
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Psychology Faculty Research and Publications Psychology, Department of 

2017 

Invariant Two-Component Structure of the Repeatable Battery for Invariant Two-Component Structure of the Repeatable Battery for 

the Assessment of Neuropsychological Status (RBANS) the Assessment of Neuropsychological Status (RBANS) 

Elisabeth M. Vogt 
Marquette University, elisabeth.vogt@marquette.edu 

Gregory D. Prichett 
Gunderson Health System 

James Hoelzle 
Marquette University, james.hoelzle@marquette.edu 

Follow this and additional works at: https://epublications.marquette.edu/psych_fac 

 Part of the Psychology Commons 

Recommended Citation Recommended Citation 
Vogt, Elisabeth M.; Prichett, Gregory D.; and Hoelzle, James, "Invariant Two-Component Structure of the 
Repeatable Battery for the Assessment of Neuropsychological Status (RBANS)" (2017). Psychology 
Faculty Research and Publications. 267. 
https://epublications.marquette.edu/psych_fac/267 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213067564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/psych_fac
https://epublications.marquette.edu/psychology
https://epublications.marquette.edu/psych_fac?utm_source=epublications.marquette.edu%2Fpsych_fac%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/404?utm_source=epublications.marquette.edu%2Fpsych_fac%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/psych_fac/267?utm_source=epublications.marquette.edu%2Fpsych_fac%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 
 

Psychology Faculty Research and Publications/College of Arts and Sciences 
 

This paper is NOT THE PUBLISHED VERSION.  
Access the published version at the link in the citation below. 

 

Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001, (May 19, 2001). 
DOI. This article is © The Institute of Electrical and Electronics Engineers and permission has been 
granted for this version to appear in e-Publications@Marquette. The Institute of Electrical and 
Electronics Engineers does not grant permission for this article to be further copied/distributed or 
hosted elsewhere without the express permission from The Institute of Electrical and Electronics 
Engineers.  

 

Invariant Two-component Structure of the 
Repeatable Battery for the Assessment of 
Neuropsychological Status (RBANS). 
 

Elisabeth M. Vogt 
Department of Psychology, Marquette University, Milwaukee, WI 
Gregory D. Prichett 
Neuropsychology, Gundersen Health System, La Crosse, WI 
James B. Hoelzle 
Department of Psychology, Marquette University, Milwaukee, WI 
 

Abstract 
The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; Randolph, 1998, 
2012) is a brief neurocognitive instrument used to evaluate cognitive functioning in clinical settings. 
Prior investigations of the factor structure have revealed subtle differences across samples. It was 
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hypothesized that these differences are primarily the result of methodological decisions made by 
researchers. The present study utilized empirically supported extraction criteria (parallel analysis; 
minimum average partial procedure) and uniformly investigated 5 samples. RBANS data from 4 
previously published studies (Carlozzi, Horner, Yang, & Tilley, 2008; Duff, Hobson, Beglinger, & 
O'Bryant, 2010; Duff et al., 2006; Wilde, 2006) were reanalyzed, and a new clinical sample was 
obtained from the Gundersen Health System Memory Center. The congruence of factor structures was 
investigated by conducting orthogonal vector matrix comparisons (Barrett, 2005), and a robust 2-factor 
structure reliably emerged across samples. The invariant RBANS 2-factor structure primarily 
emphasized memory and visuospatial functioning. This finding offered further support for a 2-factor 
RBANS structure identified in previous studies and additionally provided empirical documentation of 
replication across diverse samples. Due to the expansive use of the RBANS, this psychometric 
knowledge has significant clinical implications. It should facilitate accurate interpretation of test data 
and allow clinicians to make more informed decisions regarding whether the instrument is appropriate 
to use in various clinical settings. 

Keywords 
Assessment; neuropsychology; principal components analysis; psychometrics; Repeatable Battery for 
the Assessment of Neuropsychological Status (RBANS) 

Introduction 
The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; Randolph, [58]; 
RBANS Update, Randolph, [59]) was developed to address a need for brief assessment measures that 
are sensitive to impairment in multiple cognitive domains. Consideration of cognitive theory and 
neuropsychological functioning guided development of the battery (Schoenberg & Scott, [61]). While 
the RBANS subtests parallel frequently utilized and well-validated neuropsychological measures 
(Camara, Nathan, & Puente, [ 9]), they include fewer items and therefore result in quicker 
administration. The RBANS evaluates a broad range of cognitive abilities and has shown utility in a 
variety of clinical settings (Aupperle, Beatty, Shelton, & Gontkovsky, [ 1]; Beatty et al., [ 6]; Larson, 
Kirschner, Bode, Heinemann, & Goodman, 2005; McKay, Casey, Wertheimer, & Fichtenberg, [50]; Wilk 
et al., [ 5]). 

Since publication of the RBANS in 1998, multiple studies have evaluated the reliability, validity, and 
clinical utility of the measure. Although this measure was originally developed for dementia 
evaluations, clinicians have utilized the RBANS as a key aspect of assessment across multiple clinical 
populations such as those presenting with Parkinson disease (Beatty et al., [ 6]), stroke (Larson et al., 
[43]), multiple sclerosis (Aupperle et al., [ 1]; Beatty, [ 5]), schizophrenia (Wilk et al., [68]), and 
traumatic brain injury (TBI; McKay et al., [50]), among others. Consistent with broad 
neuropsychological literature, individuals with clinical conditions invariably perform worse on the 
RBANS subtests compared with the RBANS normative sample. Further indicative of the integration of 
this measure into routine neuropsychological practice, the RBANS served as a "gold standard" in a 
research study that evaluated the negative predictive power and positive predictive power of novel, 
brief, computerized neuropsychological assessment (Woodhouse et al., [69]). 



The reliability of RBANS index scores has been evaluated in numerous studies. While reliability of the 
Total Score is generally high (Spearmen Brown reliability coefficients range from.86 to.94), the 
reliability of the individual indexes was significantly lower (Spearman Brown reliability coefficients 
range from.55 to.78; Hobart, Goldberg, Bartko, & Gold, [29]; Randolph, [58]). McKay et al. ([50]) 
investigated the internal consistency of the RBANS indexes in a TBI sample and reported a wide range 
of alpha coefficients. While the Total Score (α = .83), Delayed Memory (α = .77), 
Visuospatial/Constructional (α = .76), and Immediate Memory (α = .75) indexes exhibited good internal 
consistency, the remaining RBANS indexes had unacceptable internal consistency (Attention, α = .16; 
Language, α = .33). Ultimately, despite regular use of the RBANS in clinical settings, low reliability of 
select indexes raises some question of whether select indexes (e.g., Attention and Language) evaluate 
a single latent construct. 

Given that select RBANS indexes have lower-than-ideal reliability coefficients, it is not surprising that 
the RBANS factor structure is inconsistent with the index structure. Numerous researchers have 
investigated the internal structure of the RBANS, and these results are important to consider when 
evaluating the validity of test score interpretations. A clearly defined factor structure informs the 
fidelity of the construct-scoring structure and directly affects clinical decision making (King, Bailie, 
Kinney, & Nitch, [39]; Messick, [51]). While exploratory factor analysis (EFA) and confirmatory factor 
analysis (CFA) were not reported in the manual (Randolph, [58], [59]), to date, six studies investigating 
the factor structure of the RBANS have reported slightly inconsistent results (Carlozzi et al., [10]; Duff 
et al., [19]; Garcia, Leahy, Corradi, & Forchetti, [24]; King et al., [39]; Schmitt et al., [18]; Wilde, [67]). 

Three CFA studies investigated the RBANS factor structure (Carlozzi et al., [10]; Duff et al., [19]; King et 
al., [39]). Each study evaluated whether the underlying factor structure of the RBANS was consistent 
with the RBANS index structure. Both a five-factor structure to mirror the index organization and a 
single-factor structure to replicate the overall score were investigated (Carlozzi et al., [10]; Duff et al., 
[19]; King et al., [39]). Across diverse samples, including community-dwelling older adults (Duff et al., 
[19]), veterans referred to a memory disorder clinic (Carlozzi et al., [10]), and patients with psychiatric 
disorders (King et al., [39]), CFA results did not support a five- or one-factor structure. Notably, across 
studies, immediate and delayed memory indexes were highly correlated, which contributed to a misfit 
between the underlying structure and expectation. This finding is not surprising given that numerous 
factor-analytic studies investigating memory have shown a single memory dimension that 
encompasses both immediate and delayed memory (Delis, Jacobson, Bondi, Hamilton, & Salmon, [16]; 
Dowling, Hermann, La Rue, & Sager, [17]; Hoelzle, Nelson, & Smith, [33]). 

It is noteworthy that some researchers have expressed concern that CFA might not be an ideal method 
to evaluate validity evidence based on internal structure (Lee & Ashton, [44]). It has been observed 
that traditional fit indexes (e.g., χ2 test) reject models that are only trivially misspecified when the 
sample size is large (Bentler & Bonett, [ 7]). Additionally, CFA may lack sensitivity for relationships 
between variables that may be highly discreet or complex because they must be specified a priori by 
the researcher (Hoelzle & Meyer, [32]). As an illustration, omnibus Big Five personality inventories 
have not been replicated when evaluated with CFA models (Church & Burke, [13]; Gignac, Bates, & 
Jang, [25]; McCrae, Zonderman, Costa, Bond, & Paunonen, [49]), despite the influence of factor-
analytic methods on the development of the Big Five model of personality. RBANS CFA studies should 



be interpreted with this in mind. In other words, the failure of CFA methods to support specified 
models does not necessarily mean the battery is invalid per se; rather, it raises questions about the 
relationship between subtests and the composition of indexes. This conclusion suggests alternative 
methods should be considered. 

In contrast to theory-driven CFA, EFA is a data-driven method of variable reduction where multiple 
variables (e.g., subtests) are organized into factors or components that reflect relationships (e.g., 
cognitive constructs) between the variables (Goldberg & Velicer, [26]). EFA methods have been utilized 
to investigate the RBANS factor structure six times (see Table 1; Carlozzi et al., [10]; Duff et al., [19]; 
Garcia et al., [24]; King et al., [39]; Schmitt et al., [18]; Wilde, [67]). Close inspection of the pattern of 
factor loadings previously published reveals similarities and discrepancies across studies. Importantly, 
actual values of factor loadings vary depending on the methodology used, so specific loadings cannot 
be equated across all samples (Tabachnick & Fidell, [62]). Nevertheless, across studies, it appears that 
the key primary loadings on one factor typically reflect verbal memory functioning (List Learning, Story 
Memory, List Recall, List Recognition, Story Recall). The Figure Recall subtest loadings vary across 
studies between a first factor that is primarily a memory factor and a second factor typically reflecting 
visuospatial abilities or attention. The greatest discrepancy across studies appears to be how 
processing-speed, language, and attention tasks are associated with factors. This discrepancy is 
potentially troubling as these constructs are crucial to consider during the differential diagnosis 
process. 



Table 1. Repeatable Battery for the Assessment of Neuropsychological Status factor-analytic studies overview. 
Study Sample Mean age 

(SD) 
Method Rotation 

(subtests 
analyzed) 

Extraction criteria Latent constructs (% variance 
explained) 

Wilde (2006) 210 patients 
with CVA 

61.91 
(13.97) 

PCA Varimax (12) EV > 1 Scree plot 1. Language/verbal memory 
(37%) 

2. Visual/visual memory 
(24%) 

      

Duff et al. (2006) 824 Normal 
Aging Adults 

73.4 (5.8) CFA ML 
EFA 

Varimax Promax 
(9) 

EV > 1 Scree plot 1. Verbal memory 

2. Visual processing (60% 
combined) 

      

Garcia et al. (2008) 351 Memory 
Clinic patients 

77.9 (7.5) PCA Direct oblimin 
(12) 

EV > 1 Scree plot 1. Memory (39.5%) 

2. Visuomotor processing 
(13.51%) 

      

3. Verbal processing 
(8.42%) 

      

Carlozzi et al. (2008) 175 Memory 
Clinic patients 

74.1 (8.0) CFA ML 
EFA 

Varimax (12) Chi-square test 
Variance explained 

1. Memory, visual motor, 
verbal fluency (89.4%) 

2. Visuospatial and 
attention (10.6%) 

      

Schmitt et al. (2010) 636 Memory 
Clinic patients 

76.61 
(7.29) 

PCA PAFA Varimax Promax 
(12) 

EV > 1 Scree plot 1. Memory and learning 

2. Visuospatial and 
attention (54.4% 
combined) 

      

King et al. (2012) 167 patients 
with SCZ 

42.76 
(9.73) 

CFA PAFA 
PCA 

Promax (12) EV > 1 Scree plot SE of 
scree Horn's PA MAP 

1. Memory (13.9%) 

2. Speed of processing 
(8.2%) 

      

5 Note. CVA = cerebral vascular accident; SCZ = schizophrenia; PCA = principal components analysis; ML = maximum likelihood; 
EFA = exploratory factor analysis; EV = eigenvalue; CFA = confirmatory factor analysis; PAFA = principal axis factor analysis; SE of 
scree = standard error of the scree plot; PA = parallel analysis; MAP = minimum average partial. 



Previous RBANS factor-analytic studies (Duff et al., [19]; Garcia et al., [24]; King et al., [39]; Schmitt et 
al., [18]; Wilde, [67]) have suggested that sample characteristics (e.g., normal cognitive functioning, 
memory impairment, psychiatric diagnoses) could meaningfully impact what cognitive constructs may 
emerge in EFA, a commonly held belief put forth by Delis, Jacobson, Bondi, Hamilton, and Salmon 
([16]). For example, Garcia et al. ([24]) reported a three-factor EFA solution from a mixed clinical 
sample of outpatients with memory disorders and suggested this solution differed from others because 
of unique sample characteristics. Carlozzi et al. ([10]), Duff et al. ([19]), King et al. ([39]), and Wilde 
([67]) reported two-factor solutions that differed slightly but also offered similar sample-based 
explanations for why discrepancies were observed in solutions. Simply stated, authors of previous 
RBANS factor-analytic studies proposed that solutions varied to a minor, but meaningful, degree 
because of underlying sample characteristics. 

The issue of whether analyzing different samples results in different factor solutions has been 
thoroughly explored by researchers interested in measures that quantify mood and personality 
features. For example, O'Connor ([55]) investigated the factor structure of 37 different personality and 
psychopathology measures in clinical and nonclinical samples using empirically supported factor-
analytic methods. O'Connor ([55]) conclusively identified that factor structures generally replicated 
across diverse samples. Hoelzle and Meyer ([31]) also found an invariant factor structure underlying 
the Personality Assessment Inventory (Morey, [52]) in different clinical and nonclinical samples after 
applying the same methods as O'Connor ([55]). Therefore, while researchers purport that different 
samples often yield different factor structures, it appears that this variability may actually reflect 
methodological decisions made by researchers and not solely underlying sample characteristics. The 
following section will briefly describe key EFA methodological issues that may be contributing to 
inconsistent factor solutions across different samples. 

Exploratory factor-analytic methodology 
It is often overlooked that there are multiple ways to conduct EFA. Factor analysis (FA) and principal 
components analysis (PCA) are both data-driven approaches to identify underlying dimensions, but 
they differ in theory. The primary mathematical difference is what value is placed on the main diagonal 
of the correlation matrix (Goldberg & Velicer, [26]; Tabachnick & Fidell, [62]). In FA, the covariance 
between variables is analyzed so error and unique variance are excluded from factors; thus, values in 
the correlation matrix diagonal are communalities of the shared variance between variables (e.g., 
values between 0 and 1). In PCA, 1 is in the diagonal of the correlation matrix and all variance, 
including error and unique variance, is disseminated to the components. Because error and unique 
variance are omitted in FA, the observed variables and observed correlation matrix are not fully 
reproduced and the factors are approximates. It is suggested that the difference between the two 
methods does not meaningfully impact results (Goldberg & Velicer, [26]; Hoelzle & Meyer, [32]). 
Consistent with this position, two RBANS factor-analytic studies showed that when both FA and PCA 
were conducted, similar results were obtained (Carlozzi et al., [10]; King et al., [39]). This finding has 
also been observed when researchers investigated self-report and performance-based measures (e.g., 
see Nelson, Sweet, Berry, Bryant, & Grancher, [53]). Therefore, whether FA or PCA was conducted 
should not result in meaningful differences between RBANS factor solutions. 



A key methodological decision when conducting FA is determining how many factors to retain. Four 
previous factor-analytic RBANS studies (Duff et al., [19]; Garcia et al., [24]; Schmitt et al., [18]; Wilde, 
[67]) utilized the two most common methods to determine factor retention: Kaiser's criterion (Kaiser, 
[37]) and visual examination of a scree plot (Cattell, [12]). The methods used by researchers to 
investigate the RBANS factor structure are somewhat inconsistent with best-practice guidelines (Fava 
& Velicer, [22], [23]; Goldberg & Velicer, [26]; Hoelzle & Meyer, [32]; Hubbard & Allen, [36]; Zwick & 
Velicer, [70], [71]). In brief, empirical research suggests that multiple methods of factor extraction 
should be utilized to identify a reliable factor solution including: interpretation of the scree plot, Horn's 
([35]) parallel analysis (PA), and the minimum average partial (MAP) procedure (Velicer, [63]). King et 
al. ([39]) utilized these retention methods; however, the results diverged. Kaiser's criterion indicated 
that two factors should be retained, and all other methods suggested a one-factor solution. Despite 
strong evidence from multiple empirically supported factor-retention procedures that one factor 
should be retained, King et al. ([39]) selected a final solution that was supported only by Kaiser's 
criterion. It is significant that researchers have not uniformly utilized empirically supported guidelines 
to determine how many factors to retain. Research has suggested that neglect of empirical guidelines 
for factor retention can result in inconsistent findings across studies (Hoelzle & Meyer, [20]; O'Connor, 
[55]). Thus, it is possible that if empirically supported procedures were uniformly implemented, 
subtests would load more consistently on factors (or a single factor) and a truly invariant RBANS factor 
structure would be more likely to emerge. 

Determining how extracted factors will be rotated prior to interpretation is also an important 
methodological decision, and recommendations clearly indicate that when factors (e.g., distinct 
cognitive constructs) are known to be correlated, oblique rotation (e.g., direct oblimin) should be 
selected (Carroll, [11]; Deary, [15]; Hoelzle et al., [33]; Tabachnick & Fidell, [32]). Interestingly, only one 
RBANS factor-analytic study utilized an oblique method of rotation (Garcia et al., [24]). Four of the 
prior studies (Carlozzi et al., [10]; Duff et al., [19]; Schmitt et al., [18]; Wilde, [67]) utilized orthogonal 
rotation (e.g., Varimax), which assumes that factors are uncorrelated. This decision is questionable 
because by nature, cognitive constructs are correlated with each other (e.g., attention is meaningfully 
related to memory functioning). A third rotation, Promax, which involves aspects of oblique and 
orthogonal rotation, was utilized in three studies (Duff et al., [19]; King et al., [39]; Schmitt et al., [18]). 
It is unclear to what degree differences in factor rotation have possibly contributed to differences 
between solutions. In fact, oblique and orthogonal rotations will result in similar solutions if identified 
factors are truly not correlated with one another. Nevertheless, there is a strong theoretical rationale 
for using oblique rotation given the well-documented relationships between cognitive abilities. 

Current study 
Based on a review of literature, it is clear that slightly discrepant RBANS factor structures have been 
reported. A common factor emerges across studies that reflects the latent construct of memory, but 
while the second factor primarily emphasizes visuospatial functioning, some subtests meaningfully 
loaded on different dimensions across studies. Although researchers suggest discrepant findings are 
related to sample-based issues, there is a body of literature that suggests methodological issues, 
specifically factor-retention decisions, primarily contribute to these differences. The overarching goal 
of the present study was to quantify the similarity of solutions across multiple samples after 
systematically analyzing RBANS data sets using empirically supported methods. The congruence of 



factor solutions will be investigated by conducting orthogonal vector matrix comparisons (Barrett, [ 2]). 
The outcome of this study will synthesize previous factor-analytic investigation of the RBANS and will 
evaluate the invariance of solutions. Due to the expansive use of this neuropsychological instrument, a 
definitive conceptualization of the RBANS may have significant clinical implications in that it could 
definitively clarify the relationships between subtests and indexes. In addition, this research provides 
an example of how empirically supported extraction can be applied to multiple samples and factor 
structures can be systematically compared. 

Method 
Samples and procedures 
Institutional review board approval was obtained for this archival study from both the Gundersen 
Health System and Marquette University. A new clinical sample was obtained from the Gundersen 
Health System Memory Clinic (La Crosse, WI). This sample included 393 patients who were evaluated 
from January 1, 2009, to June 1, 2013, by a multidisciplinary team. Participants with significant 
cognitive impairment (e.g., Mayo Short Test of Mental Status [Kokmen, Naessens, & Offord, 1987] 
score <14 or severe intellectual disability, n = 48) were administered an abbreviated 
neuropsychological battery that did not include the RBANS and were therefore excluded from this 
study. Patients included in this sample (n = 345) ranged in age from 44 to 96 years old (Mage = 75.29 
years, SD = 8.68). Fifty-three percent (n = 186) of the sample was female. Estimates of premorbid 
intellectual functioning indicated this sample was within the average range (Wechsler Test of Adult 
Reading, Psychological Corporation, [57], n = 130, M = 95.43, SD = 15.66; ACS Test of Premorbid 
Functioning, Wechsler, [65], n = 217, M = 94.08, SD = 11.23). The majority of this sample completed 
high school (M = 12.66, SD = 3.10). This sample was diverse diagnostically, though the majority of 
patients received a diagnosis of dementia (Alzheimer disease, 24.9%; dementia-not otherwise specified 
[NOS], 18.8%; cognitive disorder-NOS, 13.2%; vascular dementia, 10.9%; frontotemporal dementia, 
7.6%; mild cognitive impairment, 7.1%; normal/no impairment, 5.1%; mixed dementia, 5.1%; Lewy 
body dementia, 2.3%; Parkinson dementia, 1.5%; pervasive developmental disability, 1.5%; attention-
deficit hyperactivity disorder, 0.8%; Wernicke-Korsakoff, 0.3%). Racial and ethnic identity was not 
reliably available for this sample in electronic medical records, though the sample was predominantly 
Caucasian and not of Hispanic origin. This sample was included to avoid the occurrence of sample-
specific floor or ceiling effects because restriction in range may impact the possible strength of factor 
loadings and correlations (Fabrigar, Wegener, MacCallum, & Strahan, [21]; Larrabee, [42]). 

Previously published RBANS data were also reanalyzed. Carlozzi et al. ([10]) published their RBANS 
correlation matrix, so it was possible to include that data in analyses. Wilde ([67]) had previously 
supplied a correlation matrix for a prior research project (Hoelzle, [30]), so that sample is also included. 
Through personal communication, RBANS correlation matrixes were requested from each of the 
corresponding authors of the remaining four RBANS factor-analytic studies (Duff et al., [19]; Garcia et 
al., [24]; King et al., [39]; Schmitt et al., [18]). One RBANS correlation matrix previously analyzed was 
obtained (Duff et al., [19]), and that primary author also provided an additional correlation matrix from 
a sufficiently large sample (Duff et al., [18]). Basic information regarding characteristics of the samples 
in Carlozzi et al. ([10]), Duff et al. ([19]), and Wilde ([67]) are presented in Table 1. Of note, the 
correlation matrix provided by Duff et al. (2006) had a slightly different sample size (N = 796) than was 



reported in the 2006 publication (N = 824). Similarly, Duff provided a correlation matrix consisting of 
data obtained from a sample consisting of individuals who were cognitively intact or had mild cognitive 
impairment (N = 173), which was larger than what was reported in the corresponding publication 
(N = 143; Duff et al., [18]). Therefore, the sample characteristics for these two samples are likely to 
minimally diverge from what was published by Duff and colleagues ([19]). 

Procedures: Statistical analysis 
PCA was conducted to evaluate the underlying dimensional structure of each sample. Although this 
method technically extracts components, the term factor will be used interchangeably because it is 
common in the literature. Prior to conducting analyses, the Kaiser-Meyer-Olkin (KMO) statistical index 
was reviewed to evaluate whether there was problematic collinearity between variables (e.g., KMO 
<.70; Kaiser, [38]). All samples were appropriate for PCA (Carlozzi et al., [10], KMO = .91; Duff et al., 
[19], KMO = .88; Duff et al., [18], KMO = .83; Wilde, [19], KMO = .87; Gundersen, KMO = .87). 

The key methodological decision in EFA is determining how many factors to extract from the observed 
correlation matrix. Although extracting too many factors may result in a solution that more closely re-
creates the original correlation matrix, it increases the odds that meaningful factors will split and result 
in unreliable components (Fava & Velicer, [22]). If a parsimonious solution is sought, the investigator 
may risk extracting too few factors by combining distinct components and oversimplifying the solution 
(Fava & Velicer, [22]). Employing multiple empirically supported extraction techniques improves the 
likelihood that a reliable solution will emerge across diverse samples (Fabrigar et al., [21]; Hoelzle & 
Meyer, [31]; O'Connor, [55]). 

A simple procedure often used to guide retention decisions is Kaiser's criterion, which states that all 
components with eigenvalues greater than 1 should be retained (Kaiser, [37]). The problem with this 
approach is that the number of eigenvalues greater than 1 is typically equal to a value that is one fifth 
to one third of the total number of variables analyzed regardless of the actual underlying structure of 
data (Zwick & Velicer, [70]). Empirical research has demonstrated that Kaiser's criterion regularly 
results in overextraction and inconsistent component solutions (Fabrigar et al., [21]; Hubbard & Allen, 
[36]; Preacher & MacCallum, [56]; Zwick & Velicer, [70]). 

Visual examination of the scree plot or eigenvalue plot is another frequently utilized technique to guide 
factor extraction decisions (Cattell, [12]). Although this approach works well when there are unique 
factors that account for significant amounts of variance, the technique tends to be highly subjective 
when factor differentiation is weak (Linn, [46]; Zwick & Velicer, [70]). Therefore, researchers suggest 
that alternative factor extraction or retention guidelines should be utilized as well (Goldberg & Velicer, 
[26]). 

PA also examines eigenvalues but is considered a more reliable technique because sampling error is 
considered (Horn, [35]). PA involves generating correlation matrixes from random data that include the 
same number of variables and subjects as the actual correlation matrix. The eigenvalues from the 
randomly generated data are then compared to the actual eigenvalues, and only factors with 
eigenvalues greater than those from the random data are retained. Simulated empirical investigations 
have shown that PA is one of the most accurate methods in determining the dimensions present in 
PCA (Crawford et al., [14]; Zwick & Velicer, [71]). 



The MAP procedure is an alternative extraction technique that was initially designed for PCA (Velicer, 
[63]). The MAP procedure sequentially removes each component from the original correlation matrix 
and then creates a partial correlation matrix. As each component is removed, the average of the 
squared partial correlations is computed. As long as each component contains common variance, the 
average of the squared partial correlations decreases. This value increases when an extracted 
component consists of unique variance and at that point suggests overextraction. In other words, the 
suggested number of components to retain is determined at the point at which the average squared 
partial correlation is smallest. Empirical research has determined that the MAP procedure is the most 
reliable extraction technique (Zwick & Velicer, [70], [71]). 

In summary, researchers have followed a number of different procedures to determine how many 
factors should be extracted in PCA. Unfortunately, the methods most often utilized—Kaiser's criterion 
and the interpretation of scree plots—are most likely to result in nonreplicating solutions. Factor-
retention decisions in the present study were based on PA and MAP procedure results. 

After determining how many factors will be extracted, the next step is to rotate the matrix of loadings 
to aid interpretability (Goldberg & Velicer, [26]). As noted previously, the decision was made to 
implement oblique (direct oblimin) rotation for theoretical reasons. Finally, factor solutions were 
carefully reviewed to determine what latent constructs have been identified. Interpretatively, items 
with strong loadings will reflect the cognitive construct, whereas those variables with loadings near 0 
will indicate the absence of a construct. 

Utilization of empirically validated extraction methods does not quantify the similarity of solutions 
obtained from different samples. Orthogonal vector matrix comparisons (Barrett, [ 2]) evaluate the 
similarity of solutions across samples beyond a visual examination of loadings. Orthogonal vector 
matrix comparison methods rotate one sample structure to align it with a solution from another 
sample (Barrett, [ 2]; Barrett, Petrides, Eysenck, & Eysenck, [ 4]). Rotation occurs to maximally align the 
solutions without distorting the original component solutions when a sample solution is compared to a 
target solution (Barrett, [ 2]; Barrett et al., [ 4]; Hoelzle & Meyer, [31]; Hopwood & Donnellan, [34]). 
This comparison method results in congruence coefficients that indicate how well factors match one 
another. 

Comparison of single-component structures requires a different statistical process than comparison of 
multidimensional component structures. Tucker's congruence coefficient accounts for both the pattern 
and magnitude of loadings to determine if a single-factor solution is replicated across samples (Korth & 
Tucker, [41]; Levine, [45]). Additionally, single-component structures can be compared using 
Pearson's r when a solution has few small loadings (<.40) to, again, compare pattern and magnitude of 
loadings. Multiple small loadings within a factor will generate a large r value masking the impact of 
more significant loadings, so caution is warranted when utilizing Pearson's r to quantify the similarity of 
single-factor solutions (Lorenzo-Seva & ten Berge, [47]). 

Results 
PCA was conducted separately for each sample. Four factor-retention guidelines were applied, though 
PA and the MAP procedure were most strongly considered when determining how many factors to 
extract from each sample. The respective number of components suggested by each procedure are 



presented in Table 2. Not surprisingly, given limitations previously discussed, Kaiser's criterion and 
visual examination of the scree plot resulted in discrepant recommendations regarding how many 
factors to retain across samples. 

Table 2. Principal components analysis extraction criteria results summary. 
 

Carlozzi et al. (2008) Duff et al. (2010) Duff et al. (2006) Wilde (2006) Gundersen 
EV > 1 2 4 2 2 3 
Scree plot 1 2 3 2 1 
PA 1 1 2 2 2 
MAP 1–2 1 1–2 2 1–2 

6 Note. EV = eigenvalue; PA = parallel analysis; MAP = minimum average partial. MAP ranges reflect 
minor differences between MAP procedures not exceeding.04. 

PA was conducted using O'Connor's ([54]) syntax, and the results are presented in Table 3. In these 
analyses, 500 random data sets were generated with the same number of test variables (e.g., 12 
RBANS subtests) and matched sample size. The actual eigenvalues were compared to the 95th 
percentile of randomly generated eigenvalues (as opposed to mean eigenvalue) to decrease the risk 
for overextraction in situations when sample sizes are small and expected factor loadings are low 
(Zwick & Velicer, [71]). In the present study, PA indicated retaining one factor in two samples (Carlozzi 
et al., [10]; Duff et al., [18]) and two factors in the other three samples (Duff et al., [19]; Wilde, [67]; 
Gundersen). Interpretatively, retention recommendations would not have changed if actual 
eigenvalues were compared to the mean PA eigenvalues as opposed to the 95th percentile of 
randomly generated eigenvalues. 



Table 3. Repeatable Battery for the Assessment of Neuropsychological Status actual and random eigenvalues from Horn's parallel analysis. 

 Carlozzi et al. (2008)  Duff et al. (2010)  Duff et al. (2006)  Wilde (2006)  Gundersen  
 EV PA EV EV PA EV EV PA EV EV PA EV EV PA EV 
1 6.51 1.56 4.63 1.57 5.00 1.25 5.33 1.51 5.27 1.39 
2 1.02 1.41 1.20 1.42 1.35 1.19 1.98 1.37 1.38 1.28 
3 0.89 1.30 1.07 1.30 0.98 1.14 0.90 1.27 1.06 1.21 
4 0.71 1.22 1.02 1.21 0.82 1.10 0.69 1.20 .82 1.15 
5 0.58 1.13 0.90 1.13 0.74 1.07 0.65 1.12 0.67 1.11 
6 0.47 1.06 0.76 1.07 0.59 1.03 0.50 1.07 0.57 1.05 
7 0.41 1.00 0.66 1.00 0.56 1.00 0.46 1.00 0.55 1.01 
8 0.38 0.94 0.49 0.94 0.52 0.98 0.40 0.94 0.46 0.96 
9 0.35 0.88 0.44 0.88 0.49 0.95 0.35 0.89 0.39 0.92 
10 0.27 0.81 0.38 0.81 0.45 0.91 0.30 0.83 0.37 0.87 
11 0.25 0.75 0.27 0.75 0.32 0.88 0.24 0.78 0.31 0.82 
12 0.17 0.68 0.18 0.68 0.19 0.84 0.21 0.71 0.16 0.77 
Retained 1 

 
1 

 
2 

 
2 

 
2 

 

7 Note. Real EV = actual data eigenvalue; PA EV = 95th percentile eigenvalue of randomly generated data. Bold and italic values indicate the 
number of components recommended for retention. 



Velicer's (1976) MAP procedure was conducted using O'Connor's ([54]) syntax. Results of the MAP 
procedure are visually presented in Figure 1. MAP indicated retaining one factor in Duff et al. ([18]) and 
two factors in Wilde ([19]). The other three samples (Carlozzi et al., [10]; Duff et al., [19]; Gundersen) 
had average partial correlations that were extremely close (e.g., <.04), which suggests that one- and 
two-factor solutions should be further considered. 

 
Figure 1. Velicer's minimum partial average procedure indicating number of components to be retained for each 
Repeatable Battery for the Assessment of Neuropsychological Status sample. 
 

PCA was conducted specifying a two-component solution for each sample, and factor loadings for each 
sample are presented in Table 4. An examination of solutions revealed similarity across samples. The 
first dimension strongly suggested a memory construct (List Recall, Story Recall, List Learning, List 
Recognition, Story Memory, Semantic Fluency, and Figure Recall) and accounted for at least 38.54% of 
the total score variance. The Semantic Fluency subtest, a verbal fluency task that involves rapidly 
recalling information from specific categories, also reliably loaded on the first factor. It is notable that 
the Figure Recall subtest displayed meaningful cross-loading in two samples, and in the Wilde ([67]) 
sample, the subtest was strongly associated with a nonmemory dimension. Nevertheless, most 
reliably, Figure Recall was associated with Factor 1. 



Table 4. Two-component Repeatable Battery for the Assessment of Neuropsychological Status oblique rotated pattern matrixes. 

 Carlozzi et al. (2008)  Duff et al. (2010)  Duff et al. (2006)  Wilde (2006)  Gundersen  
 1 2 1 2 1 2 1 2 1 2 
List Learning .75 .14 .85 .06 .75 .09 .86 −.03 .76 .12 
Story Memory .77 .11 .72 .06 .75 .11 .78 −.09 .75 .12 
Figure Copy −.07 .85 −.22 .81 −.05 .76 −.15 .96 −.12 .80 
Line Orientation −.04 .89 .07 .48 −.16 .83 −.04 .79 −.01 .81 
Picture Naming .20 .56 .23 .25 .03 .62 .69 −.03 .24 .35 
Semantic Fluency .65 .14 .60 .11 .40 .23 .70 .08 .62 .18 
Digit Span .06 .51 .12 .38 .09 .37 .50 −.02 .23 .14 
Coding .48 .48 .59 .27 .24 .59 .31 .66 .22 .70 
List Recall .94 −.22 .87 −.18 .89 −.10 .74 .08 .89 −.17 
List Recognition .66 .16 .83 −.28 .80 −.12 .80 −.01 .78 −.08 
Story Recall .89 −.02 .81 −.20 .82 .08 .77 .09 .91 −.08 
Figure Recall .45 .42 .60 .15 .36 .46 .10 .79 .74 .01 
Eigenvalue 6.51 1.02 4.63 1.20 5.00 1.35 5.33 1.98 5.27 1.38 
r between factors .61 

 
.53 

 
.48 

 
.36 

 
.44 

 

% variance explained 54.27 8.49 38.54 10.02 41.70 11.25 44.41 16.49 43.92 11.50 
 



Factor 2 appeared to reflect a visuospatial construct, and the Figure Copy, Line Orientation, and Coding 
subtests reliably had high loadings. The Coding subtest had meaningful factor loadings on both 
dimensions. These cross-loadings might be attributed to the attentional component required in Coding 
that is conceptually similar to the attention requirements in list- and story-learning tasks. Additionally, 
Coding and Semantic Fluency possess a mutual speed component. The second visuospatial factor 
accounted for 9% to 17% of the total score variance, which is meaningfully less than the first factor. 
The two remaining subtests, Picture Naming and Digit Span, did not consistently load on either factor. 

Additional analyses were conducted to derive and evaluate one-factor RBANS solutions because PA 
and the MAP procedure provided some support for retaining only one factor in several samples. The 
majority of RBANS subtests meaningfully loaded onto the factor (see Table 5). Subtests with the 
strongest loadings were generally memory tasks indicating the primary presence of the cognitive 
construct of memory, though language, processing speed, and perceptual organization are also 
meaningfully emphasized. Digit Span had relatively low loadings on the one-factor solution (pattern 
matrix loadings <.40) in three samples. The amount of variance explained in the single-factor solution 
mirrors the amount of variance explained by the memory factor in the two-factor solution (Factor 1 
variance ≥38.54%). 



Table 5. Repeatable Battery for the Assessment of Neuropsychological Status single-component solution. 
 

Carlozzi et al. (2008) Duff et al. (2010) Duff et al. (2006) Wilde (2006) Gundersen Averaged loadings 
List Learning .82 .86 .76 .80 .81 .81 
Story Memory .82 .74 .78 .68 .80 .76 
Figure Copy .65 .07 .55 .50 .41 .44 
Line Orientation .71 .23 .50 .51 .52 .49 
Picture Naming .66 .32 .51 .63 .46 .52 
Semantic Fluency .72 .64 .55 .71 .72 .67 
Digit Span .49 .25 .36 .46 .31 .37 
Coding .86 .68 .67 .72 .67 .72 
List Recall .70 .80 .74 .75 .75 .75 
List Recognition .75 .73 .64 .75 .70 .71 
Story Recall .82 .80 .82 .79 .83 .81 
Figure Recall .78 .65 .70 .61 .72 .69 
Eigenvalue 6.51 4.63 5.00 5.33 5.27 5.35 
Percent of variance explained 54.27 38.54 41.70 44.41 43.92 44.57 



Next, quantitative methods of factor comparison were conducted using Orthosim 2.1 (Barrett, [ 3]) and 
are displayed in Table 6. Recommendations for interpreting congruence coefficients vary. Barrett, 
Petrides, Eysenck, and Eysenck ([ 4]) suggested coefficients in the range of.80 to.95 demonstrate good 
similarity of factors and coefficients at.98 and greater indicate an identical factor between samples. 
More delineated interpretive guidelines have been put forth as well: excellent = .98 to 1.00, good = .92 
to.98, borderline = .82 to.92, poor = .68 to.82, and terrible <.68 (MacCallum, Widaman, Zhang, & Hong, 
[48]). Resulting congruence coefficients vary slightly depending on which sample is the target sample, 
so all congruency coefficients are reported in Table 6. Overall, there was strong support for the 
similarity of a two-component solution with all coefficients except 1 meeting Barrett et al.'s ([ 4]) 
guidelines for factor replication. In addition, when considering the delineated guidelines, nearly 75% of 
the coefficients (33 out of 40) met MacCallum et al.'s ([48]) benchmarks for "good" or "excellent" 
replication. This evidence is sufficient to support the position that there is an invariant two-factor 
RBANS structure that emerges across samples. Despite there being subtle differences in factor loadings 
across subtests (e.g., Picture Naming and Digit Span), it did not negatively impact the congruency of 
solutions. 



Table 6. Two-component vector matrix comparisons with 12 Repeatable Battery for the Assessment of Neuropsychological Status subtests. 

 Carlozzi et al. (2008)  Duff et al. (2010)  Duff et al. (2006)  Wilde (2006)  Gundersen  
 1 2 1 2 1 2 1 2 1 2 
Carlozzi et al. (2008) — — .96 .94 .95 .93 .95 .88 .98 .95 
Duff et al. (2010) .98 .94 — — .97 .97 .93 .87 .98 .94 
Duff et al. (2006) .99 .96 .97 .95 — — .95 .90 .99 .96 
Wilde (2006) .94 .91 .95 .84 .93 .92 — — .95 .88 
Gundersen .98 .96 .98 .92 .98 .96 .95 .90 — — 

 



For the sake of completeness, the similarity of one-component solutions across samples was also 
investigated (see Table 7). Tucker's congruence coefficients (Levine, [45]; Lorenzo-Seva & ten Berge, 
[47]) suggest excellent congruence of one-factor solutions (e.g., interpretative benchmarks 
"similar" = .85–.94, "identical" = .95–1.00). Additionally, Pearson r correlations were calculated to 
quantify congruency of single-factor solutions (Levine, [45]), and all solutions were highly correlated. 
Both procedures indicated a single-factor RBANS dimension is invariant across samples. 

Table 7. Single-component solution comparisons with 12 Repeatable Battery for the Assessment of 
Neuropsychological Status subtests. 

 
Carlozzi et al. 
(2008) 

Duff et al. 
(2010) 

Duff et al. 
(2006) 

Wilde 
(2006) 

Gundersen 

Carlozzi et al. (2008) — .72** .84** .74** .85** 
Duff et al. (2010) .94 — .83** .92** .93** 
Duff et al. (2006) .99 .96 — .80** .91** 
Wilde (2006) .99 .96 .99 — .88** 
Gundersen .99 .98 .99 .99 — 

8 Note. Tucker's congruence coefficients are located below the diagonal and Pearson's r values are 
above the diagonal. **p < .01. 

Discussion 
Neuropsychological test validation is a continual process that requires examination of a measure 
utilizing different clinical and nonclinical samples. The factor structure of a measure is directly related 
to the validity of test score interpretation and thus is an important area of focus for researchers and 
clinicians. The present study investigated the factor-analytic structure of the RBANS, a widely used 
neuropsychological measure (e.g., see Randolph, [58], [59]). To date, six studies have evaluated the 
RBANS factor structure and revealed slightly different solutions (Carlozzi et al., [10]; Duff et al., [19]; 
Garcia et al., [24]; King et al., [39]; Schmitt et al., [18]; Wilde, [67]). This extensive body of literature 
clearly indicates that the RBANS factor structure is inconsistent with the theoretically developed 
RBANS five-index and single neuropsychological score structure. However, direct comparison of 
previous factor-analytic solutions is somewhat confounded because different methods were utilized. 
While many researchers have suggested that divergent factor-analytic solutions are associated with 
differences in sample characteristics, this research was conducted to determine (a) the degree to 
which methodological decisions impact findings by uniformly applying EFA methods, and (b) the 
quantitative similarity of solutions across diverse samples. 

Consistent with expectations, Kaiser's criterion and visual examination of the scree plot provided 
variable factor-retention recommendations both across and within samples (see Table 2). Horn's ([35]) 
and Velicer's ([63]) MAP procedures reliably indicated retention of one or two factors. Hence, both 
two- and one-factor solutions were explored to alleviate risk for overextraction or underextraction. 

With respect to a two-factor solution, this data-driven investigation revealed a strong first component 
of memory (List Recall, Story Recall, List Learning, List Recognition, Story Memory, Semantic Fluency, 
and Figure Recall) and a second visuospatial component (Figure Copy, Line Orientation, and Coding). At 
face value, these results are consistent with those of previous studies (Carlozzi et al., [10]; Duff et al., 
[19]; King et al., [39]; Schmitt et al., [18]; Wilde, [67]), but the current analyses permitted a more 



refined understanding of the relationship among subtests and underlying dimensions. While previous 
researchers have attributed minor differences to unique sample characteristics, this research 
evaluated the similarity of solutions after uniformly applying quantitative methods. The congruency of 
two-factor solutions suggests that differences between samples are inconsequential and a robust, 
invariant two-dimensional structure underlies the RBANS, which is generally consistent with previous 
findings. 

Not surprising given previous findings (Carlozzi et al., [10]; King et al., [39]), the Picture Naming and 
Digit Span subtests did not consistently load on either identified factor (see Table 4); however, this 
finding minimally impacted the overall congruency of solutions because the corresponding loadings 
were not prominent in defining factors. Duff et al. ([19]) eliminated the Picture Naming subtest prior to 
analyses due to a ceiling effect and, additionally, removed Digit Span from analyses due to low 
correlations with other subtests. In contrast, Digit Span and Picture Naming appeared to reliably load 
onto the second factor in studies by Garcia et al. ([24]), Schmitt et al. ([18]), and Wilde ([67]). To 
further explore how these subtests impact the overall congruency of solutions, these subtests were 
excluded and analyses were repeated. Overall, congruency between solutions improved (average 
Factor 1 congruency coefficient = .98; average Factor 2 congruency coefficient = .95; all coefficients 
≥.90), and this finding confirmed that these subtests contributed to lower-than-exceptional congruency 
of factor solutions derived from different samples. 

The RBANS Picture Naming and Digit Span tasks are conceptually expressive vocabulary and attention 
tasks, respectively. The cognitive skills necessary to complete these tasks are not theoretically related 
to the primary constructs associated with the identified factors. Further, empirical investigation reveals 
that a minimum number of marker variables must be present for a related component to emerge in FA 
(Velicer & Fava, [64]). Consequently, there simply is not sufficient representation of confrontation 
naming and attentional skills to enable these subtests to load reliably onto a corresponding factor. 
Related to this issue, the Attention and Language indexes did not emerge in this study nor in previous 
factor-analytic studies (Carlozzi et al., [10]; Duff et al., [19]; Garcia et al., [24]; King et al., [39]; Schmitt 
et al., [18]; Wilde, [67]) due to typically low (or at best moderate) relationships between subtests that 
comprise these indexes. Previous RBANS literature has revealed poor internal consistency of the 
Attention and Language indexes (Beatty, [ 5]; Beatty et al., [ 6]; Larson et al., [43]; McKay et al., [50]), 
and the current research raises questions regarding interpretation of these theoretical indexes. There 
is limited support for the interpretation of the Attention and Language indexes based on the internal 
structure of the RBANS. Although it is not surprising that the Picture Naming and Digit Span subtests 
did not meaningfully load with identified factors, it does not mean that the subtests lack clinical utility 
per se. However, clinicians should recognize that interpretation of a single subtest to represent a 
cognitive construct is neither optimally reliable nor sensitive and may ultimately negatively impact the 
clinical utility of the measure. 

A closer investigation of Picture Naming reveals that a ceiling effect is clearly present. The mean scores 
minimally ranged across samples (M = 8.87–9.56; SD = 0.73–1.53). This finding is meaningful because a 
restricted score range attenuates relationships between that task and other subtests (Fabrigar et al., 
[21]). In other words, a subtest with a skewed distribution of scores is limited in its ability to 
meaningfully correlate with other subtests (Goldberg & Velicer, [26]) and, ultimately, how it might load 



on identified dimensions. Additionally, a ceiling effect suggests potentially limited clinical utility. 
Clinicians should recognize that the subtest may only effectively identify expressive language issues 
that are readily apparent to the examiner. In current form, it is questionable whether the subtest 
would detect mild language issues. A practical implication of this observation may involve revisions to 
the Picture Naming subtest, which certainly presents challenges due to the strong associations 
between this task, education, and culture. A novel approach to item selection, test length, and 
basal/ceiling rules could be determined by identifying the item parameters of a larger pool of items 
utilizing item response theory. Calamia, Markon, Denburg, and Tranel ([ 8]) illustrated the value of this 
approach by developing a robust short form of Judgment of Line Orientation that is sensitive to 
visuospatial difficulties and is meaningfully related to the full version of the original test. Although such 
methods would not increase the likelihood of Picture Naming loading on one of the two identified 
factors, it is quite possible that the method would result in increased sensitivity to language issues. 

With respect to Digit Span, in two previous factor-analytic studies, the Digit Span subtest was not 
meaningfully related to identified factors (Carlozzi et al., [10]; King et al., [39]). Examination of the 
RBANS two-component solution consistency reveals low loadings for the Digit Span subtest and 
inconsistency in loading on either factor. As noted previously, the RBANS Digit Span task is 
conceptually an attention task. Anecdotally, in clinical settings, tasks assessing working memory, 
executive functioning, and attention are frequently administered in addition to the RBANS. A 
recommended revision to the RBANS is to include expansion of the Digit Span task to include backward 
and sequencing components (similar to the Wechsler Adult Intelligence Scale-Fourth Edition Digit Span 
subtest; Wechsler, [66]). To further develop a working-memory component, an additional working-
memory task, such as mental arithmetic or letter-number sequencing, could also be added to the 
RBANS. More thorough assessment of working memory could improve clinical utility of the RBANS 
across diverse populations, as this construct is often impaired in psychiatric (e.g., anxiety and mood 
disorders) and neurologic conditions (e.g., attention-deficit hyperactivity disorder, dementias, mild 
TBI). Revisions to more thoroughly evaluate attention, divided attention, and working memory are 
likely to improve clinical utility and make the RBANS more useful across multiple populations while still 
keeping test administration relatively brief. 

An invariant two-factor RBANS structure has implications for future research and clinical practice. 
Component scores could be developed using a normative sample and a unit-weighting scheme or exact 
factor score approach (Grice, [27], [28]). Each of these procedures could be explored to determine 
whether the empirically derived factor scores or theoretically developed index scores are more useful 
in detecting cognitive impairment or meaningful change from a baseline level of functioning. 
Empirically derived factor scores may have greater clinical utility because theoretically, they should 
have improved reliability and therefore be more sensitive to change. Duff et al. ([20]) recognized the 
likely presence of a two-factor solution and proposed a method to derive Verbal Index (List Learning, 
Story Memory, List Recall, List Recognition, and Story Recall) and Visual Index (Figure Copy, Figure 
Recall, Line Orientation, and Coding) scores. While the present study strongly supports consideration 
of the Memory and Visuospatial Indexes, it is noteworthy that Duff et al.'s ([20]) method assigns equal 
score weighting to subtests regardless of how they define a factor. A "true" factor score would reflect 
the weight of each subtest within the dimension and thus would more accurately reflect the 
component solution (Grice, [27], [28]). It would be worthwhile to consider how interpretation of the 



subtests, Duff and colleagues' ([20]) indexes, or a purely, empirically derived factor score approach 
could predict outcomes in clinical samples with well-defined impairment affecting the respective 
constructs. 

Admittedly, this research was conducted with the assumption that empirically supported retention 
procedures would likely recommend the retention of a single-factor solution based on findings from 
King et al. ([39]) because they incorporated PA and MAP procedures, and both procedures suggested 
the retention of a single factor. It was hypothesized that this systematic review and investigation 
would produce results that are more inconsistent with the literature than they are. Given support for 
the retention of just one factor in select samples (see Table 2), one-factor solutions were also 
considered. Examination of these solutions revealed that the majority of subtests loaded onto the 
single component with the exception of Digit Span. Additionally, quantitative analysis of factor 
congruency across samples revealed strong evidence for solution replication. However, when a one-
factor solution was specified, the subtests that most strongly defined the dimension were tasks 
associated with memory functioning. It appears that the primary underlying cognitive construct of a 
single empirically derived factor score of the RBANS is not general neuropsychological status, but 
rather, predominantly memory functioning. An empirically derived factor score would be most 
sensitive to memory deficits as opposed to other cognitive issues. A single-factor structure, in 
comparison with the robust two-factor solution, compresses RBANS subtests that evaluate visuospatial 
functioning. This finding reveals a clear disadvantage for the one-factor solution. Moreover, one could 
argue that a two-factor solution is more informative and would have greater clinical utility. For 
example, it would be more likely to detect visuospatial deficits associated with a right parietal cerebral 
vascular accident. 

This review also serves as an example of how researchers might evaluate the congruency of factor 
solutions across multiple samples. There are numerous examples in the literature where authors have 
identified different factor solutions across samples and raised questions regarding the validity of test 
score interpretations based on the relationship between aspects of the test and underlying factors 
(O'Connor, [55]). There is an emerging literature suggesting that it is essential to consider decisions 
regarding factor extraction when conducting EFA. As an exercise to demonstrate the potential 
drawback of overextraction, additional analyses were conducted to explore a three-factor RBANS 
solution. One previous study revealed a three-factor solution (Garcia et al., [24]), and two extraction 
criteria (e.g., Kaiser's criterion and visual examination of the scree plot) indicated the possibility of 
retaining three factors. A three-factor solution clearly resulted in nonreplicating solutions because the 
third factor was typically only defined by Digit Span, and the other RBANS subtests shifted between 
factors in an inconsistent manner. Orthogonal vector matrix comparisons indicated poor replication of 
a three-factor solution (mean Factor 1 congruency coefficient = .97; mean Factor 2 congruency 
coefficient = .91; mean Factor 3 congruency coefficient = .80). Additionally, approximately half of the 
congruency coefficients were in the borderline, or lower, range (26/60) and only a small number of 
coefficients were in the exceptional range (8/60). These findings clearly demonstrate the importance of 
utilizing empirically supported factor-retention strategies (e.g., PA and the MAP procedure) to identify 
an invariant factor structure. 



Conclusions 
Widespread agreement exists that a viable and defensible factor structure does not emerge from a 
single analysis. An optimal factor structure is one that is replicated across multiple diverse samples, 
with varying sample size and characteristics (Goldberg & Velicer, [26]). The present study has 
documented an invariant two-component RBANS solution through exploratory analysis and confirmed 
pattern replication by conducting orthogonal vector matrix comparisons. These factors primarily reflect 
memory and visuospatial cognitive constructs. Furthermore, the Picture Naming and Digit Span 
subtests were minimally correlated with other RBANS subtests, and as a result, they did not 
consistently load onto the replicated factors. Although not initially hypothesized, these results were 
generally consistent with previous studies and therefore provide further confirmation of a solution that 
is inconsistent with the theoretical RBANS index structure. This research quantifies the similarity of 
factor solutions across samples and adds to what is known about the psychometric properties of the 
RBANS. 

Additionally, the present study has empirically supported the position that differences in RBANS factor 
solutions are primarily due to methodological decisions and are not solely related to unique sample 
characteristics. Simply put, the RBANS factor structure is relatively invariant across diverse samples. 
Previous RBANS factor-analytic studies (Duff et al., [19]; Garcia et al., [24]; King et al., [39]; Schmitt et 
al., [18]; Wilde, [67]) revealed subtle differences between solutions and suggested they were due to 
sample differences. However, these findings indicate that the underlying structure does not 
meaningfully differ across samples when empirically supported factor-retention guidelines are 
considered. Similar methods could be implemented to help clinicians and researchers understand the 
psychometric properties of other neuropsychological measures when the literature includes divergent 
factor-analytic results. 

This investigation of the RBANS provides important clinical insights. Consistent with previous findings 
(Carlozzi et al., [10]; Duff et al., [19]; Garcia et al., [24]; King et al., [39]; Schmitt et al., [18]; Wilde, [67]), 
the underlying structure of the RBANS is inconsistent with the theoretical index scores. The RBANS 
component structure suggests the memory and visuospatial constructs are most reliably assessed. 
Furthermore, the Picture Naming subtest demonstrated a ceiling effect in clinical and nonclinical 
samples, thus impacting overall clinical utility. Also noteworthy, the Digit Span subtest did not 
converge with other tasks within the RBANS. This information in combination with findings that select 
index scores have problematic reliabilities, suggests that clinicians should be cautious when 
interpreting those composite scores. It seems that the RBANS is an appropriate measure to use when 
the purpose of the evaluation is to efficiently and effectively evaluate memory and visuospatial 
abilities. If a more comprehensive or refined neuropsychological picture is sought, a clinician is 
encouraged to augment the RBANS by administering measures sensitive to language, attention, and 
other relevant neurocognitive constructs. 
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