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ABSTRACT 

ADAPTIVE CONTROL OF JOYSTICK STEERING IN RECREATIONAL BOATS 

 

 

John A. Bayless, B.S., M.B.A. 

 

Marquette University, 2017 

 

  

 This thesis addresses the challenge of commissioning recreational boats with 

joystick control when the boat’s physical parameters are not known. The research was 

conducted by following a model-based, systems engineering approach which leveraged 

MATLAB simulations and scale-model physical testing.  The outcome of the research is 

a working methodology using L1 Adaptive Control which provides fast adaption in a way 

that could reduce the cost of commissioning recreational boats with joystick control, 

improve the robustness of the final design, and potentially expand the accessible market 

to new boat types. 
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I. INTRODUCTION 
 

 

 

 Background 

 

 
 

Some recreational boaters say, “You can’t buy happiness but you can buy a boat 

and that’s pretty close.”  Boaters love the prospect of being on the water with family and 

friends.  They hope each trip is memorable and safe.  However, at the end of the trip 

wind, current, and the complex nature of boat motion can conspire to make docking 

difficult.  To make maneuvering close to the dock easier, marine engine manufacturers 

created alternative steering control systems.  The alternative systems invite the captain to 

let go of the traditional wheel and throttle and grab a three-axis joystick controller.  With 

the intuitive joystick, the captain can command the boat’s velocity vector and let the 

computer control the engines and steering mechanisms as required.   Thus, the boaters’ 

happiness is hopefully restored even when facing stressful docking scenarios. 

 

There are joystick control systems for all three main propulsion categories: pod 

drives, stern drives, and outboards.  These propulsion systems are applied to as many 

boat categories as practical including: runabouts, express cruisers, and center console 

fishing boats.  The target boats for joystick control typically have hulls which are stepped 

or non-stepped with anywhere between 18° to 30° dead rise. The boat weights can range 

from approximately 5,000 to 25,000 pounds and boat lengths can range from 24 to 48 

feet (Lemancik, 2009).  With the above target specifications, most multi-engine large 

planing boats can be equipped with joystick control.   
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Despite the variety in target boat hull design, all boats equipped with a joystick 

controller have essentially the same non-adaptive controller.  The controller is designed 

to drive the actuators to calibrated set points under individual feedback control.  For 

example, the control computer receives input from the joystick and sends open loop 

commands for throttle, shift, and steering angle based on the controller’s calibration 

(Lemancik, 2009).  This allows the captain to twist and/or nudge the joystick and enjoy 

astounding control while maneuvering.  For the non-adaptive controller to work as 

expected, it is critical to calibrate the set points for each individual vessel. 

 

Having to calibrate non-adaptive controls for each boat causes the manufacturer 

to deal with two undesirable conditions.  For one, the cost of experimentally identifying 

and manually loading boat parameters in the field (not at the factory) is high and a 

potential bottleneck for sales.  While recreational marine volumes are low compared to 

the automotive industry, relying on qualified field engineers to commission all boats 

limits the total number of boats which can be commissioned in each season.  Another 

undesirable condition is the control’s robustness.  On large boats, the critical boat 

parameters will not change too much from voyage to voyage; however, on smaller boats 

this is not the case.  Small boats are lighter; therefore, they are more sensitive to changes 

in weight due to the number of people and provisions onboard.  Consequently, high 

volume markets, such as pontoon boats, are excluded. 

 

The key question is, “Can the calibration process be eliminated through 

automation?”  If so, the controller would have to either identify the system parameters or 
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identify the controller parameters automatically.  The controller might then also be more 

robust.  Can the current controller be replaced with an adaptive controller? 

 Statement of the Problem 

 

 

 

The opportunity to configure more boat classes with joystick controllers and to 

reduce the cost and time to commission existing boats with joystick controllers could 

come from creating a controller which does not require calibration.  The controller would 

need to function without knowing the essential boat parameters such as: the distance 

between the engines and the center of lateral resistance, the distance between the engines 

and the center line, and the boat’s inertial properties.  These parameters will be described 

in more detail in Section II Physical and Mathematical Models below.  For now, these are 

the parameters which define the boat to be controlled and how the actuators relate to the 

boat.  A controller which could adapt to unknown parameters while providing 

exceptional control would solve the problem.   

 

The key challenge is to adapt to the unknown parameters quickly and effectively.  

The adaptation should occur so quickly that it is not noticed by the captain.   The captain 

will notice if the controller is not adapting because a controller error in one axis could 

lead to motion in another axis.  For example, if the captain is trying to move laterally and 

the controller is not calibrated correctly, then the boat will rotate unintentionally.  To 

avoid undesirable motion, the adaptive controller must adapt quickly to perform well in 

the critical slow-speed maneuvers. 
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Specific Performance Requirements for Two Critical Maneuvers 

 

In operation, the critical maneuvers for slow-speed maneuvering are stationary 

rotation (yaw) and pure translation (sway).  Industry product marketing brochures from 

the two main competitors in the space, Mercury Marine (2014) and Volvo Penta (2016), 

make claims such as, “Push the joystick to port or starboard and your boat goes sideways. 

Even “impossible” berths are now accessible. Twist the top to rotate,” and “Rotate on its 

own axis with a twist of the joystick.”  These two maneuvers in sequence would allow 

the captain to pull away from a pier side mooring and change direction within a single 

boat length shown in Figure 1.   

 

Hence, the goal of the research was to create an adaptive boat controller which solves for 

the critical unknown parameters in a way that meets the following the requirements 

specified in Table 1. 

 

Figure 1 Joystick Steering in Docking Situations 
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Table 1  Performance Requirements 

Maneuver Requirement 

1 
Stationary Rotation  

(Pure Yaw) 

Full 360˚ rotation without changing position by 

more than one boat length 

2 
Lateral Translation  

(Pure Sway) 

Three beam width translation with less than 10˚ 

rotation or forward/aft translation 

 

Current State of the Problem 

 

Today, joystick control systems for recreational boats are electromechanical 

systems which employ a programmable controller to activate steering and thrust controls 

in a way that creates a net force and/or moment.  As stated in Newton’s second law, the 

acceleration of an object as produced by a net force is directly proportional to the 

magnitude of the net force, in the same direction of the net force, and inversely 

proportional to the mass of the object.  This means that a boat should accelerate laterally 

if the net force at the center of mass in the fore/aft direction is zero, the net force at the 

center of mass in the port/starboard direction is greater than zero, and the net moment at 

the center of mass is zero.  Similarly, a boat should accelerate in yaw if the net forces at 

the center of mass in all directions is zero and the net moment at the center of mass is 

greater than zero.  To create the net force and moment vectors, the propulsion system 

must have two or more thrusters with independent steering, shift, and propeller speed 

control capability.  With this capability, the thrust of each independent motor can be 

directed to create the desired force and/or moment. 

 

To create the net force and moment, the boat can be modeled as a group of 

subsystems which operate together.  A high-level system description, diagram (Figure 2), 

and table of system variables (Table 2) are provided below: 
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1. Hull – The boat hull provides buoyant force.  The hull form determines the 

hydrodynamic forces.  The hull geometry, materials, and load out (i.e., 

number of people onboard, supplies, etc. which can be variable) determine 

boats inertia matrix. 

2. Motion sensors – The sensors measure accelerations and magnetic 

heading. 

3. Controller – The controller receives the input from the joystick and 

calculates set points for individually controlled steering, shift, and thrust 

actuators. 

4. Steering system – The steering system consists of independent mechanical 

rotation systems which rotate to aim the thrust vector on a desired angle. 

5. Propulsion system – The propulsion system consists of independent 

mechanical rotation systems which change in speed and direction to 

generate the desired thrust force.   

6. Ballast – The ballast compartments allow for internal mass to be added to 

the boat.  In the test boat, the ballast compartments enable different inertia 

scenarios.  In target applications, recreational boats accommodate different 

load-outs in terms of people and gear. 

7. Boat power supply – The power supply provides the energy needed to 

drive the boat actuators and to power onboard sensors. 

8. Motor-to-Motor distance mechanism – This mechanism enables different 

boat geometry scenarios (not present in target applications, only the test 

boat). 

9. Disturbances – The controller faces disturbances in the form of wind, 

current, and waves which will impact the motion of the boat. 

 

 

Current joystick systems can be described as open loop control with the human in 

the loop to adapt to disturbances and calibration errors.  The controller commands the 

actuators to set points preset during the calibration process.  The calibration process 

ensures the parameters loaded into the controller enable the subsystems to work together 

as desired.  Application engineers identify boat parameters through research, 

measurement, and often on-water testing.  After identifying the parameters, they are 

loaded into the control computer manually to drive the steering mechanism and engine 

speed to the proper settings (Lemancik, 2009).  Consequently, the joystick control is 
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smooth and intuitive.  However, as noted above, the system cannot adapt to changes in 

total weight or disturbances such as wind.  In the presence of disturbances or calibration 

errors, the captain must modify the inputs to get the desired motion in today’s integrated 

joystick systems.  A fast-adapting system with high performance and disturbance 

rejection would eliminate the calibration process. 

 

Table 2 Through and Across Variables in the Joystick Control System 

 

 

 

Variable Definition Description 

T Torque Moment applied to the rotating components (N-m) 

ω Angular speed Angular velocity of rotating components (rad/s) 

f Force Linear force applied to system components (N) 

v Velocity Linear velocity of system components (m/s) 

e Voltage Electrical potential (Volts) 

i Electrical current Electrical currents (Amp) 
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 Statement of the Procedure 

 

 

 

Overview 

 

The research was conducted through a model-based, systems engineering 

approach (Craig, 2012) outlined in Table 3. The key concept behind the approach is to 

follow a logical progression of steps where each step builds on the previous step to create 

new insight to the physical problem.  The basic principle of the process was to start with 

Figure 2 System Diagram 
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the physical system, apply first principles to identify the critical relationships, and then 

leverage mathematical modeling before beginning the hardware design and physical 

testing steps.  In this research, the insights which shaped control development came from 

building the mathematic model (steps two through five) which will be described in detail 

below.  As such, the approach was suitable for breaking down the inherent complexity of 

both boat motion and multidisciplinary mechanical systems.  

 

Table 3  Model Based Systems Engineering Approach 

Step Name Description 

1 
Physical 

System 

 

The physical system is a scale model test boat which resembles 

joystick control target applications.  Like the target applications, 

the test boat is a deep “v” shaped planing mono hull with a 

length to beam ratio of four and twenty-five-degree dead rise.  

The hull is symmetrical from bow to stern.  Ballast 

compartments are incorporated into the hull to create different 

inertia scenarios.  Also, the propulsion system is installed at the 

stern without bow thrusters such that the motors can be moved 

inboard and outboard to vary the propulsion system geometry.   

This enables scenarios varying engine to engine center distance 

or engine to center line distance.  

 

2 
Parameter 

Identification 

 

The physical parameters were identified by direct measurement 

in most cases.  Moments of inertia were estimated using CAD 

models in SolidEdge ST6. 

 

3 
Physical 

Model 

 

The physical model was derived by leveraging several resources 

and by making simplifying assumptions outlined in the Physical 

and Mathematical Modeling section. 

 

4 
Mathematical 

Model 

 

The mathematical model followed the physical model as 

outlined in the Physical and Mathematical Modeling section. 
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Step Name Description 

5 
Mathematical 

Analysis 

The mathematical model was programmed in MATLAB. The 

mathematical model provided an opportunity to build insight 

from studying the input/output performance of the model and to 

iterate quickly in the controller design.  

6 
System 

Measurement 

 

The physical system was tested in two maneuvers in four 

scenarios each.   

 

Sway translation was also tested with a wind disturbance.  The 

wind disturbance was created by a household fan blowing 

directly down the length of the test tank (beam-on). 

 

The performance of the physical system was measured through 

object tracking in digital video.   

7 
Measurement 

Analysis 

 

Measurement analysis of the physical system was completed in 

Microsoft Excel.  The analysis compared the actual 

displacement against the original research design requirements. 

 

8 

Comparison 

of Predicted 

vs. Actual 

The comparison of predicted vs. actual performance was 

completed qualitatively. 

9 
Design 

Assessment 

 

After considering the measurement analysis and applying 

engineering judgment, design improvements were identified. 

 

10 
Design 

Changes 

 

After analyzing the actual performance with the mathematical 

model, a new strategy for power was implemented in MATLAB 
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II. PHYSICAL AND MATHEMATICAL MODELS 
 

 

 

 Introduction 

 

 
 

Through several simplifying assumptions described below, a mathematical model 

was derived from the full system of six coupled, nonlinear equations which describe boat 

motion (Fossen, 2011).  The critical process in deriving the model was focusing on sway 

and rotation at very slow speeds.  By focusing on the target maneuvers, a boat’s motion 

can be treated as a rigid body under the forces of the propulsion system, the external 

environment, and (once moving) hydrodynamics.  How these external forces act on the 

boat is a function of several factors such as the boat’s shape, speed, the boat’s center of 

gravity, and even the seaway boundaries (Tupper, 2004).  After carefully considering the 

relative impact of these forces, judgment was applied to make the model as simple as 

possible and still provide insight suitable for simulation and control development. 

 Reference Frames 

 

 

 

The model followed the standard notation in Table 4 and Figure 3 as defined by 

Society of Naval Architects and Marine Engineers (SNAME) for all six degrees of 

freedom (Fossen, 2011). 
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Table 4  Coordinate System 

DOF Motion Description 

Forces 

and 

Moments 

Linear 

and 

Angular 

Velocities 

Positions 

and 

Angles 

1 Surge Linear motion bow to stern X u x 

2 Sway Linear motion port to starboard Y v y 

3 Heave Linear motion up and down Z w z 

4 Roll Angular motion about the 

longitudinal axis 

K p φ 

5 Pitch Angular motion about the lateral 

axis 

M q θ 

6 Yaw Angular motion about the 

vertical axis 

N r ψ 

 
 

Figure 3  Body Reference Frame 

 

 Rigid-Body Kinematics and Kinetics 

 

 

 

The equations of motion for boats as rigid bodies can be derived using Newton-

Euler or Lagrangian methods.  With no constraints in linear or angular motion, a boat has 

six degrees of freedom.  The generalized forces and moments on the boat are usually 



   13 

 

modeled by using maneuvering theory or seakeeping theory.  Maneuvering theory applies 

to boats, like the test boat, traveling at constant speeds in calm seas (Fossen, 2011). 

 

In maneuvering theory, as in this research, the focus is on motion in the horizontal 

plane at slow speeds (surge, sway, and yaw).  It is assumed that there are no waves; 

therefore, there is no motion in the vertical plane (no heave, roll, or pitch)  Without 

rolling, heaving, and pitching motions, the equations of motion are reduced to three 

coupled degrees of freedom (Fossen, 2011): 

 𝑋 = 𝑚(𝑢 ̇ − 𝜓̇𝑣 − 𝑥𝐺𝜓̇2) (1) 

 𝑌 = 𝑚(𝑣 ̇ + 𝑢𝜓̇ + 𝑥𝐺𝜓̈) (2) 

 𝑁 = 𝐼𝑧𝜓̈ +  𝑚𝑥𝐺(𝑣 ̇ + 𝑢𝜓̇) (3) 

 

 

where X, Y, and N are the sum of the forces and moments acting on the boat in the body 

reference frame with the origin at the transom on the boat’s centerline. 

  

The generalized forces acting on the boat can be organized into four groups: 

1. control forces,  

2. hydrodynamic added mass,  

3. damping, and  

4. wind forces.   

For this research, the critical group is the control forces group.  The control forces are 

generated by the actuators for steering and thrust.  They put the boat into motion.  Once 

in motion, the boat forces the water in its path to flow around the hull.  This flow 
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generates the second most important group known as hydrodynamic added mass which 

can be characterized as inertial forces.  The inertial forces are caused by the boat 

physically moving the water around the hull (Misra, 2008).  The third group, 

hydrodynamic damping force, is caused by skin friction and lift forces as the water flows 

around the boat.  As such, the hydrodynamic added mass and damping forces are a 

function of the hull form (Misra, 2008).  Because the boat is symmetrical along the 

longitudinal axis, moving forward at very slow speeds, surge is assumed to be decoupled 

from sway and yaw.  Unlike the longitudinal axis, the shape of the hull along the lateral 

axis is asymmetric.  The asymmetric shape along this axis causes asymmetric flow 

around the hull in sway and yaw motions.  Hence, motion in these two directions are 

coupled.  The implication of the above is that hydrodynamic forces develop when the 

ship is moving as a function of velocity and acceleration.  For surge motion, the forces 

are a function of surge velocity and surge acceleration only.  For sway and yaw motion, 

the forces are coupled such that motion in either state will generate forces as function of 

surge and sway velocity and acceleration (Misra, 2008).  The relationships between 

motion and hydrodynamic forces are nonlinear across a wide speed or acceleration range.  

However, it is assumed that at low speeds the hydrodynamic derivatives can be linearized 

around the target speeds such that the hydrodynamic forces, 𝒖𝒉𝒚𝒅, can be expressed using 

SNAME notation as: 

 

 

𝒖𝒉𝒚𝒅 = [
𝑢𝑋𝑢 + 𝑢̇𝑋𝑢̇

𝑣𝑌𝑣 + 𝑣̇𝑌𝑣̇ + 𝑟𝑌𝑟 + 𝑟̇𝑌𝑟̇

𝑣𝑁𝑣 + 𝑣̇𝑁𝑣̇ + 𝑟𝑁𝑟 + 𝑟̇𝑁𝑟̇

] 
(4) 
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The fourth group is the wind.  The wind creates an airflow over the hull which creates a 

pressure field on the boat above the waterline.  Together, the generalized forces were 

modeled as a control force, additional inertia and damping forces, and a disturbance force 

respectively. 

 

As a control force, the thrust forces came from two independent propulsion 

systems to direct thrust.  For this research, the thrust magnitude was assumed to be a 

linear function of motor speed.  Fossen (2011) recommends a nonlinear propeller torque 

and thrust model which varies as a function of vessel speed.  However, in this research 

the control objective does not require precise thrust control but rather precise thrust 

vector control.  Therefore, the propeller was assumed to be an ideal transformer which 

transforms rotational mechanical energy into translational mechanical energy without 

energy storage, cavitation (slipping), or dissipation.  That is, the angular speed and torque 

about the propeller shaft will be converted to translation about an axis fixed to the 

propeller shaft and force about the same axis at a gain proportional to the propeller pitch 

– like a rack and pinion gear.   

 

The thrust direction was assumed to follow commanded steering angles as a first 

order servo system for this research.  By observation, the servo responded to commands 

about as fast as the controller’s discrete time step which was much faster than the hull 

settling time; therefore, modeling the steering system as a second order servo system 

would have unnecessarily complicated the research.  The propulsions systems were 

integrated with the boat such that each system was equidistant from the centerline; 

however, the distance to centerline could be changed to test the controller.  Also, the boat 
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ballast could be changed which changed the distance between the propulsion systems and 

the center of gravity as depicted in Figure 4.  The net force and moment the propulsion 

systems created are a function of the propeller speed, steering angle, distance between the 

system and centerline, and distance between the system and the center of gravity. 

Let 𝒖𝒕𝒉𝒓 be the vector of forces and moments generated by the propulsion systems 

in surge, sway, and yaw respectively such that: 

 
𝒖𝒕𝒉𝒓 = [

𝑢𝑡ℎ𝑟1

𝑢𝑡ℎ𝑟2

𝑢𝑡ℎ𝑟3

]. 
(5) 

 Further let: 

 

𝐹1 = 𝑡ℎ𝑟𝑢𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡 𝑒𝑛𝑔𝑖𝑛𝑒 

𝐹2 = 𝑡ℎ𝑟𝑢𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑏𝑜𝑎𝑟𝑑 𝑒𝑛𝑔𝑖𝑛𝑒 

𝛿1 = 𝑝𝑜𝑟𝑡 𝑒𝑛𝑔𝑖𝑛𝑒 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 

𝛿2 = 𝑠𝑡𝑎𝑟𝑏𝑜𝑎𝑟𝑑 𝑒𝑛𝑔𝑖𝑛𝑒 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 

𝑁1 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 𝑧 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡 𝑒𝑛𝑔𝑖𝑛𝑒 

𝑁2 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 𝑧 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑏𝑜𝑎𝑟𝑑 𝑒𝑛𝑔𝑖𝑛𝑒 

𝐵 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑣𝑒𝑠𝑠𝑒𝑙 𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑚𝑜𝑢𝑛𝑡 

𝐿 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑚𝑜𝑢𝑛𝑡 

 

Figure 4  Motor and Boat Geometry 
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From inspection, the propulsive forces and moments at the center of mass from each 

system can be written in vector notation as: 

 

 𝐹1
⃑⃑  ⃑ = 𝐹1 cos 𝛿1𝑥𝑏̂ +𝐹1 sin 𝛿1 𝑦𝑏̂ (6) 

 𝐹2
⃑⃑  ⃑ = 𝐹2 cos 𝛿2𝑥𝑏̂ +𝐹2 sin 𝛿2 𝑦𝑏̂  (7) 

 𝑁1
⃑⃑ ⃑⃑ = (−𝐿𝐹1 sin 𝛿1 − 𝐵𝐹1 cos 𝛿1)𝑧𝑏̂ (8) 

 𝑁2
⃑⃑ ⃑⃑  = (𝐿𝐹2 sin 𝛿2 + 𝐵𝐹2 cos 𝛿2)𝑧𝑏̂ (9) 

 

Then, the net forces and moments can be written as: 

 

 𝑢𝑡ℎ𝑟1 = 𝐹1 cos 𝛿1 + 𝐹2 cos 𝛿2 (10) 

 𝑢𝑡ℎ𝑟2 = 𝐹1 sin 𝛿1 + 𝐹2 sin 𝛿2 (11) 

 𝑢𝑡ℎ𝑟3 = 𝐿(𝐹2 sin 𝛿2 − 𝐹1 sin 𝛿1) + 𝐵(−𝐹1 cos 𝛿1 + 𝐹2 cos 𝛿2) (12) 

 

As will be described in Section III Control Strategy in more detail, it was assumed the 

control strategy would dictate that the steering angles of the two systems be equal and 

opposite such that: 

 𝛿2 = 𝜋 − 𝛿1 (13) 

 

Note that the propellers can be driven in forward or reverse which would orient the thrust 

vector forward or aft accordingly.  So, the equations above can be simplified to: 

 𝑢𝑡ℎ𝑟1 = cos𝛿1(𝐹1 − 𝐹2) (14) 

 𝑢𝑡ℎ𝑟2 = sin 𝛿1(𝐹1 + 𝐹2) (15) 

 𝑢𝑡ℎ𝑟3 = 𝐿sin 𝛿1(𝐹1 + 𝐹2) − 𝐵 cos 𝛿1(𝐹1 + 𝐹2) (16) 

 

Therefore, the force from the propulsion system, 𝒖𝒑𝒓𝒐𝒑, was modeled as: 
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𝒖𝒑𝒓𝒐𝒑 = [

cos 𝛿1(𝐹1 − 𝐹2)

sin 𝛿1(𝐹1 + 𝐹2)

𝐿sin 𝛿1(𝐹1 + 𝐹2) − 𝐵 cos𝛿1(𝐹1 + 𝐹2)
]. 

(17) 

 

 The added mass hydrodynamic derivatives 𝑌𝑣̇ for sway is critical to control in the 

pure sway maneuver.  When the boat moves laterally, it must displace the water in the 

boat’s path.  The boat pushes a mass of water like the mass of the boat around the hull.  

Put another way, a sway force from the boat controls will meet an opposing force from 

the water’s inertia.  The opposing force can be thought of as a pressure field whose shape 

reflects a longitudinal cross-section of the hull below the waterline (Misra, 2008).  The 

net force is an integration of the pressure field over the length of the hull.   

 𝐴𝑑𝑑𝑒𝑑 𝑀𝑎𝑠𝑠 𝐹𝑜𝑟𝑐𝑒 =  𝐶𝑑ρ𝑉
2𝐴/2 (18) 

Where 

𝐶𝑑 = coefficient of drag 

ρ = water density 

𝑉2 =  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 

𝐴 = 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒 𝑝𝑒𝑟𝑝𝑖𝑛𝑑𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 
 

The point on the hull at which the net force acts is referred to as the center of lateral 

resistance (COLR).  Therefore, for pure sway motion, the net force vector from the 

actuators must act on the COLR.   

 

Finally, the experiments assumed no wind and no current.  However, wind was 

created as a disturbance to test the controller in some scenarios.  The force of the wind 

was expressed simply as 𝒖𝒅𝒊𝒔𝒕. 

 

Before bringing the model of the forces together with the rigid body equations, 

the assumptions made to the forces were also applied to the rigid body equations.  The 
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slow speed assumptions made to linearize the hydrodynamic forces were applied to the 

rigid body equations.  The initial velocities are all zero: 

 

𝑢𝑖 = 0; 𝑣𝑖 = 0; 𝑟𝑖 = 0   
 

The accelerations were expected to be very small values: 

 

𝑢 ̇ < 0.1 𝑚 𝑠2⁄ ; 𝑣 ̇ < 0.1 𝑚 𝑠2⁄ ;  𝑟 ̇ < 3 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑠2⁄   
 

Also, the assumption was made that the slow speeds decouple surge from sway and yaw.  

Finally, it was assumed that the center of gravity would lie on the boat’s centerline.  

Therefore, 

 𝑋 = 𝑚(𝑢 ̇ − 𝜓̇𝑣 − 𝑥𝐺𝜓̇
2)  ≅  𝑚(𝑢 ̇ −  𝑥𝐺𝜓̇

2) (19) 

 𝑌 = 𝑚(𝑣 ̇ + (𝑈𝑖 + 𝑑𝑢)𝜓̇ + 𝑥𝐺𝜓̈) ≅  𝑚(𝑣 ̇ +  𝑥𝐺𝜓̈)   (20) 

 𝑁 = 𝐼𝑧𝜓̈ +  𝑚𝑥𝐺(𝑣 ̇ + (𝑈𝑖 + 𝑑𝑢)𝜓̇) ≅ 𝐼𝑧𝜓̈ +  𝑚𝑥𝐺(𝑣 ̇ ) (21) 

Which implies 

 

 𝑋 =  𝑚(𝑢 ̇ −  𝑥𝐺𝜓̇2) =  𝑢𝑋𝑢 + 𝑢̇𝑋𝑢̇ + cos𝛿1(𝐹1 − 𝐹2)  (22) 

 𝑌 = 𝑚(𝑣 ̇ +  𝑥𝐺𝜓̈)  =  𝑣𝑌𝑣 + 𝑣̇𝑌𝑣̇ + 𝑟𝑌𝑟 + 𝑟̇𝑌𝑟̇ + sin 𝛿1(𝐹1 + 𝐹2)  (23) 

 𝑁 = 𝐼𝑧𝜓̈ +  𝑚𝑥𝐺(𝑣 ̇ ) 

= 𝑣𝑁𝑣 + 𝑣̇𝑁𝑣̇ + 𝑟𝑁𝑟 + 𝑟̇𝑁𝑟̇ + (𝐹1 + 𝐹2)(𝐿sin 𝛿1 − 𝐵 cos𝛿1) 

(24) 

 

The above equations can be rewritten in matrix format as follows: 

 

 
[

𝑚−𝑋𝑢̇ 0 0
0 𝑚−𝑌𝑣̇ 𝑚𝑥𝑔−𝑌𝑟̇

0 𝑚𝑥𝑔−𝑌𝑟̇ 𝐼𝑧−𝑁𝑟̇

][
𝑢̇
𝑣̇
𝑟̇
] + [

−𝑋𝑢 0 0
0 −𝑌𝑣 −𝑌𝑟

0 −𝑁𝑣 −𝑁𝑟

] [
𝑢
𝑣
𝑟
] = ⌊

cos𝛿1(𝐹1 − 𝐹2)

sin 𝛿1(𝐹1 + 𝐹2)
(Bsin𝛿1 − 𝐿 cos 𝛿1)(𝐹1 + 𝐹2)

⌋ 
(25) 

 

 After analyzing each factor in the full state space equations, the simplifying 

assumptions above justified the use of a three degree of freedom model in which surge 

was decoupled from sway and yaw.  The critical assumptions included treating the boat 

as a rigid body symmetrical along the centerline, maneuvering at slow speed in calms 

seas with no wind.  It is important to note that each of the above values will be unknown 
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to the controller except for F1 and F2.  With the simplifying assumptions having been 

made, the model was ready for simulation and control development.  
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III. CONTROL STRATEGY 
 

 

 

 Introduction 

 

 
 

Today’s joystick control systems require a manual calibration process because the 

current strategy relies on classical control techniques for controlling subsystems while the 

overall boat control is left to the captain.  In the outer loop of the boat, the captain makes 

continuous changes to the joystick input until the desired trajectory is achieved.  In the 

inner loop, the shift, throttle, and steering commands are essentially set points (under PID 

control).  The set points are calibrated during the manual configuration mentioned above 

(Lemancik, 2009).  The current strategy works for boaters because it is very intuitive.  If 

the boat yaws left un-commanded, the captain twists the joystick to the right to 

compensate.  Within the control system, the joystick inputs drive the subsystem 

components to set points derived during the system calibration.  The individual 

subsystem controllers use classical design techniques to meet performance expectations 

(Lemancik, 2009).  Therefore, to eliminate the manual calibration process, the controller 

must replace the human in the outer loop by adapting to changes or errors in the vessel 

calibration and/or disturbances. 

 Adaptive Control Historical Perspective 

 

 

 

There are several classes of marine vessel controls.  Controls for set point 

regulation (i.e., heading, speed, trim angle, etc.) are autopilots.  Controls for waypoint 

tracking, trajectory tracking, or path following are guidance systems.  Controls for 

minimizing undesirable motion (i.e., rolling) are stabilizers.  Controls for maintaining a 
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vessel's position and heading exclusively through thrusters and main propellers are 

dynamic positioning (DP) controllers (Fossen, 2011).   

 

The integrated joystick systems in recreational boats are DP controls.  However, 

traditional DP applications include mobile offshore drilling vessels, research vessels, and 

cruise ships.  Each vehicle example above are built as capital projects produced at low 

volume.  In these situations, the DP control architecture is designed as an integrated 

subsystem (Fossen, 2011) during the mechanical design or after each of the critical 

parameters are largely known.  The difference between traditional DP design and joystick 

control design for recreational boats is that for boats, joystick control is an add-on option.  

The option is meant to be available with as many different boat designs as possible.  As 

described in Section I Introduction above, the joystick controller is tuned for each 

individual boat which creates cost and capacity problems.  If the joystick maker is going 

to avoid individual boat calibrations, then the controller will have to leverage adaptive 

control techniques. 

 

Adaptive control has a long, progressive history.  In the early 1950’s, aerospace 

programs required advances in adaptive control to enable autopilots to perform over new, 

larger ranges of altitudes and airspeeds.  The new requirements disqualified fixed gain 

controllers.  In response, new adaptive controllers used gain scheduling based on a 

variety of measured conditions such as aircraft altitude and Mach number.  In search of 

greater performance, controllers were developed using self-adjustment following the MIT 

rule or sensitivity rule.     
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The next advances came in increased robustness.  By the 1970’s Lyapunov based 

stability was introduced.  As a reference, several variations of MRAC are available for 

study in general (Annaswamy, 1989) as well as applications to vessel dynamic 

positioning in particular (Verma, 2004).  In marine control, the first DP controls were 

implemented in the 1960’s using decoupled PID for surge, sway, and yaw.  By the late 

1970’s, more refined DP controllers were implemented using linear optimal theory and 

Kalman filters for better performance (Hovakimyan, 2010).   

 

By the 1990’s, controllers attacked nonlinear control with several methodologies.  

DP controllers have used model reference adaptive control (MRAC) variations of PID 

and LQR controls as well as more advanced techniques such as integrator back stepping 

(Fossen, 2011).  By the 2000’s, engineers investigated search methods, multiple models, 

and more sophisticated switching techniques.  Similarly, there exist several strategies for 

LQR and integrator back stepping for dynamic positioning  (Fossen, 2011) and heading 

control (Jouffroy, 2012).  Over the last sixty years, adaptive control provided strategies to 

overcome parametric uncertainties under several classes of control problems.   

 

Nonetheless, the control theory developed over the last sixty years to create 

adaptive controllers have limitations (Anderson, 2005).  All adaptive controls were 

limited to slow varying uncertainties and required persistent excitation.  When the 

controller had to have fast adaption, the actuators faced high frequency oscillations in the 

control signal which reduced the system’s tolerance to time delay.   
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 Adaptive Joystick Control Problem Detail 

 

 

The adaptive control problem for the recreational joystick is different from 

adaptive DP controls in the shipbuilding industry, marine autopilots, or even aerospace 

flight controls because of a unique combination of factors.  As listed in Table 5, the 

controller has neither an actuator dedicated to yaw, knowledge of the actuator’s neutral 

yaw rate position, nor persistent excitation.  If the controller had to overcome just one of 

the above factors, the controller could be designed in a straightforward process. 

 

One of the contributing factors is the lack of a dedicated yaw rate actuator.  While 

there are boats with bow or stern thrusters dedicated to yaw rate, installation typically 

requires cutting holes into the hull.  Marine engine manufacturers can provide the same 

controllability without the cost and risk of modifying the hull.  If the boat has two or 

more main engines, then the boat is over actuated.  That is, the boat has three degrees of 

freedom (surge, sway, and yaw) and two engines with controllable steering angles and 

thrust (magnitude and direction) for a total of four independent inputs.  Since the number 

of inputs is greater than the system’s degrees of freedom, the controls can be allocated 

using multiple strategies.   

 

The other contributing factor, the fundamental issue which creates the cost and 

complexity in commissioning today’s recreational joystick controls, is the variability in 

the location of the COLR.  This is critical because to execute pure translation maneuvers 

(zero yaw rate) the controller must command steering angles to direct the force vector 

through the COLR.  Unlike common DP and autopilot controls which adapt to an 
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unknown magnitude of the actuator gain with a known sign (Fossen, 2011), the 

recreational boat joystick controller does not know the neutral position of the yaw 

actuator.  In common autopilots, when the rudder is placed at a neutral angle it will not 

apply a moment to the boat, assuming no trim is needed.  When the rudder is turned to 

the right of center, the rudder will apply a clockwise moment.  When the rudder is turned 

to the left, the rudder will apply a counter-clockwise moment center.  In common DP 

control which use bow or stern thrusters, the moment direction is created by the direction 

of the thruster’s propeller rotation – one way for clockwise, the other way for counter-

clockwise.  In the research case, the yaw control is provided by creating a moment 

through the placement of a net force vector relative to the COLR.  To function, the 

recreational joystick control must adapt in finding the steering angle for the neutral 

position (while translating in sway). 

 

Finally, the controller must adapt quickly without persistent excitation.  The boat 

motion under joystick control should be smooth, slow, and precise.  Often the wind and 

water will be calm in protected harbors.  In contrast, adaptive DP controls and autopilots 

using model reference adaptive control assume the vessel is responding to wave and wind 

forces and/or moving at a constant forward speed which will provide the excitation 

needed to identify system parameters.  Therefore, the lack of persistent excitation 

prohibits the use of traditional direct or indirect MRAC.   

 

Each of the factors above in isolation have been overcome in different scenarios.  

What is unique is the combination of factors facing the recreational boat joystick 

controller.  For example, if the COLR was unknown but there was a dedicated yaw rate 
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actuator (with or without persistent excitation), the system could use traditional linear 

feedback control techniques.  For another, if the COLR was known and there was 

persistent excitation, then MRAC could be used.  To overcome the combination of 

unique factors (Table 5) which impede adaptive control for joystick steering in recreation 

boats, the controller design required an innovative approach. 

Table 5 Factors in Controlling Recreation Boats with a Joystick 

Factors in Controlling Recreation Boats with a Joystick 
 

 Lack of a dedicated yaw rate control actuator in the presence of couple yaw/sway motion 

 Unknown center of lateral resistance 

 Lack of persistent excitation 

 

 L1 Adaptive Control  

 

 

 

 The gateway innovation for this research came from the aerospace industry where 

a new approach to adaptive control was created.  Through the late 1990’s aerospace 

control systems for Boeing’s X-36 and JDAM programs achieved performance targets by 

switching between hundreds of individual MRAC adaptive controllers (Hovakimyan, 

2010).  In traditional MRAC, the control objective is for the plant to follow the desired 

response.  The tracking error is bounded by the magnitude of the adaptive gain.  

However, increasing the adaptive gain reduces system robustness.  Therefore, switching 

from one adaptive controller to another based on Mach number, altitude, or other factors 

was a viable strategy for overcoming the tradeoff.  Though viable, the cost and time of 

developing such complex switching adaptive controllers was deemed problematic 

(Anderson, 2005).   
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 The features of the traditional MRAC architecture which are problematic 

for the aerospace applications above are the same features which make the architecture 

unusable for joystick steering in recreational boats.  A traditional MRAC control system 

strives to improve speed of adaption and steady state tracking performance by adjusting 

either adaptive parameters in the controller or through direct system identification in the 

state predictor.     In MRAC, the control objective is formulated as follows: 

 𝑥̇(𝑡) =  𝐴𝑚𝑥(𝑡) + 𝑏(𝑢(𝑡) + 𝜃𝑇(𝑡)𝑥(𝑡)), 𝑥(0) = 𝑥0 (26) 

 𝑦(𝑡) = 𝑐𝑇𝑥(𝑡) (27) 

 

Where 

 

𝐴𝑚 = 𝑝𝑙𝑎𝑛𝑡 𝑚𝑜𝑑𝑒𝑙 
𝜃(𝑡) = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑝𝑙𝑎𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝑏, 𝑐 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑘𝑛𝑜𝑤𝑛 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑖𝑛𝑠 

𝑥, 𝑢, 𝑎𝑛𝑑 𝑦 = 𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑝𝑢𝑡, 𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 
 

The nominal MRAC controller is then defined as: 

 

 𝑢𝑀𝑅𝐴𝐶 = −𝜃𝑇(𝑡)𝑥(𝑡) + 𝑘𝑔𝑟𝑟(𝑡) (28) 

Where 

 

 𝑘𝑔𝑟 = 𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑔𝑎𝑖𝑛 

𝑟 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡   
 

By substitution, such that the plant will follow the desired reference system as follows: 

 

 𝑥̇𝑑𝑒𝑠 = 𝐴𝑚𝑥𝑑𝑒𝑠(𝑡) + 𝑏𝑘𝑔𝑟𝑟(𝑡) (29) 

As shown, the nominal MRAC controller endeavors to cancel all uncertainties by 

identifying unknown parameters perfectly.  Analysis of the nominal controller shows that 

there is an inverse relationship between performance and robustness and that persistent 

excitation of the system is required to achieve fast adaptation (Annaswamy, 1989).  This 

is because the error between the predicted and measured state is used to adjust the 
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adaptive parameters in the state predictor or the controller (depending on the method 

used) which means the oscillations in the adaptive parameter estimates are passed into the 

control signal.  To work around the above trade off, the aerospace applications switched 

from one MRAC controller to another as appropriate.  For more practical controller 

development and implementation, new teams reformulated the adaptive control problem 

in a way which could be used to overcome the three main factors listed in Section III 

Control Strategy.  

 

The new approach, L1 Adaptive Control (L1AC), redefined the control objective 

in a way that decoupled fast adaption from robustness.  L1AC redefined the objective to 

only cancel uncertainties within a low frequency bandwidth of the control channel by 

placing a low pass filter between the Control Law and the Actuators as well as the State 

Predictor as shown in Figure 5.   

 

 

Mathematically, the L1AC controller can be defined as:  

 

 𝑢𝐿1𝐴𝐶 = 𝐶(𝑠){−𝜃𝑇(𝑡)𝑥(𝑡) + 𝑘𝑔𝑟𝑟(𝑡)} (30) 

 

 

Where 

 

𝐶(𝑠) = 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑤 𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟 

Figure 5 L1AC Architecture 
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Such that the plant will follow the desired reference system as follows: 

 

 𝑥̇𝑟𝑒𝑓 = 𝐴𝑚𝑥𝑟𝑒𝑓(𝑡) + 𝑏{(1-C(s))𝜃𝑇𝑥𝑟𝑒𝑓(𝑡) + 𝐶(𝑠)𝑘𝑔𝑟𝑟(𝑡)} (31) 

 

The filter thereby separates parameter estimation from control.  Hokaimyan (2010) 

provides a thorough mathematical proof of L1AC controller’s stability, bounded control 

input, and bounded state error.  Hence, L1AC controllers enjoy several features listed in 

Table 6 such as fast adaption, without persistent excitation, for unknown parameters (i.e., 

actuator gain) without impacting performance (Hovakimyan, 2010).   

 

As its chief advantage over MRAC in the joystick boat application, L1AC’s fast 

adaption without persistent excitation creates value in two ways.  For one, from the 

captain’s perspective, the filter prevents the controller from driving the steering angle and 

engine power into high frequency oscillations.  High frequency oscillations might cause 

the captain to lose confidence in the system or to feel concerned about mechanical wear.  

For another, the architecture creates an opportunity to overcome the core challenge of 

adapting quickly to the combined unknown actuator gain, unknown actuator sign, and the 

lack of a dedicated yaw rate control.  Section E Designing the L1 Adaptive Control for 

the Test Boat will outline in detail the method used in this research. 

 

Upstream of the Control Law, the Adaptive Laws revise model estimates such 

that the state error approaches zero.  In addition to the adaptation of unknown plant 

parameters, the L1AC architecture can also adapt to unknown actuator gains and 

disturbances such that the full problem can be formulated as: 



   30 

 

 𝑥̇(𝑡) =  𝐴𝑚𝑥(𝑡) + 𝑏(𝜔𝑢(𝑡) − 𝜃𝑇(𝑡)𝑥(𝑡) + 𝜎), 𝑥(0) = 𝑥0 (32) 

 𝑦(𝑡) = 𝑐𝑇𝑥(𝑡) (33) 

Where 

 

𝐴𝑚 = 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑝𝑒𝑐𝑖𝑓𝑦𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑐𝑙𝑜𝑠𝑒𝑑 − 𝑙𝑜𝑜𝑝 𝑠𝑦𝑠𝑡𝑒𝑚 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 

𝜔, 𝜎(𝑡), 𝜃(𝑡) = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑘𝑛𝑜𝑤𝑛 𝑠𝑒𝑡 

𝑏, 𝑐 = 𝑘𝑛𝑜𝑤𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 

𝑥, 𝑢, 𝑎𝑛𝑑 𝑦 = 𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑝𝑢𝑡, 𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

 

The Adaptive Laws use a projection operator, which requires a minimum and maximum 

value for each adaptive parameter, so that the adaptive estimates remain within the 

allowable range (Hovakimyan, 2010).  Then, the projection is amplified by a fixed gain 

to calculate the rate of change in the estimate (please note that the hat symbol here is used 

to denote an estimate of the adaptive parameter):   

 𝜃̇(𝑡) =  𝛤𝑃𝑟𝑜𝑗(𝜃(𝑡),−𝑥̃𝑇(𝑡)𝑃𝑏𝑥(𝑡))  (34) 

 𝜎̇̂(𝑡) =  𝛤𝑃𝑟𝑜𝑗(𝜎̂(𝑡),−𝑥̃𝑇(𝑡)𝑃𝑏) (35) 

 𝜔̇̂(𝑡) =  𝛤𝑃𝑟𝑜𝑗(𝜔̂(𝑡),−𝑥̃𝑇(𝑡)𝑃𝑏𝑢(𝑡)) (36) 

Where 

 

𝜃̇ = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝜃 (unknown system parameter) 

𝜎̇̂ = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝜎 (unknown noise) 

𝜔̇̂ = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝜔 (𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝑔𝑎𝑖𝑛) 

𝛤 = 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑔𝑎𝑖𝑛 

𝑃 = 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃 =  𝑃𝑇 > 0  
𝑎𝑛𝑑 𝑠𝑜𝑙𝑣𝑒𝑠 𝑎 𝐿𝑦𝑎𝑝𝑢𝑛𝑜𝑣 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦  
𝑥̃ = 𝑠𝑡𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (defined below) 

𝑃𝑟𝑜𝑗 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  

 

It is the Adaptive Laws which help the controller drive the state error to zero in the face 

of uncertainties.  In this research, the unknown system parameters include the mass 

matrix and hydrodynamic derivatives described in the mathematical model section above.  

The uncertain system input gains include the moment arms of the propulsion systems as 
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well as reverse propeller efficiency.  The disturbances include forces from wind, waves, 

and currents.  Therefore, the adaptation promises to deliver the research goal: eliminate 

the need for a bespoke calibration for each individual boat and to provide the boat a 

means to adapt to disturbances and/or changes.   

 

Finally, as shown in Figure 5, upstream of the Adaptive Law is the State 

Predictor.  The State Predictor calculates the reference model state as a function of the 

current adaptive variable estimates, the current measured states, and the reference model: 

and the error between the predicted and measured values:  

 𝑥̇̂(𝑡) =  𝐴𝑚𝑥̂(𝑡) + 𝑏(𝜔̂(𝑡)𝑢(𝑡) + 𝜃𝑇𝑥(𝑡) + 𝜎̂(𝑡)) 

 

(37) 

 𝑦̂(𝑡) =  𝑐𝑇𝑥̂(𝑡) 
 

(38) 

Where 

 

𝑥̂ 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒,        𝑥̂(0) =  𝑥0,  

𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝜃(0) =  𝜃0 

𝜔̂ 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝑔𝑎𝑖𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝜔̂(0) =  𝜔0 

𝜎̂ 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝜎̂(0) =  𝜎0 
 

Then, the State Predictor calculates the difference, or error, between the predicted state 

value and the measured value: 

 𝑥̃ =  𝑥̂ − 𝑥 
 

(39) 

Where 

𝑥̃ = 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 

This is an essential piece of the adaptive control because the error, 𝑥̃, becomes the basis 

of the adaptive calculations.  The chief advantage of the state predictor is that it allows 

the designer to choose a reference model with the desired closed loop dynamics.  While 

there are considerations to be made in choosing the reference model, if the reference 
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model is close to the actual boat, then one L1 Adaptive Control state predictor might be 

used for each class of boat.   

 

Table 6  L1 Adaptive Control Features 

L1 Adaptive Control’s Main Features (Hovakimyan, 2010) 
 

 Guaranteed fast adaption 

 Decoupled adaption and robustness 

 Guaranteed transient performance 

 Guaranteed time delay margin  

 Uniform scaled transient response dependent on the initial condition, value of the unknown 

parameter, and reference input 

 

As listed in Table 6, the L1AC architecture has features which uniquely meet the 

requirements for the research.  The controller drives the plant to perform as the reference 

model.  The critical process is feeding the parameter updates into the state predictor at a 

very high frequency while filtering that fast adaption signal in the control law.  By so 

doing, L1AC overcomes the need for persistent excitation and offers an opportunity to 

adapt to the unknown actuator gain and disturbances. 

 Designing the L1 Adaptive Control for the Test Boat 

 

 

 

The first step in designing the controller was to define the L1AC reference boat 

model.  The reference model was defined such that the controller would drive the test 

boat scenarios to acceptable performance levels.  Although somewhat arbitrary, it was 

assumed that if the surge subsystem adapted within three seconds the performance would 

be acceptable.  Shorter adaption times are possible but would require higher performance 

in the subcomponents throughout the test boat systems.  For example, faster adaption 

could be achieved with more refined steering control, a faster processor, a larger 
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propeller, and a higher performing sensor.  After a brief trial in MATLAB, the following 

reference boat model was selected for surge: 

 

𝑆𝑢𝑟𝑔𝑒 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐴𝑚 = [−1.4] 
 

 

With a surge subsystem reference model 𝐴𝑚 = [−1.4], the reference model would 

behave as boat with a ratio of drag coefficient to a total mass = -1.4.  At this value, the 

reference subsystem’s open loop response to a unit step input met the performance 

guideline as shown in Table 7 and Figure 6. 

 

Table 7  Surge Subsystem Reference Model Step Input Response 

State Input Rise Time Peak 

Response 

Settling Time 

Surge Velocity Surge Force 1.57 s 0.71 m/s 2.79 s 

 

 
Figure 6  Surge Subsystem Reference Model Step Input Response 

The approach for the sway-yaw subsystem was similar to the surge subsystem; 

however, the acceptable settling time was assumed to be six seconds.  The following 

reference boat model was selected for sway/yaw: 

𝑆𝑤𝑎𝑦 − 𝑌𝑎𝑤 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐴𝑚 = [
0 −1
1 −1.4

] 
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The reference model’s response to a step input can be characterized as follows in Table 8 

and Figure 7: 

 

Table 8  Sway/Yaw Subsystem Reference Model Step Input Response 

State Input Rise Time Peak 

Response 

Settling Time 

Sway Velocity 
Sway Force 1.56 s 1.5 m/s 5.27 s 

Yaw Moment 2.13 s -1.05 m/s 5.98 s 

Yaw Rate 
Sway Force 2.13 s 1.05 rad/s 5.98 s 

Yaw Moment 0.00 s 0.46 rad/s 7.09 s 

 

 
Figure 7  Sway/Yaw Subsystem Reference Model Step Input Response 

 

Under the L1AC methodology, the state error is used to identify the adaptive parameters 

and to adjust the controller such that the predicted state follows the commanded state.  By 

driving the test boat to the above reference model performance, it was predicted the test 

boat would perform well.  

 

With the reference model defined, the state predictor and control law had to be 

designed such that the controller could overcome the key design challenge for the 

joystick control problem – unknown actuator gain and unknown sign.  The critical step in 

the design process was creating a strategy to allocate actuators to each degree of freedom 
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and then to leverage the adaptive gains for each unknown.  The actuators were allocated 

based on insight from the mathematical model.  As outlined above, the mathematical 

model of the boat:  

 

[

𝑚−𝑋𝑢̇ 0 0
0 𝑚−𝑌𝑣̇ 𝑚𝑥𝑔−𝑌𝑟̇

0 𝑚𝑥𝑔−𝑌𝑟̇ 𝐼𝑧−𝑁𝑟̇

][
𝑢̇
𝑣̇
𝑟̇
] + [

−𝑋𝑢 0 0
0 −𝑌𝑣 −𝑌𝑟

0 −𝑁𝑣 −𝑁𝑟

] [
𝑢
𝑣
𝑟
] = ⌊

cos𝛿1(𝐹1 − 𝐹2)

sin 𝛿1(𝐹1 + 𝐹2)
(Bsin𝛿1 − 𝐿 cos𝛿1)(𝐹1 + 𝐹2)

⌋ 

 

had to be restated to follow Hovakimyan’s L1AC form: 

 

 𝑥̇(𝑡) =  𝐴𝑚𝑥(𝑡) + 𝑏(𝜔𝑢(𝑡) − 𝜃𝑇(𝑡)𝑥(𝑡) + 𝜎), 𝑥(0) = 𝑥0 (40) 

 𝑦(𝑡) = 𝑐𝑇𝑥(𝑡) (41) 

Where  

 

𝐴𝑚 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 
𝑏 =  𝑘𝑛𝑜𝑤𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 
𝑢 =  𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑖𝑛𝑝𝑢𝑡 
𝜔 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑖𝑡ℎ 𝑘𝑛𝑜𝑤𝑛 𝑠𝑖𝑔𝑛 
𝜃 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑣𝑒𝑠𝑠𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝜎 = 0 (𝑛𝑜 𝑤𝑖𝑛𝑑, 𝑛𝑜 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑛𝑜 𝑤𝑎𝑣𝑒𝑠) 
𝑦 = 𝑜𝑢𝑡𝑝𝑢𝑡 
 

To accomplish this, the mathematical model was reformatted to align with the L1AC 

formulation.  

 

Once the mathematical model was in the standard L1AC form, decisions must be 

made to allocate the actuators because the boat is over-actuated.  There are more 

independent actuators (four) than degrees of freedom (three).  The four actuators are:  

 
1. Port motor steering angle 

2. Starboard motor steering angle 

3. Port motor thrust vector (forward/reverse plus magnitude) 

4. Starboard motor thrust vector (forward/reverse plus magnitude) 
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Therefore, to simplify the control strategy, one of the actuators was virtually constrained.  

For the final control design, the controller constrained the steering angles for the two 

motors to always be equal and opposite for two reasons.  For one, the motors move in 

unison which is intuitive, if not pleasing, to observers.  For another, there is only one 

command, steering angle, which need be considered an actuator in feedback control.  The 

controller also commands the motors to turn in opposite directions (one in forward, the 

other in reverse).  The physical meaning for the three actuators (steering angle, port 

thrust, and starboard thrust) within the control vector, 𝒖𝑝𝑟𝑜𝑝, are outlined in Table 9.   

 

𝒙̇ =  𝐴𝑚𝒙 + 𝒃{𝜔 [

cos 𝛿1(𝐹1 − 𝐹2)

sin 𝛿1(𝐹1 + 𝐹2)

(Bsin𝛿1 − 𝐿 cos 𝛿1)(𝐹1 + 𝐹2)
] (𝑡) + (𝜃)𝑇 +  𝜎(𝑡)} 

(42) 

 

Table 9  Actuator Physical and Mathematical Models 

u Equation 

Net 

Force/Moment Motor RPM 

Steering 

Angle 

Surge cos𝛿1(𝐹1 − 𝐹2) 

Surge control 

forces are a 

function of:  
1. Steering angle 

2. Differential 

thrust 

Different 

motor speeds 

will create 

differential 

thrust  

Steering angle 

modulates the 

surge force 

(e.g., low 

angles 

maximize 

surge force for 

a given 

differential 

thrust) 

Sway sin 𝛿1(𝐹1 + 𝐹2) 

Sway control 

forces are a 

function of: 
1. Steering angle 

2. Total thrust 

Different 

motor speeds 

will create 

different 

levels of 

thrust; 

however, the 

sway force 

component is 

additive 

Steering angle 

modulates the 

sway force 

(e.g., high 

angles 

maximize sway 

force for a 

given 

differential 

thrust) 
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u Equation 

Net 

Force/Moment Motor RPM 

Steering 

Angle 

Yaw (Bsin𝛿1 − 𝐿 cos 𝛿1)(𝐹1 + 𝐹2) 

Yaw control 

moments are a 

function of: 
1. The motor’s 

moment arms 

2. Steering angle 

3. Total thrust 

Different 

motor speeds 

will create 

different 

levels of 

thrust; 

however, the 

two motors’ 

thrust is 

additive to 

the net yaw 

control 

moment 

Steering angle, 

relative to the 

moment arms, 

controls the 

sign and 

modulates the 

magnitude of 

the control 

moment.  The 

moments are 

lowest near 

equilibrium 

point where 
Bsin𝛿1 = 𝐿 cos 𝛿1  
. 

 

Given the physical meaning of the actuators in yaw, the control design allocated 

steering angle to yaw control.  Assuming calm seas and no wind, to generate positive 

yaw, the controller must command a steering angle such that Bsin𝛿1 > 𝐿 cos 𝛿1.  For 

negative yaw, Bsin𝛿1 < 𝐿 cos𝛿1.  Finally, for pure lateral translation the controller must 

command a steering angle such that Bsin𝛿1 = 𝐿 cos𝛿1.  The magnitude of the moment is 

then dictated by the physical parameters of the boat and the sum of the two motors’ 

thrust. 

 

To control surge and sway, the control design takes advantage of the decoupled 

equations of motions and the fact that surge is controlled by differential thrust.  The 

controller drives the surge velocity to zero by modulating the forward motor speed.  At 

the same time, the controller commands the reverse motor speed to a calibrated speed.  

Although the controller could command reverse motor speed based on sway velocity 

feedback, it is assumed that there is an RPM range which is available for joystick 

maneuvers and that the calibrated reverse speed is proportional to the joystick deflection.  
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As such, the controller regulates surge speed through forward motor speed while it allows 

sway speed to be an open-loop resultant of the commanded steering angle, the forward 

motor speed, and the calibrated set point for the reverse motor speed: 

 

𝒖𝒑𝒓𝒐𝒑 = [

𝑢(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑇ℎ𝑟𝑢𝑠𝑡)

𝑢(𝑆𝑤𝑎𝑦 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛)

𝑢(𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝐴𝑛𝑔𝑙𝑒)
] 

(43) 

 

= [

cos 𝛿1 k {(𝑅𝑃𝑀2 + ∆) − 𝑅𝑃𝑀2} 

sin 𝛿1 k {(𝑅𝑃𝑀2 + ∆) + 𝑅𝑃𝑀2} 
(Bsin𝛿1 − 𝐿 cos 𝛿1)k {(𝑅𝑃𝑀2 + ∆) + 𝑅𝑃𝑀2}

] 

(44) 

 

= [

cos 𝛿1 k ∆ 

sin 𝛿1 k (∆ +  2𝑅𝑃𝑀2) 
(Bsin𝛿1 − 𝐿 cos 𝛿1)k (∆ +  2𝑅𝑃𝑀2) 

]   

(45) 

  

Where 

 

𝑘 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 𝑔𝑎𝑖𝑛 

∆ = 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑅𝑃𝑀 
 

However, to make the commanded input, 𝑢𝑡ℎ𝑟 , simply 

 

 

𝑢𝑡ℎ𝑟 =  [
∆

𝑜𝑝𝑒𝑛 𝑙𝑜𝑜𝑝
𝛿1

]  
(46) 

 

 

the controller needed a transfer function from net surge thrust to differential thrust and 

from net control torque to steering angle.   

 

Once the control allocation decisions were made, the next step was to leverage the 

adaptive parameters in the L1AC to solve the crux of the problem.  Unlike most DP and 

autopilot controllers, the neutral position for yaw control is not known.  The steering 

angles which apply positive, zero, or negative torque are unknown because the distance 
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to the COLR is unknown.  To overcome this obstacle, a new approach to adapting to the 

unknown actuator gain was needed.   

 

The insight which led to the final approach was created by thinking of the 

mathematical model and the L1 Adaptive Control architecture together.  Reflecting on 

the mathematical model, the moment arm created by the range of steering angles (and 

therefore, the control moment) is a nearly linear function of steering angle.  Figure 8 

illustrates this relationship for the four test scenarios.  The dependent variable on the y-

axis is the moment arm length for the test boat in each scenario.  For each scenario, there 

are two adjustable boat parameters which change the amount of torque the motors’ thrust 

can apply to the floating boat.  The first being the distance from the motors to the boat 

centerline – narrow spacing and wide spacing.  The second being the location of the 

COLR  - forward COLR and aft COLR.  Therefore, the distance from the motors to the 

pivot point varies with each scenario.  The independent variable on the x-axis is the 

steering angle.  At 0○, the motors are pointing straight forward, while at 45○, the motors 

are pointed inward all the way to their physical limit.  As the motors turn inward, the 

moment applied decreases, reaches zero when the motors are pointed at the COLR, and 

Figure 8 Moment Arms as a Function of Steering Angle 



   40 

 

then increases in the opposite direction until the steering mechanism hits the stop.  The 

difference in moment arm from one test scenario to another can be described as changes 

in slope and y-intercept.  Meanwhile, the Adaptive Law adapts for unknown actuator 

gain, ω3, and unknown disturbance moments, σ3, separately.  Mathematically, the 

unknown actuator gain is like the slope and the adaptive disturbance variable could be 

considered a combination of the y intercept adjustment and disturbances.  From these 

observations, a fixed factor was added to the state estimator for the lowest y intercept 

such that the difference between the baseline assumption and the actual geometry could 

be resolved by estimating ω3 up from a minimum of 1 to the maximum ω3.  Likewise, σ3 

limits were set to adapt the y intercept adjustment as well as disturbances. 

 

Lastly, the controller’s two low pass filters were designed through trial and error 

to separate the high frequency system identification signal from the actuators.  The final 

design was a second order low-pass yaw filter for surge and sway/yaw subsystems. 

 

At the end of the control design phase, a reference system, control allocation 

strategy, and strategy for adapting to an unknown neutral yaw moment steering position 

were created.  The physical and mathematical model were used to develop insights 

around which judgment could be applied to implement an L1 Adaptive Control 

architecture in MATLAB.  There, the design decisions were tested and refined in iterative 

simulation testing. 
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IV. SIMULATION RESULTS 
 

 

 

Before implementing the controller in the test boat, the controller was simulated 

in MATLAB as a way of predicting test boat performance for refining the controller 

design.  Naturally, the controller design required definition of the L1AC modules.  The 

design also required engineering judgment to create a solution to the crux of the sway 

control challenge – unknown actuator magnitude and neutral position.  By combining 

engineering judgment and creativity, the controller design was refined iteratively in 

MATLAB before arriving at the design chosen for hardware implementation and test. 

 

For the iterations to be meaningful, the controller design required a proper L1AC 

architecture on which to build.  An L1AC generic architecture was created in MATLAB.  

The projection operator code is provided in Appendix D.  The MATLAB code was 

verified by comparing the code’s output with Hovakimyan (2010).  The reference 

problem simulated a linear system under a few input scenarios to test the scalability of 

the adaptive control.  The generic controller recreated the published results which proved 

the state predictor, reference model, and control filters were ready to be modified for the 

test boat.   

 

After the L1AC baseline code was validated, the joystick controller was 

implemented and used to simulate four variant boat models in a pure translation 

maneuver (sway).  The four simulations were designed to simulate the scenarios which 

were used in the physical tests.  As shown in Tables 10-14 and Figures  9-18, the four 

models varied the plant matrix values which simulated different inertial properties and 
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motor configurations.  Wind disturbances were also simulated.  The simulations 

demonstrate the controller’s performance.   

 

The simulated boat motion was compared to the ideal to test the controller’s 

acceptability.  In all cases, the yaw rate oscillated around zero radians per second.  The 

sway velocity also oscillated while increasing overall.   As expected, while the adaptive 

parameters oscillated, the steering command also varied but at a much lower rate.  In the 

case of wind disturbance, the controller detected the wind and adapted properly.  Overall, 

the simulated L1AC controller performed well across all scenarios in sway-yaw coupled 

motion. 

  

Table 10  Light Weight Narrow Motors Plant Parameters 

Plant Parameter Value 

Plant Model Matrix 
𝐴𝑝 = [

−0.003884 0.002266
−0.001476 −0.001107

] 

Length at Waterline 1.2 m 

Draft Below Waterline 0.06 m 

Motor to Centerline Distance 0.19 m 

Motor to Center of Lateral Resistance Distance 0.60 m 

Disturbance None 

 

 
Figure 9  Light Weight Narrow Motors Simulation 

Reference Model and Plant Sway Velocity and Yaw Rate 

Reference Model Yaw Rate 

Plant Yaw Rate 
Reference Model Velocity 

Plant Sway Velocity  
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Figure 10  Light Weight Narrow Motors Simulation Parameter Estimates 

 

Table 11  Light Weight Wide Motors Plant Parameters 

Plant Parameter Value 

Plant Model Matrix 
𝐴𝑝 = [

−0.003884 0.002266
−0.001476 −0.001107

] 

Length at Waterline 1.2 m 

Draft Below Waterline 0.06 m 

Motor to Centerline Distance 0.28 m 

Motor to Center of Lateral Resistance Distance 0.60 m 

Disturbance None 

 

 
Figure 11  Light Weight Wide Motors Simulation 

 

Reference Model and Plant Sway Velocity and Yaw Rate 

Adaptive Control Estimates and Steering Angle Yaw Control Signal 

Omega 

Estimate 

Sigma Estimate (Sway) Sigma Estimate (Yaw) 

Theta Estimate 

Yaw Control Signal 

Reference Model Yaw Rate 

Plant Yaw Rate 
Reference Model Velocity 

Plant Sway Velocity  
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Figure 12  Light Weight Wide Motors Simulation Parameter Estimates 

 

Table 12  Light Weight Wide Motors Parameters 

Plant Parameter Value 

Plant Model Matrix 
𝐴𝑝 = [

−0.003884 0.002266
−0.001476 −0.001107

] 

Length at Waterline 1.2 m 

Draft Below Waterline 0.06 m 

Motor to Centerline Distance 0.28 m 

Motor to Center of Lateral Resistance Distance 0.60 m 

Disturbance 0.2 N sway, 0.2 Nm yaw 

 

 
Figure 13  Light Weight Wide Motors Simulation with Wind Disturbance 

Reference Model and Plant Sway Velocity and Yaw Rate 

Adaptive Control Estimates and Steering Angle Yaw Control Signal 

Omega 

Estimate 

Sigma Estimate (Sway) Sigma Estimate (Yaw) 

Theta Estimate 

Yaw Control Signal 

Reference Model Yaw Rate 

Plant Yaw Rate 

Reference Model Velocity 

Plant Sway Velocity  
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Figure 14  Light Weight Wide Simulation Parameter Estimates with Wind 

Disturbance 

 

Table 13  Heavy Weight Narrow Motors Parameters 

Plant Parameter Value 

Plant Model Matrix 
𝐴𝑝 = [−0.003501 0.001915

−0.001247 −0.000599
] 

Length at Waterline 1.25 m 

Draft Below Waterline 0.065 m 

Motor to Centerline Distance 0.19 m 

Motor to Center of Lateral Resistance Distance 0.64 m 

Disturbance None 

 

Reference Model and Plant Sway Velocity and Yaw Rate 

Adaptive Control Estimates and Steering Angle Yaw Control Signal 

Omega 

Estimate 

Sigma Estimate (Sway) Sigma Estimate (Yaw) 

Theta Estimate 

Yaw Control Signal 

Reference Model Yaw Rate 

Plant Yaw Rate 
Reference Model Velocity 

Plant Sway Velocity  
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Figure 15  Heavy Weight Narrow Motors Simulation 

 

Figure 16  Heavy Weight Narrow Motors Simulation Parameter Estimates 

 

Table 14  Heavy Weight Wide Motors Parameters 

Plant Parameter Value 

Plant Model Matrix 
𝐴𝑝 = [−0.003501 0.001915

−0.001247 −0.000599
] 

Length at Waterline 1.25 m 

Draft Below Waterline 0.065 m 

Motor to Centerline Distance 0.28 m 

Motor to Center of Lateral Resistance Distance 0.64 m 

Disturbance None 

Adaptive Control Estimates and Steering Angle Yaw Control Signal 

Omega 

Estimate 

Sigma Estimate (Sway) Sigma Estimate (Yaw) 

Theta Estimate 

Yaw Control Signal 
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Analysis of the simulations provided invaluable information regarding the 

controller design.  For each simulated scenario, yaw rate and sway velocity was 

compared to the reference model as shown in Figures 9-18.  The simulations predicted 

close tracking between the reference boat and the test boat in sway velocity and in yaw 

rate.  The simulations also predicted low-amplitude oscillations in yaw rate.  Yet, the 

oscillations in the yaw control signal were low in magnitude when compared to the 

oscillations in the adaptive estimates.  The promising simulated performance in tracking 

Figure 17  Heavy Weight Wide Motors Simulation 

Figure 18  Heavy Weight Wide Motors Simulation Parameter Estimates 

Adaptive Control Estimates and Steering Angle Yaw Control Signal 

Yaw Control Signal 

Theta Estimate 

Omega 

Estimate 

Sigma Estimate (Sway) Sigma Estimate (Yaw) 

Reference Model and Plant Sway Velocity and Yaw Rate 

Plant Sway Velocity  

Reference Model Velocity 

Plant Yaw Rate 

Reference Model Yaw Rate 
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and adaption without oscillations in the control signal align with the main features of L1 

Adaptive Control.   

 

The critical finding in the analysis was that two aspects of the control affect the 

ability to adapt.  For one, the engines must produce the right amount of torque.  If the 

generated moment is too small, then the boat will rotate as it sways for the lack of a 

sufficient moment to balance the hydrodynamic forces.  If the moment is too large, then 

the adaptive controller over-controls the boat which essentially creates controller-induced 

oscillations.  Together, the above analysis proved that the control allocation strategy and 

L1AC controller design combined to be a promising solution. 
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V. TEST RESULTS 
 

 

 

After seeing promising results in simulation, the controller was implemented in 

the test boat for yaw control and stationary rotation testing.  The test data was collected in 

a scaled, controlled test environment designed to predict full scale dynamic behavior.  As 

described more below, the test boat was built to scale to have dynamics like the target 

application.  The practice of using scale models as a means for obtaining experimental 

data was initiated by Froude that a model boat’s resistance will be the same as the full-

scale boat if they have the same Froude number (Lewis, 1988).  Similarly, the test tank 

was designed to meet specific dimensional requirements for scale testing.  To create 

disturbance forces, an electric fan provided a consistent wind effect.  Finally, motion 

capture technology collected the test boat’s dynamic behavior.  Together, the test boat, 

tank, fan, and measurement tools created an adequate system to build on theoretical 

modeling with real world, albeit scaled, data. 

 Test Equipment 

 
 

 

As a critical part of the test protocol, the test boat was designed to achieve several 

research goals.  In alignment with the model based systems engineering approach, the 

mathematical model needed to closely match the test boat.  Given the complex three-

dimensional geometry, the best method for creating the inertia matrix estimates was to 

leverage CAD calculations.  Hence, the boat was designed in CAD which also allowed 

the test boat geometry to resemble the target applications.  The design also had to provide 

a way to vary specific boat parameters to replicate the variations between boat models 

and boat brands.  Once designed, the test boat was built from balsa wood with a full keel 
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and plank on frame construction.  As such, the test boat was the realization of the CAD 

model and suitable for mathematical modeling and testing.   

 

The test boat architecture matched that of the target application (i.e., large center 

console fishing boat or cruiser) in three important ways.  First, the boat was designed and 

built to have similar hydrodynamic properties as its full-scale counterpart.  The resistance 

from waves is assumed to be the same for a model and a full-scale boat at the same 

Froude number.  Froude first observed that scale models predict full scale behavior 

(Lewis, 54).  Froude contended that a boat’s total resistance is the sum of the direct 

resistance due to waves and the resistance from friction so he used a dimensionless 

quantity calculated according to the equation in the Table 15 below to show when a scale 

model would perform similarly to the full-size boat.  Table 15 outlines the equivalent 

Froude number for the test boat’s actual sway speed as well as two typical target 

applications assumed to perform the translation maneuver at about 0.5 mile per hour or 

0.2 meters per second. 

 

Table 15  Test Boat and Target Application Froude Numbers 

Froude Number 

 Test 

Boat 

320 

Outrage 

370 

Sundancer 

𝐹𝑛 = 
𝑠𝑝𝑒𝑒𝑑 (𝑚 𝑠⁄ )

√𝑔𝑟𝑎𝑣𝑖𝑡𝑦 (𝑚 𝑠2⁄ ) ∗ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑤𝑎𝑡𝑒𝑟𝑙𝑖𝑛𝑒(𝑚)

 

Target 

Speed 
0.07 m/s 0.2 m/s 0.2 m/s 

Length 1.2 9.8 11.4 
𝑭𝒏 0.2 0.2 0.2 

 

The resistance due to hydrodynamic friction was assumed to be negligible at low speeds.   

 

Second, the test boat’s hull shape mimics the full-scale boat to recreate the pressure field 

created by hydrodynamic forces.  The pressure field is critical to the test because the 

point around which the boat will rotate can be thought of as the resultant force of 
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integrating the pressure field over the length of the boat.  Hence, the deadrise and keel 

shape were built to follow the form of the target applications.  Tables 16 and 17 show the 

similarities in profile shape between the test boat and two target applications (Lemancik, 

2009).  By making the hull shape the same as the full-scale boat’s shape, the center of 

lateral resistance is in a similar location.   

 

Table 16  Test Boat and Target Application Images 

Vessel Image  

Test Boat 

  

320 Outrage 

 

370 Sundancer 
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Table 17  Test Boat and Target Application Characteristics 

 Test Boat 320 Outrage 370 Sundancer 

Length (L) 1.2m 9.8 m 11.4 m 

Beam (B) 0.3m 3.1 m 3.7 m 

L/B Ratio 4 3.2 3.1 

Deadrise 25˚ 23˚ 21˚ 

Motors 2 2-4 2 

Propulsion DC Motor Outboard Sterndrive 

 

Third, the test boat was designed with features for varying critical parameters.  The 

outboard motors could slide in and out to test the controller’s ability to adapt when the 

relationship between the engines and the boat geometry is not known.  Also, the boat was 

built with ballast compartments to move the center of gravity forward and aft as needed.  

Moving the center of gravity changed the boat’s stance which changed the shape of the 

pressure field which ultimately changed the center of lateral resistance.  The net result 

was one test boat which both resembled the target applications and offered a means to 

vary its geometry to recreate the variety of full scale recreational boats and their 

dynamics. 

 

The test tank and fan provided a stable, consistent environment for each test 

scenario. For the most part, the tank provided enough maneuvering space to justify 

assumptions made in the mathematic model.  To be considered open water, the hull must 

be at least three beam widths from boundaries; otherwise, the hydrodynamic forces can 

change significantly during maneuvers (Lewis, 279).  In restricted water, the boundaries 

will alter the hydrodynamic forces by introducing flow effects whenever the hull 

centerline is closer to one boundary, port or starboard, than the other (Lewis, 285).  

Figure 19 is a scaled representation of the test tank boundaries and the test boat.  The 

concentric circles centered on the boat outline the maneuvering room in increments of 
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one beam width.  From observation, the tank walls likely created some minor flow effects 

during portions of each rotation.  As in the x and y axis, there are guidelines for depth in 

the z axis.  To be considered deep, the water must be three times the hull’s draft; 

otherwise, the hull will experience changes in turning diameter proportional to the ratio 

of the draft to water depth (Lewis, 279).  The water depth was measured before the test to 

ensure proper performance.  The tank itself was constructed with a PVC pipe frame 

covered with layers of plastic sheets.  To test the controller’s ability to adapt to 

disturbances, a test fan provided a repeatable wind disturbance.  Lastly, the camera was 

mounted above the tank within reach for recording.  The full system provided an 

adequate testing environment.   

 Test Method 

 

 

 

 Given a stable environment, the measurement system generated data to analyze 

the test boat dynamics under L1AC control.  The measurement system consisted of a 

digital camera, motion capture software, and a laptop computer.  The camera was 

Figure 19  Test Tank 
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positioned approximately six feet above the surface of the water.  From there, the camera 

captured video of each test run in a digital movie file.  The movie file was uploaded to 

motion capture software.  To track the test boat’s motion, the software tracks designated 

points on the test boat. 

 

Within the motion capture data collection process, there are two sources of minor 

error.  First, the scale is provided manually to the software; therefore, there may be 

scaling error of less than 5mm.  Second, there is some error in the motion tracking itself  

because the tracking designation is placed manually which means that each designation is 

within an approximate 5mm radius of the precise point to be tracked.  While the manual 

designation process does introduce some measurement error, the error can be removed 

through smoothing.  With a test boat length of approximately one meter and a lateral 

translation distance of about one meter, the measuring system would have need to be 

accurate within 0.1 meters or ten percent.  Considering the precision needed to assess the 

controller’s performance, the measurement system captured useful data by obtaining 

accuracy within one 0.01 meters or one percent of the boat length. 

 Test Cases 

 

 

The test scenarios performed at the limits of adaptability and control for lateral 

translation and stationary rotation.  For the lateral translation maneuver, the engines are 

positioned at two different distances from the test boat’s centerline and the boat loadout 

was varied between light and heavy weights to create a total of four individual tests.  

These four variations simulate the variation in beam widths and in boat lengths which can 

be found in the market.  For the test boat, the narrow and wide position test the controller 



   55 

 

at the physical limits of the test boat.  If the motors were any closer in the narrow test or 

farther away in the wide test, the motor swivel mechanisms would collide with the hull or 

outrigger respectively.  The light weight test is the empty weight of the test boat.  The 

boat was designed such that the COLR, when empty, would be approximately 0.4 meters 

from the bow or about 33% of the boat length.  During testing, several ballasts were 

considered; however, the ballast used for the heavy test was selected because it moved 

the COLR forward approximately 0.06 meters.  This distance was enough to be 

noticeable and pushed the controller to the limit in the narrow motor, heavy load test.  

Table 18 outlines the settings for each scenario.     

 

Table 18  Sway Test Scenarios 

Test 

Scenario 

Engine to Centerline 

Distance Load Wind Disturbance 

Sway Test 1 Narrow Light No 

Sway Test 2 Wide Light No 

Sway Test 3 Narrow Heavy No 

Sway Test 4 Wide Heavy No 

 

For the stationary rotation maneuver, the motors were positioned at a consistent 

distance from centerline while the loadout was varied to create two scenarios.  In the yaw 

test, positioning the motors at different distances would not present the controller with a 

materially different problem because the steering angles are so low.  Wider motor-to-

centerline distances would only increase the yaw rate for the same motor speed.  The two 

scenarios were repeated with a wind disturbance to create scenarios three and four as 

outlined in Table 19.   
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Table 19  Yaw Test Scenarios 

Test 

Scenario 

Engine to Centerline 

Distance Load Wind Disturbance 

Yaw Test 1 Narrow Light No 

Yaw Test 2 Narrow Light Yes 

Yaw Test 3 Narrow Heavy No 

Yaw Test 4 Narrow Heavy Yes 

 

Table 20 shows the impact the wind disturbance had on the boat while dead in the 

water.  The first column is a picture of the actual test.  In the picture, the blue and red 

dotted lines trace the path of the tracking points on the boat.  The yellow lines mark the 

inertial axis.  The second column has three charts which plot yaw rate, surge velocity, and 

sway velocity respectively.  A ten-point averaging trend line has been added to filter 

noise in the data.    In the wind, the boat turned bow into the wind and was pushed back 

at approximately 0.01 meters per second which is about 20% of the test sway velocity. 
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Table 20  Wind Disturbance Effects 

Motion Capture Velocities 
 

 

 

 

 

 Test Procedure 

 

 

 

For the all tests, the boat began at rest with zero rudder angle, zero motor rpm, 

and the controller turned off.  After a delay, the controller engaged with a constant 

command input as described in Table 21.   
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Table 21  Commanded Inputs 

Test Maneuver 

Commanded 

Yaw Rate 

Commanded Sway 

Speed 

Commanded 

Surge Speed 

Sway Test (1 through 4) 0 
𝑑𝑒𝑔

𝑠
 0.07 

𝑚

𝑠
 0 

𝑚

𝑠
 

Yaw Test (1 through 4) 8 
𝑑𝑒𝑔

𝑠
 0 

𝑚

𝑠
 0 

𝑚

𝑠
 

 Test Data 

 

 
 

The test data was collected and processed to analyze the controller’s performance 

in each test scenario.  To create the data, the motion capture software, Video Physics, was 

advanced in 0.17 second increments (5 frames) for the duration of the maneuver.  At each 

increment, the software tracked two specific points on the boat hull.  One point was the 

blue LED light and the other was the push button switch.  Both points lie on the boat’s 

centerline.  Once created, the data was exported to Excel for further processing.  The raw 

position and velocity data was smoothed through averaging and Cartesian coordinates 

were converted to yaw angles.  Next, the data was plotted on charts for better 

visualization.  Finally, the error between ideal and actual position and velocity was 

calculated.  As such, the raw data was used to analyze the controller’s performance. 

 

The tables below depict how the controller performed in each sway test.  Table 22 

also outlines the error for each scenario and the heading change after moving three beam 

widths to starboard.  Table 24 outlines the yaw rate test results for each sway test 

scenario.  The first column identifies the test number.   

 

For the sway tests, the motion capture software provided estimates for position 

and velocity in surge and sway directions.  The software tracked two points (traced in 
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blue and red in the pictures within Table 24).  After capturing the test boat coordinates in 

the motion capture software, the coordinates were exported to Excel for estimating 

motion error to be used for analysis.  To estimate the yaw rate error, first the yaw angle 

was estimated from the changes in the coordinates of the two points: 

 

𝜓 = 𝑡𝑎𝑛−1 [
(𝑦1 − 𝑦2)

(𝑥1 − 𝑥2)
] 

 

The average yaw rate between motion capture points was calculated by dividing the 

change in yaw angle by the change in time.  Before calculating the yaw rate error, the 

manual designation error was minimized by calculating a ten-point moving average over 

each test.  Finally, to calculate the yaw rate error, the smoothed yaw rate for each 0.17 

second interval was subtracted from the target, 0 radians/second.  To estimate the surge 

error, the motion capture software estimates for surge velocity were used directly.  

However, to smooth the designation error, a ten-point moving average was used as 

described above.  Once the error was estimated for each maneuver, the data was used to 

calculate several norms as outlined in Table 22.  Additionally, the yaw angle at three 

beam widths was calculated to compare the system performance to the design target.  

Combined, the error calculations quantify the controller’s performance under all 

scenarios. 
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Table 22  Sway Test Error Calculations 

Sway 

Maneuver 

Yaw Rate 

Error Error Calculation 

Sway 

Test 1 

Sway 

Test 2 

Sway 

Test 3 

Sway 

Test 4 

Infinity 

norm 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑟𝑟𝑜𝑟𝑖=1

𝑛  2.8
𝑑𝑒𝑔

𝑠
 2.5

𝑑𝑒𝑔

𝑠
 2.9

𝑑𝑒𝑔

𝑠
 3.6

𝑑𝑒𝑔

𝑠
 

2-norm √
∑ (𝑒𝑟𝑟𝑜𝑟𝑖)2𝑛

𝑖=1

𝑛
 8.1

𝑑𝑒𝑔

𝑠
 6.2

𝑑𝑒𝑔

𝑠
 7.1

𝑑𝑒𝑔

𝑠
 10.0

𝑑𝑒𝑔

𝑠
 

1-norm ∑ ‖𝑒𝑟𝑟𝑜𝑟‖
𝑛

𝑖=1
 42.8

𝑑𝑒𝑔

𝑠
 32.7

𝑑𝑒𝑔

𝑠
 38.9

𝑑𝑒𝑔

𝑠
 54.1

𝑑𝑒𝑔

𝑠
 

Heading 

Change at 

0.9m 
𝑡𝑎𝑛−1 [

(𝑦1 − 𝑦2)

(𝑥1 − 𝑥2)
] 12.2˚ 10.7˚ 8.7˚ 16.0˚ 

 

Like the yaw test results above, the tables below depict how the controller 

performed in each sway test.  Table 23 outlines the yaw test results for each rotation 

scenario.  The first column identifies the test number.  The second column is a picture of 

the actual test.  In the picture, the blue dotted lines trace the path of the tracking points on 

the boat during one full rotation.  Only Yaw Test 3 made two rotations.  The second 

rotation is traced in red.  The third column is a plot of the ideal and actual position 

against time.  Finally, Table 23 outlines the error for each scenario and distance the 

tracking point moved during a single rotation.  Table 23 also shows the same data but for 

the second rotation in Yaw Test 3. 

 

As in the sway tests, after capturing the test boat coordinates in the motion 

capture software the coordinates were exported to Excel for analysis.  However, for the 

rotation tests the error was calculated by subtracting actual position of the designated 

point from the ideal position.  A detailed description is included in the Appendix.   
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Table 23  Yaw Test Error Calculations 

Yaw Maneuver 

Position Error, 1st 

Rotation Error Calculation 

Yaw 

Test 1 

Yaw 

Test 2 

Yaw 

Test 3 

Yaw 

Test 4 

Infinity norm 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑟𝑟𝑜𝑟𝑖=1
𝑛  0.07 m 0.13 m 0.07 m 0.20 m 

2-norm √
∑ (𝑒𝑟𝑟𝑜𝑟𝑖)2𝑛

𝑖=1

𝑛
 0.05 m 0.09m 0.03 m 0.33 m 

1-norm ∑ ‖𝑒𝑟𝑟𝑜𝑟‖
𝑛

𝑖=1
 3.39 m 5.91 m 4.49 m 7.68 m 

Distance Moved After 1 

Rotation  

(% of boat length) 

√(𝑥2 + 𝑦2) 
0.06 m 

(5%) 

0.09 m 

(8%) 

0.02 m 

(2%) 

0.14 m 

(12%) 

 

Yaw Maneuver 

Position Error, 2nd 

Rotation Error Calculation  

Yaw 

Test 2  

Infinity norm 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑟𝑟𝑜𝑟𝑖=1
𝑛   0.11 m  

2-norm 

√
∑ (𝑒𝑟𝑟𝑜𝑟𝑖)2𝑛

𝑖=1

𝑛
 

0.09 m 

1-norm 
∑ ‖𝑒𝑟𝑟𝑜𝑟‖

𝑛

𝑖=1
 

6.14 m 

Distance Moved During 

2nd Rotation 

(% of boat length) 

√(𝑥2 + 𝑦2) 0.0 m 
(0%) 
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Table 24  Sway Test Data 

Sway 

Test Motion Capture Yaw Rate  Sway Rate  

1 

 

 

  

MATLAB Simulation of the Light 

Weight Narrow Motor Scenario 
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Sway 

Test Motion Capture Yaw Rate  Sway Rate  

2 

 

 

  

MATLAB Simulation of the Light 

Weight Wide Motor Scenario 
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Sway 

Test Motion Capture Yaw Rate  Sway Rate  

3 

 

 

 

 

MATLAB Simulation of the Heavy 

Weight Narrow Motor Scenario 
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Sway 

Test Motion Capture Yaw Rate  Sway Rate  

4 

 

 

  

MATLAB Simulation of the Heavy 

Weight Wide Motor Scenario 
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Table 25  Yaw Test Data 

Yaw 

Test Motion Capture X Position  Y Position 

1 

 

  

2 
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Yaw 

Test Motion Capture X Position  Y Position 

3 

 

  

4 
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 Test Results 

 

 

 

Sway Testing 

 

During sway testing, the controller adapted quickly to the unknown parameters while 

filtering the adaption signal from the control signal.   Comparison of all four no wind sway tests 

show that the two tests with the greatest yaw errors are Sway Test 1 and Sway Test 4.  The 2-

norm errors for Sway Test 1 and Sway Test 4 were 8.1○/second and 10○/second while Sway Test 

3 and Sway Test 4 have 2-norm errors of 6.2○/second and 7.1○/second respectively.  Nonetheless, 

Figure 20 shows that the controller maintained an average yaw rate of zero over the length of the 

test.   

 

The box plot of the same data in Figure 20 shows that, while the average yaw rate was 

approximately zero, the distribution is more heavily weighted in positive yaw.  At the same time, 

the surge error (Figure 21) in the sway tests was also positive (forward displacement).  Assuming 

surge and sway are not hydrodynamically coupled (e.g., the boat is symmetrical along the 

longitudinal axis), then any error in surge implies the force from the port and starboard motors 

are not matched.  The root cause of a positive surge is likely one of two factors.  Primarily, if the 

reverse propeller is not as efficient as the forward propeller, the generated thrust will be lower in 

Figure 20  Sway Test Yaw Rate Results, All Scenarios 
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reverse than forward for the same speed setting.  Secondarily, the steering angle and/or speed 

control might not have been perfectly calibrated.  Regardless of the root cause behind unmatched 

forward thrust, the imbalance created additional clockwise torque.  Consequently, the final value 

for ψ in all tests was positive after 0.9 meter translations (three beam widths) which proves the 

controller was adapting as designed but not quite fast enough to meet specifications. 

 

Yaw Testing 

 

During yaw testing, the controller adapted quickly to the unknown parameters and 

disturbances while filtering the adaption signal from the control signal within one full rotation.  

The best performing test, Yaw Test 3, completed a full rotation while moving only 0.02 m from 

the starting point which is 2% of the test boat length.  The worst performing test, Yaw Test 4, 

moved 0.14m which is 12% of the test boat length as shown in Figure 22.   

 

Figure 21  Sway Test Surge Velocity Results, All Scenarios 

Figure 22  Yaw Test Position Error Results 

All Scenarios 
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The motion capture shows that within one-half of a rotation, the controller adapted not 

only to the load but also to the wind disturbance.  In the face of the wind disturbance, the test 

boat made a second rotation in Yaw Test 2 in which the second rotation closely followed the 

second half of the first rotation all the way around (motion capture in red).  Before the yaw test, 

data was collected to measure the strength of the wind.  The data showed that, when the boat was 

dead in the water, the wind disturbance pushed the boat at about 0.09 m/s.  Two full rotations 

required almost 90 seconds; therefore, in that time the wind would have pushed the boat 0.8 m or 

more if the controller did not adapt to the disturbance.   Instead, in the second rotation, the 2-

norm was less than half the error of the first rotation and even approached the error level of the 

disturbance-free Yaw Test 3 (one rotation).   This means that the controller, as designed, was 

adapting to unknown parameters and disturbances. 

 

 Test Result Synthesis and Controller Refinements  

 

 

The simulation and test data indicate that four design decisions enabled the L1AC 

controller’s success.  First, the controller needed a process for adapting to an unknown neutral 

position for yaw control.  Second, the boundaries for the unknown plant parameters must be set 

properly.  L1AC implementation required knowledge of the range of allowable boat 

configurations.  The controller specifications included the minimum and maximum: 

 Distance from the engine to the center of lateral resistance 

 Reverse propeller efficiency 

 Wind forces 

Third, in sway maneuvering the controller performance was sensitive to the moment generated 

by the propulsion system.  If the nominal power is set too low, the moment arm was too weak to 
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provide effective control.  If the nominal was too high, then the moment arm over-powered the 

boat creating oscillations.  As an improvement, the controller could modulate the base power as 

function of the sine of the rudder angle.  MATLAB simulations in Figures 23 and 24 below 

quantify the potential improvement on the boat’s controllability.  Figure 23 predicts a yaw rate 

oscillation centered around zero yaw rate but with a positive bias which is the same as the test 

result.  Figure 24 predicts the yaw rate will be damped considerably when the power is 

modulated.  Fourth, the sway test performance errors reflected the surge errors.  Table 26 shows 

Figure 24 Heavy Weight Wide Motors Modulated Nominal Power 

Figure 23 Heavy Weight Wide Motors Fixed Nominal Power 
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the rank order of decreasing surge and yaw rate errors for each test scenario.  This could indicate 

that the yaw control was more sensitive to surge than previously expected.   

Table 26 Sway Test Rank Order by Maximum Surge and Yaw Rate Error 

Rank by Sway Test 1 Sway Test 2 Sway Test 3 Sway Test 4 

Maximum 

surge error 

2nd 1st 3rd 4th 

Maximum yaw 

rate error 

2nd 1st 3rd 4th 
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VI. CONCLUSIONS AND OPPORTUNITIES FOR FURTHER 

RESEARCH 
 

 

 

 Conclusions 

 

 

 

 Research to create an L1 Adaptive Control methodology for commissioning a joystick 

steering system without the need for unique boat calibration was completed.  By following a 

model based, systems engineering approach a working methodology was created for the target 

boat applications.  The target applications cover a wide range of hull shapes and sizes; however, 

the target propulsion systems did not make use of bow or stern thrusters.  During the physical 

and mathematical modeling of the target application, the research identified three main obstacles 

which the adaptive controller had to overcome: 

 Lack of a dedicated yaw rate control actuator  

 Unknown center of lateral resistance 

 Lack of persistent excitation  

This insight led to the selection of the L1 Adaptive Control architecture which provided the 

following key features: 

 Guaranteed fast adaption 

 Decoupled adaption and robustness 

 Guaranteed transient performance 

The above features made it possible for the adaption processes to overcome the three main 

obstacles mentioned above during slow speed maneuvering in calm seas with or without wind in 

a way that did not command unnecessary oscillations in the actuator control signals.  Ultimately, 
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the methodology proved successful in MATLAB simulation and was further verified in 

controlled, scale boat testing of two critical maneuvers: stationary rotation and pure sway 

translation.  The stationary rotation specification required the controller adapt fast enough to 

make one full rotation without changing position by one boat length or 1.2 meters.  The average 

error for all scenarios (with and without wind disturbances) was 0.08 meters.  The pure sway 

translation specification required the controller to adapt fast enough to translate three beam-

widths without rotating ten degrees.  The average error for all scenarios was 11.9 degrees.  

Though opportunities were identified to improve the test boat’s performance, L1 Adaptive 

Control methodology was created from which a full control strategy could be built to eliminate 

the need for individual boat calibrations. 

 
 Contributions  

 

 

 

The research created primary and secondary contributions to engineering joystick 

steering for recreational boats.  The primary contribution was the application of L1 Adaptive 

Control to a scaled version of the target application in stationary rotation and sway translation.    

In industry today, the target applications use unique calibrations to control the propulsion system 

while relying on the captain to manually counter any calibration errors or disturbance forces.  

The secondary contributions include the development of methodologies to overcome the obstacle 

of unknown neutral position for yaw control as well as the methodology for creating a linear 

torque input as a function of steering angle.  The above novel solutions to the joystick steering 

control strategy were critical to completing the research. 
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 Implications for Application 

 

 

While the research met the success criteria established at the onset, the methodology 

developed requires further research before it could be ready for commercialization.  Focus areas 

for extended research could include improved methodologies for detailed controller design, full 

motion control, strategies for three and four engine configurations, application to new boat types 

(i.e., pontoon boats), and lastly, a methodology for testing the limits of robustness in the presence 

of wind and waves.  Once complete, the methodology could be understood enough for full scale 

development and test.   

 

First, the design process itself could be refined.  Research areas would include a process 

for optimizing the filter design, defining the reference boat, optimizing the range of allowable 

parameters for a given reference system, and defining the base power level.  For the research, the 

filter was designed through trial and error; however, a more sophisticated process could be 

developed.  Also, there is a tradeoff between the reference boat and robustness.  If the reference 

boat performance is too aggressive, robustness could become limited.  Likewise, there is a 

tradeoff between performance and robustness when defining the allowable range of values in the 

adaptive parameters.  For example, during the control design the minimum and maximum values 

of the plant parameters must be programmed into the Adaptive Law.  The narrower the range, the 

faster the adaption.  On the other hand, the narrower the range, the narrower the target 

application for any specific controller design.  The above processes should be refined before 

starting full scale development.   
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Likewise, a full control strategy would need to be created.  The research focused solely 

on stationary rotation and sway translation.  For simplicity, the controllers for each maneuver 

were created separately and only one code set was engaged at a time.  For commercialization, the 

controller would need to respond to changing inputs including commands to combine surge, 

sway, and rotation maneuvers.   

 

Commercialization would also require additional development for specific engine 

configurations and possibly new boat types.  The research was limited to boat configurations 

with two motors.  Full scale applications can have three or four.  Thus, the control allocation 

could have even more flexibility.  Just as the methodology would need to be expanded to include 

more than two engines, it could be expanded to include more target boat types than today.  The 

adaptability of the test boat implies that smaller, lighter boat categories such as pontoons boats 

might also be candidates for joystick control.  In the smaller boat segments, it is much more 

likely that the center of lateral resistance will vary from trip to trip as the crew and gear load outs 

have a greater effect on the overall center of gravity of the boat.  This feature of small boats 

would preclude joystick steering without adaptive control.  Additionally, it is interesting to note 

that pontoon hull forms are significantly different than the deep V focus of this research.  

Therefore, before commercialization, research would need to investigate all available engine 

configurations as well as potential new target applications.   

 

Lastly, reflecting on the test boat’s adaptability in the face of the wind disturbance, the 

research also implies there could be an opportunity to research how to characterize the limits of 

the controller’s disturbance rejection.  That is, further research could be conducted to find the 
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controller’s limitations in compensating for large waves, strong winds, and/or fast currents.  The 

fast adaption of the L1AC methodology might make joystick control even more intuitive for 

maneuvering in harsh environments or as a DP controller.    
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APPENDIX A Test Boat and Joystick Target Applications 

 

 

 

Figures 25-27 are screenshots taken from the test boat’s CAD assembly model. 

 

Figure 25  Test Boat CAD Assembly 

 

Figure 26  Test Boat CAD Assembly Wire Diagram 
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Figure 28 includes two pictures of a custom center console boat under construction.  Note the 

similarities in hull form and construction techniques between Figures 26 and 27 below.  Figure 

29 is a picture of the test boat hull. 

 

Figure 27  Full Scale Center Console Plywood Fishing Boat Construction 

Figure 28  Full Size Custom Center Console Boat Under Construction 

Figure 29 Test Boat Hull 
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APPENDIX B Physical System Details 
 

 

 

Table 27  Physical System  

Test Boat 

Parameter Description 

Initial 

Estimate Units Source 

M Total mass 4.6 Kg SolidEdge 

Ixx Inertia 0.3 Kg/m2 SolidEdge 

Izz Inertia 2.2 Kg/m2 SolidEdge 

3Ixz Inertia 0.4 Kg/m2 SolidEdge 

G Center of Gravity 

X: -0.7 

Y:  0.0 

Z: -0.07 

m SolidEdge 

L 

Length at the 

waterline 
1.2 m SolidEdge/Calculation 

B Beam 0.3 m SolidEdge 

CB Block Coefficient 0.86 NA (Lamb, 11-10) 

T 
Depth below 

waterline 
0.06 m SolidEdge/Calculation 

From Lewis (1988): 

−
𝒀𝒗̇

′

𝝅(
𝑻
𝑳
)
𝟐 

Hydrodynamic 

derivative 
1.37 NA Semi-empirical Heuristic 

−
𝒀𝒓̇

′

𝝅(
𝑻
𝑳
)
𝟐 

Hydrodynamic 

derivative 
0.09 NA Semi-empirical Heuristic 

−
𝑵𝒗̇

′

𝝅(
𝑻
𝑳
)
𝟐 

Hydrodynamic 

derivative 
0.07 NA Semi-empirical Heuristic 

−
𝑵𝒓̇

′

𝝅(
𝑻
𝑳
)
𝟐 

Hydrodynamic 

derivative 
-0.84 NA Semi-empirical Heuristic 

−
𝒀𝒗

′

𝝅(
𝑻
𝑳
)
𝟐 

Hydrodynamic 

derivative 
2.72 NA Semi-empirical Heuristic 

−
𝒀𝒓

′

𝝅(
𝑻
𝑳
)
𝟐 

Hydrodynamic 

derivative 
-0.35 NA Semi-empirical Heuristic 

−
𝑵𝒗

′

𝝅(
𝑻
𝑳
)
𝟐 

Hydrodynamic 

derivative 
0.62 NA Semi-empirical Heuristic 

−
𝑵𝒓

′

𝝅(
𝑻
𝑳
)
𝟐 

Hydrodynamic 

derivative 
0.31 NA Semi-empirical Heuristic 
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 APPENDIX C Materials 

 

 

Table 28  Materials List 

Materials Description 

CAD Software SolidEdge 

Simulation Software MATLAB 

Test Boat Hull 1/24 scale scratch-built wooden boat with ballast 

compartments and adjustable motor placement 

Propulsion System Belt driven propeller powered by DC motors 

Steering System Servo powered turret mechanism 

Control Computer Arduino Uno 

Sensors Bosch BNO055 

Measurement Device and 

Software 

iPhone 6 and Video Physics Logger Pro 

Test Tank 1.5m x 3.0m x 0.1m indoor water tank 

Wind Generator AC powered household fan 
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APPENDIX D MATLAB Projection Operator 

 

 

unction [projection]=projection_operator(y,estimate,theta,epsilon) 
% Thesis Research 
% This is the projection operator used for L1AC Adaptive Laws 
% John Bayless, September 2016 
% Reference:  
% Hovakimyan, Naira (2010). L1 Adaptive Control Theory Guaranteed  
% Robustness with Fast Adaptation.  Philadelphia, PA:   
% Society for Industrial and Applied Mathematics 
%  
f = (estimate'*estimate-

max(theta).*max(theta))./(epsilon*max(theta).*max(theta)); 
df = 2*estimate/(epsilon*max(theta)*max(theta)); 
dfy = df'*y; 
% 
dfsquared = df.*df; 
sumofdfelements = sum(sum(dfsquared)); 
sqrtdfsquared = (sumofdfelements)^0.5; 
if sqrtdfsquared > 0  
    norm = df./sqrtdfsquared; 
else 
    norm = df.*0; 
end 
normdoty = sum(norm.*y); 
normdotyxnorm = normdoty*norm; 
ndotyxnormxf = normdotyxnorm*f; 
yminusndotyxnormxf = y - ndotyxnormxf; 

  
if f < 0 
    projection = y; 
else 
    if dfy <-  0 
        projection = y; 
    else 
        projection = yminusndotyxnormxf; 
    end 
end 
end 
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APPENDIX E Test Plan and Test Procedure 

 

 

To run each scenario, the test boat was placed at rest in an indoor test tank until the controller 

engaged.  The test tank was approximately 1.5m x 3.0m x 0.1m in dimension.  The two 

maneuvers included: 

 

1. Sway translation (sway test) 

2. Stationary rotation (yaw test) 

 

The four scenarios included: 

 

1. Narrow engine to engine center distance, aft center of gravity 

2. Narrow engine to engine center distance, forward center of gravity 

3. Wide engine to engine center distance, after center of gravity 

4. Wide engine to engine center distance, forward center of gravity 

 

The digital video was captured by an iPhone6 placed in a stationary boom approximately 1.7m 

above the water.  The video was then processed by the software, Video Physics.  The software 

tracked a blue LED light positioned amidships.  Based on the object tracking, the software 

created the estimates for position and velocity over time in the inertial reference frame. 

 

The detailed test procedure is outlined in Table 29 below: 
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Table 29  Test Procedure 

Test 

Maneuver Test Procedure 

Sway Test 

1. Turn off the controller 

2. Set the motor to motor distance 

3. Add ballast as required 

4. Turn on the video recorder 

5. Place the boat at the North end of the test tank, facing East 

6. Turn on the controller 

7. Release the boat such that the boat is at rest 

8. When the boat reaches the South end of the test tank, turn off the 

controller 

9. Upload the video to the motion tracking software 

10. Align the tracking tool with the blue LED control indication light 

11. Set the motion tracking scale based on the distance between deck 

features 

12. Export test data for analysis 

Yaw Test 

1. Turn off the controller 

2. Set the motor to motor distance 

3. Add ballast as required 

4. Turn on the video recorder 

5. Place the boat in the middle of the test tank facing East 

6. Turn on the controller 

7. Release the boat such that the boat is at rest 

8. Let the boat rotate for at least 360˚ and then turn off the controller 

9. Upload the video to the motion tracking software 

10. Align the tracking tool with the blue LED control indication light 

11. Set the motion tracking scale based on the distance between deck 

features 

12. Export test data for analysis 
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APPENDIX F Yaw Maneuver Error Calculations 

 

 

 

The ideal position was estimated based on the average yaw rate for each rotation as 

follows: 

 

𝜓𝑛
∗ =

𝑡𝑛
𝑇

2𝜋 

Where 

 

𝜓𝑛
∗ = 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑦𝑎𝑤 𝑎𝑛𝑔𝑙𝑒 at data point n 

𝑡𝑛 = 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 at data point n 

𝑇 = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

 

And 

 

𝑥𝑛
∗ = 0.183 ∗ cos(−𝜓𝑛

∗) 

 

𝑦𝑛
∗ = 0.183 ∗ sin(−𝜓𝑛

∗) 

 

𝑥𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝑥𝑛
∗ − 𝑥𝑛 

 

𝑦𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝑦𝑛
∗ − 𝑦𝑛 

 

𝑒𝑟𝑟𝑜𝑟𝑛 = √(𝑥𝑛
∗ − 𝑥𝑛)2 + (𝑦𝑛

∗ − 𝑦𝑛)2 

 

Where 

 0.183 = distance from the origin to the tracking light 

𝑥𝑛
∗ = 𝑖𝑑𝑒𝑎𝑙 𝑋 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑛 

𝑦𝑛
∗ = 𝑖𝑑𝑒𝑎𝑙 𝑌 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑛 

𝑥𝑛 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑋 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑛 

𝑦𝑛 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑌 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑛 
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APPENDIX G Wiring Diagram 
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APPENDIX H Arduino Control Code for Sway Maneuvers 

 

/*  

     John Bayless 

     M.S. Mechanical Engineering 

     L1AC Joystick Control 

     November, 2016 

  */   

  //  declare actuator variables 

  const int portservoMin = 86; 

  const int portservoMax = 128; 

  const int starbservoMin = 50; 

  const int starbservoMax = 92; 

  double yawcontrol; 

  double rudder; 

  double portrudder; 

  double starbrudder; 

  const int portbmotorMin = 50; 

  const int portmotorMax = 255; 

  const int starbmotorMin = 50; 

  const int starbmotorMax = 255; 

  const int nominalpower = 150; 

  double starbpower; 

    

   

  //  declare model variables 

  double surge_a; 

    double sway_a; 
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      double yaw_a; 

        double heading_a; 

          double headinghold; 

  double surge[3] = {0, 0, 0}; 

    double sway[3] = {0, 0, 0}; 

      double yaw[3] = {0, 0, 0}; 

        double heading[3] = {0, 0, 0}; 

  double m_surge[3] = {0, 0, 0}; 

    double m_sway[3] = {0, 0, 0}; 

      double m_yaw[3] = {0, 0, 0}; 

  double surge_e; 

    double sway_e; 

      double yaw_e; 

  double theta_1[2] = {0, 0}; 

  double theta_1_proj; 

  double theta_1d; 

  double theta_1_min = 0.9; 

  double theta_1_max = 1.1; 

    double theta_23[2] = {0.5, 0.5}; 

    double theta_23_proj; 

    double theta_23d; 

    double theta_23_min = 0.5; 

    double theta_23_max = 2; 

  double omega_1[2] = {0, 0}; 

  double omega_1_proj; 

  double omega_1d; 

  double omega_1_min = 1; 

  double omega_1_max = 1.8; 
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    double omega_23[2] = {1, 1}; 

    double omega_23_proj; 

    double omega_23d; 

    double omega_23_min = 1; 

    double omega_23_max = 1.5;     

  double sigma_1[2] = {0, 0}; 

  double sigma_1d; 

  double sigma_1_min = 0.01; 

  double sigma_1_max = 0.02; 

    double sigma_2[2] = {0.9, 0.9}; 

    double sigma_2d; 

    double sigma_2_min = 0.01; 

    double sigma_2_max = 0.2; 

      double sigma_3[2] = {0.9, 0.9}; 

      double sigma_3d; 

      double sigma_3_min = 0.01; 

      double sigma_3_max = 0.2; 

  double ETA_1; 

    double ETA_2; 

      double ETA_3; 

  double r_1 = 0;                //  commanded velocities 

    double r_2 = 0.0.7; 

      double r_3 = 0; 

  double R_1[3];                    //  input to actuator filter 

    double R_2[3]; 

      double R_3[3]; 

  double kg_1 = 0.8; 

    double kg_2 = 0.7143; 
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      double kg_3 = 1; 

  double U_1[3] = {0, 0, 0}; 

    double U_2[3] = {0, 0, 0}; 

      double U_3[3] = {0, 0, 0}; 

   

  //  declare IMU variables 

  const int numReadings = 4; 

  double surgereadings[5]; 

  double yawreadings[5]; 

  double swayreadings[5]; 

  double headingreadings[5];   

  int readIndex = 0; 

  double surgetotal = 0; 

  double swaytotal = 0; 

  double yawtotal = 0; 

  double headingtotal = 0; 

   

  //  configure the servos 

  #include <Servo.h> 

  Servo portservo; 

  const int portservoPin = 9; 

  Servo starbservo; 

  const int starbservoPin = 10; 

   

  //  configure the sensor 

  #include <Wire.h> 

  #include <Adafruit_Sensor.h> 

  #include <Adafruit_BNO055.h> 
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  #include <utility/imumaths.h> 

  Adafruit_BNO055 bno = Adafruit_BNO055(55); 

   

  //  configure the tracking LED 

  const int ledpin = 12; 

   

  //  configure the motors 

  const int portmotorPin = 5; 

  const int starbmotorPin = 6; 

   

  //  configure the timer 

  double timer; 

  double T_s = 0.08;   

   

  //  configure set up 

   

   

  void setup() { 

     

    Serial.begin(9600); 

    Serial.println("Orientation Sensor Test"); Serial.println(""); 

     

    /* Initialise the sensor */ 

    if (!bno.begin(Adafruit_BNO055::OPERATION_MODE_COMPASS)) 

    //if(!bno.begin()) 

    { 

      /* There was a problem detecting the BNO055 ... check your connections */ 

      Serial.print("Ooops, no BNO055 detected ... Check your wiring or I2C ADDR!"); 
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      while(1); 

    } 

     

    delay(1000); 

       

    bno.setExtCrystalUse(true); 

        

    //  For servo set-up 

    portservo.attach(portservoPin); 

    starbservo.attach(starbservoPin);     

    portservo.write(116); // reference angle = 86 

    starbservo.write(62);// reference angle = 92 

    delay(5000); 

     

    //  For motor control 

    pinMode(portmotorPin, OUTPUT); 

    pinMode(starbmotorPin, OUTPUT); 

     

    //  Turn on the tracking light 

    pinMode(ledpin, OUTPUT); 

    delay(2000); 

    digitalWrite(ledpin, HIGH); 

    //analogWrite(starbmotorPin, nominalpower); 

    //analogWrite(portmotorPin, nominalpower-35);   

   

     

    // capture the initial heading 

          while (readIndex <= numReadings) {     
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          headingtotal = headingtotal - headingreadings[readIndex]; 

           

          //  read the input from the IMU, take the integral for velocity     

          sensors_event_t event; 

           

          //  bno.getVector(&event);      

          imu::Vector<3> vector = 

bno.getVector(Adafruit_BNO055::VECTOR_MAGNETOMETER); 

          headingreadings[readIndex] = atan2(vector.y(), vector.x()); 

          if(headingreadings[readIndex] <0) headingreadings[readIndex] = 

headingreadings[readIndex] + 2*PI; 

             

          //  add the latest reading to the total 

          headingtotal = headingtotal + headingreadings[readIndex]; 

           

          //  advance to the next position in the array 

          readIndex = readIndex + 1; 

          delay(1); 

          } 

          readIndex = 0; 

           

          headinghold = headingtotal / numReadings; 

           

      

      Serial.print("heading hold: "); 

      Serial.print(headinghold); 

      Serial.println(""); 

       

  } 
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  //  main program 

  void loop() { 

     

    //  record loop start time 

    timer = millis(); 

     

    //  collect a number of acceleration data points for smoothing     

    while (readIndex <= numReadings) {     

    surgetotal = surgetotal - surgereadings[readIndex]; 

    swaytotal = swaytotal - swayreadings[readIndex]; 

    yawtotal = yawtotal - yawreadings[readIndex]; 

    headingtotal = headingtotal - headingreadings[readIndex]; 

     

    //  read the input from the IMU, take the integral for velocity     

    sensors_event_t event; 

     

    //  bno.getVector(&event);      

    imu::Vector<3> linearaccel = 

bno.getVector(Adafruit_BNO055::VECTOR_LINEARACCEL); 

    surgereadings[readIndex] = linearaccel.x(); 

    swayreadings[readIndex] = linearaccel.y(); 

     

    imu::Vector<3> angularaccel = bno.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE); 

    yawreadings[readIndex] = angularaccel.z(); //57* 

     

    

    Serial.println(""); 

    Serial.print("yaw: "); 

    Serial.print(yawreadings[readIndex]); 
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    Serial.println(""); 

     

     

    imu::Vector<3> vector = bno.getVector(Adafruit_BNO055::VECTOR_MAGNETOMETER); 

    headingreadings[readIndex] = atan2(vector.y(), vector.x()); 

    if(headingreadings[readIndex] < 0) headingreadings[readIndex] = headingreadings[readIndex] 

+ 2*PI; 

       

    //  add the latest reading to the total 

    surgetotal = surgetotal + surgereadings[readIndex]; 

    swaytotal = swaytotal + swayreadings[readIndex]; 

    yawtotal = yawtotal + yawreadings[readIndex]; 

    headingtotal = headingtotal + headingreadings[readIndex]; 

     

     

    //  advance to the next position in the array 

    readIndex = readIndex + 1; 

    delay(1); 

    } 

    readIndex = 0; 

     

    //  calculate the average accelerations 

    surge_a = surgetotal / numReadings;  //   saves new x[n] 

     

    sway_a = swaytotal / numReadings; 

     

    yaw_a = yawtotal / numReadings; 
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    heading_a = headingtotal / numReadings; 

     

     

    //  integrate the accerlations to find velocities 

    surge[1] = surge[0]; 

    surge[0] = surge_a; 

     

    sway[1] = sway[0]; 

    sway[0] = sway_a; 

     

    yaw[1] = yaw[0]; 

    yaw[0] = (headi 

    ng[0] - heading_a)/T_s; 

     

    heading[1] = heading[0]; 

    heading[0] = heading_a; 

     

    //  calculate the refernce model velocities 

    m_surge[2] = m_surge[1]; 

    m_surge[1] = m_surge[0]; 

    m_surge[0] = 0.9048 * m_surge[1] - 0.04758 * U_1[1] * omega_1[0] + sigma_1[0] + 

theta_1[0] * surge[0];                           

     

    m_sway[2] = m_sway[1]; 

    m_sway[1] = m_sway[0]; 

    m_sway[0] = 1.93 * m_sway[1] - 0.9324 * m_sway[2] + theta_23[0] * sway[0] + (0.04998 * 

U_2[1] - 0.0466 * U_2[2] - 0.001221 * U_3[1] - 0.9324 * U_3[2]) * omega_23[0] + sigma_2[0]; 

     

    m_yaw[2] = m_yaw[1]; 
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    m_yaw[1] = m_yaw[0]; 

    m_yaw[0] = 1.93 * m_yaw[1] - 0.9324 * m_yaw[2] + theta_23[0] * yaw[0] + (0.04827 * 

U_3[1] - 0.04827 * U_3[2] + 0.001221 * U_2[1] + 0.001193 * U_2[2]) * 0.2118 * omega_23[0] 

+ sigma_3[0] - 0.3529; 

     

    //  calculate the error 

    surge_e = m_surge[0] - surge[0]; 

     

    sway_e = m_sway[0] - sway[0]; 

     

    yaw_e = m_yaw[0] - yaw[0]; 

     

    //  calculate the projection 

    // theta 

    theta_1_proj = -1 * surge_e * surge[0]; 

    theta_1d = 10000 * theta_1_proj; 

    theta_1[1] = theta_1[0]; 

    theta_1[0] = theta_1[1] + T_s * theta_1d; 

    theta_1[0] = constrain(theta_1[0],theta_1_min, theta_1_max); 

      theta_23_proj = -1 * yaw[0] * (0.5 * sway_e - ( 5 / 7 * yaw_e) - sway[0] * ((99 / 70 * 

sway_e) - 0.5 * yaw_e)); 

      theta_23d = 10000 * theta_23_proj; 

      theta_23[1] = theta_23[0]; 

      theta_23[0] = theta_23[1] + T_s * theta_23d; 

      theta_23[0] = constrain(theta_23[0],theta_23_min, theta_23_max); 

     

    // omega 

    omega_1_proj = surge_e * U_1[0]; 

    omega_1d = 20000 * omega_1_proj; 
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    omega_1[1] = omega_1[0]; 

    omega_1[0] = omega_1[1] + T_s * omega_1d; 

    omega_1[0] = constrain(omega_1[0],omega_1_min, omega_1_max); 

      omega_23_proj = -1 * U_3[0] * (0.5 * sway_e - ( 5 / 7 * yaw_e) - U_2[0] * ((99 / 70 * 

sway_e) - 0.5 * yaw_e)); 

      omega_23d = 10000 * omega_23_proj; 

      omega_23[1] = omega_23[0]; 

      omega_23[0] = omega_23[1] + T_s * omega_23d; 

      omega_23[0] = constrain(omega_23[0],omega_23_min, omega_23_max); 

     

    // sigma  

    sigma_1d = 10000 * surge_e; 

    sigma_1[1] = sigma_1[0]; 

    sigma_1[0] = sigma_1[1] + T_s * sigma_1d; 

    sigma_1[0] = constrain(sigma_1[0],sigma_1_min, sigma_1_max); 

      sigma_2d = 10000 * sway_e; 

      sigma_2[1] = sigma_2[0]; 

      sigma_2[0] = sigma_2[1] + T_s * sigma_2d; 

      sigma_2[0] = constrain(sigma_2[0],sigma_2_min, sigma_2_max); 

        sigma_3d = 10000 * yaw_e; 

        sigma_3[1] = sigma_3[0]; 

        sigma_3[0] = sigma_3[1] + T_s * sigma_3d; 

        sigma_3[0] = constrain(sigma_3[0],sigma_3_min, sigma_3_max); 

     

     

     

    //  calculate ETA 

    ETA_1 = omega_1[0] * U_1[0] + theta_1[0] * surge[0] + sigma_1[0]; 

     



102 

 

    ETA_2 = omega_23[0] * U_2[0] + theta_23[0] * sway[0] + sigma_2[0]; 

     

    ETA_3 = omega_23[0] * U_3[0] + theta_23[0] * yaw[0] + sigma_3[0]; 

     

    //  calculate R 

    R_1[2] = R_1[1]; 

    R_1[1] = R_1[0]; 

    R_1[0] = r_1 * kg_1 - ETA_1; 

     

    R_2[2] = R_2[1]; 

    R_2[1] = R_2[0]; 

    R_2[0] = r_2 * kg_2 - ETA_2; 

     

    R_3[2] = R_3[1]; 

    R_3[1] = R_3[0]; 

    R_3[0] = r_3 * kg_3 - ETA_3; 

     

    //  calculate U 

    U_1[0] = U_1[1]; 

    U_1[1] = U_1[0]; 

    U_1[0] = 1.062 * U_1[1] - 0.08208 * U_1[2] + 0.03164 * R_1[1] - 0.01425 * 

R_1[2];//0.01425 to 0.02425 

     

    U_2[2] = U_2[1]; 

    U_2[1] = U_2[0]; 

    U_2[0] = 1.082 * U_2[1] - 0.08208 * U_2[2] + 0.03164 * R_2[1] - 0.01425 * R_2[2]; 

     

    U_3[2] = U_3[1]; 

    U_3[1] = U_3[0]; 
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    U_3[0] = 1.082 * U_3[1] - 0.08208 * U_3[2] + 0.03164 * R_3[1] - 0.01425 * R_3[2];// + 

2*(heading_a - headinghold);//0.03164 to 0.04164 

            

    //  actuate the servos 

    yawcontrol = 115 * U_3[0]; //115 

    rudder = 3.3952 * yawcontrol - 5.49;  

       

    portrudder = 86 + rudder; 

    portrudder = constrain(portrudder, portservoMin, portservoMax); 

    portservo.write(portrudder); 

     

    starbrudder = 92 - rudder; 

    starbrudder = constrain(starbrudder, starbservoMin, starbservoMax); 

    starbservo.write(starbrudder);  

     

    //  actuate the motors 

    analogWrite(starbmotorPin, nominalpower); // changed to make port adjust 

    starbpower = constrain(nominalpower - 0.30 * nominalpower + 1.3 * U_1[0], starbmotorMin, 

starbmotorMax);// -8 adjustment for efficiency 

    analogWrite(portmotorPin, starbpower); 

     

    //  delay until next sample time 

    timer = millis() - timer; 

    timer = (T_s * 1000) - timer; 

     

     

    delay(timer); 

  } 
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