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ABSTRACT 

DEEP NEURAL NETWORKS AS TIME SERIES FORECASTERS OF ENERGY 

DEMAND 

 

Gregory D. Merkel, B.S. 

Marquette University, 2017 

 

Short-term load forecasting is important for the day-to-day operation of natural 

gas utilities. Traditionally, short-term load forecasting of natural gas is done using linear 

regression, autoregressive integrated moving average models, and artificial neural 

networks.  Many purchasing and operating decisions are made using these forecasts, and 

there can be high cost to both natural gas utilities and their customers if the short-term 

load forecast is inaccurate. Therefore, the GasDay lab continues to explore new ways to 

make better forecasts. 

Recently, deep neural networks (DNNs) have emerged as a powerful tool in 

machine learning problems. DNNs have been shown to greatly outperform traditional 

methods in many applications, and they have completely revolutionized some fields. 

Given their success in other machine learning problems, DNNs are evaluated in energy 

forecasting.  

This thesis examines many DNN parameters in the context of the short-term load 

forecasting problem including architecture, input features, and use of synthetic data. The 

performance of the model is compared against several traditional forecast strategies, 

including artificial neural networks and linear regression short-term load forecasting 

strategies. Additionally, the DNN forecaster is evaluated as part of the GasDay ensemble. 

The DNN forecaster proposed in this thesis offers an average 6.98% improvement 

in terms of weighted mean absolute percent error (WMAPE) when included as part of the 

GasDay ensemble. Finally, ideas for future work are discussed. 
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CHAPTER 1  

Natural Gas Demand Forecasting 

 

This section is an introduction to the natural gas industry, the GasDay lab at 

Marquette University, and the short-term load forecasting problem. It also discusses the 

current forecasting techniques employed by the GasDay lab including inputs and 

forecasting models.  

1.1 Natural gas industry 

Much of the information in this section can be found on the United States Energy 

Information Administration’s web site [1]. The natural gas industry consists of three main 

parts; production and processing, transmission and storage, and distribution. Like many 

fossil fuels, natural gas (methane) is found underground usually near or with pockets of 

petroleum. As such, it is a common byproduct of drilling for petroleum. When natural gas 

is captured, it often is processed to remove higher alkanes such as propane and butane, 

which produce more energy when burned and can be sold at a higher price. After the 

natural gas has been processed, it is transported via pipelines around the country and 

stored either as liquid natural gas in tanks or back underground in aquifers, salt caverns, 

and other underground spaces. This gas is purchased by local distribution companies 

(LDCs) who provide natural gas to residential, commercial, and industrial consumers of 

natural gas. This thesis focuses on the natural gas consumed by their customers of these 

LDCs. Subsets of the customers of LDCs separated by geography or by municipality are 

referred to as operating areas. Operating areas are defined by the individual LDCs and 

can be as large as a state or as small as a few towns. The amount of natural gas used is 



2 

 

 

 

often referred to as the load and is measured in dekatherms (Dth), which is approximately 

the amount of energy in 1000 cubic feet of natural gas.  

 For LDCs, there are several uses of natural gas, but the primary use is for heating 

homes and business buildings. This is referred to as heatload. Heatload changes based on 

the outside temperature. During the winter, when outside temperatures are low, the 

heatload is high. When the outside temperature is high during the summer, the heatload is 

approximately zero. Other uses of natural gas, such as cooking, drying clothes, heating 

water, and other household appliances, are called baseload. Baseload is not effected by 

weather and generally remains constant throughout the year. However, baseload may 

change due to changes in the number of customers. 

1.2 Marquette University’s GasDay lab 

GasDay at Marquette University operates as both a small business and a research 

laboratory. As a small business, GasDay works with 34 local distribution companies and 

forecasts approximately 20% of the United States’ residential, commercial, and industrial 

natural gas consumption. As a research laboratory, GasDay develops techniques for 

forecasting, data cleaning, machine learning, and data science in an effort to improve the 

value provided to their customers. GasDay provides daily, hourly, and monthly forecasts 

and many other services to its customers. The main service provided by GasDay is daily 

forecasts for the demand of natural gas, which takes places from 10 A.M. one day to 10 

A.M. Eastern time the next day. This thesis focuses on this daily short-term load 

forecasting problem. 
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1.3 Why is natural gas forecasting important? 

Short-term load forecasting is important for the day-to-day operation of natural gas 

utilities. Many purchasing decisions are made using these forecasts, and there can be high 

cost to both natural gas utilities and their customers if the short-term load forecast is 

inaccurate. If the forecast is low, a gas utility may have to purchase gas at a much higher 

price; if the forecast is high, a gas utility may have to store the excess gas or pay a penalty 

[2]. Given the monetary importance of quality forecasts to natural gas utilities, it is critical 

that the GasDay lab explore new ways to make better forecasts.  

1.4 Factors in natural gas demand 

As mentioned earlier, the baseload of natural gas consumption for an operating 

area typically changes slowly as the number of customers, or their behavior, change. 

Given the steady nature of baseload, most of the effort in forecasting natural gas focuses 

on predicting the heatload. Hence, the most important factor effecting the natural gas 

consumption is the weather.  

 

Figure 1-1: Weighted combination of several northern U.S. metropolitan operating 

areas. 
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Seen in Figure 1-1, the temperature has roughly a linear relationship with load. 

However, there is however a kink in the line around 65 ˚F. This occurs because at 

temperatures greater than 65 ˚F, home and business owners start using electricity to cool 

their buildings rather than use natural gas to heat them. This makes the heat load zero and 

leaves only the base load at temperatures greater than 65 ˚F. To handle this nonlinearity, 

heating degree days (HDD) are used instead of temperature, 

 max(0, )refHDD T T  ,  (1-1) 

where T is the temperature and refT  is the reference temperature [3]. Throughout this 

thesis, HDDs are written followed by their reference temperature. For instance, if the 

reference temperature is 65 ˚F, the heating degree day variable is written as HDD65.  

In addition, a variant that accounts for wind called wind-adjusted heating degree 

day (HDDW) is used,  

 

72
8

80

152
8

160
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HDDW
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HDD ws

 
  
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  

 , (1-2) 

where ws is the wind speed in miles per hour.  

Besides HDDW, there are several other weather-based inputs that can be used in 

forecasting natural gas. One such input is cooling degree days (CDD), defined as 

  max 0, refCDD T T  ,  (1-3) 

which accounts for temperature related effects when the temperature is above the 

reference. As seen in Figure 1-1, these effects are not as pronounced as those when the 

temperature is below the reference, but they are still present. Finally, the dew point 

temperature (DPT) is another effective input, as it captures humidity. 
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Figure 1-2: Weighted combination of several northern U.S. metropolitan operating areas 

colored by day of the week. This is the same data as in Figure 1-1. 

In addition to weather inputs, time-related inputs also play a role in gas demand. 

As can be seen in Figure 1-2, the day of the week (DOW) plays a role in natural gas 

demand. The demand for natural gas is less on weekends (Friday-Sunday) than on 

weekdays (Monday-Thursday), with Wednesday generally having the highest demand, 

and Saturday generally having the lowest demand. Day of the year (DOY) plays a role in 

determining demand as well, due to changes in homeowner behaviors between seasons. 

For instance, 50ºF may not result in everyone turning on their furnaces in early fall, but it 

is likely that furnaces will be on during the winter and early spring at 50ºF.  

1.5 Modeling techniques 

This section gives an overview of linear models and artificial neural networks. 

These are two common modeling techniques available to natural gas demand forecasters. 

The strengths and weakness of both models also are discussed. 
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1.5.1 Linear models 

Traditionally, short-term load forecasting of natural gas is done using multiple 

linear regression (LR) or autoregressive integrated moving average (ARIMA) models [4]. 

For customer demand s, forecast point k, and a set of m independent inputs like the ones 

discussed above, the linear regression model is defined as: 

 0

1

ˆ
m

k k j kj

j

s s x 


   ,  (1-4) 

where β0 through βm, are the coefficients that represent the effect that each input has on the 

demand [5]. Several models can be defined using this notation. The GasDay linear 

regression model uses many inputs, but for the sake of explanation, a five-parameter model 

is used, 

 0 1 2 3 4
ˆ 65 55 65k k k k ks HDD HDD HDD CDD          .  (1-5) 

For this model, and most linear regression models for forecasting natural gas, β0 is 

the base load. Similarly, the sum of β1 and β2 represents the heat load. Two reference 

temperatures are used to better model the transition between heating and non-heating days. 

β3 accounts for the effect that the change in temperature between the previous day and the 

current day (ΔHDD) has on the current day’s natural gas demand. This effect is discussed 

at length in [6]. Finally, β4 allows the model to adjust to any temperature effects on 

demand during non-heating days. This coefficient is usually small, but not insignificant. 

The five-parameter linear regression model and other linear models perform well 

on linear stationary time-series, and thus have been used successfully for forecasting 

short-term load, which has roughly a linearly relationship with temperature [7]. 

Unfortunately, gas demand contains nonlinearities. Some of these nonlinearities are easy 
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for a proficient forecaster to capture using an LR model. For instance, by using heating 

degree days as an input instead of temperature, the major nonlinearity that occurs around 

65 ˚F can be accommodated. However, natural gas demand also contains many smaller 

nonlinearities that either cannot be captured easily with LR or ARIMA models or are 

difficult for forecasters to detect from the data. 

1.5.2 Artificial neural network 

The forecasting community’s answer to the problem of nonlinearities has been to 

use artificial neural networks (ANNs) in place of, or in conjunction with, linear models 

[4], [8], [9]. Hornik et al. described them as “universal approximators,” meaning that they 

can be used to solve almost any regression problem [8]. Artificial neural networks are 

based on a simplified model of neurons in the human brain.  

 

Figure 1-3: Diagram of a single node of an ANN. 

Figure 1-3 shows a single node of an ANN, often called a neuron. Like the 

neurons in the human brain, the ANN neuron takes in information from other nodes, 

processes it, and sends an output based on that information. The calculation of this output 

Y is given as: 

 1 11 2 12 3 13 1( )Y xW x W x W b    ,  (1-6) 
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where x is the set of inputs, w is the weights on each input, and b is a constant bias. The σ 

represents the transfer function. There are a variety of different transfer functions that can 

be used with neural networks. A collection of these nodes makes up a neural network.  

 

Figure 1-4: Three sequential neurons in a neural network. 

 Figure 1-4 shows three sequential neurons forming a simple artificial neural 

network. In the case of a neural network used to forecast natural gas X, on the left is a 

vector of the factors discussed in Section 1.4, while Y on the right is the forecast ŝ . In this 

case, the calculation of the forecast is: 

 1 1 2 2 3 3
ˆ ( ( ( ) ) )s Y XW b W b W b       .  (1-7) 

For a neural network to perform well, there is probably more than one node in 

each layer, but Figure 1-4 is an easy way to visualize multiple layers. There are many 

ways to calculate the weight matrices and the biases, but the most common of these is 

backpropagation [10]. The training algorithm used to train the GasDay ANN is a neuron 

decoupled extended Kalman filter [11].  

1.5.3 Ensemble forecasting 

Another common technique in modeling natural gas demand, and modeling in 

general, is use of ensemble models. An ensemble model is used to describe any technique 

that combines the results of multiple forecasters to make a final forecast. For instance, the 

simplest ensemble is an average of the several forecasts. Even using this simple ensemble 
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modeling technique, a researcher is guaranteed to have a more accurate ensemble forecast 

than the least accurate of their individual forecasts on any given day [12]. A slightly more 

complicated ensemble may consist of weighting the models so that the final forecast is 

weighted average. For example, if a researcher were to ensemble two models, they might 

use weights of 0.35 and 0.65 if they know that one model generally performs better.  

The GasDay ensemble is called the Dynamic Post Processor (DPP), which is an 

ensemble of the GasDay LR model and the GasDay ANN [13]. The DPP is useful 

because, in addition to selecting initial weights, the DPP adjusts those weights depending 

on how the two models are performing. The DPP also has an advantage over other 

ensemblers when forecasting natural gas demand because it can adjust to changing 

demand. For instance, if an operating area sees a significant increase in the number of 

natural gas customers, the DPP automatically adjusts the forecast upward to compensate. 

More information about the DPP can be found in [13] and later in this thesis. 

1.6 Problem statement 

Recently, the machine learning community have been successful in replacing 

ANNs and other nonlinear models with deep neural networks (DNN) [14]. Längkvist 

discusses the use of DNNs for problems ranging from video analysis and motion capture 

to speech and music recognition [14]. DNNs also have led to unprecedented advances in 

many fields such as image pattern detection [15].  

As it will be described in depth later in Chapter 2, functionally, DNNs are just 

large ANNs; the main difference is in the training algorithms. ANNs are trained using 

gradient descent, which is computationally intensive. Large neural networks trained by 

gradient descent also are prone to overfitting data sets. DNNs avoid both of these 
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problems by using a restricted Boltzmann machine training algorithm to “pre-train” the 

model, followed by a few epochs of gradient descent [16]. 

The goal of this thesis is to adapt the DNN technology to short-term load 

forecasting of natural gas demand and to evaluate the DNNs performance as a forecaster. 

Little work has been done in the field of time series regression using DNNs, and almost 

no work has been done in the field of energy forecasting with DNNs. One notable 

example of literature on these subjects is Xueheng Qui et al., who claim to be the first to 

use DNNs for regression and time series forecasting [17]. They show promising results 

on three electric load demand time series and several other time series using twenty 

DNNs ensembled with support vector regression. The major problem with their work is 

that the DNNs used are quite small; the largest architecture consists of two hidden layers 

of 20 neurons each. Because of their small networks, Qui et al. do not take full advantage 

of the DNN technology.  

Another example of work in this field is Busseti et al. [18], who found that deep 

recurrent NNs significantly outperform the other deep architectures they used for 

forecasting energy demand. These results are interesting but demonstrated poor 

performance when compared to the industry standard in energy forecasting, and they are 

nearly impossible to reproduce, given the information in the paper.  

Some good examples of time series forecasting using DNNs include Dalto, who 

used them for ultra-short-term wind forecasting [19], and Kuremoto et al. [20], who used 

DNNs on the Competition on Artificial Time Series (CATS) benchmark. In both of these 

applications, DNNs outperformed neural networks trained by backpropagation. Dalto 

capitalized on the work of Glorot and Bengio when designing his network and showed 
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promising results [21]. Meanwhile, Kuremoto successfully used Kennedy’s particle 

swarm optimization in selecting their model parameters [22]. The work most similar to 

this thesis is Ryu et al., who found that two different types of DNNs examined performed 

better on short-term load forecasting of electricity than shallow neural networks and what 

they called a double seasonal Holt-Winters model [23]. 

Given the results of these papers, DNNs should surpass ANNs in most regression 

problems including the short-term load forecasting of natural gas problem. This thesis 

explores the use of DNNs to model a natural gas system. This is done by comparing the 

performance of the DNN to various benchmark models and the current GasDay model. 

Furthermore, this thesis discusses promising methods for applying DNNs to energy 

demand forecasting and exploring inputs, model parameters, and transfer functions. 

Finally, it discusses the value of adding a DNN component to the GasDay dynamic post 

processor. 
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CHAPTER 2  

Overview of Restricted Boltzmann Machines and Deep Neural Networks 

 

This chapter discusses how deep neural networks (DNNs) work and how to train 

them to solve regression problems.  

2.1 Restricted Boltzmann machines 

Fundamental to understanding DNNs are restricted Boltzmann Machines (RBM). 

This section describes how they work and how they relate to DNNs. Most of the 

information is based on [24] and [25]. 

2.1.1 Energy based models 

 RBMs are energy-based models. This means that for any input vector 𝑥, they 

have an associated scalar energy based on an energy function 𝐸(𝑥). A trained energy-

based model has lower energy when given inputs that are expected and high energy for 

inputs that are not expected [26]. For example, in a short-term load forecasting system for 

natural gas, if the input reserved for temperature is given some high value such as 250˚F, 

it is expected that a trained energy-based model would have high energy. For a simple 

energy-based model, the probability distribution is given as 

  

( )

( )
E xe

p x
Z



 ,  (2-1) 

where 

 
( )E k

k

Z e ,  (2-2) 
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and 𝑘 represents the set of all possible inputs to the energy-based model [24]. In other 

words, this simply means that the probability of vector 𝑥 is equal to the exponential of the 

energy function divided by the sum of the exponentials of each possible vector. The goal 

in training the energy-based model is to have the probability distribution 𝑝(𝑥) be as close 

as possible to the actual probability distribution of the inputs [26].  

2.1.2 Energy based models with hidden layers 

 

Figure 2-1: A restricted Boltzmann machine with four visible units and three hidden 

units. Note the similarity with a single layer of a neural network. 

For more complex energy-based models like RBMs, the hidden units may be 

arranged as in Figure 2-1. For these models, the calculation becomes slightly more 

complicated as the energy associated with a visible input 𝑣 must be calculated for each of 

the hidden units ℎ. This probability distribution is given as [24], [25]: 

 

( , )

( ) ( , )
E v h

k k

e
p v p v h

Z



   ,  (2-3) 

where  

 
( , )E k h

k

Z e .  (2-4) 
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For the sake of simplicity in notation in later equations, this can instead be written 

as [24] 

 
( )

( )
F ve

p v
Z



 ,  (2-5) 

where  

 ( , )( ) log E x h

h

F v e   . (2-6) 

( )F v  is hence referred to as the free energy function.  

2.1.3 Restricted Boltzmann machines  

 

Figure 2-2: Visual representation of hidden and visible layer calculations. Note the 

similarity between these and the neurons of an artificial neural network. 

As stated before, the energy-based models of interest are restricted Boltzmann 

machines (RBMs). Figure 2-2 shows the RBMs have bias vectors 𝑏 and 𝑐, that are related 

to the visible and hidden layers, respectively, a weight matrix 𝑊 which relates the hidden 

vector to the visible vector. Assuming that the RBM is using binary units, which is true 
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throughout this thesis, the transfer function at the nodes is sigmoidal. This means that the 

visible vector and hidden vector can be calculated from one another with

( )v sigmoid b W h   and ( )h sigmoid c Wv  , where the sigmoid function is [25] 

 
1

( )
1 t

sigmoid t
e




. (2-7) 

The visible nodes are not dependent on one another, nor are the hidden nodes. 

This makes it simple to calculate the probability of any ℎ for any given 𝑣 and vise-versa. 

These probabilities are [24] 

 ( | ) ( | )i

i

p h v p h v   (2-8) 

and  

 ( | ) ( | )j

j

p v h p v h . (2-9) 

Given this information, the energy function of the RBM is [24] 

 ( , )E v h b v c h h Wv      , (2-10) 

and the free energy function is [24] 

 ( ) log(1 )i ic W v

i

F v b v e
    . (2-11) 

2.1.4 Training restricted Boltzmann machines 

This section describes how to train a restricted Boltzmann machine for binary 

inputs, those scaled to be between 0 and 1, and a sigmoidal transfer function as described 

in Section 2.1.3. First, in a step known as the positive phase, the probability that each 

value in the hidden vector h is equal to 1 for a given v  is calculated. This probability is 

[24] 

 ( 1| ) ( )P h v sigmoid c Wv   .  (2-12) 
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Then, a random sample is taken from a uniform distribution from 0 to 1 for each 

probability, to define a vector ph . That ends the positive phase.  

In the next step, known as the negative phase, the vector ph is used to calculate a 

probability that v  is equal to 1, [24] 

 ( 1| ) ( ' )p pP v h sigmoid b W h   . (2-13) 

Again, a random sample is taken from a uniform distribution from 0 to 1 for each 

probability, this time to define a vector nv . This ends the negative phase.  

After this, an output is calculated from the restricted Boltzmann machine using vn. 

This output is [24] 

 ( )out nh sigmoid c Wv  . (2-14) 

In the final step of training, the weights and biases are updated. These are defined for 

some learning rate   as [24] 

 

( ' ')

( )

( )

p out n

n

p out

W W h v h v

b b v v

c c h h







  

  

  

.   (2-15) 

Using this algorithm, a restricted Boltzmann machine can be trained either using a vector 

to train individual training points as discussed above or in batches using matrices for h

and v .   

2.2 Stacking restricted Boltzmann machines to make neural networks 

As can be seen in Figure 2-1 and Figure 2-2, a trained RBM closely resembles a 

single layer of an artificial neural network. This allows us to stack RBMs to form a neural 

network. First, RBM1, is trained based on our input data. Then, after RBM1 is fully 

trained the entire input set is fed into the visible layer of RBM1 and the outputs at the 
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hidden layer are collected. These outputs are used as the inputs to train RBM2. This 

process is repeated after RBM2 is fully trained to get the inputs for RBM3, and so on. 

This process is shown in Figure 2-3. This training is unsupervised, meaning that no 

targets outputs are given to the model. It has information about the inputs and how they 

are related to one another, but the network is not able to solve any real problems yet.    

 

Figure 2-3: Graphical representation of how RBMs are trained and stacked to function 

as a neural network. 

The next step in training a deep neural network, often called “fine tuning,” 

involves using gradient descent to train the neural network to solve a particular problem. 

Our problem is short-term load forecasting, so actual natural gas load values are used as 

target outputs, and a set of features such as temperature, wind speed, day of the week, and 

previous loads are used as the inputs. After the supervised training step, the DNN 

function similarly to a large artificial neural network.   
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CHAPTER 3  

Comparing Neural Network Training Algorithms 

 

This chapter discusses the metrics, models, data, and experimental methods that 

are used throughout this thesis. Then, a small neural network is trained using restricted 

Boltzmann machine (RBM) pretraining on each of 88 operating areas and is compared 

with several other models. The purpose of this experiment is to give the GasDay ANN 

and MATLAB ANN a fair comparison by using the same relatively small architecture 

and set of input features. It is concluded that the small RBM neural networks do not 

perform as well as the GasDay ensemble. However, they do perform better than all other 

models examined. Finally, this chapter introduces some of the graphs and tables that are 

used throughout this thesis to display the results. 

3.1 Metrics 

This thesis uses several metrics to evaluate the performance of each model. The 

first of these is the root mean squared error (RMSE):  

  
2

1

1
ˆRMSE ( ) ( )

N

n

s n s n
N 

  , (3-1) 

for a testing vector of length N, actual demand ( )s n and forecasted demand ˆ( )s n . RMSE 

is a powerful metric for short-term load forecasting of natural gas because it naturally 

places more value on the days with higher load. These days are important, as they are 

when natural gas is the most expensive, which means that purchasing gas at the last 

minute or having bought too much gas can be costly. Unfortunately, RMSE is magnitude 

dependent, meaning that larger systems have larger RMSE if the percent error is constant, 
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which makes it a poor metric for comparing the performance of a model across different 

systems.  

To account for the weaknesses of RMSE, this thesis also uses mean absolute 

percent error (MAPE): 

 
1

ˆ( ) ( )1
MAPE 100

( )

N

n

s n s n

N s n


   . (3-2) 

Unlike RMSE, MAPE is not dependent on the magnitude of the system. This means that 

it is more useful for comparing the performance of a method between operating areas. It 

does, however, put some emphasis on the lowest flow days, which, on top of being the 

least important days to forecast correctly, are often the easiest days to forecast. As such, 

MAPE is not the best metric for looking at the performance of the model across all the 

days in a year, but can be used to describe the performance on a particular day type. 

 The final error metric used in this thesis is weighted MAPE (WMAPE): 

 1

1

ˆ( ) ( )

WMAPE 100 .

( )

N

n

N

n

s n s n

s n







 



  (3-3) 

This error metric does not emphasize the low flow and less important days while being 

independent of the magnitude of the system. This means that it is the most effective error 

metric for comparing the performance of our methods over the course of a full year. 

 In addition to the error metrics discussed above, the metric of training time is 

evaluated for each model. This is important for the business use case. Every year the 

GasDay business trains and delivers approximately 6000 artificial neural networks and 

linear regression models to LDCs across the country. Hence, a model that takes an 

excessively long time to train may not be useful to GasDay. In other words, training time 
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is simply used to distinguish between models that can be trained in a reasonable time and 

those that cannot. 

3.2 Training and testing data 

One common problem with training any type of neural network is that there is 

always some amount of randomness in the results [27]. This means that it is difficult to 

ascertain whether a single trained model is performing well because the model 

parameters are good or because of probability. Hanson and Salamon mitigated this 

problem using cross validation [27]. This means that they trained many models on the 

different parts of the same set of data so that they could test their models on multiple 

parts of the data.  

In this thesis, the problem of randomness is mitigated by having training and 

testing data from 88 operating areas around the United States. These operating areas 

come from many different geographical regions including the Southwest, the Midwest, 

West Coast, Northeast, and Southeast and thus represent a variety of climates. The data 

sets also include a variety of urban, suburban, and rural areas. This diverse data set allows 

for broader conclusions to be made about the performance of the models.  

For each of the 88 operating areas, several models are trained using at least 10 

years of data for training and 1 year for testing. The inputs to these models are the 

GasDay standard inputs discussed in Section 1.4. All the weather inputs in this 

experiment are observed weather as opposed to forecasted weather for the sake of 

simplicity. 
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3.3 Small restricted Boltzmann machine neural network 

The neural network that is the focus of this chapter is a shallow neural network 

with two hidden layers of 12 and 4 nodes pretrained using RBMs. Each RBM is trained 

for 1000 epochs, and 1000 epochs of backpropagation are performed. The size and 

number of these layers is the same as the other neural networks to which it is compared 

to. Additionally, this network and all other forecasters discussed in this section are given 

the same inputs to ensure that a fair comparison is done between the various forecasters. 

Despite its small size, the RBM trained neural network is referred to as a DNN 

throughout this chapter to simplify notation. 

3.4 Models for comparison 

In this preliminary experiment, this thesis compares the performance of deep 

neural networks to five different models. The primary of these models is the GasDay 

dynamic post processor and component models discussed in Section 1.5. For the 

remainder of this thesis, the GasDay dynamic post processor is referred to as GDDPP. 

The GasDay linear regression and artificial neural network models are referred to as 

GDLR and GDANN, respectively. The GDLR model is tuned specifically to perform 

better on harder to forecast days [4]. On the other hand, the GDANN is trained using a 

Kalman-filter based algorithm [11] and has two hidden layers of size 12 and 4. The 

purpose of using these models in this experiment is to determine if the small DNN 

performs comparably to the current GasDay models. In addition to the models used by 

GasDay, this thesis also compares the DNN to models built using MATLAB tools. The 

first is a model built using the MATLAB neural network toolbox. This model is referred 

to as MLANN. This network is trained using the Levenberg-Marquardt training algorithm 
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and two hidden layers of sizes 12 and 4. The maximum epochs is set to 1000, but it is 

unlikely that this is reached because of how the Levenberg-Marquardt algorithm avoids 

overfitting. Similarly, this experiment also uses MATLABs built-in linear regression 

model. This model is referred to as MLLR. The purpose of including MLANN and 

MLLR is for repeatability of these experiments outside the GasDay lab, as the current 

GasDay models are proprietary and cannot be fully disclosed. 

3.5 Results 

This section gives an overview of the results of comparing the models discussed 

in Section 3.4. It compares the DNN to the GDDPP, each of its components, and the 

MATLAB built-in ANN and LR models on all 88 areas. The small DNNs perform as 

well as the GDDPP and better than all the other models. Then, the GDDPP and DNN are 

compared across unusual days, which are defined in Appendix B, for all of the areas. 

They perform similarly. Finally, three areas are anonymized and examined individually. 

One area is an example where the DNN performed better overall, one area is an example 

where the GDDPP performed better overall, and on the final area they performed about 

the same. 
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3.5.1 “All days” comparison 

This section compares the small DNN to the GDDPP and to all of the other 

models. 

 

Figure 3-1: This is a histogram of the differences in WMAPE between the GDDPP and 

the DNN. Values on the left of the thick line at 0 indicate areas where the GDDPP 

performs better. Those on the right indicate areas where the DNN performs better. 

Figure 3-1 shows a histogram of the differences between the weighted MAPE of 

the DNN forecaster over the course of a year and the weighted MAPE of the GDDPP 

over the course of the same year. Each instance represents one of the 88 operating areas 

on which the models were build. Every instance right of the center line is an example of 

an area where the DNN had a lower weighted MAPE than the GDDPP, and each instance 

to the left of the center line represents an area where the GDDPP has a lower weighted 

MAPE. It appears in Figure 3-1 that on average the GDDPP performs better than the 
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DNN. This difference is statistically significant, as a left-tailed t-test has a p-value of 

0.0072. These results are relatively unsurprising, as this is a comparison between a single 

model and an ensemble of models.  

 

Figure 3-2: This is a histogram of the differences in WMAPE between the GDLR and the 

DNN. Values on the left of the thick line at 0 indicate areas where the GDLR performs 

better. Those on the right indicate areas where the DNN performs better. 

Next, the DNN model is compared to the component models of the GDDPP. First 

is the GDLR. Figure 3-2 shows that the DNN performs much better than the GDLR over 

a majority of the areas. The majority of the areas represented on the right side of the 

center line and only two of those that are on the left are outside of one point of weighted 

MAPE. This difference is supported by a p-value of 3.24x10-4. This is to be expected, as 

the GDLR can only capture linear trends, while the neural network can capture both 

linear and nonlinear trends.  
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Figure 3-3: This is a histogram of the differences in WMAPE between the GDANN and 

the DNN. Values on the left of the thick line at 0 indicate areas where the GDANN 

performs better. Those on the right indicate areas where the DNN performs better. 

Of greater interest is the comparison between the DNN and the GDANN. In this 

case, the models have identical architectures; only the training algorithm differs. These 

two models perform similarly, with only 19 of the 88 areas having a difference in 

performance greater than one point of weighted MAPE. Still, both visually in Figure 3-3 

and mathematically with a p-value of 0.0018, it is apparent that the DNN performs better 

than the GDANN.  

Finally, the DNN is compared to the MLANN and MLLR models. Figure 3-4 

shows both comparisons. The MATLAB models are not as good as the DNN. This is 

supported by p-values, which are essentially zero and visually, as most of the instances 
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appear on the right side of the graphs. In particular, there is only one area on which the 

MLLR model performed better than the DNN forecaster. 

 

Figure 3-4: This is a histogram of the differences in WMAPE between the MLLR and the 

DNN and between the MLANN and DNN. Values on the left of the thick line at 0 indicate 

areas where the MATLAB model performs better. Those on the right indicate areas where 

the DNN performs better. 

3.5.2 “Unusual days” comparison 

Given the similar performance between the GDDPP and the small DNN on all 

days, it becomes important to analyze the performance of both on unusual days. Unusual 

days are days that tend to be harder or more important to forecast. For instance, the first 

heating days of a heating season or the first non-heating days after the heating season are 

typically hard days to forecast. Meanwhile, the coldest days of the year are not typically 

the most difficult days to forecast, but they tend to be important days to forecast well. 

More information on unusual days and how they are calculated is found in Appendix B.  
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Figure 3-5: This is a histogram of the differences in WMAPE between the GDDPP and 

the DNN for various unusual day types. Values on the left of the thick line at 0 indicate 

areas where the GDDPP performs better. Those on the right indicate areas where the 

DNN performs better. The results of a left-tailed t-test on each of these distributions are 

included in Table 3-1. 

 Figure 3-5 shows that the GDDPP generally performs better than the DNN on all 

of the unusual day types, but Table 3-1 shows that the only statistically significant 

differences are on colder than normal heating days and the first non-heating days. This is 

despite the fact that when compared across all days there is a statistically significant 
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difference. This is a promising sign for the DNN as it performs better on the unusual days 

than it does on all days. 

Table 3-1: Left-tailed t-test comparing the GDDPP and the DNN on each unusual day 

type. 

Unusual Day Type p-value 

All Days 0.0072 

Coldest Days 0.1668 

Colder Than Normal Heating Days 0.0427 

Warmer Than Normal Heating Days 0.2080 

Colder Than Yesterday 0.1488 

Warmer Than Yesterday 0.3480 

First Heating Days 0.2229 

First Non-Heating Days 0.0018 

 

3.5.3 Individual models 

In this section, a further inspection is done on some individual operating areas. 

These areas are chosen based on the difference between the performance of the DNN and 

the GDDPP. The first is the area with the greatest difference in weighted MAPE in favor 

of the DNN, the second is the area with the greatest difference in weighted MAPE in 

favor of the GDDPP, and the final area is the median area which, in this case, results in a 

0.246 difference in weighted MAPE in favor of the GDDPP. 
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Figure 3-6: The best performing DNN when compared to GDDPP. All models are 

included for reference. RMSE magnitudes are removed to ensure customer anonymity.  

 The results for the first area, shown in Figure 3-6, illustrates a few key points, 

which are reiterated with each of the areas discussed in this section. First, a model which 

performs better when measured on all days may not perform better when evaluated on a 

particular day type. The example here is that the GDDPP significantly outperformed the 

DNN on the coldest days and on colder than normal heating days, despite the fact that the 

DNN performs better on almost every other metric. The other interesting thing is that the 

GDDPP does not always perform as well as its best component model. In this case, the 

GDANN performs better than the ensemble on almost every metric. 
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Figure 3-7: The worst performing DNN when compared to GDDPP. All models are 

included for reference. RMSE magnitudes are removed to ensure customer anonymity. 

No values are included for the colder than normal heating days as the heating season on 

which this area is analyzed was particularly mild so there were almost no colder than 

normal heating days that year. More information on how the unusual days are calculated 

is found in Appendix B. 

As seen in Figure 3-7, despite the fact that the GDDPP performs significantly 

better on most metrics including all days, the DNN, as well as several other models, 

performs better on days which are significantly colder than the previous day. Also 

interesting to note are the relationships between the different neural networks. All three 

have certain day types on which they perform the best, although they perform relatively 

the same evaluated over all days. This means that there may be some benefit to 

ensembling multiples of these networks together. 
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Figure 3-8: The median performing DNN when compared to GDDPP. All models are 

included for reference. RMSE magnitudes are removed to ensure customer anonymity. 

The results on the final individual area are shown in Figure 3-8. For this area, the 

GDDPP performs slightly better than the DNN overall, but the only unusual day type on 

which there is a significant difference between their performances in favor of the GDDPP 

is the first non-heating days after the heating season. Important to note is that there are 

areas on which the opposite is true; the DNN performs better overall, but the GDDPP 

does better on unusual days. 
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3.5.4 Training time 

The final metric to consider is training time. This metric is important to determine 

whether the models can be reasonably trained to deliver to GasDay customers. If a model 

is able to be trained in an amount of time less than or within the same order of magnitude 

as the GDANN, about 2 hours, then they are viable option as far as this metric is 

concerned. If a model cannot be trained in less than 2 hours, then the model may not 

fulfill the needs of the GasDay lab. In this case, the small DNNs can be trained in an 

average of 71 seconds, which is more than fast enough to meet this requirement.  

3.6 Conclusions 

The first and most important conclusion of Chapter 3 is that the small RBM 

trained neural network, in general, performs better than the other individual models 

discussed in this section. All of the models were trained using the same input features, 

data sets, and architecture and tested on the same year. This shows that it is the RBM 

training algorithm that is resulting in this improvement. Now analysis can be done to see 

if making larger DNNs, using a greater number of features, and augmenting the RBM 

training with surrogate data points, result in any amount of improvement over this model. 

The results of these experiments are in Chapter 4. 

The second conclusion is that the DNN and GDDPP often performed differently 

on different unusual day types. This means that it is worth analyzing the performance of 

the GDDPP with the DNN as a component model. Additionally, it is important to do this 

analysis because in order for a DNN to be included in the GasDay product, it will 

probably be included as component of the GDDPP. This experiment is conducted in 

Chapter 5. 
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CHAPTER 4  

Building a Better Deep Neural Network Forecaster 

 

Chapter 3 showed that the deep neural network training algorithm outperformed 

other neural network training algorithms when the network architecture was kept the 

same. In this chapter, different methods for improving upon the deep neural network 

(DNN) model from Chapter 3 are presented. First, this chapter discusses how using 

additional features improves the model. Then, this chapter discusses how the number of 

layers affects the model. Finally, this chapter uses surrogate data, which is defined in 

[28], during the pretraining step to create a larger training set and to see how training on 

this larger data set affects model performance.  

It is shown in this chapter that increasing the number of inputs has a significant 

positive impact on model performance, increasing the number of layers only provides 

additional value until around 3 or 4 layers, and that the use of a relatively small amount 

of surrogate data points is good but many surrogate data points are not. Finally, this 

chapter compares the DNN model to the GasDay ensemble and finds that the proposed 

model performs as well as the GasDay ensemble model. 

4.1 Number of input features 

In this section, networks are trained with 73 inputs, as opposed to the 26 inputs 

from Chapter 3. Additionally, the 73-input neural networks have two hidden layers of 60 

and 12 neurons to support the increase in the number of inputs. The purpose of this 

experiment and the following experiment is to make deeper neural networks. As 

discussed extensively in Chapter 3, the “deep neural networks” used there are in fact 
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quite shallow. Their purpose was to directly compare the training algorithms. The 73-

input networks used in this experiment are still not likely considered deep neural 

networks. Like the 26-input networks, they are simply shallow restricted Boltzmann 

machine trained networks.  

The additional 47 inputs chosen for this experiment were chosen based solely on 

domain knowledge and what data was readily available. Further analysis can be done to 

find a better set of inputs for each data set, but the ability to do this is severely limited by 

the amount of time that it takes to train deep neural networks and the current 

infrastructure for making data sets. Therefore, any further analysis of inputs is beyond the 

scope of this thesis and is discussed in more detail in Section 6.2.  

Table 4-1: Characteristics of the architectures for all of the models that are analyzed in 

this section. The “small 26 input’ network is the same network used in Chapter 3. 

Name Number of input 

features 

Neurons in hidden 

layer 1 

Neurons in hidden 

layer 2 

Small 26-input 26 12 4 

Large 26-input 26 60 12 

Small 73-input 73 12 4 

Large 73-input 73 60 12 

 

In this section, the four models in Table 4-1 are analyzed. The hypothesis is that 

both increasing the number of inputs and the numbers of neurons in each layer will 

improve the model. Both the small neural network with 73 inputs and the large neural 

network with 26 inputs are included to show the value that is gained by increasing the 

number of neurons and the value that is gained by increasing number of inputs separate 

from each other.   
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4.1.1 Results 

First, this chapter shows a comparison between the small 26-input network in 

Chapter 3 and the large 73-input network. As was expected, the large 73-input network 

outperforms the smaller network with fewer inputs. This is supported both by Figure 4-1 

and a right-tailed t-test with a p-value of 1.3x10-9. The unusual day comparisons result in 

roughly the same information and are found in Appendix A.1. 

 

Figure 4-1: This is a histogram of the differences in WMAPE between the small 26-input 

DNN and the large 73-input DNN. Values on the left of the thick line at 0 indicate areas 

where the small 26-input DNN performs better. Those on the right indicate areas where 

the large 73-input DNN performs better. 

More interesting results come when the two small networks are compared. The 

small 73-input network does not significantly outperform the small 26-input network on 

any measure. Shown in Figure 4-2 is a comparison between the two models. From this 
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figure and a right tailed p-value of 0.4328, it is shown that there is not much of a 

difference between the two. This is further supported by unusual day graphs in Appendix 

A.2.  

 

Figure 4-2: This is a histogram of the differences in WMAPE between the small 26-input 

DNN and the small 73-input DNN. Values on the left of the thick line at 0 indicate areas 

where the small 26-input DNN performs better. Those on the right indicate areas where 

the small 73-input DNN performs better. 

This result is interesting and implies that either the additional neurons are 

providing the improvement and not the additional inputs or that the additional neurons 

are needed to take advantage of the information provided by the additional inputs. To 

distinguish between these possible explanations the difference between the two networks 

with 26 inputs must be examined. As is seen in Figure 4-3 and supported by a p-value of 

2.3x10-2, the large 26-input DNN performs significantly better than the small 26-input 

DNN, but not as much better as the large 73-input network.  
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Figure 4-3: This is a histogram of the differences in WMAPE between the small 26-input 

DNN and the large 26-input DNN. Values on the left of the thick line at 0 indicate areas 

where the small 26-input DNN performs better. Those on the right indicate areas where 

the large 26-input DNN performs better. Similar graphs for unusual days can be found in 

Appendix A.3. 

From this information two conclusions are drawn. First, it is concluded that 

adding additional inputs without increasing the size of the network does not guarantee to 

improve model performance. Secondly, it is concluded that increasing model width can 

improve the results. There is probably a limit to how wide the network can be made, but 

further research needs to be done to find that limit.  

4.2 Network size 

This section discusses how much the number of layers in the network effects the 

performance of the model. In theory, additional layers result in diminishing marginal 

returns. It is expected that eventually more layers result in a decrease in performance as 
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the model begins to overfit the training data set [29], [30]. In this section, the seven 

networks in Table 4-2 are analyzed. As can be seen, each network increments the number 

of 60 neuron layers to reduce any influence that layer size might have on the network 

performance. These seven networks are each be tested on 88 different operating areas. 

Table 4-2: Characteristics of the architectures for all models in this section. The 2 Layer 

network is the same as the “large 73-input” network in Section 3. 

Name Number of neurons in 

each hidden layer 

Number 

of inputs 

1 Layer 12 73 

2 Layer 60, 12 73 

3 Layer 60, 60, 12 73 

4 Layer 60, 60, 60, 12 73 

5 Layer 60, 60, 60, 60, 12 73 

6 Layer 60, 60, 60, 60, 60, 12 73 

7 Layer 60, 60, 60, 60, 60, 60, 12 73 

 

4.2.1 Results 

In this results section, the histogram of differences is not used to make the 

comparison. The histograms are an effective way to compare the performance of two 

models over many areas, but are not effective for showing trends as a parameter, such as 

number of layers, is incremented. As such, a box plot of the WMAPEs for each of the 

seven networks are used. This is shown in Figure 4-4. From this it is seen that the 1, 6, 

and 7 layer models do not perform as well as the 2, 3, 4, and 5 layer models. This is 

supported by the p-values in Table 4-3. Table 4-3 also shows additional information that 
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cannot be gleaned from Figure 4-4. In particular, it shows that the 3 and 4 layer models 

perform better than the 2 and 5 layer models.  

Table 4-3: Right-tailed t-test results for each of seven networks compared to each other 

network. Bolded values indicate that the model in the column significantly outperforms 

the model in the row.  

Right  1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 

1 Layer  4.6x10-9 1.4x10-11 1.2x10-10 3.8x10-9 2.8x10-8 1.5x10-6 

2 Layer 1  0.061 0.11 0.70 0.87 0.93 

3 Layer 1 0.94  0.56 0.99 0.99 1 

4 Layer 1 0.89 0.44  0.99 0.99 1 

5 Layer 1 0.30 0.0064 0.0056  0.79 0.95 

6 Layer 1 0.12 0.0045 0.0037 0.21  0.82 

7 Layer 1 0.066 0.0013 6.9x10-4 0.047 0.17  
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Figure 4-4: Boxplots of all the WMAPEs for each of the seven different models. The 

outliers at the top are small magnitude areas that are difficult to forecast for various 

reasons.  

This trend of the 3 and 4 layer networks performing best continues for almost 

every metric. Given this information, it is concluded that 3 or 4 layers provide the best 

forecasting neural networks. 

4.3 Surrogate data 

One common problem for training DNNs and other complex machine learning 

models is a lack of data or imbalanced data, where one classification of data or region in 

regression problems is underrepresented. A substantial amount of work has been done in 

this area. Chawla et al. proposed a synthetic minority over-sampling technique (SMOTE), 

which has proven to effectively deal with the creating points between each of the sparse 
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minority sets and their k-nearest neighbors [31]. Another technique used for generating 

synthetic data was proposed by Goodfellow et al [32].  It involves training two neural 

networks against one another. One network generates synthetic data and while another 

tries to determine if data is synthetic or not. This creates two useful neural networks, but 

the relevant one here is the generator.  

Fortunately, the GasDay lab has no shortage of real data, so there is no need to 

rely on the techniques used by [31] and [32]. The problem is that the GasDay Lab only 

has a couple thousand points for each area, which is sufficient but not ideal for training 

large networks, as exemplified by previous sections. The solution to this problem in this 

thesis is to generate additional training inputs by surrogate data, which is simply 

transforming one “donor” data set to look like another “target” data set [28]. This allows 

for an increase in the number of unique points in the target data set, while still using real 

data.  

Table 4-4: Characteristics of the architectures for all models in this section. The “no 

surrogates” network is the same as the 5 layer network in Section 4.2. 

Name Architecture Number of 

inputs 

Number of 

Surrogates 

No Surrogates 60, 60, 60, 60, 12 73 0 

40k Surrogates 60, 60, 60, 60, 12 73 40,000 

500k Surrogates 60, 60, 60, 60, 12 73 500,000 

 

In this experiment, three networks with varying amounts of surrogate data are 

compared. These models are described in Table 4-4. Only three different amounts of 

surrogate data are used because of the long training time required. The networks trained 

on no surrogates took around 4.5 minutes to train, the 40k surrogate networks took 
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around 43 minutes to train, and the 500k surrogate networks took around 7.5 hours to 

train each of 79 networks. These training times have a roughly linear relationship. This 

make sense, as the training algorithm described in Section 2.1.4 is roughly O(n) with 

respect to number of training samples. 

Additionally, the networks used in this section have 5 input layers as opposed to 

the 4 input layer networks that were determined to be best in the previous section as the 

experiments were conducted concurrently. The motivation for using a slightly larger than 

prescribed network in this section is that it may be able to better represent the additional 

information from the surrogate data points. 

4.3.1 Results 

First, the network with 40k surrogates is compared to the network with no 

surrogates. It is found that that the 40k surrogate model does not perform significantly 

better than the network with no surrogates with a right-tailed t-test resulting in a p-value 

of 0.20. The histogram in Figure 4-5 shows just how close the performance is, as all the 

differences have magnitudes less than 1. 
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Figure 4-5: This is a histogram of the differences in WMAPE between the 40k surrogate 

DNN and the zero surrogate DNN. Values on the left of the thick line at 0 indicate areas 

where the zero surrogate DNN performs better. Those on the right indicate areas where 

the 40k surrogate DNN performs better. 

More interesting is what happens on the unusual days. As described in [28], the 

surrogate data points are generated specifically to emphasize unusual days. In other 

words, the use of surrogate data is not expected to improve the performance of the model 

on all days. Instead, an improvement on the unusual day types is expected, particularly on 

the coldest days.  
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Table 4-5: Right-tailed t-test comparing the network trained on zero surrogates to the 

network trained on 40,000 surrogates on each unusual day type. Values less than 0.05 

indicate unusual day types on which the network trained on 40,000 surrogates performs 

significantly better. Histograms for each of these values are included in Appendix A.4.  

Unusual Day Type p-value 

All Days 0.1982 

Coldest Days 0.0240 

Colder Than Normal Heating Days 0.0241 

Warmer Than Normal Heating Days 0.2884 

Windiest Heating Days 0.2024 

First Heating Days 0.9013 

First Non-Heating Days 0.8972 

 

Table 4-5 shows the results of the t-test comparing the two networks for each 

unusual day type. As expected, on the coldest days the network trained on 40,000 

surrogates performs better. However, what is unexpected is that the model would perform 

this much worse on the first heating and non-heating days. Further research should be 

done on the impact of surrogate data on model performance outside of bitter cold days, 

but that is beyond the scope of this thesis. 

Now that the network trained on 40,000 surrogates has been determined to 

perform better than the network trained with zero surrogates, with the exception of first 

heating and non-heating days, an analysis can be done to determine if increasing to 

500,000 surrogates is worth the additional 7 hours of training. As can be seen in Figure 

4-6, the network trained on 40,000 surrogates performs better than the network trained on 
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500,000 surrogates. This conclusion is supported by a right-tailed t-test that results in a p-

value of 0.020.  This is further supported by the results on unusual days. Table 4-6 shows 

that on each unusual days metric, the model trained on 40,000 surrogates performs better.  

 

Figure 4-6: This is a histogram of the differences in WMAPE between the 40k surrogate 

DNN and the 500k surrogate DNN. Values on the left of the thick line at 0 indicate areas 

where the 500k surrogate DNN performs better. Those on the right indicate areas where 

the 40k surrogate DNN performs better. 
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Table 4-6: Right-tailed t-test comparing the network trained on 500,000 surrogates to the 

network trained on 40,000 surrogates on each unusual day type. Values less than 0.05 

indicate unusual day types on which the network trained on 40,000 surrogates performs 

significantly better. Histograms for each of these values are included in Appendix A.5. 

Unusual Day Type p-value 

All Days 0.0196 

Coldest Days 0.0064 

Colder Than Normal Heating Days 0.0340 

Warmer Than Normal Heating Days 0.0770 

Windiest Heating Days 0.0524 

First Heating Days 0.0275 

First Non-Heating Days 0.0186 

 

The first conclusion drawn from this section is that too many surrogates take 

away from model performance as exemplified by the network trained on 500,000 

surrogates. The second conclusion drawn is that using surrogate data results in 

significantly better performance on the coldest days, but also sacrifices some 

performance on the shoulder months. Another factor to take into account is training time. 

The 43 minutes that it takes to train the networks with 40,000 surrogates is still 

acceptable but it is still much longer than the 7 minutes that it takes without surrogates to 

train.   

4.4 Final proposed deep neural network 

In this section, a final network is proposed based on the results of this chapter. 

This network is shown to perform better than the GasDay ensemble.  
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4.4.1 Architecture of the proposed network 

In Section 3, it is determined that the best input set this thesis examined was the 

73-input set and that widening the network helped better use the expanded input set. 

Therefore, that input set is used in the final model. In Section 4.3, it is shown that using 

some surrogates can be beneficial, but using too many may result in loss of performance. 

Additionally, it was shown that the use of surrogate data probably improves performance 

of the model on the coldest days but also probably hurts performance on shoulder 

months. Given the longer training times, the additional infrastructure needed to use 

surrogate data with DNNs in production, and uncertainty around the tradeoff between 

shoulder months and coldest days, two networks are used in the final sections of this 

paper; one with 40,000 surrogate data points during the pretraining step and one that does 

not use surrogate data points. Finally, in Section 4.2, it is determined that either 3 or 4 

layer networks perform the best. Thus, both of the proposed networks have 4 layers. For 

quick reference, both networks are described in Table 4-7. 

Table 4-7: Characteristics of the architectures for all models in this section with the 

exception of the GasDay ensemble. The “no surrogates” network is the same as the 4 

layer network in Section 4.2. 

Name Architecture Number 

of inputs 

Number of 

Surrogates 

No Surrogates 60, 60, 60, 12 73 0 

40k Surrogates 60, 60, 60, 12 73 40,000 

 

4.4.2 Comparing the proposed networks to the GasDay ensemble 

As can be seen in Figure 4-7, the proposed deep neural network model with no 

surrogate data performs similarly to the GasDay ensemble, GDDPP. Visually, it can be 



48 

 

 

 

seen that a slight edge is given to the DNN without surrogates. A right tailed t-test was 

performed on these differences and resulted in a p-value of 0.24, so any difference 

between the distributions is not significant. Given how close these distributions are to one 

another, it can be concluded that the proposed deep neural network performs well.  

 

Figure 4-7: This is a histogram of the differences in WMAPE between the proposed DNN 

without surrogates and the GasDay ensemble. Values on the left of the thick line at 0 

indicate areas where the GasDay ensemble performs better. Those on the right indicate 

areas where the proposed DNN without surrogates performs better. 

Next, this chapter compares the DNN with surrogates to the GDDPP. This is 

shown in Figure 4-8. Interestingly, this DNN does not appear to perform as well 

compared to the GDDPP as the DNN without surrogates.  

A comparison between the two DNN models is shown in Figure 4-9. 

Additionally, a right tailed t-test performed on the difference in performance between the 
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two DNNs results in a p-value of 0.0019, meaning that the DNN without surrogates 

performed significantly better. 

 

Figure 4-8: This is a histogram of the differences in WMAPE between the proposed DNN 

with 40,000 surrogates and the GasDay ensemble. Values on the left of the thick line at 0 

indicate areas where the GasDay ensemble performs better. Those on the right indicate 

areas where the proposed DNN with 40,000 surrogates performs better. 

This is interesting as it runs counter to the results in Section 4.3. The only 

difference is that the DNNs here have four layers instead of five layers. This is interesting 

and warrants further investigation in later work.  
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Figure 4-9: This is a histogram of the differences in WMAPE between the proposed DNN 

without surrogates and the proposed DNN with 40,000 surrogates. Values on the left of 

the thick line at 0 indicate areas where the proposed DNN with 40,000 surrogates 

performs better. Those on the right indicate areas where the proposed DNN without 

surrogates performs better. 
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CHAPTER 5  

Deep Neural Network as a Component of a Forecast Ensemble 

 

Chapter 3 established that the deep neural network (DNN) model can perform 

better than the current artificial neural network (ANN) and linear regression (LR) 

components of the GasDay ensemble. In Chapter 4, this thesis tried to improve this model 

by using more inputs, adjusting the number of layers, and pretraining the model with a 

large amount of surrogates. At the end of Chapter 4, it was concluded that a model with 

73 inputs, five hidden layers of 60, 60, 60, 60, and 12 neurons, respectively, performs 

significantly better than any of the current GasDay component models and as well as the 

current GasDay ensemble. In this chapter, the performance of the GasDay ensemble with 

and without the DNN component established in Chapter 4 is analyzed. It is found that a 

DNN component provides enough value when using observed weather that, for many 

areas, it is worth it to include a DNN component in the GasDay ensemble. 

5.1 The GasDay ensemble: dynamic post processor 

The GasDay dynamic post processor is an ensembling method that adjusts the 

weights given to each component forecast based on its recent performance. This 

algorithm and equations come from [13]. First, the component forecasts, ,
ˆ

j kc , are 

calculated. In this case, j refers to the component number of the n  component models, 

and k refers to the day for which the forecast is being made. Each component also is 

given two tuning parameters, 1 and 0 , which are adjusted daily as part of this process. 

First, the a posteriori tuned forecast for day 2k  , two days ago, is calculated. This is 
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done because the actual demand will not be known for yesterday at the time the forecast 

for today is made. The a posteriori tuned forecast is  

 
,0

, 2 , 2

,1

ˆ1
j

j k j k

j

c c



 

 
    
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.  (5-1) 

 Next, the a posteriori error is calculated using the known demand, 2ks  ,  

 , 2 , 2 2j k j k ke c s    . (5-2) 

The a posteriori error, , 2j ke  , is bounded so that small errors are ignored and extremely 

large errors do not affect the model, as they are likely to be outliers. After these errors are 

calculated the tuning parameters are updated to reduce the error on , 2j kc  . Using a 

forgetting factor ,   

 
1

(1 )
0

   
 
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 

. (5-3) 

After the tuning parameters have been set, the a posteriori error is recalculated using 

Equations 5-1 and 5-2. 

The next step is to calculate the recent mean, , 2j k  , and variance, , 2j kv  , of the 

two component models using Equations 5-4 and 5-5. The variable   is another forgetting 

factor which helps the ensemble emphasize more recent trends. 

 , 2 , 3 , 2(1 )j k j k j ke          .  (5-4) 

 
2

, 2 , 3 , 2 , 2(1 ) ( )j k j k j k j kv v e u          .  (5-5) 
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Finally, using this mean and variance, the weight placed on each component model, jw

and the final forecast ˆ
ks are calculated using Equations 5-6 and 5-7. Note that  

1
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More detailed information on the GasDay ensemble can be found in [13]. 

5.2 Experiment 

This experiment follows the same pattern as those in Chapter 3 and Chapter 4. 

This experiment is run using the entire 2015-2016 heating seasons worth of forecasts for 

each of 67 operating areas. This is less than the 88 areas used in Chapter 3 and parts of 

Chapter 4 because of infrastructure issues related to generating input sets with 73 features 

as opposed to 26. The results are also compared on unusual days.  

Unlike with previous experiments, in this experiment, it matters how many and 

which areas fall on each side of the histogram. It is expected that most ensembles will 

perform better with the additional deep neural network component. Additionally, the 

amount of improvement provided is important. The addition of a deep neural network 

component would necessitate many infrastructure changes within the GasDay project, so 

the total improvement to all models needs to meet a certain threshold for it to be included 

in the production GasDay ensemble. That threshold is determined by a variety of factors 

outside of the scope of this research and thus cannot be defined in this thesis. 
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5.3 Results 

The first results, from comparing the GDDPP to the GDDPP with an additional 

DNN component are as expected. As can be seen in Figure 5-1, the additional component 

gives at least some improvement on all days to each area. The p-values on unusual days 

are also shown in Table 5-1. 

 

Figure 5-1: This is a histogram of the differences in WMAPE between the GasDay 

ensemble with the proposed DNN component without surrogates and the current GasDay 

ensemble. Values on the right indicate areas where the GasDay ensemble with the 

proposed DNN component without surrogates performs better. 
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Table 5-1: Right-tailed t-test comparing the current GasDay ensemble to the GasDay 

ensemble with the proposed DNN component without surrogates on each unusual day 

type. Values less than 0.05 indicate unusual day types on which the GasDay ensemble 

with the proposed DNN component without surrogates performs significantly better. 

Histograms for each of these values are included in Appendix A.6. 

Unusual Day Type p-value 

All Days 1.48x10-17 

Coldest Days 8.26x10-9 

Colder Than Normal Heating Days 5.76x10-5 

Warmer Than Normal Heating Days 2.10x10-6 

Windiest Heating Days 2.14x10-6 

First Heating Days 2.32x10-4 

First Non-Heating Days 0.0204 

 

The GasDay ensemble with a DNN component trained on 40,000 surrogates also 

performed well in comparison to the GDDPP.  This can be seen in Figure 5-2. The p-

values for unusual day types are included in Table 5-2. Again, these results are clear, 

conclusive, and as expected.  
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Figure 5-2: This is a histogram of the differences in WMAPE between the GasDay 

ensemble with the proposed DNN component trained on 40,000 surrogates and the 

current GasDay ensemble. Values on the left of the thick line at 0 indicate areas where 

the current GasDay ensemble performs better. Those on the right indicate areas where 

the GasDay ensemble with the proposed DNN component trained on 40,000  surrogates 

performs better. 
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 Table 5-2: Right-tailed t-test comparing the current GasDay ensemble to the GasDay 

ensemble with the proposed DNN component trained on 40,000 surrogates on each 

unusual day type. Values less than 0.05 indicate unusual day types on which the GasDay 

ensemble with the proposed DNN component trained on 40,000 surrogates performs 

significantly better. Histograms for each of these values are included in Appendix A.7. 

Unusual Day Type p-value 

All Days 8.30x10-19 

Coldest Days 1.59x10-8 

Colder Than Normal Heating Days 2.58x10-5 

Warmer Than Normal Heating Days 1.61x10-9 

Windiest Heating Days 1.81x10-7 

First Heating Days 4.65x10-6 

First Non-Heating Days 3.65x10-3 

 

However, a comparison between the GasDay ensembles with the two different 

DNN components has unexpected results. First, as in Figure 5-3, the GasDay ensemble 

with DNN component trained on 40,000 surrogates seems to perform better. This is 

supported by the p-values in Table 5-3. Although not all of the unusual days have 

significant differences, most of them still favor the component trained on surrogates. 

This is interesting because in Section 4.3 it was shown that, on five layer 

networks, having some surrogates improved the model. Then, in Section 4.4, it was 

shown that on four layer models, using surrogates actually made the networks perform 

worse. Here, using the same four layer models as in Section 4.4, the use of surrogates 

again is shown to be better. In the end, this puts the unspoken assumption of this thesis 

that better component models result in better ensemble forecasts into question. On the 
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other hand, perhaps this simply shows that the ensemble is able to take advantage of 

some specialization that comes from the use of surrogate data. Further work is needed to 

answer this question.  

 

Figure 5-3: This is a histogram of the differences in WMAPE between the GasDay 

ensemble with the proposed DNN component trained on 40,000 surrogates and the 

proposed DNN component without surrogates. Values on the left of the thick line at 0 

indicate areas where the proposed DNN component without surrogates performs better. 

Those on the right indicate areas where the GasDay ensemble with the proposed DNN 

component trained on 40,000  surrogates performs better. 
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Table 5-3: Right-tailed t-test comparing the proposed DNN component without 

surrogates to the GasDay ensemble with the proposed DNN component trained on 

40,000 surrogates on each unusual day type. Values less than 0.05 indicate unusual day 

types on which the GasDay ensemble with the proposed DNN component trained on 

40,000 surrogates performs significantly better. Histograms for each of these values are 

included in Appendix A.8. 

Unusual Day Type p-value 

All Days 0.0704 

Coldest Days 0.519 

Colder Than Normal Heating Days 0.143 

Warmer Than Normal Heating Days 0.0155 

Windiest Heating Days 1.54x10-3 

First Heating Days 0.0150 

First Non-Heating Days 0.267 

 

With that in mind, it is important to note that the magnitudes of the differences are 

quite small, which is important to consider given that preparing surrogates for each area 

has much higher cost in both resources and time. Therefore, this thesis concludes that 

using surrogates to train a DNN component of the GasDay ensemble is better than not 

using it, but cannot be concluded that it is worth the extra infrastructure and overhead. It 

is also concluded from this chapter that in general including a DNN component provides 

significant value to many areas and some value to nearly all areas. 
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CHAPTER 6  

Contributions and Future Work 

 

This chapter reiterates the major contributions of this thesis and discusses future 

advancements that can be done to improve the DNN and GasDay forecasts.  

6.1 Contributions 

This section discusses the major contributions of this thesis, of which there are 

two. The first is the overall improvement to the GasDay forecast and the knowledge 

gained about deep neural network regression for forecasting natural gas consumption. 

The second is a groundwork for proposing and examining new models for the GasDay 

ensemble.  

6.1.1 Overall GasDay forecast improvement 

The primary business contribution of this thesis is the improvement to the GasDay 

ensemble. A new component model that provides at least some improvement across 

nearly all areas has been proposed and examined. The average improvement provided by 

this component on the 63 areas examined is 0.36 points of WMAPE, with the max 

improvement for an area being 1.12 points of WMAPE. When compared to the previous 

magnitudes, the percent improvement is 6.98% with a single area having a 20.01% 

improvement.  

Other contributions come in the form of academic knowledge. Few of these things 

were examined fully in this thesis because of their scope and limitations such as network 

training time and the size of this document. The first of these is a better understanding of 

how the number of inputs and the number of neurons in the hidden layers impact 
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forecasting performance. The second is appreciation of the complex relationship that the 

choice to use surrogate data has with performance. Finally, there is more general 

understanding of how deep neural networks can perform in the context of regression 

forecasting.    

6.1.2 Groundwork for proposing new component models 

The second, equally important, contribution of this thesis is a groundwork for 

proposing new component models and examining their usefulness to the GasDay daily 

short-term load forecasting system. This groundwork is laid out in the organization of this 

thesis. In Chapter 3, a test was performed to compare the current component models to 

the new component, keeping as many model parameters as possible the same. If the new 

model performs reasonable under these conditions, then it makes sense to move on. This 

first step also may not make sense if there are not many parameters that can be held 

constant. For instance, if a decision tree component were used, there are few parameters 

that can be held constant with the current components, so it may make sense to skip this 

step.  

Next, in Chapter 4, further examination was done by adjusting the parameters of 

the model. Doing this, a good set of parameters was found. In this case, it was not 

possible to find the best set of parameters, but it may be possible for other learners, in 

which case this should be done here.  

Finally, in Chapter 5, the component models were used as part of the GasDay 

ensemble to see what kind of value the new component provides. Where previous 

chapters answer academic questions, Chapter 5 answers the business question as to 
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whether it makes sense to make the infrastructure changes needed to include the new 

model.  

6.2 Future work 

This section contains a variety of research interests that were beyond the scope of 

this thesis, but which may warrant further investigation. The first couple of ideas are 

related to other neural network architectures and techniques that may prove useful to the 

short-term load forecasting problem. The next few are related to improvements that could 

be made to the neural network model proposed here.   

6.2.1 Convolutional neural networks 

Convolutional neural networks are much larger than restricted Boltzmann 

machine based neural networks in terms of number of layers and neurons in each layer. 

This is done by convolving close neurons in the previous layer rather than being fully 

connected like a restricted Boltzmann machine [33]. These could be extremely powerful 

forecasters, as they have had an impact on the fields of sentence classification [34], image 

recognition [35], and speech recognition [36]. Usually the output layer of a convolutional 

neural network is a fully connected layer trained with a more traditional transfer function. 

The largest foreseeable problem with convolutional neural networks is that they require 

that all the inputs have the same type. In other words, it doesn’t make sense to convolve 

temperature values with wind values. Therefore, the suggested structure is a 

convolutional neural network built on the last 72 to 168 hours of temperature or wind 

adjusted heating degree days (HDDW) with a few additional inputs such as day of week 

and day of year in the final output layer. This is illustrated in Figure 6-1. 
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Figure 6-1: Illustration of one possible architecture for convolutional neural networks 

for forecasting. 

6.2.2 Long short-term memory recurrent neural networks 

Another interesting type of neural networks for the regression forecasting problem 

are long short-term memory (LSTM) recurrent neural networks [37]. Recurrent neural 

networks are designed to capture information from sequences of data. They do that by 

using the output of the model at one iteration as the input to the model at the next 

iteration, as shown in Figure 6-2. To calculate weights for a recurrent neural network, a 

process called back propagation through time must be used. Back propagation through 

time is described in detail in [38]. Unfortunately, basic recurrent neural networks trained 

using gradient descent, like those in Figure 6-2, do not tend to perform well because of 

the exploding gradient problem [39]. 
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Figure 6-2: A basic recurrent neural network. An unfold version is also shown to better 

visualize back propagation through time. 

To solve this problem, LSTM recurrent neural networks are used. LSTM 

recurrent neural networks can hold onto information for many more time steps than 

traditional recurrent neural networks [37].  

LSTM neural networks certainly have some interesting implications for time 

series forecasting, as they can monitor and adjust to recent trends. Obviously, an LSTM 

recurrent neural network could be used as another component model, and the method for 

doing that would be similar to the content of this thesis. What might be more interesting 

is to use an LSTM recurrent neural network to determine the weight to be given to the 

outputs of each component model, similar to what the GasDay ensemble, described in 

Section 4, does now. This concept is shown in Figure 6-3.   
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Figure 6-3: LSTM recurrent neural network used to ensemble forecasts. 

6.2.3 Feature selection 

In a fully connected neural network, a network where the inputs and the outputs 

of each layer are all fed into each neuron of the following layer, like those that are being 

analyzed in this thesis, true attribution analysis is difficult. But one simple way to see a 

rough total impact of each feature is shown in Figure 6-4 and Equation 6-1. By doing 

this, input features that are have little to no impact on the final forecast can be replaced 

with those that do.  
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Figure 6-4: Simple neural network used to show a simple attribution analysis. In 

equation 6-1, the absolute values of the weight matrices are multiplied together. Absolute 

value is used in this case, as the sign of the weights are unimportant. 

This analysis is only done on one area for the sake of brevity. Additionally, if it 

can be shown that this analysis is useful for one area, then it can be inferred that there are 

other areas that need a similar analysis. The results of this analysis are shown in Table 

6-1. As can be seen in this table, the autoregressive flow features beyond the first one do 

not have much of an effect on the final forecast. Hence, for this model and potential 

others, it might be helpful to replace most of these autoregressive terms with exogenous 

ones. Likewise, many of the wind values have low attribution, and little performance 

would be lost by removing these inputs. In contrast, the time components and many of 

the temperature related features have higher attribution, and removing them may result in 

lower performance.  

The most important conclusion here is that some of the features selected are not 

well correlated with flow and should be removed in favor of other inputs. Finding these 

other inputs is not needed for this thesis, but should be done in future work. 
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Table 6-1: Feature attribution, as describe in Figure 6-4, for one large 73 input network 

trained on a single area. 

Feature 

Type 

Attribution Feature 

Type 

Attribution Feature 

Type 

Attribution Feature 

Type 

Attribution 

Temp 130.9 Temp 80.0 Temp 75.3 Flow 80.9 

Temp 97.1 Temp 84.9 Temp 78.3 Flow 58.6 

Temp 82.0 Temp 76.0 Temp 75.7 Flow 54.9 

Temp 75.3 Temp 73.1 Wind 65.3 Flow 43.8 

Temp 74.7 Temp 73.6 Wind 63.9 Flow 46.2 

Temp 77.3 Temp 80.3 Wind 53.8 Flow 55.6 

Temp 76.8 Temp 75.4 Wind 49.8 Time 107.6 

Temp 78.3 Temp 73.5 Wind 55.7 Time 119.5 

Temp 162.0 Temp 74.5 Wind 53.2 Time 101.2 

Temp 175.9 Temp 81.2 Wind 55.3 Time 105.3 

Temp 108.9 Temp 75.1 Wind 54.2 Time 309.9 

Temp 105.4 Temp 77.7 DPT 104.7 Time 198.7 

Temp 108.5 Temp 77.1 DPT 93.8 Time 263.5 

Temp 93.8 Temp 78.6 DPT 87.2 Time 276.2 

Temp 92.6 Temp 73.3 DPT 83.3 Time 315.7 

Temp 98.1 Temp 74.3 DPT 77.5 Time 298.6 

Temp 106.6 Temp 77.5 DPT 77.0   

Temp 84.5 Temp 76.1 DPT 80.2   

Temp 80.1 Temp 74.9 DPT 78.3   
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6.2.4 Networks for ensemble learning 

This section is motivated by interesting results at the end of Chapter 5. It was 

shown that one forecasting model clearly performed better than another forecasting 

model when they were evaluated individually. Then, when the forecasting models were 

evaluated as part of an ensemble the model that performed worse individually resulted in 

a better ensemble forecast. Further work should be done to understand why this happened 

as the knowledge an examination of how different components perform as part of the 

ensemble would inform future decisions on what types of component models to pursue. 

6.3 Conclusions 

In conclusion, deep neural networks are powerful forecasters and provide better 

individual forecasts than either of the current GasDay component models. Additionally, 

they provide some improvement when used as components of the GasDay ensemble. 

There are many possibilities for future work that can be explored, including several other 

neural network types and architectures as well as further analysis of the inputs used.  
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   APPENDIX A 

 Additional Figures 

 

This Appendix contains many figures that are interesting but not needed for the 

comprehension of this thesis. These figures supplemental and some of the information 

need to understand their significance is in the main body of this thesis. Unusual days are 

defined in Appendix B. 

A.1 Unusual days graphs for Section 4.1 comparing the small 26-input DNN to 

the Large 73-input DNN 

 

Figure A-1: Coldest days. 
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Figure A-2: Colder than normal days. 

 

Figure A-3: Warmer than normal days. 
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Figure A-4: Windiest days. 

 

Figure A-5: First non-heating days. 
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Figure A-6: First heating days. 
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A.2 Unusual days graphs for Section 4.1 comparing the small 26-input DNN to 

the Small 73-input DNN 

 

Figure A-7: Coldest days. 

 

Figure A-8: Colder than normal days. 
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Figure A-9: Warmer than normal days. 

 

Figure A-10: Windiest days. 
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Figure A-11: First non-heating days. 

 

Figure A-12: First heating days. 
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A.3 Unusual days graphs for Section 4.1 comparing the small 26-input DNN to 

the Large 26-input DNN 

 

Figure A-13: Coldest days. 

 

Figure A-14: Colder than normal days. 
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Figure A-15: Warmer than normal days. 

 

Figure A-16: Windiest days. 
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Figure A-17: First non-heating days. 

 

Figure A-18: First heating days. 
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A.4 Unusual days graphs for Section 4.3 comparing the DNN using 0 surrogates 

to the DNN using 40,000 surrogates 

 

Figure A-19: Coldest days. 

 

Figure A-20: Colder than normal days. 
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Figure A-21: Warmer than normal days. 

 

Figure A-22: Windiest days. 
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Figure A-23: First non-heating days. 

 

Figure A-24: First heating days. 
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A.5 Unusual days graphs for Section 4.3 comparing the DNN using 500,000 

surrogates to the DNN using 40,000 surrogates 

 

Figure A-25: Coldest days. 

 

Figure A-26: Colder than normal days. 
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Figure A-27: Warmer than normal days. 

 

Figure A-28: Windiest days. 
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Figure A-29: First non-heating days. 

 

Figure A-30: First heating days. 
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A.6 Unusual days graphs for Section 5.3 comparing the current GasDay 

ensemble to the ensemble with a DNN component using 0 surrogates   

 

Figure A-31: Coldest days. 

 

Figure A-32: Colder than normal days. 
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Figure A-33: Warmer than normal days. 

 

Figure A-34: Windiest days. 
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Figure A-35: First non-heating days. 

 

Figure A-36: First heating days. 
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A.7 Unusual days graphs for Section 5.3 comparing the current GasDay 

ensemble to the ensemble with a DNN component using 40,000 surrogates   

 

Figure A-37: Coldest days. 

 

Figure A-38: Colder than normal days. 
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Figure A-39: Warmer than normal days. 

 

Figure A-40: Windiest days. 
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Figure A-41: First non-heating days. 

 

Figure A-42: First heating days. 
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A.8 Unusual days graphs for Section 5.3 comparing the ensemble with a DNN 

component using 0 surrogates to the ensemble with a DNN component using 

40,000 surrogates   

 

Figure A-43: Coldest days. 

 

Figure A-44: Colder than normal days. 
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Figure A-45: Warmer than normal days. 

 

Figure A-46: Windiest days. 
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Figure A-47: First non-heating days. 

 

Figure A-48: First heating days. 

APPENDIX B 
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 Unusual Days 

 

Unusual days are days that are either especially difficult or critically important to 

forecast natural gas demand well. For instance, the first heating days of the heating 

season and the first non-heating days after the heating season are not as critical to 

forecast well, but they are difficult to forecast because they usually have large swings in 

temperature. In contrast, the coldest days are not difficult to forecast well, but it is 

important to have accurate forecasts on those days because of the magnitude of the 

forecast. The rest of this Appendix describes how each of the unusual day types are 

determined. 

The coldest days are simplest; they are the 18 days (5%) in a year with the lowest 

temperature. The windiest days are also simple. They are the 11 heating days (3% of 

heating days) with the highest wind speeds in a year.  

Colder than normal days and warmer than normal days requires an understanding of 

what normal weather is. For the sake of this thesis, normal weather can be referred to as 

the expected temperature based solely on day of the year. Therefore, the colder than 

normal days are the 18 heating days in a year with temperatures farthest below normal, 

and the warmer than normal days are the 11 heating days in a year with temperatures 

farthest above normal. Often, there is heavy overlap between colder than normal days and 

coldest days.  



95 

 

 

 

 Colder than yesterday days and warmer than yesterday days are the 11 heating days 

with the greatest decrease in temperature from the day before and the 11 heating days 

with the greatest increase in temperature from the day before, respectively. 

Finally, the first heating days are 18 days that occur after the temperature dips below 

the heating degree day reference temperature described in Section 1.4. Meanwhile, the 

first non-heating days are 18 days that occur directly after the temperature has risen 

above the heating degree day reference temperature.   
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