐼𝐼 =∞

0
𝑁𝑁
𝑗𝑗=1 𝑆𝑆�̅�𝑘, 𝑘𝑘 =

0,1 … 2𝑁𝑁 − 1  
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The source terms on the right-hand side, 𝑆𝑆�̅�𝑘, contain integrals of 
Eq. (9) with respect to I that are evaluated using the quadrature 
approximations in Eq. (12), and thus depend on 𝑤𝑤𝑗𝑗 and 𝐼𝐼𝑗𝑗. Eq. (19) 
represents a system of 2N ordinary differential equations and can be 
cast in matrix form as:13  

(20)  
1 ⋯
0 ⋯

1 0
0 1

⋯ 0
⋯ 1

−𝐼𝐼21 ⋯
⋮ ⋮

2(1 −𝑁𝑁)𝐼𝐼2𝑁𝑁−11 ⋯

−𝐼𝐼2𝑁𝑁 2𝐼𝐼1
⋮ ⋮

2(1 −𝑁𝑁)𝐼𝐼2𝑁𝑁−1𝑁𝑁 (2𝑁𝑁 − 1)𝐼𝐼2𝑁𝑁−21

⋯ 2𝐼𝐼𝑁𝑁
⋮ ⋮
⋯ (2𝑁𝑁 − 1)𝐼𝐼2𝑁𝑁𝑁𝑁

 

𝑑𝑑𝑤𝑤1
𝑑𝑑𝑡𝑡�

⋮
𝑑𝑑𝑤𝑤𝑁𝑁

𝑑𝑑𝑡𝑡�
𝑑𝑑(𝑤𝑤1𝐼𝐼1)

𝑑𝑑𝑡𝑡�
⋮

𝑑𝑑(𝑤𝑤𝑁𝑁𝐼𝐼𝑁𝑁)
𝑑𝑑𝑡𝑡�

=

𝑆𝑆0̅
⋮
⋮
⋮
⋮

𝑆𝑆2̅𝑁𝑁−1

 

This system of nonlinear differential equations for 𝑑𝑑(𝑤𝑤𝑗𝑗)
𝑑𝑑𝑡𝑡�  and 

𝑑𝑑(𝑤𝑤𝑗𝑗𝐼𝐼𝑗𝑗)
𝑑𝑑𝑡𝑡�  are solved directly for the weights, and the nodes, 𝐼𝐼𝑗𝑗 , of the 

Gaussian quadrature. The first row of Eq. (20) ensures that the 
weights sum to unity. For the CTM droplet vaporization model 
represented by Eqs. (8) and (9), the right-hand side source terms, 𝑆𝑆�̅�𝑘, 
are given by  

(21)  𝑆𝑆�̅�𝑘 = 3
2𝑅𝑅2

  

 ∫ 𝐼𝐼𝑘𝑘 𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ
∗
𝑔𝑔

𝐶𝐶𝑙𝑙
ln(1 + 𝐵𝐵𝑀𝑀) (𝑥𝑥𝑙𝑙(𝐼𝐼) − 𝑥𝑥𝑔𝑔,𝑠𝑠(𝐼𝐼) + 𝑑𝑑𝑔𝑔,∞(𝐼𝐼)−𝑑𝑑𝑔𝑔,𝑠𝑠(𝐼𝐼)

𝐵𝐵𝑀𝑀
)∞

0 𝑑𝑑𝐼𝐼 

In the CTM approach, the Spalding mass transfer number is given 
by 

(22) 𝐵𝐵𝑀𝑀 =
∫ 𝑑𝑑𝑙𝑙(𝐼𝐼)

𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡(𝐼𝐼)
𝑃𝑃∞

𝑑𝑑𝐼𝐼−∫ 𝑑𝑑𝑔𝑔,∞(𝐼𝐼)𝑑𝑑𝐼𝐼∞
0

∞
0

1−∫ 𝑑𝑑𝑙𝑙(𝐼𝐼)
𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡(𝐼𝐼)
𝑃𝑃∞

𝑑𝑑𝐼𝐼∞
0

 

Using Eq. (14), this becomes 
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(23) 𝐵𝐵𝑀𝑀 =
∫ 𝑑𝑑𝑙𝑙(𝐼𝐼)

𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡(𝐼𝐼)
𝑃𝑃∞

𝑑𝑑𝐼𝐼−∫ 𝑑𝑑𝑔𝑔,∞(𝐼𝐼)𝑑𝑑𝐼𝐼∞
0

∞
0

1−∫ 𝑑𝑑𝑙𝑙(𝐼𝐼)
𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡(𝐼𝐼)
𝑃𝑃∞

𝑑𝑑𝐼𝐼∞
0

 

It is noted that with respect to the moment transform integral in 
Eq. (21), BM is a constant, since it is characteristic of the gas mixture 
as a whole and the integrals in Eq. (22) are evaluated prior to those in 
Eq. (21). Similarly, properties of the mixture as a whole, such as Cl, 
Dg, etc. are also evaluated with an inner integral and are constants 
with respect to the integration in Eq. (21). For example, for mixture 
properties that are calculated as weighted averages by mole fraction, 
such as the liquid concentration, the mixture liquid concentration is 
given by 

(24) 𝐶𝐶𝑙𝑙 = ∫ 𝐶𝐶𝑙𝑙(𝐼𝐼)𝑥𝑥𝑙𝑙(𝐼𝐼)𝑑𝑑𝐼𝐼
∞
0  

substituting using Eq. (14) yields 

(25) 𝐶𝐶𝑙𝑙 = ∫ 𝐶𝐶𝑙𝑙(𝐼𝐼)∑ 𝑤𝑤𝑗𝑗𝛿𝛿�𝐼𝐼 − 𝐼𝐼𝑗𝑗�𝑑𝑑𝐼𝐼𝑁𝑁
𝑗𝑗=1

∞
0  

(26) 𝐶𝐶𝑙𝑙 = ∑ 𝑤𝑤𝑗𝑗𝐶𝐶𝑙𝑙(𝐼𝐼𝑗𝑗)𝑁𝑁
𝑗𝑗=1  

which is subsequently used in Eq. (21). Using the correlations for 
kerosene properties as a function of normal boiling point and 
temperature results in  

 
(27) 𝐶𝐶𝑙𝑙 = ∑ �𝐴𝐴0 + 𝐴𝐴1𝐼𝐼𝑗𝑗 + 𝐴𝐴2𝐼𝐼2𝑗𝑗�𝑤𝑤𝑗𝑗 + ∑ (𝐵𝐵0 + 𝐵𝐵1𝐼𝐼𝑗𝑗 + 𝐵𝐵2𝐼𝐼2𝑗𝑗)𝑇𝑇�𝑙𝑙𝑤𝑤𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑗𝑗=1  

 
where the correlation coefficients are from Laurent et al.20 and can be 
found in Appendix A. Eq. (27) is identical to Eq. (A.15). 

Therefore, applying Eq. (14) to the k source terms in Eq. (21) 
yields 

(28) 𝑆𝑆�̅�𝑘 = 3𝐶𝐶
2𝑅𝑅2

ln(1 + 𝐵𝐵𝑀𝑀) [∑ 𝑤𝑤𝑗𝑗𝐼𝐼𝑘𝑘𝑗𝑗 �1 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡�𝐼𝐼𝑗𝑗𝑇𝑇𝑠𝑠�
𝑃𝑃∞

� −𝑁𝑁
𝑗𝑗=1

∑ 𝑤𝑤𝑗𝑗𝐼𝐼𝑘𝑘𝑗𝑗 �
𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡�𝐼𝐼𝑗𝑗,𝑇𝑇𝑠𝑠�
𝑃𝑃∞𝐵𝐵𝑀𝑀

�+ ∑ 𝐼𝐼𝑘𝑘𝑖𝑖
𝑑𝑑𝑖𝑖𝑔𝑔,∞

𝐵𝐵𝑀𝑀
] 𝑛𝑛

𝑖𝑖=1
𝑁𝑁
𝑗𝑗=1  

where C is defined to group several properties characteristic of the 
mixture as a whole  
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(29) 𝐶𝐶 ≡ 𝑆𝑆ℎ∗𝑔𝑔𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔
𝐶𝐶𝑙𝑙

 

As mentioned above, these terms are constants with respect to 
the integral in Eq. (21). 

It is also noted that in the present paper, the far-field boundary 
conditions for the gas species are assumed to be constant15 and are 
not coupled to the droplet vaporization. Therefore, the last term 
containing 𝑥𝑥𝑖𝑖𝑔𝑔,∞ is evaluated using the full known boundary conditions 
for every discrete species, i = 1:n, rather than j = 1:N. 

Initial conditions for the weights and nodes can be calculated 
using a single application of the product-difference algorithm14 or 
Wheeler’s algorithm27 at time t = 0. Wheeler’s algorithm is employed 
in this study. As will be seen later and as shown by Bruyat et al.,15 
excellent results are typically obtained with N = 3 or 4. Because only 
2N differential equations are solved for the species equations in 
DQMoM, for droplets consisting of tens to hundreds of components, 
considerable savings are obtained compared to Eq. (6), which is solved 
for every discrete component. However, like QMoM and all CTM 
approaches, only the behavior of the mixture as a whole is obtained 
using DQMoM and information on the behavior of individual species is 
lost.9,15,20 The delumping procedure described below has been 
developed to address this shortcoming. 

2.3. Delumping 

The novelty of the current approach is a delumping procedure 
that can recover information on individual species with minimal 
computational cost, after applying a CTM approach, such as DQMoM or 
QMoM. While delumping procedures have been applied to CTM and 
quadrature methods governed by algebraic equations for flash tank 
calculations,28,29 delumping procedures using CTM results have not 
been developed for phenomena governed by nonlinear differential 
equations. 

The key idea behind the delumping procedure is that any first-
order, linear ordinary differential equation, no matter how complex, 
has an exact solution that can be written in terms of integrals with 
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respect to the independent variable, which is time, t, in the case of Eq. 
(6). This is the well-known “integrating factor” method.30 If the 
nonlinearity of the DCM differential equation appears exclusively in 
terms associated with the multicomponent mixture as whole, which is 
the case for Eq. (6), it is possible to substitute for those terms using a 
CTM solution (e.g. DQMoM). In this way, the nonlinear differential 
equation can be converted to a linear differential equation, which can 
then be integrated numerically to obtain the evolution of every 
discrete species. Computationally, numerical integration is a very 
inexpensive operation compared to the numerical solution of 
differential equations. Therefore, DQMoM with delumping provides 
information on every species at a much smaller cost than solving a 
discrete differential equation for every species. 

In the case of multicomponent droplet vaporization, in 
examining DCM Eqs. (4)–(6), the primary source of nonlinearity in the 
governing differential equations (6) are the 𝐵𝐵𝑀𝑀 terms and their 
dependence on 𝑥𝑥𝑖𝑖𝑙𝑙. However, 𝐵𝐵𝑀𝑀 is associated with the mixture as a 
whole, since it depends on the sum of 𝑥𝑥𝑖𝑖𝑔𝑔,𝑠𝑠. Therefore, DQMoM can be 
used to efficiently solve for the evolution of the distribution as a whole, 
by solving for 𝑤𝑤𝑗𝑗 and 𝐼𝐼𝑗𝑗 using Eq. (20), as well as 𝐵𝐵𝑀𝑀 at all times using 
Eq. (23). A second source of nonlinearity in discrete Eq. (6), is the 
dependence of properties Cg, Dg and Cl on the mixture composition, 
𝑥𝑥𝑖𝑖𝑙𝑙. Since these terms are also associated with the mixture as a whole, 
DQMoM (or any CTM) can be used to calculate them as well. The 
approximations of these time-dependent terms, calculated by DQMoM, 
are then substituted into discrete Eq. (6), which is thus converted into 
a first order linear differential equation, since 𝐵𝐵𝑀𝑀, Cg, Dg and Cl are no 
longer functions of 𝑥𝑥𝑖𝑖𝑙𝑙, but rather, known functions of time. It is noted 
that though other terms in Eq. (6) may vary with time, none contain a 
nonlinear dependence on 𝑥𝑥𝑖𝑖𝑙𝑙. 

Discrete Eq. (6) is rewritten below, where terms BM, A, C, Di and 
Ei are time-dependent. Terms Di and Ei are unique to each discrete 
species¸ i, whereas terms BM, A and C are the same for each discrete 
species. 

(30) 𝑑𝑑𝑑𝑑
𝑖𝑖
𝑙𝑙

𝑑𝑑𝑑𝑑
= 𝐴𝐴𝐶𝐶𝐴𝐴𝑛𝑛(1 + 𝐵𝐵𝑀𝑀)𝐷𝐷𝑖𝑖 + 𝐴𝐴𝐶𝐶𝐴𝐴𝑛𝑛(1 + 𝐵𝐵𝑀𝑀)𝐸𝐸𝑖𝑖𝑥𝑥𝑖𝑖𝑙𝑙 

(31a) 𝐴𝐴 = 3
2𝑅𝑅2
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(31b) 𝐶𝐶 = 𝑆𝑆ℎ∗𝑔𝑔𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔
𝐶𝐶𝑙𝑙

 

(31c) 𝐷𝐷𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑔𝑔,∞

𝐵𝐵𝑀𝑀
 

(31d) 𝐸𝐸𝑖𝑖 = 1 − 𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡(𝑇𝑇)
𝑃𝑃∞

− 𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡(𝑇𝑇)
𝑃𝑃∞𝐵𝐵𝑀𝑀

 

The solution to Eq. (30) can be expressed analytically as a 
function of integrals with respect to time using the integrating factor 
method. The integrating factor, ui(t), is 

(32) 𝑢𝑢𝑖𝑖(𝑡𝑡) = exp [∫ −𝐴𝐴(𝑡𝑡)𝐶𝐶(𝑡𝑡) ln�1 + 𝐵𝐵𝑀𝑀(𝑡𝑡)�𝐸𝐸𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡]
𝑑𝑑
0  

and the delumped solution for each individual species is given by 

(33) 𝑥𝑥𝑖𝑖𝑙𝑙 (𝑡𝑡) = ∫ 𝑢𝑢𝑖𝑖(𝑑𝑑)𝐴𝐴(𝑑𝑑)𝐶𝐶(𝑑𝑑) ln�1+𝐵𝐵𝑀𝑀(𝑑𝑑)�𝐷𝐷𝑖𝑖(𝑑𝑑)𝑑𝑑𝑑𝑑+𝑑𝑑𝑖𝑖𝑙𝑙(0)𝑡𝑡
0

𝑢𝑢𝑖𝑖(𝑑𝑑)
 

after substituting the values of 𝐵𝐵𝑀𝑀, Cg, Cl and Dg calculated from 
DQMoM into discrete Eqs. (32) and (33). This delumping step is 
computationally inexpensive and yields the state variables 𝑥𝑥𝑖𝑖𝑙𝑙(𝑡𝑡) for 
every species. Equations (5) and (7) can then be used to obtain the 
gas mole fractions at the surface and the vapor flux, respectively, for 
every individual species. Because the delumping step is analytically 
exact, it is only limited by the accuracy of the numerical integration 
used for Eqs. (32) and (33). The factor limiting the accuracy of the 
overall approach, then, is the performance of the DQMoM (or whatever 
CTM is chosen) in calculating the evolution of the mixture as a whole. 
 

It is noted that at later times the integrating factor, ui(t), may 
become very large for certain species, due to the exponential in Eq. 
(32). When this is the case, the delumped solution for such species 
given by Eq. (33) results in an indeterminate form (∞/∞). In such 
cases, L’Hôpital’s rule may be used on Eq. (33) to obtain the delumped 
solution as 

 
(34) 𝑥𝑥𝑖𝑖𝑙𝑙(𝑡𝑡) = −𝐷𝐷𝑖𝑖(𝑑𝑑)

𝐸𝐸𝑖𝑖(𝑑𝑑)
 

This is identical to the solution that one would obtain from the 
governing differential equation by setting the derivative term in Eq. 
(30) to zero at long times.  
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For a droplet containing n discrete species, using the definition 
of BM from Eq. (4), it can be shown that the sum of the n discrete 

governing Eqs. (6) is identically zero, ∑ 𝑑𝑑𝑥𝑥𝑖𝑖𝑙𝑙
𝑑𝑑𝑡𝑡� = 0𝑖𝑖 . This implies that 

the sum of the mole fractions is unity, ∑ 𝑥𝑥𝑖𝑖𝑙𝑙 = 1𝑖𝑖  , provided the initial 
mole fractions sum to unity. For DQMoM with delumping, however, 
since BM is evaluated using the weights, the sum of the n discrete 
governing equations (6) used in the delumping step is no longer 
identically zero, though typically the deviation is quite small. To ensure 
that DQMoM with delumping yields discrete liquid phase mole fractions 
that sum to unity, the delumped mole fractions from Eqs. (33) or (34) 
can be normalized using 

(35) 𝑥𝑥𝑖𝑖𝑙𝑙,𝑛𝑛𝑡𝑡𝑛𝑛𝑑𝑑𝑛𝑛𝑙𝑙𝑖𝑖𝑛𝑛𝑅𝑅𝑑𝑑 = 𝑑𝑑𝑖𝑖𝑙𝑙
∑ 𝑑𝑑𝑖𝑖𝑙𝑙𝑖𝑖

 

Mole fractions reported in Section 3 have been normalized in this way. 

2.4. Other submodels and properties 

DQMoM with delumping can be applied to multicomponent 
droplet vaporization whenever the nonlinearity of the governing 
species equation appears solely in terms associated with the mixture 
as a whole, as it is in Eq. (6). As long as this condition holds for the 
species equations, the equations used to determine the evolution of 
the droplet temperature and radius do not affect the applicability of 
delumping. For instance, the droplet temperature can be assumed to 
be uniform, quasi-steady and parabolic,22 or can be calculated from 
more complex effective conductivity models.23 For the results 
presented in Section 3, a parabolic temperature profile model was 
employed.22 This leads to an ODE for the evolution of mean liquid 
temperature, 𝑇𝑇�𝑙𝑙 coupled with a nonlinear algebraic equation for the 
evolution of the droplet surface temperature, 𝑇𝑇𝑙𝑙,𝑠𝑠.31 The latter 
temperature is used in calculating the vapor–liquid equilibrium, while 
the former is used in calculating temperature-dependent liquid 
properties. Equations governing the evolution of the droplet 
temperature are given in Appendix B. For simplicity, in the results 
presented, it was assumed that the modified Sherwood and Nusselt 
numbers are identical. Furthermore, the modified Sherwood number in 
Eq. (3) is evaluated by simply prescribing Rf = 50 cm, which results in 
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Shg
*≈2 rather than including the correlation and its dependence on 

Reynolds, Schmidt and Spalding numbers. This implies that the droplet 
is almost completely entrained in the surrounding flow with negligible 
slip velocity. This is not a requirement for application of DQMoM with 
delumping, but was implemented for simplicity in demonstration of the 
approach. 

The radius of the droplet evolves according to the classical 
ordinary differential equation representing conservation of mass across 
the liquid–vapor interface26 and is given in Appendix B. This equation 
reduces to the d2 law if the vaporization rate from the droplet is 
constant in time. 

Thermo-physical properties for kerosene components as 
functions of the distribution variable, I, which is normal boiling point, 
Tnb, are given by correlations20,32 and are provided in Appendix A. 
Mixing rules governing the behavior of the liquid and gas phases as a 
whole are identical to those used by Laurent et al.20 and are also 
provided in Appendix A. Properties of the gas film are treated as 
uniform with position and calculated using the 1/3 rule. Relations 
between variables, such as between saturation pressure, Psat, and 
liquid surface temperature, Tl,s. are taken from Laurent et al. as well.20 

2.5. Numerical implementation 

Both DQMoM with delumping and the full DCM were coded in 
MATLAB and integrated using the differential–algebraic system solver 
IDA.33 The system is one of differential–algebraic equations rather 
than differential equations due to the coupled nonlinear equation that 
is solved for the droplet surface temperature, Tl,s. The relative 
tolerance was set to 1 × 10−5 for both models. For DQMoM with 
delumping, the absolute tolerance for the weights, 𝑤𝑤𝑗𝑗 and for the 
droplet radius, R, was set to 1 × 10−7, while the absolute tolerance for 
the weights multiplied by the nodes, 𝑤𝑤𝑗𝑗𝐼𝐼𝑗𝑗, and for the temperatures 𝑇𝑇�𝑙𝑙 
and Tl,s, were fixed at 1 × 10−6. For the full DCM, the absolute 
tolerance was set to 1x10−6 for all variables, except the droplet radius, 
which had a tolerance of 1x10−7. The tolerances were chosen to yield 
the fastest computation times for both models, respectively. The 
delumping step was performed following the solution of the DQMoM 
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differential equations from the initial to the final time and the 
numerical integration associated with delumping was performed using 
the trapezoid rule. 

With regard to CFD simulations, in which droplet source terms 
feed into a CFD gas-phase solver, it would be necessary to perform 
delumping at every time step, rather than solving the DQMoM 
equations for the entire time interval and subsequently delumping all 
times at once. It is emphasized that despite the fact that the integrals 
in Eqs. (32) and (33) are “history” integrals from 0 to t, within a CFD 
simulation it would not be necessary to store the values of 𝐵𝐵𝑀𝑀, A, C, Di 
and Ei at all times, which could become memory intensive. Rather, 
when performing delumping following every DQMoM time step, the 
integrals from 0 to t are broken into two parts. Using the integral in 
Eq. (32) as an example: 

(36) ∫ −𝐴𝐴𝐶𝐶𝐴𝐴𝑛𝑛(1 + 𝐵𝐵𝑀𝑀)𝐸𝐸𝑖𝑖𝑑𝑑𝑡𝑡 = ∫ −𝐴𝐴𝐶𝐶𝐴𝐴𝑛𝑛(1 + 𝐵𝐵𝑀𝑀)𝐸𝐸𝑖𝑖𝑑𝑑𝑡𝑡 +𝑑𝑑−∆𝑑𝑑
0

𝑑𝑑
0

∫ −𝐴𝐴𝐶𝐶𝐴𝐴𝑛𝑛(1 + 𝐵𝐵𝑀𝑀)𝐸𝐸𝑖𝑖𝑑𝑑𝑡𝑡
𝑑𝑑
𝑑𝑑−∆𝑑𝑑  

The value of the first integral on the right-hand side, from 0 to 
t − Δt, is saved from the previous time step, and the second integral 
on the right hand side is evaluated using the trapezoid rule, which only 
requires values at the current and previous time step. For the integral 
in Eq. (36), this can be written as 

(37) 𝐽𝐽𝑖𝑖(𝑡𝑡) = 𝐽𝐽𝑖𝑖(𝑡𝑡 − ∆𝑡𝑡) + ∆𝑑𝑑
2

[𝑝𝑝𝑖𝑖(𝑡𝑡 − ∆𝑡𝑡) + 𝑝𝑝𝑖𝑖(𝑡𝑡)] 

where the integral and integrand are represented by Ji and pi, 
respectively, 

(38a) 𝐽𝐽𝑖𝑖(𝑡𝑡) ≡ ∫ −𝐴𝐴𝐶𝐶𝐴𝐴𝑛𝑛(1 + 𝐵𝐵𝑀𝑀)𝐸𝐸𝑖𝑖𝑑𝑑𝑡𝑡
𝑑𝑑
0  

(38b)𝑝𝑝𝑖𝑖(𝑡𝑡) ≡ −𝐴𝐴𝐶𝐶𝐴𝐴𝑛𝑛(1 + 𝐵𝐵𝑀𝑀)𝐸𝐸𝑖𝑖 

Therefore, using the trapezoid rule, which is second order 
accurate, only data from the most recent time step, such as 𝐽𝐽𝑖𝑖(𝑡𝑡 − ∆𝑡𝑡) 
and 𝑝𝑝𝑖𝑖(𝑡𝑡 − ∆𝑡𝑡) needs to be saved, despite the fact that the limits of 
integration are from 0 to t. If higher order is desired in the delumping 
integrals, which does not seem necessary based on the results 
presented in Section 3, data from one or two more previous steps 
could be saved, but in no situation would the entire history from 0 to t 
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be required. Following the delumping step, the updated values of Ji 
and pi replace the old values and are saved for the next time step. As 
mentioned above, for the results presented in Section 3, DQMoM was 
solved for the entire interval, followed by delumping the results for all 
times. However, a separate MATLAB code was written and tested 
which verified the success of the procedure outlined above for 
performing delumping at every time step with only a small difference 
in computational expense, as discussed in Section 3.2. 

3. Results and discussion 

From a continuous thermodynamics perspective, a full discrete 
component model, such as Eq. (6), is an exact solution. Therefore, 
DQMoM with delumping has been tested by comparison to the full 
DCM. The fidelity with which DQMoM captures the evolution of the 
mixture as a whole largely determines the accuracy of the overall 
approach, since the delumping step is exact, with the exception of 
error from the numerical integration of Eqs. (32) and (33). The 
physical properties for the discrete species in the full DCM have been 
calculated using the same correlations with normal boiling point as 
used in DQMoM with delumping.31 

3.1. Test case #1: droplet composed of 36 species 

The first test case is similar to that of Laurent and 
coworkers:15,20 a kerosene droplet, initially at 300 K, comprised of 36 
components20 with an initial diameter of 50 μm, vaporizing in an 
environment at 500 K and 500 kPa. Fig. 1 shows the initial droplet 
composition, which was taken to be identical to that given by 
Laurent.31 The mole fraction distribution exhibits several local peaks 
and may not be amenable to treatment with a standard prescribed 
distribution function, such as a gamma function. The far-field 
composition, on a molar basis, is 70% air and 30% isohexane, the 
latter being the droplet component with the lowest normal boiling 
point. Laurent et al. point out that the case of a single volatile 
component present at the far-field boundary is a difficult test-case for 
CTM methods.20 Although Laurent et al.20 and Bruyat et al.15 do not 
provide the equations used to compute the droplet temperature and 
radius, the equations used in this study are taken from the earlier 
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thesis of Laurent31 and are given in Appendix B. It is also noted that in 
this study, the vapor boundary conditions, 𝑥𝑥𝑖𝑖𝑔𝑔,∞, are taken to be 
constant, similar to Bruyat et al.15 For both the full DCM and DQMoM 
with delumping, the internal temperature gradients and the evolution 
of droplet radius are calculated in the same manner. 

 

Fig. 1. Initial discrete liquid mole fraction distribution for a kerosene droplet [20]. 

The high accuracy of Gaussian quadrature compared to other 
interpolation formulas is only realized if the function within the 
integrand, 𝑓𝑓(𝐼𝐼), which multiplies the weight function, 𝑥𝑥𝑙𝑙(𝐼𝐼), is 
sufficiently smooth and could be approximated by a polynomial. 
Comparing Eqs. (12) and (21) and factoring out constant terms with 
respect to it is seen that in this case, the function, is given by 

(39) 𝑓𝑓(𝐼𝐼) = 𝐼𝐼𝑘𝑘[1− 𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡(𝐼𝐼)
𝑃𝑃∞

�1 + 1
𝐵𝐵𝑀𝑀
�] 

Fig. 2 shows this function evaluated at three distinct times, for 
k = 1, 2, for the test case described above. Fig. 2 confirms that 𝑓𝑓(𝐼𝐼) is 
smooth and well approximated by a polynomial and therefore the 
quadrature approximation at the heart of DQMoM is appropriate in this 
case.  
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Fig. 2. Integrand function, f(I), for the Gaussian quadrature for (a) k = 1 and (b) 
k = 2, at three times. 

Using QMoM or DQMoM alone can provide information on the 
behavior of the droplet as a whole, while the delumping step provides 
information on the behavior of individual species. Fig. 3 shows the 
evolution of the weights, wj, and nodes, Ij, for DQMoM with delumping 
for three cases: N = 2, 3, 4. 

 

Fig. 3. Evolution of the weights (top) and nodes (bottom) for (a) N = 2, (b) N = 3 and 
(c) N = 4, as calculated by DQMoM. 

Similar to the results of Bruyat et al. it is observed that the 
weights and nodes are well-behaved in DQMoM, in contrast to the 
erratic behavior of the nodes and weights observed for QMoM in some 
cases.15 It is also seen that the weights repeatedly intersect one 
another and this occurred without numerical difficulties. 
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Fig. 4 compares the performance of DQMoM with delumping to 
the full DCM solution for the calculation of the total molar vapor flow 
rate from the droplet, �̇�𝑛𝑑𝑑𝑡𝑡𝑑𝑑. The initial flow rate is negative, which 
implies that vapor is condensing onto the droplet due mostly to the 
initially low droplet temperature. After the temperature increases and 
vaporization begins to dominate condensation, the net flow rate 
becomes positive. It is observed that using DQMoM with N = 2 nodes 
yields results that differ from the exact (DCM) solution, but DQMoM 
with both N = 3 and N = 4 produces very good agreement. 

 

Fig. 4. Evolution of total molar flow rate with time for DQMoM (N = 2, 3 and 4) and 
the full DCM. 

Fig. 5 compares the mean normal boiling point calculated using 
DQMoM with delumping to that calculated using the full DCM. 
Consistent with Fig. 4, the mean Tnb initially decreases due to 
condensation of isohexane from the vapor-phase. Since isohexane is 
the component with the lowest Tnb (331 K), this reduces the mean 
boiling point of the droplet. As the droplet temperature increases, the 
mean normal boiling point starts to increase, as vaporization begins to 
dominate condensation and the lighter components preferentially 
vaporize and leave behind components with higher boiling points. 
Again, DQMoM with N = 2 nodes yields results that differ from the 
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exact (DCM) solution, but DQMoM with both N = 3 and N = 4 produces 
good agreement. 

 

Fig. 5. Evolution of mean normal boiling point of the droplet with time for DQMoM 
(N = 2, 3 and 4) and the full DCM. 

Results for other variables associated with the droplet as a 
whole, such as the evolution of droplet radius, mean temperature and 
surface temperature (not shown) also indicate that DQMoM with N = 3 
or N = 4 produces excellent agreement with the full DCM approach, 
despite the droplet composition distribution being irregular. DQMoM 
can be used to predict the evolution of global variables associated with 
the mixture and droplet as a whole, which is in agreement with the 
conclusion reached by Laurent, Bruyat and coworkers.9,15,20 

The novelty of the present work is the delumping step that is 
appended to DQMoM and which can provide significantly more 
information with a minimal increase in the computational cost. Fig. 6 
demonstrates this capability of DQMoM with delumping by comparing 
the liquid mole fractions for all 36 species calculated using DQMoM 
with delumping (N = 3) to the exact DCM solution at three different 
times. The agreement is excellent, although only six differential 
equations, three for 𝑤𝑤𝑗𝑗 and three for (𝑤𝑤𝑗𝑗𝐼𝐼𝑗𝑗), are solved for the species 
equation using DQMoM with delumping (Eq. (20)), compared with 36 
for full DCM (Eq (6)). Due to the addition of the delumping step, 
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DQMoM is able to provide the same information as the full DCM, with 
excellent accuracy, while solving many fewer ODEs. 

 

Fig. 6. Comparison of liquid mole fraction distributions for all discrete species 
calculated using DQMoM with delumping (N = 3) and calculated using the full discrete 
model, at three times. 

Fig. 7 shows the gas-phase mole fractions at the droplet surface 
for every species calculated using DQMoM with delumping (N = 3) and 
using the full DCM solution at the same three times. The agreement is 
again quite good, although there is some discrepancy at 0.05 s 
between the delumped solution and the full DCM for the lightest 
component (isohexane), which is the fuel component present at the 
far-field boundary. 

 

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.067
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0017931016309450?via%3Dihub#f0035


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

[International Journal of Heat and Mass Transfer, Vol 103 (December 2016): pg. 940-954. DOI. This article is © Elsevier 
and permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant 
permission for this article to be further copied/distributed or hosted elsewhere without the express permission from 
Elsevier.] 

25 
 

 

Fig. 7. Comparison of vapor mole fraction distributions for all discrete species 
calculated using DQMoM with delumping (N = 3) and calculated using the full discrete 
model, at three times. Inset: magnification of species other than isohexane (species 
with Tnb > 331 K). 

In a CFD simulation, the droplets act as sources/sinks of mass 
and energy to the gas-phase equations. Therefore, a relevant quantity 
to test the performance of DQMoM with delumping compared to the 
full DCM solution would be the molar flux of every individual species, 
�̇�𝑛𝑖𝑖 (Eq. (7)), to or from the droplet. Furthermore, this quantity 
provides a good test for DQMoM with delumping since it combines the 
global variable, �̇�𝑛𝑑𝑑𝑡𝑡𝑑𝑑, with the individual species mole fractions, which 
are calculated from the delumping step. Fig. 8a shows the individual 
molar fluxes for all 36 species calculated using DQMoM with delumping 
(using N = 3) and using the full DCM solution at the same three times, 
as well as an earlier time (0.0034 s) when condensation is apparent. 
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Fig. 8. Comparison of molar flow rates for all discrete species calculated using DQMoM 
with delumping and calculated using the full discrete model, at three times, for (a) 
N = 3, and (b) N = 4. 

It is observed from Fig. 8a that at 0.0034 s the negative total 
flow rate (see Fig. 4) is exclusively due to the condensation of 
isohexane (Tnb = 331 K), since it is the only species present at the far-
field boundary. Furthermore, at all times, the results from DQMoM with 
delumping are quite accurate for every species, with the exception of 
isohexane, which is particularly inaccurate at the latest time. 

The decrease in accuracy at later times is partly attributable to 
the divergence between the total molar flow rate using DQMoM with 
N = 3 from the full DCM solution at later times (see Fig. 4), as well as 
the discrepancy for gas-phase isohexane at 0.05 s (see Fig. 7). If 
increased accuracy in this species is required, the order of the 
quadrature approximation can be increased from three to four, as Fig. 
4 indicates near perfect agreement in the total molar flow rate 
between DQMoM with N = 4 and the full DCM. Fig. 8b shows the 
individual molar fluxes for all 36 species calculated using DQMoM with 
delumping using N = 4. At 0.03 and 0.05 s the agreement for 
isohexane is improved and the agreement for other species is now 
excellent. 

The decrease in computational time (wall clock) using DQMoM 
with delumping compared to the full DCM was 45% (N = 2), 26% 
(N = 3) and 28% (N = 4). The delumping step is associated with less 
than 2% of the total computational cost of DQMoM with delumping. 
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Bruyat et al. report a decrease of “at least 60%” for N = 2 and 3, for 
the case of constant far-field boundary conditions.15 The reasons for 
the discrepancy are not clear, but it should be kept in mind that the 
equations solved for the droplet temperature may not be identical to 
those of Bruyat et al.,15 and may be computationally more difficult. 
Specifically, the computational overhead associated with solving 
differential–algebraic equations for 𝑇𝑇�𝑙𝑙 , 𝑇𝑇𝑙𝑙,𝑠𝑠 and 𝜋𝜋, in the present case 
likely reduces the advantage of DQMoM compared to the full DCM 
model. It is not clear how these variables were treated by Bruyat et 
al.15 Differences in the ODE/DAE solvers employed could also 
contribute to the difference in computational time reported here and 
by Bruyat and coworkers.15 The salient point, however, is that while 
delumping is associated with less than 2% of the total computational 
cost, it enables DQMoM to provide the same information as the full 
DCM. For the test case described in Section 3.2 it will be seen that the 
efficiency of DQMoM with delumping is far superior to full DCM. 

3.2. Test case #2: droplet composed of 200 species 

To further illustrate the potential of DQMoM with delumping, the 
droplet composition was changed to include 200 hypothetical species 
with boiling points evenly spaced between 331 K and 560 K, with initial 
compositions, 𝑥𝑥𝑖𝑖𝑙𝑙 , randomly assigned. Similarly, the far-field boundary 
conditions for vapor mole fractions of fuel, 𝑥𝑥𝑖𝑖𝑔𝑔,∞ , have been randomly 
generated for a total of 5% fuel and 95% air at the boundary. Other 
parameters are the same as Test case #1. The initial liquid mole 
fraction distribution is shown in Fig. 9a, and the constant vapor mole 
fraction distribution at the far-field boundary is shown in Fig. 9b. 
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Fig. 9. (a) Initial discrete liquid mole fraction distribution for hypothetical droplet with 
200 components and (b) constant vapor mole fraction distribution at the far-field 
boundary. 

Figs. 10–12 illustrate the capability of DQMoM with delumping to 
accurately predict the detailed behavior of a vaporizing 
multicomponent droplet at a fraction of the computational cost of full 
discrete models. Fig. 10 shows the liquid mole fractions for all 200 
components calculated using DQMoM with delumping (using N = 3) as 
well as the exact DCM solution at three different times. The agreement 
is generally excellent. It is noted that at earlier times the droplet’s 
composition consists of both low and high boiling point species, while 
at later times, after the droplet temperature has increased, the 
composition is shifted to species with higher boiling points, as the 
lower boiling point species vaporize earlier and at lower temperatures. 

 

Fig. 10. Comparison of liquid mole fraction distributions for all discrete species 
calculated using DQMoM with delumping (N = 3) and calculated using the full discrete 
model, at three times. 

Fig. 11 shows the gas-phase mole fractions at the droplet 
surface for all 200 species calculated using DQMoM with delumping 
(using N = 3) and using the full DCM solution at the same three times. 
The agreement is good, although the discrepancies that exist tend to 
be more prominent at later times. 
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Fig. 11. Comparison of vapor mole fraction distributions for all discrete species 
calculated using DQMoM with delumping (N = 3) and calculated using the full discrete 
model, at three times. 

Fig. 12a shows the molar fluxes for all 200 species calculated 
using DQMoM with delumping and using the full DCM solution at the 
same three times for N = 3. The agreement between the methods is 
quite good, which is especially significant given that the molar flow 
rates are the variables that would be important to detailed chemical 
kinetic mechanisms within CFD simulations. It is observed that at 
0.01 s, there is vaporization of lower boiling point species from the 
droplet (positive flow rate) while there is condensation of higher 
boiling point species onto the droplet (negative flow rate). By 0.04 s 
the majority of the species are vaporizing rather than condensing, 
although there are exceptions among the species with Tnb > 515 K. At 
0.07 s, it appears that all species with boiling points below 450 K have 
completely vaporized (Fig. 10) and that the significant source of 
vaporization lies in species with Tnb > 475 K. 
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Fig. 12. Comparison of molar flow rates for all discrete species calculated using 
DQMoM with delumping and calculated using the full discrete model, at three times, 
(a) N = 3 and (b) N = 4. 

Some error is apparent in Figs. 11 and 12a at later times among 
higher boiling point species. This error can largely be removed by 
increasing the order of the quadrature from three to four. Fig. 12b 
shows the molar fluxes for all 200 species calculated using DQMoM 
with delumping and using the full DCM solution at the same three 
times for N = 4. It is observed that for all species and all times, the 
agreement is now excellent. 

To make the comparison quantitative, the relative error in the 
individual molar flow rates (from Fig. 12) calculated by DQMoM with 
delumping (N = 3) is shown in Fig. 13a for species with absolute flow 
rates in excess of 0.15 nmol/s. At the 0.01 s, the relative error is 
roughly 2% or less for all species above the cutoff flow rate, while at 
0.04 s and 0.07 s, all species have relative errors smaller than 12%. 
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Increasing the number of DQMoM nodes to N = 4 reduces the errors to 
less than 4% for all the species above the cutoff, even at the latest 
time, which can be seen in Fig. 13b. Most species have errors of less 
than 2%. This level of accuracy has been achieved solving only eight 
differential equations for the species distribution rather than the 200 
that are associated with the full DCM. 

 

Fig. 13. Relative error in molar flow rates calculated using DQMoM with delumping. (a) 
N = 3; (a) N = 4. 

In Fig. 14, the computational performance of DQMoM with 
delumping (N = 2, 3, 4) is compared to the full DCM in terms of wall-
clock time for 50, 100 and 200 randomly generated species for the 
same test case. The solution is calculated up to 0.09 s. The cost of 
integrating the governing differential equations is shown by the solid 
bar and the cost of the delumping step (for DQMoM) is shown by the 
white upper bars. 
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Fig. 14. Computation time as a function of modeling approach and number of species. 

It can be seen that the computational cost of the delumping 
procedure is quite small compared to solving the governing differential 
equations of DQMoM. This is to be expected, since the delumping step 
only requires numerical integration of existing data. It is also observed 
that as the number of species increases, the benefit of using DQMoM 
with delumping compared to full DCM increases, since the number of 
differential equations to be solved using DQMoM does not increase 
with the number of species in the droplet, for a given N. Comparing 
DQMoM with delumping using N = 3, which has been shown above to 
be quite accurate, to the full DCM, the computational savings is 60% 
for 50 species, 81% for 100 species and 87% for 200 species. 

As mentioned above, the results in Section 3 were obtained by 
solving the DQMoM equations for the entire time interval and 
subsequently delumping the entire solution at once, although 
delumping following every time step is more appropriate for 
implementation within CFD simulations. A code was written using the 
latter approach, and DQMoM with delumping exhibited the same good 
agreement to the full DCM, as expected. The computational savings 
using DQMoM with delumping following every time step (N = 3) 
compared to full DCM was 37% for 50 species, 63% for 100 species 
and 77% for 200 species. Finally, it is pointed out that without the 
computational overhead associated with solving a differential–algebraic 
system for 𝑇𝑇�𝑙𝑙 , 𝑇𝑇𝑙𝑙,𝑠𝑠 and R, the substantial advantage of DQMoM with 
delumping compared to full DCM would likely be even greater. 

4. Conclusions 

A delumping procedure has been developed and paired with the 
Direct Quadrature Method of Moments to simulate the vaporization of 
multicomponent droplets. DQMoM with delumping generates the 
detailed species information associated with discrete component 
models at the computational cost of continuous thermodynamic 
models. The delumping procedure can be combined with any 
continuous thermodynamic approach, with the only restriction being 
that the nonlinearity in the corresponding discrete species equation 
appears exclusively in terms associated with the multicomponent 
mixture as whole. Since these terms can be approximated accurately 
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using the CTM solution, the discrete species equation can be converted 
into a linear, first order differential equation with an exact solution in 
terms of numerically evaluated integrals. 

Although DQMoM with delumping has been applied in this study 
to a well-mixed droplet, similar to that studied by Laurent and 
coworkers,9,15,20 this is not a fundamental restriction associated with 
continuous thermodynamic approaches (see e.g.25) or the delumping 
procedure. Future applications of DQMoM with delumping to droplet 
models with a quasi-steady parabolic species profile appear to be 
possible, since the nonlinearity in the governing ODE for mean mole or 
mass fractions can be removed by DQMoM, since it appears in terms 
associated with the mixture as a whole.2 The recent power-law model, 
in which species profiles within the droplet transition from an initial 
power greater than two to quasi-steady profiles with a power of two 
(parabolic) via exponential decay, is interesting.2 During the initial 
transient, the differential equations for mean mass fraction have 
nonlinearity in the mean mass fraction itself, which cannot be removed 
by DQMoM, rendering delumping inapplicable. However, during the 
exponential decay to the quasi-steady state, as well as in the quasi-
steady state itself, it appears that DQMoM with delumping would be 
feasible. 

In this study, DQMoM with delumping was applied to a kerosene 
droplet comprised of 36 components with the same initial composition 
and property relations as studied by Laurent et al.,20 and to a 
hypothetical droplet consisting of 200 species with random initial liquid 
and far-field vapor compositions. Using only three nodes, the accuracy 
of DQMoM with delumping is very good in both cases, both for global 
variables characteristic of the droplet as a whole, as well as for the 
mole fractions and fluxes of individual discrete species. Computation 
times were reduced by 87% compared to the full DCM for the case of 
200 species, while providing the same information on every discrete 
species. 

DQMoM with delumping has good potential for implementation 
in CFD simulations and would enable the use of detailed gas-phase 
kinetic mechanisms without overburdening the simulation with dozens 
or hundreds of discrete differential equations for each droplet that is 
tracked. In a CFD simulation the vapor boundary conditions for the 
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droplets, 𝑥𝑥𝑖𝑖𝑔𝑔,∞ , would be functions of time, but this should not present 
a problem for the method. When the delumping is performed at every 
time step, as it would be in a CFD simulation, the efficiency of DQMoM 
with delumping is still quite good, with a reduction in CPU time of 77% 
compared to the full DCM for 200 species. 

Acknowledgment 

The author would like to thank Prof. Bill Green of the Department of Chemical 
Engineering at MIT for suggesting the study of multicomponent droplet 
vaporization. 

Appendix A. Thermo-physical properties 

Property correlations for kerosene components (pseudo-components or 
discrete components) as a function of the normal boiling point, Tnb, are 
identical to those used by Laurent et al.20 Mixing rules that are used to obtain 
properties of the liquid (subscript l) and gas (subscript g) mixtures as a whole 
are taken from the thesis of Laurent31 and are thought to be the same as 
those used by Laurent et al.20 and Bruyat et al.15 These mixing rules are given 
in terms of various moments, which are defined below for the DQMoM. In this 
study, kerosene is assumed to be composed of a single group (chemical 
family) and therefore the liquid phase consists of a single group. This 
assumption could be relaxed to allow for cases in which more than one group 
of species is present,15,31 as mentioned above. For the gas phase, due to the 
presence of air, mixing rules are used to account for the existence of two 
groups. 

A.1. Moments used in mixing rules 

A.1.1. Kerosene 

(A.1) 0𝑡𝑡ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝐴𝐴𝑙𝑙𝑙𝑙𝑢𝑢𝑙𝑙𝑑𝑑 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚: 𝑚𝑚0
𝑙𝑙 = ∑ 𝑤𝑤𝑗𝑗 = 1𝑗𝑗   

(A.2) 1𝑎𝑎𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝐴𝐴𝑙𝑙𝑙𝑙𝑢𝑢𝑙𝑙𝑑𝑑 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚:  𝑚𝑚1
𝑙𝑙 = ∑ 𝑤𝑤𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗  

(A.3) 2𝑛𝑛𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝐴𝐴𝑙𝑙𝑙𝑙𝑢𝑢𝑙𝑙𝑑𝑑 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚: 𝑚𝑚2
𝑙𝑙 = ∑ 𝑤𝑤𝑗𝑗𝐼𝐼2𝑗𝑗𝑗𝑗  

(A.4) 0𝑡𝑡ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝑘𝑘𝑚𝑚𝑘𝑘𝑚𝑚𝑎𝑎𝑚𝑚𝑛𝑛𝑚𝑚 𝑙𝑙𝑛𝑛 𝑔𝑔𝑎𝑎𝑎𝑎 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑎𝑎𝑡𝑡 𝑑𝑑𝑘𝑘𝑚𝑚𝑝𝑝𝐴𝐴𝑚𝑚𝑡𝑡 𝑎𝑎𝑢𝑢𝑘𝑘𝑓𝑓𝑎𝑎𝑠𝑠𝑚𝑚: 𝑚𝑚0
𝑔𝑔,𝑠𝑠 =

∑ 𝑤𝑤𝑔𝑔,𝑗𝑗𝑗𝑗  
(A.5) 1𝑎𝑎𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝑘𝑘𝑚𝑚𝑘𝑘𝑚𝑚𝑎𝑎𝑚𝑚𝑛𝑛𝑚𝑚 𝑙𝑙𝑛𝑛 𝑔𝑔𝑎𝑎𝑎𝑎 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑎𝑎𝑡𝑡 𝑑𝑑𝑘𝑘𝑚𝑚𝑝𝑝𝐴𝐴𝑚𝑚𝑡𝑡 𝑎𝑎𝑢𝑢𝑘𝑘𝑓𝑓𝑎𝑎𝑠𝑠𝑚𝑚: 𝑚𝑚1

𝑔𝑔,𝑠𝑠 =
∑ 𝑤𝑤𝑔𝑔,𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗  

(A.6) 0𝑡𝑡ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝑘𝑘𝑚𝑚𝑘𝑘𝑚𝑚𝑎𝑎𝑚𝑚𝑛𝑛𝑚𝑚 𝑙𝑙𝑛𝑛 𝑔𝑔𝑎𝑎𝑎𝑎 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑎𝑎𝑡𝑡 𝑓𝑓𝑎𝑎𝑘𝑘 −
𝑓𝑓𝑙𝑙𝑚𝑚𝐴𝐴𝑑𝑑 𝑏𝑏𝑚𝑚𝑢𝑢𝑛𝑛𝑑𝑑𝑎𝑎𝑘𝑘𝑏𝑏: 𝑚𝑚0

𝑔𝑔,∞ = ∑ 𝑥𝑥𝑖𝑖𝑔𝑔,∞𝑖𝑖  
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(A.7) 1𝑎𝑎𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝑘𝑘𝑚𝑚𝑘𝑘𝑚𝑚𝑎𝑎𝑚𝑚𝑛𝑛𝑚𝑚 𝑙𝑙𝑛𝑛 𝑔𝑔𝑎𝑎𝑎𝑎 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑎𝑎𝑡𝑡 𝑓𝑓𝑎𝑎𝑘𝑘 − 𝑓𝑓𝑙𝑙𝑚𝑚𝐴𝐴𝑑𝑑 𝑏𝑏𝑚𝑚𝑢𝑢𝑛𝑛𝑑𝑑𝑎𝑎𝑘𝑘𝑏𝑏: 𝑚𝑚1
𝑔𝑔,∞ =

∑ 𝑥𝑥𝑖𝑖𝑔𝑔,∞𝐼𝐼𝑖𝑖𝑖𝑖  

Note that 𝑤𝑤𝑔𝑔,𝑗𝑗 = 𝑤𝑤𝑗𝑗
𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡(𝐼𝐼𝑗𝑗)

𝑃𝑃∞
  and 𝑥𝑥𝑖𝑖𝑔𝑔,∞ is the gas-phase mole fraction boundary 

conditions. 

The reference moments for the properties of the gas-phase are calculated 
using the 1/3 rule. 

(A.8) 0𝑡𝑡ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝑘𝑘𝑚𝑚𝑘𝑘𝑚𝑚𝑎𝑎𝑚𝑚𝑛𝑛𝑚𝑚 𝑙𝑙𝑛𝑛 𝑔𝑔𝑎𝑎𝑎𝑎 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚 (𝑘𝑘𝑚𝑚𝑓𝑓𝑚𝑚𝑘𝑘𝑚𝑚𝑛𝑛𝑠𝑠𝑚𝑚 𝑣𝑣𝑎𝑎𝐴𝐴𝑢𝑢𝑚𝑚): 𝑚𝑚0
𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟 =

2
3𝑚𝑚0

𝑔𝑔,𝑠𝑠 + 1
3𝑚𝑚0

𝑔𝑔,∞
��  

(A.9) 1𝑎𝑎𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝑘𝑘𝑚𝑚𝑘𝑘𝑚𝑚𝑎𝑎𝑚𝑚𝑛𝑛𝑚𝑚 𝑙𝑙𝑛𝑛 𝑔𝑔𝑎𝑎𝑎𝑎 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚 (𝑘𝑘𝑚𝑚𝑓𝑓𝑚𝑚𝑘𝑘𝑚𝑚𝑛𝑛𝑠𝑠𝑚𝑚 𝑣𝑣𝑎𝑎𝐴𝐴𝑢𝑢𝑚𝑚): 𝑚𝑚1
𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟 =

2
3𝑚𝑚1

𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟 + 1
3𝑚𝑚1

𝑔𝑔,∞
��  

A.1.2. Air 

(A.10) 0𝑡𝑡ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝑎𝑎𝑙𝑙𝑘𝑘 𝑙𝑙𝑛𝑛 𝑔𝑔𝑎𝑎𝑎𝑎 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑎𝑎𝑡𝑡 𝑎𝑎𝑢𝑢𝑘𝑘𝑓𝑓𝑎𝑎𝑠𝑠𝑚𝑚: 𝑚𝑚0
𝑛𝑛𝑖𝑖𝑛𝑛,𝑠𝑠 = 1 − ∑ 𝑤𝑤𝑔𝑔,𝑗𝑗𝑗𝑗  

 
(A.11) 0𝑡𝑡ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝑎𝑎𝑙𝑙𝑘𝑘 𝑙𝑙𝑛𝑛 𝑔𝑔𝑎𝑎𝑎𝑎 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑎𝑎𝑡𝑡 𝑓𝑓𝑎𝑎𝑘𝑘 − 𝑓𝑓𝑙𝑙𝑚𝑚𝐴𝐴𝑑𝑑 𝑏𝑏𝑚𝑚𝑢𝑢𝑛𝑛𝑑𝑑𝑎𝑎𝑘𝑘𝑏𝑏: 𝑚𝑚0

𝑛𝑛𝑖𝑖𝑛𝑛,∞ =
1 −∑ 𝑥𝑥𝑖𝑖𝑔𝑔,∞𝑖𝑖  

 
(A.12) 0𝑡𝑡ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 𝑚𝑚𝑓𝑓 𝑎𝑎𝑙𝑙𝑘𝑘 𝑙𝑙𝑛𝑛 𝑔𝑔𝑎𝑎𝑎𝑎 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑚𝑚 (𝑘𝑘𝑚𝑚𝑓𝑓𝑚𝑚𝑘𝑘𝑚𝑚𝑛𝑛𝑠𝑠𝑚𝑚 𝑣𝑣𝑎𝑎𝐴𝐴𝑢𝑢𝑚𝑚): 𝑚𝑚0

𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑅𝑅𝑟𝑟 =
2

3𝑚𝑚0
𝑛𝑛𝑖𝑖𝑛𝑛,𝑠𝑠 + 1

3𝑚𝑚0
𝑛𝑛𝑖𝑖𝑛𝑛,∞

��  

A.2. Properties of Kerosene Components and Properties of 
Liquid and Gas-Phase Mixtures 

The correlations for properties as a function of normal boiling point, I = Tnb, 
are given below, e.g. Psat(I), MW(I). Most properties, such as molar mass, 
MW, are also defined for the gas and liquid mixtures as a whole, and such 
properties, calculated by various mixing rules, are indicated by a subscript g 
or l, respectively. Because only a single group is present within the droplet, 
certain properties of the liquid mixture as a whole, such as kl, are simplified. 
Due to the mixing rules used for certain gas-phase properties, such as 
thermal conductivity, kg, mixture properties for the two groups (kerosene and 
air) are computed as intermediates and are indicated by subscripts ker and 
air, respectively. Some properties, such as Psat, are not required for the 
mixture as a whole. Finally, some mixture properties, such as the latent heat 
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of vaporization, lv, are calculated as weighted averages of the molar fluxes 
from the droplet [31]. 

A.2.1. Liquid properties 

Saturation vapor pressure (Pa) 

(A.13) 𝑃𝑃𝑠𝑠𝑛𝑛𝑑𝑑(𝐼𝐼) = 𝑃𝑃∞ exp �𝐴𝐴0+𝐴𝐴1𝐼𝐼
𝑅𝑅�

�1
𝐼𝐼
− 1

𝑇𝑇𝑙𝑙,𝑠𝑠
��                               𝐴𝐴0 =

−3.7607 ×  106,𝐴𝐴1 = 9.4865 × 104,𝜋𝜋� = 8314 𝐽𝐽 𝑘𝑘𝑚𝑚𝑚𝑚𝐴𝐴 𝐾𝐾�  

Liquid molar mass (kg/kmol)  

(A.14) 𝑀𝑀𝑀𝑀(𝐼𝐼) = 𝐴𝐴0 + 𝐴𝐴1𝐼𝐼 
𝑀𝑀𝑀𝑀𝑙𝑙 = 𝐴𝐴0𝑚𝑚0

1 + 𝐴𝐴1𝑚𝑚1
𝑙𝑙 

𝐴𝐴0 = −123.6,  𝐴𝐴1 = 0.6247 

Liquid concentration (kmol/m3) 

(A.15) 𝐶𝐶𝑙𝑙(𝐼𝐼) = 𝐴𝐴0 + 𝐴𝐴1𝐼𝐼 + 𝐴𝐴2𝐼𝐼2 + (𝐵𝐵0 + 𝐵𝐵1𝐼𝐼 + 𝐵𝐵2𝐼𝐼2)𝑇𝑇�𝑙𝑙   
𝐶𝐶𝑙𝑙 = 𝐴𝐴0𝑚𝑚0

𝑙𝑙 + 𝐴𝐴1𝑚𝑚1
𝑙𝑙 + 𝐴𝐴2𝑚𝑚2

𝑙𝑙 + (𝐵𝐵0𝑚𝑚0
𝑙𝑙 + 𝐵𝐵1𝑚𝑚1

𝑙𝑙 + 𝐵𝐵2𝑚𝑚2
𝑙𝑙)𝑇𝑇�𝑙𝑙 

𝐴𝐴0 = 4.2163 × 101,𝐴𝐴1 = −1.3445 × 10−1,𝐴𝐴2 = 1.2442 × 10−4 
𝐵𝐵0 = −7.1106 × 10−2,  𝐵𝐵1 = 2.5921 × 10−4,𝐵𝐵2 = −2.5284 × 10−7 

  
Liquid heat capacity (J/kmol K) 
 

(A.16) 𝑠𝑠𝑝𝑝,𝑙𝑙(𝐼𝐼) = (𝐴𝐴0 + 𝐴𝐴1𝐼𝐼) + (𝐵𝐵0 + 𝐵𝐵1𝐼𝐼)𝑇𝑇�𝑙𝑙 
𝑠𝑠𝑝𝑝,𝑙𝑙 = (𝐴𝐴0𝑚𝑚0

𝑙𝑙 + 𝐴𝐴1𝑚𝑚1
𝑙𝑙) + (𝐵𝐵0𝑚𝑚0

𝑙𝑙 + 𝐵𝐵1𝑚𝑚1
𝑙𝑙)𝑇𝑇�𝑙𝑙 

𝐴𝐴0 = −2.2873 × 105, 𝐴𝐴1 = 8.2549 × 102 
𝐵𝐵0 = −7.8088 × 101,𝐵𝐵1 = 1.6086 × 100 

Liquid thermal conductivity (W/m K) 

(A.17) 𝑘𝑘𝑙𝑙(𝐼𝐼) = (𝐴𝐴0 + 𝐴𝐴1𝐼𝐼) + (𝐵𝐵0 + 𝐵𝐵1𝐼𝐼)𝑇𝑇�𝑙𝑙 + (𝐶𝐶0 + 𝐶𝐶1𝐼𝐼)𝑇𝑇�2𝑙𝑙 
𝑘𝑘𝑙𝑙 = (𝐴𝐴0𝑚𝑚0

𝑙𝑙 + 𝐴𝐴1𝑚𝑚1
𝑙𝑙) + (𝐵𝐵0𝑚𝑚0

𝑙𝑙 + 𝐵𝐵1𝑚𝑚1
𝑙𝑙)𝑇𝑇�𝑙𝑙 + (𝐶𝐶0𝑚𝑚0

𝑙𝑙 + 𝐶𝐶1𝑚𝑚1
𝑙𝑙)𝑇𝑇�2𝑙𝑙 

𝐴𝐴0 = 5.355 × 10−2,𝐴𝐴1 = 5.0987 × 10−4,𝐵𝐵0 = −2.5251 × 10−4,𝐵𝐵1
= −7.9625 × 10−7,𝐶𝐶0 = 2.483 × 10−7,𝐶𝐶1 = 3.2996 × 10−10  

A.2.2. Gas properties 

Gas temperature (reference) (K) 

(A.18) 𝑇𝑇𝑔𝑔 = 2
3𝑇𝑇𝑠𝑠� + 1

3𝑇𝑇∞�  
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Gas concentration (kmol/m3) 

(A.19) 𝐶𝐶𝑔𝑔 = 𝑃𝑃∞𝑀𝑀𝑀𝑀𝑔𝑔

𝑅𝑅�𝑇𝑇𝑔𝑔
 𝑤𝑤ℎ𝑚𝑚𝑘𝑘𝑚𝑚 𝜋𝜋� = 8314 𝐽𝐽 𝑘𝑘𝑚𝑚𝑚𝑚𝐴𝐴 𝐾𝐾�  𝑎𝑎𝑛𝑛𝑑𝑑 𝑃𝑃∞ 𝑙𝑙𝑎𝑎 𝑙𝑙𝑛𝑛 𝑃𝑃𝑎𝑎 

Gas density (kg/m3) 

(A.20) 𝑃𝑃𝑔𝑔 = 𝑃𝑃∞𝑀𝑀𝑀𝑀𝑔𝑔

𝑅𝑅�𝑇𝑇𝑔𝑔
 𝑤𝑤ℎ𝑚𝑚𝑘𝑘𝑚𝑚 𝜋𝜋� = 8314 𝐽𝐽 𝑘𝑘𝑚𝑚𝑚𝑚𝐴𝐴 𝐾𝐾�  𝑎𝑎𝑛𝑛𝑑𝑑 𝑃𝑃∞ 𝑙𝑙𝑎𝑎 𝑙𝑙𝑛𝑛 𝑃𝑃𝑎𝑎 

Molar mass (kg/kmol) 

(A.21) 𝑀𝑀𝑀𝑀(𝐼𝐼) = 𝐴𝐴0 + 𝐴𝐴1𝐼𝐼 

𝑀𝑀𝑀𝑀𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛 = 𝐴𝐴0 + 𝐴𝐴1
𝑚𝑚1

𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟

𝑚𝑚0
𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟

       𝑀𝑀𝑀𝑀𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛 = 28.97        

𝑀𝑀𝑀𝑀𝑔𝑔 = �𝐴𝐴0𝑚𝑚0
𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟 + 𝐴𝐴1𝑚𝑚1

𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟� + 28.97𝑚𝑚0
𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑅𝑅𝑟𝑟 

𝐴𝐴0 = −123.6, 𝐴𝐴1 = 0.6247 

Gas heat capacity (J/kmol K) 

(A.22) 𝑠𝑠𝑝𝑝,𝑔𝑔(𝐼𝐼) = (𝐴𝐴0 + 𝐴𝐴1𝐼𝐼) + (𝐵𝐵0 + 𝐵𝐵1𝐼𝐼)𝑇𝑇𝑔𝑔 + (𝐶𝐶0 + 𝐶𝐶1𝐼𝐼)𝑇𝑇2𝑔𝑔 
𝑠𝑠𝑝𝑝,𝑔𝑔 = �𝐴𝐴0𝑚𝑚0

𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟 + 𝐴𝐴1𝑚𝑚1
𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟� + �𝐵𝐵0𝑚𝑚0

𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟 + 𝐵𝐵1𝑚𝑚1
𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟�𝑇𝑇𝑔𝑔 + �𝐶𝐶0𝑚𝑚0

𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟 + 𝐶𝐶1𝑚𝑚1
𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟�𝑇𝑇2𝑔𝑔

+ 𝑠𝑠𝑝𝑝,𝑛𝑛𝑖𝑖𝑛𝑛𝑚𝑚0
𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑅𝑅𝑟𝑟 

𝐴𝐴0 = 1.7478 × 104,𝐴𝐴1 = −1.0038 × 101,𝐵𝐵0 = −8.0648 × 102,𝐵𝐵1 = 3.8658 × 100,𝐶𝐶0
= 3.5307 × 10−1,𝐶𝐶1 = −1.5673 × 10−3 

Diffusion coefficient of kerosene in air (m2/s) 

(A.23)   

𝐷𝐷𝑔𝑔(𝐼𝐼) =
10−7𝑇𝑇𝑔𝑔1.75 �

𝑀𝑀𝑀𝑀(𝐼𝐼) + 𝑀𝑀𝑀𝑀𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛
𝑀𝑀𝑀𝑀(𝐼𝐼)𝑀𝑀𝑀𝑀𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛

�
1 2⁄

𝑃𝑃∞�(𝜈𝜈𝑔𝑔,0 + 𝜈𝜈𝑔𝑔,1𝐼𝐼)1 3⁄ + (𝜈𝜈𝑔𝑔𝑛𝑛𝑖𝑖𝑛𝑛)1 3⁄ �2
where 𝑃𝑃∞ is in 𝑎𝑎𝑡𝑡𝑚𝑚

𝐷𝐷𝑔𝑔 =
10−7𝑇𝑇𝑔𝑔1.75 �

𝑀𝑀𝑀𝑀𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛 + 𝑀𝑀𝑀𝑀𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛
𝑀𝑀𝑀𝑀𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛𝑀𝑀𝑀𝑀𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛

�
1 2⁄

𝑃𝑃∞ ��𝜈𝜈𝑔𝑔,0 + 𝜈𝜈𝑔𝑔,1
𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
1

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 �

1 3⁄

+ (𝜈𝜈𝑔𝑔𝑛𝑛𝑖𝑖𝑛𝑛)1 3⁄ �

2

𝜈𝜈𝑔𝑔,0 = −1.7926 × 102, 𝜈𝜈𝑔𝑔,1 = 9.113 × 10−1, 𝜈𝜈𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛 = 19.7
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Gas viscosity (kg/m s) 
 

(A.24) 
𝜇𝜇(𝐼𝐼) = (𝐴𝐴0 + 𝐴𝐴1𝐼𝐼) + (𝐵𝐵0 + 𝐵𝐵1𝐼𝐼)𝑇𝑇𝑔𝑔

𝜇𝜇𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛 = �𝐴𝐴0 + 𝐴𝐴1
𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
1

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 � + �𝐵𝐵0 + 𝐵𝐵1

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
1

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 �𝑇𝑇𝑔𝑔

𝜇𝜇𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛 = 1.13 × 10−5�𝑇𝑇𝑔𝑔

𝜇𝜇𝑔𝑔 =
𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 𝜇𝜇𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 𝜙𝜙𝑘𝑘𝑅𝑅𝑛𝑛,𝑘𝑘𝑅𝑅𝑛𝑛 + 𝑚𝑚𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑅𝑅𝑟𝑟

0 𝜙𝜙𝑘𝑘𝑅𝑅𝑛𝑛,𝑛𝑛𝑖𝑖𝑛𝑛
+

𝑚𝑚𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑅𝑅𝑟𝑟
0 𝜇𝜇𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 𝜙𝜙𝑛𝑛𝑖𝑖𝑛𝑛,𝑘𝑘𝑅𝑅𝑛𝑛 + 𝑚𝑚𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑅𝑅𝑟𝑟

0 𝜙𝜙𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑖𝑖𝑛𝑛
𝜙𝜙𝑘𝑘𝑅𝑅𝑛𝑛,𝑘𝑘𝑅𝑅𝑛𝑛 = 1,𝜙𝜙𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑖𝑖𝑛𝑛 = 1

𝜙𝜙𝑘𝑘𝑅𝑅𝑛𝑛,𝑛𝑛𝑖𝑖𝑛𝑛 =

�1 + �
𝜇𝜇𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛
𝜇𝜇𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛

�
1
2
�
𝑀𝑀𝑀𝑀𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛
𝑀𝑀𝑀𝑀𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛

�
1
4
�

2

�8 �1 +
𝑀𝑀𝑀𝑀𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛
𝑀𝑀𝑀𝑀𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛

��
1
2

𝜙𝜙𝑛𝑛𝑖𝑖𝑛𝑛,𝑘𝑘𝑅𝑅𝑛𝑛 =

�1 + �
𝜇𝜇𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛
𝜇𝜇𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛

�
1
2
�
𝑀𝑀𝑀𝑀𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛
𝑀𝑀𝑀𝑀𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛

�
1
4
�

2

�8 �1 +
𝑀𝑀𝑀𝑀𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛
𝑀𝑀𝑀𝑀𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛

��
1
2

𝐴𝐴0 = 3.2941 × 10−6,𝐴𝐴1 = −4.5702 × 10−9

𝐵𝐵0 = 2.4177 × 10−8,𝐵𝐵1 = −1.9742 × 10−11

 

Gas thermal conductivity (W/m K) 

(A.25)  
𝑘𝑘𝑔𝑔(𝐼𝐼) = (𝐴𝐴0 + 𝐴𝐴1𝐼𝐼) + (𝐵𝐵0 + 𝐵𝐵1𝐼𝐼)𝑇𝑇𝑔𝑔 + (𝐶𝐶0 + 𝐶𝐶1𝐼𝐼)𝑇𝑇𝑔𝑔2

𝑘𝑘𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛 = �𝐴𝐴0 + 𝐴𝐴1
𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
1

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 � + �𝐵𝐵0 + 𝐵𝐵1

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
1

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 �𝑇𝑇𝑔𝑔 + �𝐶𝐶0 + 𝐶𝐶1

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
1

𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 � 𝑇𝑇𝑔𝑔2

𝑘𝑘𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛 = 0.21 �
𝐷𝐷−1
𝑇𝑇𝑔𝑔

+ 𝐷𝐷0 + 𝐷𝐷1𝑇𝑇𝑔𝑔 + 𝐷𝐷2𝑇𝑇𝑔𝑔2� + 0.79 �
𝐸𝐸−1
𝑇𝑇𝑔𝑔

+ 𝐸𝐸0 + 𝐸𝐸1𝑇𝑇𝑔𝑔 + 𝐸𝐸2𝑇𝑇𝑔𝑔2�

𝑘𝑘𝑔𝑔 =
𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 𝑘𝑘𝑔𝑔,𝑘𝑘𝑅𝑅𝑛𝑛

1.065�𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 𝜙𝜙𝑘𝑘𝑅𝑅𝑛𝑛,𝑘𝑘𝑅𝑅𝑛𝑛 + 𝑚𝑚𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑅𝑅𝑟𝑟

0 𝜙𝜙𝑘𝑘𝑅𝑅𝑛𝑛,𝑛𝑛𝑖𝑖𝑛𝑛�
+

𝑚𝑚𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑅𝑅𝑟𝑟
0 𝑘𝑘𝑔𝑔,𝑛𝑛𝑖𝑖𝑛𝑛

1.065�𝑚𝑚𝑔𝑔,𝑛𝑛𝑅𝑅𝑟𝑟
0 𝜙𝜙𝑛𝑛𝑖𝑖𝑛𝑛,𝑘𝑘𝑅𝑅𝑛𝑛 + 𝑚𝑚𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑅𝑅𝑟𝑟

0 𝜙𝜙𝑛𝑛𝑖𝑖𝑛𝑛,𝑛𝑛𝑖𝑖𝑛𝑛�
𝐴𝐴0 = −6.8725 × 10−3,𝐴𝐴1 = 9.8134 × 10−6

𝐵𝐵0 = 3.5028 × 10−5,𝐵𝐵1 = −6.4010 × 10−8

𝐶𝐶0 = 2.263 × 10−7,𝐶𝐶1 = −2.5570 × 10−10

𝐷𝐷−1 = −3.0474 × 100,𝐷𝐷0 = 1.9928 × 10−2,𝐷𝐷1 = 5.6861 × 10−5,𝐷𝐷2 = −2.2493 × 10−9

𝐸𝐸−1 = −5.4318 × 100,𝐸𝐸0 = 3.5487 × 10−2,𝐸𝐸1 = 2.6004 × 10−5,𝐸𝐸2 = 6.3342 × 10−9

 

Critical temperature (K) 

(A.26)  

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.067
http://epublications.marquette.edu/
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𝑇𝑇𝑆𝑆𝑛𝑛𝑖𝑖𝑑𝑑(𝐼𝐼) = 𝐴𝐴0 + 𝐴𝐴1𝐼𝐼
𝐴𝐴0 = 205.95,𝐴𝐴1 = 0.9046 

A.2.3. Flux-weighted properties 

Latent heat of vaporization (J/kmol) 

(A.27) 
𝐴𝐴𝑣𝑣(𝐼𝐼) = (𝐴𝐴0 + 𝐴𝐴1𝐼𝐼) �

𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡(𝐼𝐼)−𝑇𝑇𝑙𝑙,𝑠𝑠
𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡(𝐼𝐼)−𝐼𝐼

�
0.38

𝐴𝐴𝑣𝑣 = ∑𝑗𝑗
𝑁𝑁
̇
𝑗𝑗𝑙𝑙𝑣𝑣,𝑗𝑗

𝑁𝑁
̇
𝑇𝑇𝑡𝑡𝑡𝑡

= �𝐵𝐵𝑀𝑀+1
𝐵𝐵𝑀𝑀

�∑𝑗𝑗 𝑤𝑤𝑔𝑔,𝑗𝑗(𝐴𝐴0 + 𝐴𝐴1𝐼𝐼𝑗𝑗) �
𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡(𝐼𝐼𝑗𝑗)−𝑇𝑇𝑙𝑙,𝑠𝑠
𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡(𝐼𝐼𝑗𝑗)−𝐼𝐼𝑗𝑗

�
0.38

− � 1
𝐵𝐵𝑀𝑀
�∑𝑖𝑖 𝑥𝑥 𝑔𝑔,∞

𝑖𝑖
(𝐴𝐴0 + 𝐴𝐴1𝐼𝐼𝑖𝑖) �

𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡(𝐼𝐼𝑖𝑖)−𝑇𝑇𝑙𝑙,𝑠𝑠
𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡(𝐼𝐼𝑖𝑖)−𝐼𝐼𝑖𝑖

�
0.38

𝐴𝐴0 = −3.7607 × 106,𝐴𝐴1 = 9.4865 × 104

  

 

Vapor heat capacity (J/kmol K) 

(A.28)  

𝑠𝑠𝑝𝑝,𝑣𝑣 = �
𝑗𝑗

𝑁𝑁
̇
𝑗𝑗𝑠𝑠𝑝𝑝,𝑔𝑔,𝑗𝑗

𝑁𝑁
̇
𝑇𝑇𝑡𝑡𝑑𝑑

𝑠𝑠𝑝𝑝,𝑣𝑣 = �
𝐵𝐵𝑀𝑀 + 1
𝐵𝐵𝑀𝑀

��
𝑗𝑗

𝑤𝑤𝑔𝑔,𝑗𝑗�(𝐴𝐴0 + 𝐴𝐴1𝐼𝐼𝑗𝑗) + (𝐵𝐵0 + 𝐵𝐵1𝐼𝐼𝑗𝑗)𝑇𝑇𝑔𝑔 + (𝐶𝐶0 + 𝐶𝐶1𝐼𝐼𝑗𝑗)𝑇𝑇𝑔𝑔2� − �
1
𝐵𝐵𝑀𝑀

��
𝑖𝑖

𝑥𝑥𝑔𝑔,∞
𝑖𝑖 �(𝐴𝐴0 + 𝐴𝐴1𝐼𝐼𝑖𝑖) + (𝐵𝐵0 + 𝐵𝐵1𝐼𝐼𝑖𝑖)𝑇𝑇𝑔𝑔 + (𝐶𝐶0 + 𝐶𝐶1𝐼𝐼𝑖𝑖)𝑇𝑇𝑔𝑔2�

𝐴𝐴0 = 1.7478 × 104,𝐴𝐴1 = −1.0038 × 101

𝐵𝐵0 = −8.0648 × 102,𝐵𝐵1 = 3.8658 × 100

𝐶𝐶0 = 3.5307 × 10−1,𝐶𝐶1 = −1.5673 × 10−3

 

Appendix B. Models for evolution of droplet temperature 
and size 

The applicability of DQMoM with delumping does not depend on the particular 
model employed for the evolution of the droplet temperature and radius. In 
this work, the equations used were taken from the thesis of Laurent.31 It is 
not clear whether these expressions were subsequently used by Laurent et 
al.20 and Bruyat et al.,15 but it seems likely. As described in Section 2.4, a 
model which accounts for temperature gradients within the droplet using the 
parabolic assumption22 was employed. The model solves an ordinary 
differential equation for the mean droplet temperature, 𝑇𝑇�𝑙𝑙 ,31 

(B.1)  

𝑑𝑑𝑇𝑇�𝑙𝑙
𝑑𝑑𝑡𝑡

=
3
2

𝑘𝑘𝑔𝑔𝑁𝑁𝑢𝑢𝑔𝑔∗ ln(1 + 𝐵𝐵𝑇𝑇)

𝐶𝐶𝑙𝑙𝑠𝑠𝑝𝑝,𝑙𝑙𝜋𝜋2𝐵𝐵𝑇𝑇 �1 + 1
10 �

𝑘𝑘𝑔𝑔𝑁𝑁𝑢𝑢𝑔𝑔∗ ln(1 + 𝐵𝐵𝑇𝑇)
𝑘𝑘𝑙𝑙𝐵𝐵𝑇𝑇

��
�𝑇𝑇∞ −

𝐵𝐵𝑇𝑇𝐴𝐴𝑣𝑣
𝑠𝑠𝑝𝑝,𝑣𝑣

− 𝑇𝑇�𝑙𝑙� 

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.067
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0017931016309450?via%3Dihub#b0155
http://www.sciencedirect.com/science/article/pii/S0017931016309450?via%3Dihub#b0100
http://www.sciencedirect.com/science/article/pii/S0017931016309450?via%3Dihub#b0075
http://www.sciencedirect.com/science/article/pii/S0017931016309450?via%3Dihub#s0040
http://www.sciencedirect.com/science/article/pii/S0017931016309450?via%3Dihub#b0110
http://www.sciencedirect.com/science/article/pii/S0017931016309450?via%3Dihub#b0155
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This is coupled with a nonlinear equation for the droplet surface temperature, 
𝑇𝑇𝑙𝑙,𝑠𝑠 , 

(B.2) 𝑇𝑇𝑙𝑙,𝑠𝑠 = 𝑇𝑇�𝑙𝑙 + 𝑅𝑅2𝐶𝐶𝑙𝑙𝑆𝑆𝑝𝑝,𝑙𝑙

15𝑘𝑘𝑙𝑙

𝑑𝑑𝑇𝑇�𝑙𝑙
𝑑𝑑𝑑𝑑

 

Eqs. (B.1) and (B.2) form a coupled differential–algebraic system because lv 
and Psat depend on Tl,s, which makes Eq. (B.2) a nonlinear algebraic equation. 

The Spalding heat transfer number which appears in Eq. (B.1) is given by 

(B.3) 𝐵𝐵𝑇𝑇 = (1 + 𝐵𝐵𝑀𝑀)
(𝐷𝐷𝑔𝑔𝑝𝑝𝑔𝑔𝑆𝑆𝑝𝑝,𝑣𝑣)

�𝑘𝑘𝑔𝑔𝑀𝑀𝑀𝑀𝑔𝑔�−1
�

  

The differential equation used to account for the increase or decrease in 
droplet size is based on conservation of mass across the liquid–vapor 
interface:26 

(B.4) 
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= −𝑝𝑝𝑔𝑔𝐷𝐷𝑔𝑔
𝑝𝑝𝑙𝑙

𝑆𝑆ℎ𝑔𝑔∗ ln (1+𝐵𝐵𝑀𝑀)
2𝑅𝑅
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