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ABSTRACT 

NEUROMUSCULAR FUNCTION IN WOMEN POSTPARTUM 

 

 

 

Rita Deering, DPT 

 

Marquette University, 2017 

 

 

 

 Efficient abdominal muscle function is important for functional mobility in men 

and women, and dysfunction of these muscles has been associated with impaired function 

such as low back pain. This dissertation explored abdominal muscle function in healthy 

young men and young women who have never been pregnant (nulligravid).  As 

pregnancy and child birth also impact the tissues of the abdominal wall, this dissertation 

will also explore abdominal muscle function in postpartum women. 

 

 This dissertation involved three primary aims. Aim1 compared abdominal muscle 

function and experimental pain perception in males and nulligravid females. Maximal 

strength over a range of trunk angles, force steadiness and fatigability of the trunk flexor 

muscles were assessed. Although the trunk flexor muscles of males were stronger than 

females, there were minimal differences in fatigability during an intermittent submaximal 

contraction. Aim 2 determined the impact of pregnancy and childbirth on trunk flexor 

strength and fatigability at 8-10 weeks and 24-26 weeks postpartum. To determine the 

impact of delivery method, trunk flexor function was also compared in women who 

underwent Cesarean or vaginal delivery.  Postpartum women were significantly weaker 

and more fatigable than control women up to 26 weeks postpartum.  At 8-10 weeks 

postpartum, women who experienced Cesarean delivery were more fatigable than women 

who delivered vaginally, with no difference between delivery types at 26 weeks 

postpartum. Finally, Aim 3 assessed a novel test of abdominal function that may be used 

in the clinic, and compared fatigability of the lumbopelvic stabilizing muscles and 

experimental pain in postpartum and nulligravid women, and across delivery types.  The 

lumbopelvic stabilizing muscles of postpartum women were more fatigable than control 

women up to 26 weeks postpartum in the clinically adapted test. Postpartum women were 

also more sensitive to pain at the abdomen than control women at 8 weeks and 26 weeks 

after childbirth.    

 

Thus, women had impaired abdominal function and increased pain at least 6 

months after childbirth, with greater initial decrements in function after Cesarean delivery 

compared with vaginal delivery. These findings highlight the importance of assessment 

and rehabilitation of the abdominal muscles after pregnancy. 
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I. INTRODUCTION 

 

 

 

Adequate function of the abdominal muscles is essential for several critical life 

functions.  The abdominal muscles and the fascia of the anterior abdominal wall provide 

protection to the internal organs and blood vessels of the abdomen.  The abdominal 

muscles are also active as accessory muscles of ventilation during forced expiration and 

during exercise.  Several musculoskeletal impairments, such as low back pain and 

incontinence, are also associated with inadequate abdominal muscle function.   

Despite the importance of abdominal muscles for every day function, there is limited 

understanding of how to best quantify abdominal function including muscle strength, 

fatigability and control of force during postural and steady contractions. There are also 

several variables that potentially impact the function of the abdominal muscles, including 

sex of the individual, physical activity levels, and in women, the mechanical and 

physiological changes that occur during pregnancy, and method of delivery experienced 

during childbirth.  This dissertation will explore the function of the abdominal muscles in 

healthy young men and young women who have never been pregnant (nulligravid), as 

well as the impact of pregnancy and mode of delivery where the abdominals and 

surrounding fascia experience large and extended strains or trauma.  Currently, there are 

no clinical tools to assess fatigability of the lumbopelvic stabilizing muscles in patients 

who have abdominal-related functional declines, disability and pain.  The global aims of 

the dissertation are to determine abdominal function in young men and women, and 

understand the effects of pregnancy and delivery mode on abdominal function and pain in 
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women after childbirth, and pilot a clinical tool to assess fatigability of the abdominals in 

clinical populations such as postpartum women.     

The following introduction will provide background to the anatomy and known 

function of the abdominal muscles, current methods of assessment of abdominal function, 

followed by general background on fatigability and control of force in men and women. 

Finally, the literature review will address what is known about the effects of pregnancy 

on abdominals and their function in women during and after childbirth.  

Anatomy and function of the abdominal muscles 

 

 

 

The abdominal muscles consist of the centrally located left and right rectus 

abdominis, the laterally located external oblique, internal oblique , and transversus 

abdominis (Neumann 2016).  The rectus abdominis runs superior to inferior from the 

xyphoid process of the sternum and the cartilage of the 5th-7th ribs to the pubic bone.  

Right and left rectus abdominis are separated by the linea alba, a band of connective 

tissue/fascia that is formed by the common tendons of the external oblique, internal 

oblique, and transversus abdominis.  The recuts abdominis muscles are also encased in 

the rectus sheaths, which are thick layers of fascia/connective tissue, also formed by the 

external oblique, internal oblique, and transversus abdominis, and consistent with the 

linea alba.  The abdominal muscles (including rectus abdominis) are interconnected by a 

network of fascia and connective tissue, which allows force/stiffness generated by one 

muscle to be transferred to the other muscles and axial skeleton through the linea alba 

(Lee, Lee et al. 2008, Brown and McGill 2009). 
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The main functions of the abdominal muscles are: trunk flexion, posterior rotation of 

the pelvis, lateral trunk flexion, trunk rotation, control of intraabdominal pressure, 

protection of the abdominal internal organs, and stabilization of the lumbar spine and 

sacroiliac joint (Richardson, Snijders et al. 2002, Hodges, Kaigle Holm et al. 2003, 

Hides, Wong et al. 2007, Stokes, Gardner-Morse et al. 2011, Neumann 2016).  

Concentric contraction of bilateral rectus abdominis causes flexion of the trunk and/or a 

posterior tilt of the pelvis.  The external obliques, which are the most superficial of the 

lateral abdominal muscles, have the largest cross sectional area and leverage of the 

abdominal muscles.  The fibers of external oblique run in an oblique direction, from 

superior-lateral to inferior-medial (“hands in pockets”).  Bilateral contraction of external 

obliques produces trunk flexion, while unilateral contraction produces trunk flexion 

combined with contralateral rotation.  The internal obliques lie just deep to external 

obliques and have fibers that run perpendicular to external oblique.  Bilateral contraction 

of internal oblique produces trunk flexion, while unilateral contraction produces trunk 

flexion combined with ipsilateral rotation.  Both internal oblique and external oblique 

have fascial attachments, including the linea alba.  The transverse abdominis however, 

differs in that its muscle fibers are horizontal to the ground during standing.  Its primary 

role is to increase intra-abdominal pressure and to tension the thoracolumbar fascia, thus 

providing stability to the lumbar spine (Neumann 2016). 

The abdominal muscles are also key muscles of forced expiration.  At quiet rest, 

expiration is largely a passive process, achieved by relaxation of the diaphragm.  During 

forced expiration, whether a volitional maximal exhale or during exercise when 

respiratory demand is increased, the abdominal muscles become active.  By contracting 
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and increasing IAP, the abdominal muscles help to expel air from the thorax.  The 

abdominal muscles also facilitate optimal inspiration by changing the position of the ribs 

and the abdominal contents, which places the diaphragm at an optimal length to produce 

the most force for the next inspiration (Neumann 2016). 

Thus, bilateral rectus abdominis, external oblique, and internal oblique are the prime 

movers of trunk (thoracolumbar) flexion.  The transversus abdominis does not contribute 

to trunk flexion, but is a primary muscle in the generation of intra-abdominal pressure 

and stabilization of the lumbar spine and sacroiliac joints.  Given the critical nature of 

these muscles, it is important to understand muscular function for both trunk flexion and 

lumbopelvic stabilization tasks.  

Role of the hip flexors in abdominal muscle function 

 

 

 

The hip flexor muscles, especially iliopsoas and rectus femoris, are important 

synergists and antagonists of the abdominal muscles.  When a muscle contracts, the freest 

segment will move, so stabilization of certain segments may be necessary in order to 

achieve the desired movement (Cort, Dickey et al. 2013).  For example, the rectus 

abdominis can perform both thoracolumbar flexion and posterior tilt of the pelvis (Vera-

Garcia, Moreside et al. 2011).  The trunk has a much greater external moment than that of 

the pelvis, due to its length (moment arm) and bulk (Neumann 2016).  So, an unopposed 

concentric contraction of the rectus abdominis is more likely to first produce posterior 

rotation of the pelvis rather than flexion of the thorax/trunk.  The hip flexor muscles can 

cause hip flexion by moving the femur on the pelvis, or by anteriorly tilting the pelvis 

over a fixed femur.  By opposing the posterior tilt of the pelvis, the hip flexor muscles 
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allow the abdominal muscles to perform thoracolumbar flexion.  In a similar manner, the 

rectus abdominis contributes to stabilization of the pelvis to allow the hip flexors to 

perform femoral-on-pelvic hip flexion (Neumann 2016). 

During a traditional full sit-up, both the abdominal muscles and the hip flexors are 

active.  During the first phase of the sit-up, the trunk flexion phase, the abdominal 

muscles will flex the upper trunk by elevating the rib cage and scapulae off of the surface 

on which the person in lying (Andersson, Nilsson et al. 1997, Escamilla, Babb et al. 

2006, Okubo, Kaneoka et al. 2010).  The second phase, or hip flexion phase, is 

accomplished primarily by the hip flexors, which flex the superimposed trunk and pelvis 

about a fixed femur (Escamilla, Babb et al. 2006).  The abdominal muscles are still active 

during this second phase, however, they do not contribute to the increased trunk/hip 

flexion; rather, they maintain the flexion of the upper trunk (Escamilla, Babb et al. 2006, 

Neumann 2016).  Thus, when determining the roles of the abdominal muscles during a 

trunk flexion motion, the contribution of the hip flexor muscles can be significantly 

diminished by restricting the task to thoracolumbar flexion and limiting rotation about the 

hip. 

Role of abdominal muscles & fascia in lumbopelvic stability 

 

 

 

Appropriate transfer of loads through the lumbopelvic region is essential to nearly 

all functional mobility and performance of activities of daily living.  Efficient 

coordination of the muscles of the trunk and lower extremity is necessary to achieve a 

balance of stability and mobility to allow successful task completion while minimizing 

adverse effects, such as joint hypermobility or organ prolapse (Lee, Lee et al. 2008).  
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During weight bearing, muscles oriented in the transverse plane, such as the transversus 

abdominis, the lower portions of internal oblique, the piriformis, and the pelvic floor 

muscles (especially coccygeus), are primarily responsible for stabilizing the sacroiliac 

joint (Richardson, Snijders et al. 2002, Hides, Wong et al. 2007).  The abdominal muscles 

are active prior to upper and lower extremity movement in order to stabilize the trunk in 

preparation for these limb movements (Hodges and Richardson 1997, Urquhart, Hodges 

et al. 2005, Ericksson Crommert, Ekblom et al. 2011).  Contraction of the transversus 

abdominis, internal obliques, and external obliques increases intraabdominal pressure, 

which increases stiffness of the lumbar spine and creates an extension moment at the 

lumbar spine, thus reducing the need for lumbar extensor muscle activity (Hodges, Kaigle 

Holm et al. 2003, Stokes, Gardner-Morse et al. 2011).  The fascial network of the anterior 

abdominal wall has also been shown to be pivotal in the transfer of forces generated by 

the muscles to the spine and pelvis (Brown and McGill 2009). 

Neuromuscular function: Assessment of abdominal muscle strength 

 

 

 

Assessment of maximal strength is a common measure of muscular function (Kulig, 

Andrews et al. 1984, Neumann 2016).  Strength of the abdominal muscles has been 

assessed in several ways.  Dynamometers have been used in a variety of positions 

(sitting, standing, supine) and under varying conditions (isokinetic, isometric, etc) 

(Smidt, Herring et al. 1983, Nordin, Kahanovitz et al. 1987, Hall, Hetzler et al. 1992).  

Hall et al (1992) and Smidt et al (1983) have demonstrated that men produce 35% -57% 

greater isokinetic trunk flexion torque than women (Smidt, Herring et al. 1983, Hall, 

Hetzler et al. 1992) in seated dynamometer set-ups.  Smidt et al (1983) also demonstrated 
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sex differences in isometric trunk flexion torque at four trunk angles, with men again 

demonstrating greater torque than women (Smidt, Herring et al. 1983).  These studies, 

however, do not limit involvement of the hip flexor muscles, which may significantly 

contribute to trunk flexion torque. 

Function of the transversus abdominis is frequently assessed by examining stability of 

the lumbar spine and pelvis.  Hemingway et al (2003) used a pressure biofeedback unit 

under the lumbar spine and pelvis and assessed changes in cuff pressure while 

participants performed a drawing-in maneuver in supine with hips and knees flexed, and 

while performing a bent knee fall out (Hemingway, Herrington et al. 2003).  The Active 

Straight Leg Raise test has also been used to assess the ability of the transverse 

abdominis to stabilize the lumbar spine and pelvis (Mens, Vleeming et al. 1999).  This 

test involves the participant lying supine and raising one leg (fully extended) at a time.  

The participant subjectively rates the difficulty to raise the leg on a zero to five scale 

(zero = no difficulty, 5 = unable to raise leg).  If difficulty is rated above a zero, a second 

trial is performed while manual compression is provided by the examiner to the 

participant’s pelvis.  If the task is easier with external manual compression, the test is 

considered positive and suggests instability of the pelvic joints.  This test has been 

validated in several clinical groups, including pregnant and postpartum women, and is 

widely used clinically (Mens, Vleeming et al. 2001, Mens, Vleeming et al. 2002, 

Vleeming, Albert et al. 2008, Mens, in 't Veld et al. 2012).  However, this test only 

assesses function of the transversus abdominis for a short period of time (5 second 

maximum), while many activities of daily living, such as carrying tasks, require 

submaximal activation of the transversus abdominis for several minutes.  Thus, the 
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relevance to activities that require sustained activity of the transversus abdominis is not 

known. 

In clinical situations, physicians and physical therapists use manual muscle testing 

(MMT) techniques to assess abdominal muscle strength by grading strength on a zero to 

five scale.  One MMT method uses an abdominal curl-up, which requires clearance of the 

inferior angle of the scapula to be considered a successful trial, with varying positioning 

of the upper and lower extremities to adjust the difficulty of the maneuver.  To achieve a 

grade of five, the individual must be able to clear the inferior angle of the scapula with 

the hands behind the head and the legs extended (without using the hip flexor muscles).  

A grade of four is assigned if the maneuver is successfully completed with the arms 

across the chest and the legs extended.  A grade of three is assigned with the arms 

reaching toward the toes with the legs extended.  For grades two and one, the legs are 

brought into a hook lying position (hips and knees flexed with feet flat).  To achieve a 

grade of two, the curl up maneuver is performed with the arms outstretched toward the 

feet.  For a grade of one, the participant needs to either be able to lift the head off of the 

testing surface or produce a forceful cough (Hislop and Montgomery 2002).   

The Abdominal Muscle Test (AMT) is another method of MMT that focuses on the 

lumbopelvic stabilizing function of the abdominal muscles.  The patient is positioned in 

supine with hips and knees bent and feet flat on the testing surface, with a pressure 

biofeedback unit beneath the lumbar spine.  The patient is instructed to perform a 

posterior pelvic tilt, and to maintain that tilt while performing various lower extremity 

movements.  Level 1 requires the patient to lift one leg and slowly lower as far as 

possible while maintaining pressure in the biofeedback unit.  Level 2 requires the patient 
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to flex the hip of the stationary leg to 90°, and clasp their hands behind the thigh of the 

stationary leg, then raise the contralateral leg and lower it slowly as far as possible while 

maintaining pressure in the biofeedback unit.  Level 3 is the same as Level 2, but support 

to the posterior thigh of the stationary leg is removed.  Level 4 requires the patient to 

elevate both lower extremities and slowly lower them while maintaining pressure in the 

biofeedback unit.  This test was validated in a group of young men and women with no 

history of low back pain (Gilleard and Brown 1994).  However, only 18% of the 

participants in the validation study were able to successfully complete level 4 (Gilleard 

and Brown 1994).  While these tests are useful as screening tools in clinical settings, 

where time and access to equipment may be limited, they lack sensitivity to discriminate 

the true force production capability of the abdominal muscles across individuals. 

Neuromuscular function: Fatigability 

 

 

 

Another important metric of muscle function is fatigability, which is also known as 

muscle fatigue.  It is defined as an activity-induced decline in the maximal force or power 

of a muscle (Enoka and Duchateau 2008).  Muscle fatigue begins shortly after onset of 

muscular activity, even if the muscle is still able to successfully meet the demands of a 

submaximal task (Hunter 2014).  Fatigability has been shown to play an important role in 

motor performance, injury prevention, and rehabilitation (Enoka and Duchateau 2008). 

Central fatigue occurs when mechanisms proximal to the neuromuscular junction are 

responsible for the decline in muscular performance (Gandevia 2001).  These 

mechanisms may involve the motor nerve, the spinal cord, and/or supraspinal centers 

(motor cortex, deep brain structures, etc).  Peripheral fatigue occurs distal to the 
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neuromuscular junction (Allen, Lamb et al. 2008).  It can be caused by impaired cross-

bridge cycling, excitation-contraction coupling (Ca2+ kinetics), depletion of metabolic 

substrates, and/or accumulation of metabolic byproducts (Allen, Lamb et al. 2008).  

Central fatigue can be quantified by stimulation of the motor cortex, motor nerve or 

muscle to obtain a value of voluntary activation. Central fatigue is the exercise induced 

reduction in voluntary activation (Merton 1954, Gandevia 2001). In order to obtain a 

measure of voluntary activation, stimulation is given during and after a maximal 

voluntary contraction (MVC).  If an increase in force is elicited by the stimulation during 

a maximal voluntary contraction, it suggests that the nervous system is not fully driving 

the muscle (Merton 1954).  If no increase in force is noted, then it is assumed that the 

muscle is maximally activated and any impairment in force is due to muscular 

mechanisms (peripheral fatigue).  Decline in the electrically evoked resting twitch after 

the exercise as compared to before exercise would also indicate peripheral fatigue 

(Merton 1954).  M-wave measurements can be used to assess neuromuscular propagation 

and thus rule out reductions in excitability of the neuromuscular junction as a cause of 

neuromuscular fatigue (Bigland-Ritchie, Jones et al. 1978, Bigland-Ritchie, Kukulka et 

al. 1982, Bigland-Ritchie, Furbush et al. 1986, Gandevia 2001, Enoka and Duchateau 

2008).  

Muscle fatigue is task dependent because changing the details of a task can alter the 

mechanisms and magnitude of fatigue.  The cause of fatigue will depend on which 

site/factor is stressed the most (Hunter 2014).  For example, when men and women were 

matched for strength and performed a sustained isometric contraction of the elbow flexor 

muscles, there was no sex difference in time-to-task failure (Hunter, Critchlow et al. 
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2004).  However, when these same individuals performed an intermittent submaximal 

task with the elbow flexor muscles, women demonstrated a longer time-to-task failure 

than men (Hunter, Critchlow et al. 2004).  This demonstrates that the type of task 

(sustained contractions vs intermittent contractions) was able to impact fatigability within 

the same muscle group.   

Other examples of task dependency of muscle fatigue are shown when the contraction 

type and load compliance are altered.  For example, old adults demonstrate a longer time-

to-task failure with isometric contractions when compared to young individuals, but they 

have greater loss of power with fast dynamic contractions compared with young adults 

(Hunter, Critchlow et al. 2004, Hunter, Pereira et al. 2016).  Here, the type of muscle 

contraction (isometric vs concentric) impacted fatigability and the differences between 

young and old adults.  Constraints on the joint can also alter fatigability, as is evidenced 

by the force and position tasks.  When an individual is asked to exert a given intensity of 

force against a rigid restraint (force task), time-to-task failure is usually longer (less 

fatigable) than maintaining a given joint angle (position task) while supporting an inertial 

load that is equivalent to the force produced in the force task (Hunter, Ryan et al. 2002).   

Some other factors that will affect fatigability include the sex of an individual, their 

initial strength, and physical activity levels.  In general, women are less fatigable (have a 

longer time-to-task failure) than men for isometric contractions and slow dynamic 

contractions (Hunter 2016, Hunter 2016).  For sustained isometric tasks, this sex 

differences are in part mediated by strength. Men are generally stronger than women and 

when sustaining a contraction at the same relative intensity as women (Hunter 2014, 

Hunter 2016), muscle perfusion can differ as the larger muscles of men tend to exert 
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more pressure on the feed arteries, thus occluding blood flow and limiting muscular 

performance at a faster rate than women (Hunter 2014, Hunter 2016).  Sex differences in 

time-to-task failure have been shown to disappear when external occlusion of blood flow 

is employed during the contraction (Russ and Kent-Braun 2003).  These findings are 

supported by studies that have shown that the sex difference for sustained isometric 

contractions disappears when men and women are matched for strength or when 

covarying for strength (Hunter, Critchlow et al. 2004, Keller-Ross, Pereira et al. 2014).  

During intermittent isometric contractions, however, women are less fatigable than men, 

independent of strength (when matched for strength) or any possible differences in blood 

flow (Hunter, Critchlow et al. 2004).  With the intermittent isometric task, it is thought 

that other mechanisms such as sex differences in fiber types, muscle metabolism and 

sympathetic mediated vasodilation (Hunter 2014), results in less of a buildup of 

metabolites and facilitate a more rapid perfusion and clearance of metabolites during the 

rest period between contractions in the women compared with men.  Women, in general, 

have a greater proportion of type I muscle fibers than men (Hunter 2014, Hunter 2016).  

As type 1 fibers are more fatigue resistant (Schiaffino and Reggiani 2011), this may 

contribute to the longer time-to-task failure than men.  Women also demonstrate different 

metabolic substrate utilization than men.  Women tend to oxidize more fat in response to 

exercise, especially whole body exercise, than men, which results in a less rapid 

accumulation of metabolic byproducts (Horton, Pagliassotti et al. 1998, Carter, Rennie et 

al. 2001, Mittendorfer, Horowitz et al. 2002, Roepstorff, Steffensen et al. 2002, 

Roepstorff, Thiele et al. 2006, Hunter 2014).  More rapid accumulation of byproducts in 

male muscle will alter the pH of the muscle more rapidly and may interfere with 
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excitation-contraction coupling.  At the level of the sarcomere in the muscle fiber, 

women also tend to demonstrate slower Ca2+ ATPase activity and Ca2+ uptake in to the 

sarcoplasmic reticulum than men (Gollnick, Körge et al. 1991, Harmer, Ruell et al. 

2014).  These slower Ca2+ kinetics are associated with slower and more fatigue resistant 

fibers and, together, then result in women demonstrating slower relaxation rates and 

contractile properties, in general, than that for men (Hunter, Butler et al. 2006, Wust, 

Morse et al. 2008, Keller, Pruse et al. 2011).  The sex differences in the contractile 

properties, muscle fiber types and metabolism will contribute to women being able to 

sustain intermittent contractions for a longer duration than men (Hunter 2014, Hunter 

2016). 

Physical activity and limb use may also impact fatigability.  For example, after 

immobilization, both men and women showed a decline in force production but an 

increase in time-to-task failure, more so in the women than in the men (Cook, Kanaley et 

al. 2014).  While this decline in fatigability (increase in time-to-task failure) was not 

expected, it may be due to strength-mediated mechanisms (improved blood flow due to 

less muscular pressure) and/or change in fiber type proportion during immobilization 

(loss or greater atrophy of type II fibers as compared with type I fibers) (Hunter 2014, 

Hunter 2016).  Despite the importance of fatigability in muscular performance, 

fatigability is rarely assessed clinically and there are currently no clinical tests to assess 

fatigability of the abdominal muscles.  
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Assessment of abdominal muscle fatigability 

 

 

 

Fatigability of the abdominal muscles has been assessed in laboratory settings with a 

number of modalities and conditions.  Taylor et al (2006) examined the fatigability of the 

abdominal muscles in response to exhaustive cycling exercise by using magnetic 

stimulation and measurement of gastric pressure in young, healthy males (Taylor, How et 

al. 2006).  Following cycling to exhaustion, the abdominal muscles experienced fatigue, 

as evidenced by reduced gastric pressure.  Voluntary activation of the abdominal muscles 

and M-wave amplitude were not changed following exhaustive cycling, which suggests 

that peripheral mechanisms were responsible for the abdominal muscle fatigue (Taylor, 

How et al. 2006).  As this study only examined males, it is unknown if sex differences 

exist in the fatigability of the abdominal muscles in response to exhaustive cycling. 

Axial rotation of the trunk has also been used by several authors to examine 

abdominal fatigability.  Ng et al (2003) studied 23 healthy young men (30.2 ± 7.9 years) 

and found that time-to-task failure for a sustained isometric axial rotation contraction at 

80% of MVC was 45 ± 25 seconds for right rotation and 49 ± 21 seconds for left rotation.  

They also noted that the contributions of torques in the sagittal (flexion) and frontal 

(sidebending) planes decreased over time during the axial rotation fatiguing contraction, 

and that the variability of torque increased in all planes during the fatiguing contraction 

(Ng, Parnianpour et al. 2003).  Another study of fatigability during isometric axial 

rotation found that men were able to maintain left isometric axial rotation at 60% MVC 

for 102 seconds while women had a time-to-task failure of 113 seconds for the same task 

(Kumar and Narayan 1998); however, the authors did not statistically analyze for sex 
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differences.  Further study is needed to determine if sex differences in fatigability exist 

with trunk axial rotation contractions.     

Fatigability during trunk flexion tasks has also been assessed.  Smidt et al (1983) 

evaluated fatigability of the trunk flexors and extensors in sitting during a dynamic, 

reciprocal flexion/extension protocol through a range of motion spanning from 5 degrees 

short of maximal active trunk flexion to 10 degrees short of maximal active trunk 

extension.  Participants performed maximal trunk flexion and extension contractions in 

the Iowa Trunk Dynamometer at 30 degrees/second until both flexion and extension peak 

torque declined by 25% of baseline values.  This study found that the trunk flexor 

muscles were more fatigable than the trunk extensors, men were more fatigable than 

women, and individuals with low back pain were more fatigable than individuals without 

low back pain, regardless of sex (Smidt, Herring et al. 1983).  In this study, men were 

also stronger than women, so the increased susceptibility to fatigue may have been 

mediated by strength, as has been shown in other muscle groups (Hunter 2016).  This 

study also did not assess contribution of the hip flexor muscles to performance of the 

fatigue task. 

Another commonly used test for measurement of both abdominal muscle strength and 

fatigability is the 1-minute sit up test.  During this test, individuals perform as many sit 

ups as possible in one minute (Diener, Golding et al. 1995).  While this test does provide 

evidence of abdominal muscle function, it is more a measurement of muscular power 

than of true muscular strength or endurance because the number of repetitions is recorded 

rather than failure of the force or power.  The Georgia Tech cadence curl-up test was 

developed to address the issue of muscular power in the sit up test.  It uses a metronome 
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to pace performance of curl-ups such that 25 curl-ups are completed in one minute.  The 

test is performed for a maximum of three minutes, and has defined criteria for range of 

motion (elbows must contact the mid-thigh) and task failure (inability to complete full 

range of motion or to adhere to the cadence set by the metronome) (Sparling, Millard-

Stafford et al. 1997).  While this test is an improvement over the 1-minute sit up test in 

that it has defined criteria for failure, a fixed rate of contraction, and minimizes 

involvement of the rectus femoris muscles by fixing the feet on the wall, there were many 

subjects who did not reach task failure, which may mask any sex differences in 

fatigability.   

Another clinically-accessible method of testing abdominal fatigability is maintaining 

a sit-up or curl-up position for as long as possible (McQuade, Turner et al. 1988, 

Moffroid 1997).  Individuals with low back pain have been shown to be more fatigable 

when tested with a sustained sit-up or curl-up test.  It has not been reported if sex 

differences are present in performance of these tests but, based on sex differences in other 

muscles, this should be considered.  In addition, performance of a sustained sit-up or 

curl-up task to failure is sometimes reported as a measure of abdominal strength rather 

than fatigability (McQuade, Turner et al. 1988). 

Given the importance of efficient abdominal muscle function for successful 

completion of activities of daily living, it is imperative to have a clear understanding of 

the fatigability of this muscle group.  Several authors have demonstrated sex differences 

in fatigability for this muscle group for axial rotation and for trunk flexion when 

contribution of the hip flexors was not controlled.  As such, we hypothesize that there 

will be sex differences in fatigability in that women will have a longer time to failure 
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when the contribution of the hip flexor muscles to a trunk flexion task is limited.  It is 

also unknown if sex differences exist in fatigability of the transversus abdominis as 

assessed with a lumbopelvic stabilizing task.  This dissertation will assess fatigability of 

the trunk flexor muscles, limiting the contributions from the hip flexor muscles, and of 

the lumbopelvic stabilizing muscles.  

Neuromuscular function: Control of force (steadiness of contraction) 

 

 

 

Steadiness is the ability to maintain a target force.  When a “steady” contraction is 

performed, the force does not stay static, rather, it fluctuates about a mean value (Enoka, 

Christou et al. 2003).  Steadiness can be quantified in absolute terms as the standard 

deviation (SD) of force and in relative terms as the coefficient of variation (CV) of force 

(Enoka, Christou et al. 2003).  When the force of contraction increases, the SD of force 

fluctuations will also increase.  The CV of force allows comparison of steadiness, or 

fluctuations, across varying intensities of contraction by normalizing the SD of force to 

the mean force produced during the task; as such, CV is expressed as a percentage. 

Sex, stress, age, and physical activity have been shown to impact control of force.  

Generally, at low intensities, females exhibit greater force fluctuations than males.  This 

has been observed in the elbow flexors, first dorsal interosseous (finger abduction) and 

knee extensor muscles (Christou, Jakobi et al. 2004, Clark, Collier et al. 2005, Brown, 

Edwards et al. 2010), but it is not known if sex differences in force steadiness exist for 

the trunk flexor muscles.  Sex differences in steadiness have been reported when 

cognitive stress is induced, with women demonstrating greater force fluctuations in 

response to an acute stressor than men (Hunter 2014).  Older adults tend to be less steady 
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during low intensity contractions than young individuals (Hunter, Pereira et al. 2016). 

Practice of a skilled movement, strength training and participation in Tai Chi were all 

shown to decrease force fluctuations, even when a change in strength was not noted 

(Enoka, Christou et al. 2003).  

Several mechanisms can contribute to force steadiness.    In limb muscles, force 

fluctuations are primarily explained by oscillations in common drive to the motor neuron 

pool and the motor unit discharge rate variability (Enoka, Christou et al. 2003, Farina and 

Negro 2015, Hunter, Pereira et al. 2016) resulting in larger force fluctuations at higher 

contraction intensities when calculated as the SD of force. The force fluctuations 

expressed as the CV, however, is reduced at the higher intensities of contraction, creating 

an inverse relationship between force fluctuations and contraction force (Tracy 2007, 

Tracy, Dinenno et al. 2007, Jesunathadas, Klass et al. 2012).  Whether this relationship 

between steadiness and contraction intensity is also present during trunk flexion 

contractions is unknown, particularly given that activation of the motor neuron pool 

occurs from multiple spinal levels during trunk flexion (Neumann 2016).  Muscle co-

activation may also play a role in steadiness.  Decreased force fluctuations are reported 

during the position task, which also has greater co-activation of agonist-antagonist 

muscles, suggesting that the co-activation helps to stabilize the contraction when 

supporting an inertial load (Hunter 2014).  Fiber type may also contribute to steadiness.  

Muscle groups with a larger proportion of type I fibers (such as the ankle dorsiflexors) 

demonstrate less force fluctuations than larger, more powerful muscle groups (Enoka, 

Christou et al. 2003, Tracy 2007).  Sex and age differences for muscles with larger 

proportions of type I fibers are also less or non-existent, depending on the muscle group 
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(Enoka, Christou et al. 2003).  Additionally, in limb muscles, force fluctuations will 

increase throughout a fatiguing contraction (Hunter and Enoka 2003, Hunter, Critchlow 

et al. 2004), and it is also unknown if this is true during fatiguing exercise of the trunk 

flexor muscles. 

Given the important role of the abdominal muscles in regulation of intra-abdominal 

pressure and stiffness of the lumbar spine, an understanding of force control of this 

muscle group may be helpful in understanding postural stability and back pain.  If 

significant fluctuations in force are observed, it is possible that subsequent fluctuations in 

IAP and lumbopelvic stability may also be present, which may contribute to the etiology 

of low back pain. 

Relationship between abdominal muscle function and low back pain 

 

 

 

Pain is defined as “an unpleasant sensory and emotional experience associated with 

actual or potential tissue damage” (Merskey, Bogduk et al. 1994).  In response to 

localized trauma, peripheral sensitization can occur, where nociceptors in the affected 

area become more sensitive to stimuli.  Prolonged experience of pain can lead to central 

sensitization, or alterations at the level of the brain and spinal cord that result in 

hypersensitivity to both noxious and non-noxious stimuli (Phillips and Clauw 2011).  

Quantitative sensory testing, such as measurement of pressure pain thresholds, can be 

used to identify alterations in pain perception and the mechanisms responsible for these 

alterations (Arendt-Nielsen and Yarnitsky 2009). 

Approximately 30% of adults in the United States experience chronic pain (persisting 

for greater than 6 months) (Johannes, Le et al. 2010), and low back pain has been 
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identified as the leading cause of years lived with disability globally (Vos, Flaxman et al. 

2012).  Men typically demonstrate lower sensitivity to pressure pain stimuli (higher 

pressure pain thresholds) than women (Racine, Tousignant-Laflamme et al. 2012), and 

postpartum women frequently report low back and pelvic girdle pain (Ostgaard, 

Zetherström et al. 1994, Albert, Godskesen et al. 2000, Wu, Meijer et al. 2004, Parker 

and Millar 2008, Vleeming, Albert et al. 2008, Gutke, Lundberg et al. 2011).  Exercise 

has also been shown to decrease pain sensitivity in healthy individuals and patient 

populations (Naugle, Fillingim et al. 2012).  As such, it is important to understand the 

mechanisms that may contribute to low back pain in order to develop appropriate 

rehabilitation protocols to facilitate improved function, decreased pain, and decreased 

disability.   

Several studies have identified impairments of the abdominal muscles in individuals 

with back pain.  The transversus abdominis has been shown to demonstrate delayed firing 

in response to upper extremity movement in individuals with low back pain (Hodges and 

Richardson 1996).  Elite cricketers with low back pain have demonstrated global 

activation of all abdominal muscles when attempting to activate only the transversus 

abdominis, resulting in impaired ability to perform a “draw in” maneuver (Hides, Stanton 

et al. 2008).  Smidt et al (1983) found that individuals with low back pain demonstrated 

lower isometric and isokinetic trunk flexion torques, and were more susceptible to 

fatigue, than individuals without low back pain (Smidt, Herring et al. 1983).  In 

postpartum women, increased inter-recti distance, suggesting compromised fascial 

integrity, has also been associated with low back and pelvic pain (Parker and Millar 

2008). 
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Activation of the abdominal muscles to increase IAP has been shown to protect 

against low back pain by decreasing extensor muscle activity.  The back extensor muscles 

produce greater torque than the abdominal muscles (trunk flexors) (El Ouaaid, Shirazi-

Adl et al. 2013).  Despite the abdominal muscles having greater leverage than the trunk 

extensors, the extensors have greater muscle mass and more of that mass consists of 

fibers that run vertically, thus giving the extensor muscles a greater advantage in 

producing sagittal plane torque.  This greater torque of the extensor muscles produces 

greater compressive and shear forces on the spine, which may ultimately contribute to 

spinal injury (El Ouaaid, Shirazi-Adl et al. 2013).  However, several authors have shown 

that increased IAP (generated by the abdominal muscles) produces an extension moment 

that decreases the amount of activity needed by the spinal extensor muscles, thus 

reducing the compressive and shear forces at the spine (Hodges, Kaigle Holm et al. 2003, 

Ericksson Crommert, Ekblom et al. 2011, El Ouaaid, Shirazi-Adl et al. 2013).  Therefore, 

weakness of the abdominal muscles may decrease the extensor moment generated by 

abdominal muscle contraction, resulting in increased activation of the lumbar extensor 

muscles and increased spinal shear forces. 

Low back pain and pelvic girdle pain are also common complaints during and after 

pregnancy (Ostgaard, Zetherström et al. 1994, Albert, Godskesen et al. 2000, Wu, Meijer 

et al. 2004, Parker and Millar 2008, Vleeming, Albert et al. 2008, Gutke, Lundberg et al. 

2011).  Other mechanisms may contribute to the generation and persistence of low back 

and pelvic girdle pain in this population. 
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Relationship between abdominal muscles and pelvic floor muscles 

 

 

 

 The abdominal muscles are also synergists with the pelvic floor muscles.  Both 

the abdominal muscles and the pelvic floor muscles contribute to increasing/maintaining 

intra-abdominal pressure (Hodges and Richardson 1996, Sapsford, Hodges et al. 2001, 

Critchley 2002, Neumann and Gill 2002, Richardson, Snijders et al. 2002).  The pelvic 

floor muscles also contribute to stability of the sacroiliac joints (O'Sullivan, Beales et al. 

2002, Richardson, Snijders et al. 2002).  Several studies have also shown co-activation of 

the pelvic floor and abdominal muscles (Sapsford and Hodges 2001, Sapsford, Hodges et 

al. 2001, Critchley 2002, Neumann and Gill 2002, Bo, Sherburn et al. 2003).  In addition, 

in a study of women who were greater than 1 year postpartum (most of whom were post-

menopausal), dysfunction of the abdominal muscles—specifically, increased inter-recti 

distance—was associated with disorders that are commonly attributed to dysfunction of 

the pelvic floor muscles, such as incontinence and pelvic organ prolapse (Spitznagle, 

Leong et al. 2007).  There is also some evidence that surgical repair of deficits to the 

fascia of the anterior abdominal wall has led to resolution of urinary incontinence 

(Widgerow 1992, Smith, Smith et al. 1998, Mast 1999).  These findings support that the 

abdominal muscles and the pelvic floor muscles act synergistically, and that dysfunction 

of one muscle group can contribute to impaired performance of the other muscle group. 
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Impact of pregnancy and childbirth on abdominal muscle function 

 

 

 

Several physiological and lifestyle factors that occur during and after pregnancy can 

influence strength and fatigability of the abdominal muscles.  These factors and their 

interactions are modelled in Figure 1.1 and discussed in this next section.  
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Figure 1.1.  Model of Factors that Contribute to Strength & Fatigability of the Abdominal Muscles During & After Pregnancy 

                    1-20Citations listed in footnotes .  

                                                 
1 Boissonnault & Blaschak 1988. 2 Brown & McGill 2009. 3 Chearskul 2006. 4 Coldron et al 2008. 5 Cook et al 2014. 6 Gilleard et al 2002. 7 Gracovetsky 2008. 8 

Gutke et al 2011. 9 Gutke et al 2008. 10 Hunter et al 2002. 11 Kristianson et al 1999. 12 Lalatta Costerbosa et al 1988. 13 Lee et al 2008. 14 Lemos et al 2011. 15 

Liaw et al 2011.    16 Negishi et al 2005. 17 Schiaffino & Reggiani 2011. 18 Semmler et al 2000. 19 Spitznagle et al 2007. 20 Thorstensson & Arvidson 1982.  
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The growth of the fetus and uterus requires expansion of the mother’s abdominal 

cavity, resulting in progressive and prolonged stretch of the abdominal muscles (Lalatta 

Costerbosa, Barazzoni et al. 1988) which are maintained under tension by the gravid 

uterus.  Animal studies have shown that the progressive stretch results in addition of 

sarcomeres in series (Lalatta Costerbosa, Barazzoni et al. 1988).  After childbirth, the size 

of the uterus significantly decreases, but the muscles remain elongated, thus functionally 

putting the muscles on slack (Gilleard, Crosbie et al. 2002).  It is possible that this 

increased length of the muscle will alter the length-tension relationship of the abdominal 

muscles and may cause “stretch weakness” of the abdominal muscles (Kendall, Kendall 

et al. 1952, Kendall and McCreary 1983).  Animal studies have also shown that the 

stretch and the hormonal changes of pregnancy contribute to hypertrophy of Type I 

muscle fibers (Lalatta Costerbosa, Barazzoni et al. 1988), which suggests a shift to more 

oxidative metabolism and a less fatigable muscle (Schiaffino and Reggiani 2011).  The 

degree of stretch is also a risk factor for Diastasis Recti Abdominis (DRA), or an increase 

in inter-recti distance (Boissonnault and Blaschak 1988, Spitznagle, Leong et al. 2007, 

Coldron, Stokes et al. 2008, Gutke, Lundberg et al. 2011). 

Hormonal changes, including an increase in estrogen, progesterone, and relaxin, 

occur during pregnancy (Kristiansson, Svardsudd et al. 1999, Chearskul 2006).  Relaxin, 

estrogen and progesterone affect connective tissue integrity by facilitating changes in 

collagen metabolism (Kristiansson, Svardsudd et al. 1999), causing a widening of the 

pubic symphysis and the sacroiliac joints, thus contributing to lumbopelvic instability 

during pregnancy, which may persist into the postpartum period (Chearskul 2006, Gutke, 
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Lundberg et al. 2011) and may contribute to lumbopelvic pain (Gutke, Ostgaard et al. 

2008).  Instability of the pelvic joints, which suggests an unstable anchor for the 

abdominal muscles, may contribute to increased fatigability in a manner similar to that of 

the position task in fatigability literature (Hunter, Ryan et al. 2002).  Elevated relaxin 

levels during pregnancy increase the expression of enzymes that facilitate the breakdown 

of proteins involved in extracellular matrices, collagen and other tissues (Negishi, Li et 

al. 2005, Chearskul 2006), which leads to weakening of fascia and may contribute to 

development of DRA (Boissonnault and Blaschak 1988, Spitznagle, Leong et al. 2007, 

Liaw, Hsu et al. 2011).  Fascia of the anterior abdominal wall has been shown to be 

critical in the transfer of muscularly generated force (Brown and McGill 2009), 

suggesting that DRA may impact force transfer from the abdominal muscles to the spine, 

pelvis and lower extremities.  Gracovetsky et al (1977 &1983), in a study of the 

lumbodorsal fascia, showed that fascia also allows for redistribution of forces in a manner 

that prevents over-stressing one structure, possibly delaying the onset of fatigue in the 

trunk extensor muscles during carrying tasks (Gracovetsky, Farfan et al. 1977, 

Gracovetsky 2008).  Thus, impairments in fascial integrity of the anterior abdominal wall 

may increase fatigability of the abdominal muscles during tasks that require postural 

stability.   

Changes in physical activity levels may also impact muscle function in women during 

and after pregnancy.  Sixty-eight percent of pregnant women report a decrease in physical 

activity during pregnancy and 80% of women report a significant decline in activity level 

postpartum (Gutke, Lundberg et al. 2011).  Studies of muscular unloading/disuse have 

shown that females can experience significant declines in muscle volume and neural 
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activation with disuse, both of which lead to decreased force production, and, in some 

cases, decreased fatigability (Cook, Kanaley et al. 2014).  Further, women who are not 

“regular exercisers” have greater risk of developing DRA and have worse abdominal 

muscle strength after pregnancy in comparison to women who are “regular exercisers” 

(Boissonnault and Blaschak 1988, Spitznagle, Leong et al. 2007). 

Development of low back/pelvic girdle pain has been associated with abdominal 

muscle endurance and time-to-task failure on a back extensor test (Gutke, Lundberg et al. 

2011).  Pain can also lead to fear avoidance behaviors, which can decrease activity levels, 

furthering muscle weakness and thus perpetuating a cycle of weakness, instability, pain, 

and decreased movement (Gutke, Lundberg et al. 2011).  Individuals with low back pain 

have also been shown to have lower isokinetic trunk flexion strength values than 

individuals without low back pain (Thorstensson and Arvidson 1982, Smidt, Herring et 

al. 1983). 

Several musculoskeletal disorders, such as pelvic girdle pain and incontinence, have 

been linked to pregnancy and mode of delivery (vaginal vs Cesarean) (Wu, Meijer et al. 

2004, Bastiaenen, de Bie et al. 2007, Spitznagle, Leong et al. 2007, Gutke, Ostgaard et al. 

2008, Ronchetti, Vleeming et al. 2008, Vleeming, Albert et al. 2008, Robinson, 

Mengshoel et al. 2010, Vermani, Mittal et al. 2010).  Despite the physiological changes 

that occur during and after pregnancy, and the musculoskeletal impairments that are 

commonly associated with pregnancy, the musculoskeletal system is not assessed as part 

of standard care during or after pregnancy (Borders 2006).   
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Does delivery method impact abdominal muscle function? 

 

 

 

Vaginal delivery is directly associated with, and often the main risk factor for, pelvic 

floor dysfunction, including stress urinary incontinence, pelvic organ prolapse, and pain 

syndromes (Pool-Goudzwaard, Slieker ten Hove et al. 2005, Ashton-Miller and Delancey 

2009, Prather, Dugan et al. 2009).  As the abdominal muscles are synergists of the pelvic 

floor muscles (Sapsford, Hodges et al. 2001), and both muscle groups play a role in 

stabilization of the sacroiliac joints (Richardson, Jull et al. 1999, Richardson, Snijders et 

al. 2002, Hides, Wong et al. 2007), dysfunction of the pelvic floor muscles may create 

increased demand on the abdominal muscles for stabilization of the pelvic joints. 

Almost a third of all births in the United States are via Cesarean section (Hamilton, 

Martin et al. 2015), which results in significant disruption of the fascial network 

surrounding the abdominal muscles, as the rectus muscles are separated to allow the child 

to be removed from the womb (Gilstrap III, Cunningham et al. 2002).  Women who 

underwent a surgical delivery reported greater postpartum pain and a more arduous 

postpartum recovery than women who delivered vaginally (Lobel and DeLuca 2007, 

Declercq, Cunningham et al. 2008).  Cesarean delivery has also been associated with 

higher maternal mortality and morbidity, greater risk for mood disorders following 

childbirth, and other negative psychosocial factors (Lobel and DeLuca 2007).  

Development of post-traumatic stress disorder (PTSD) as a result of childbirth has also 

been shown to be more strongly associated with delivery via emergency Cesarean section 

than vaginal birth (Ryding, Wijma et al. 1998, Söderquist, Wijma et al. 2002).  PTSD is 

associated with increased fatigability and decreased force steadiness in men (Keller-Ross, 
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Schlinder-Delap et al. 2014); however, it is unknown how PTSD impacts fatigability and 

force steadiness in women, and especially in postpartum women.  Despite the high 

number of Cesarean deliveries, and the potential impact on musculoskeletal function, 

there is minimal information on the recovery of muscle function postpartum in women 

who deliver via Cesarean section compared with vaginal birth.  Thus, a major focus of 

the proposal is to determine if women who underwent Cesarean delivery will demonstrate 

greater impairments in abdominal muscle function, functional mobility and pain 

perception than those who experienced vaginal deliveries.  We also sought to examine 

differences in abdominal muscle function between women who had experienced 

pregnancy and childbirth, and women who had never been pregnant. 

Specific Aims 

 

 

 

In order to better understand the impact of sex, pregnancy and mode of delivery on 

the function of the abdominal muscles, the studies in this dissertation quantified maximal 

trunk flexion torque across a range of trunk angles, fatigability of the trunk flexor 

muscles with an intermittent, isometric trunk flexion fatiguing protocol, and fatigability 

of the lumbopelvic stabilizing muscles with a novel clinical assessment.  Experimental 

pain perception was also quantified.  Because this protocol has not been established in the 

scholarly literature, and because sex differences in strength and fatigability have been 

identified in other muscle groups, we first tested our experimental protocol in healthy 

men and healthy women who had never been pregnant. 
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Aim 1: To determine if there are sex differences in abdominal muscle function. 

Aim 1A: To compare maximal strength at different angles of trunk flexion, 

fatigability, and force steadiness of the abdominal muscles in healthy men and 

nulligravid women.   

Aim 1A Hypothesis: Women will demonstrate a longer time-to-task failure, lower 

maximal torque, and a similar shape of the torque-angle curve compared with men.   

Aim 1B: To compare experimental pain perception (pressure pain thresholds) at 

the nailbed and over the rectus abdominis muscle belly, and to assess the pain 

response to exercise in healthy men and nulligravid women. 

Aim 1B Hypothesis:  Women will demonstrate lower pressure-pain thresholds than 

men.  Both men and women will demonstrate an increase in pressure pain threshold at 

the abdominal muscle testing site following fatiguing trunk flexor exercise.  Minimal 

increase in pressure pain threshold is expected at the nailbed following fatiguing 

trunk flexor exercise. 

Aim 2:  To determine the impact of pregnancy and childbirth on trunk flexor 

strength and fatigability at 8-10 weeks and 24-26 weeks postpartum.   

Aim 2A: To compare trunk flexor strength and fatigability in nulligravid and 

postpartum women at 8-10 weeks and 24-26 weeks postpartum. 

Aim 2A Hypothesis: Postpartum women will have impaired abdominal muscle 

function (decreased strength, increased fatigability) in comparison to nulligravid 

women.  Postpartum women will demonstrate an improvement in strength and 
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fatigability between 8 weeks and 26 weeks, but will continue to demonstrate deficits 

at 26 weeks compared with nulligravid women. 

Aim 2B: To determine the impact of method of delivery (Cesarean vs vaginal) on 

abdominal muscle function at 8-10 weeks and 24-26 weeks postpartum 

Aim 2B Hypothesis: Cesarean delivery will be associated with decreased strength and 

increased fatigability compared to vaginal birth, with greater difference between 

delivery types at 8 weeks postpartum. 

Aim 2C: To determine the associations between physical function (functional 

mobility, physical activity levels, self-reported pain and disability) and 

abdominal muscle function in nulligravid and postpartum women. 

Aim 2C Hypothesis: Individuals with lower abdominal muscle strength and greater 

abdominal muscle fatigability will demonstrate impaired physical function (shorter 

distance walked in six minutes, lower physical activity levels, greater self-reported 

pain and disability) than stronger and less fatigable individuals. 

Aim 3: To assess the impact of pregnancy and childbirth on fatigability of the 

lumbopelvic stabilizing muscles experimental pain perception in nulligravid and 

postpartum women at 8-10 weeks and 24-26 weeks postpartum.   

Aim 3A: To compare fatigability of the lumbopelvic stability muscles, with a 

novel test modified for clinical use, and experimental pain perception in 

nulligravid and postpartum women (8-10 weeks and 24-26 weeks postpartum). 
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Aim 3A Hypothesis: Postpartum women will demonstrate greater fatigability (shorter 

time-to-task failure) and heightened sensitivity to pain (lower pressure pain 

thresholds) at both time points as compared to nulligravid women. 

Aim 3B:  To determine the impact of method of delivery (Cesarean vs vaginal) 

on function of the lumbopelvic stabilizing muscles and experimental pain 

perception at 8-10 weeks and 24-26 weeks postpartum. 

Aim 3B Hypothesis: Cesarean delivery will be associated with increased fatigability 

and heightened sensitivity to pain (lower pressure pain thresholds) compared to 

vaginal birth. 

Aim 3C:  To determine the association of the novel fatigue task of the 

lumbopelvic stabilizing muscles with clinical assessments of the abdominal 

muscles and with functional mobility. 

Aim 3C Hypothesis:  Women with greater fatigability of the lumbopelvic stabilizing 

muscles (shorter time-to-task failure) will demonstrate worse performance on clinical 

assessments of abdominal muscle function and impaired functional mobility 

compared to women who are less fatigable. 
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II. SEX DIFFERENCES 

 

 

 

IIA. Sex Differences in Trunk Flexor Strength & Fatigability 

 

 

 

INTRODUCTION 

 

 

 

Optimal function of the abdominal muscles is important for functional mobility, 

including lifting and carrying tasks (Lee, Lee et al. 2008).  While the abdominal muscles 

are the prime movers of trunk flexion (Neumann 2016), this muscle group performs 

multiple other key functions.  For example, the abdominal muscles, along with the 

diaphragm and pelvic floor muscles, regulate intra-abdominal pressure (IAP) (Hodges, 

Kaigle Holm et al. 2003).  Through this regulation of IAP, the abdominal muscles also 

provide postural support and stability of the lumbar spine, while allowing transfer of 

loads from the extremities to the trunk (and vice versa) (Hodges and Richardson 1997, 

Hodges and Richardson 1997, Hodges, Kaigle Holm et al. 2003, Lee, Lee et al. 2008).  

The abdominal muscles also play a role in breathing and continence (Sapsford, Hodges et 

al. 2001, Neumann and Gill 2002, Lee, Lee et al. 2008, Sapsford, Richardson et al. 2008), 

through synergistic action with the diaphragm and pelvic floor muscles.  The abdominal 

muscles are also isometrically active during movements of the upper and lower 

extremities (Hodges and Richardson 1997, Hodges and Richardson 1997, Hodges and 

Richardson 1999).  Due to the need for abdominal muscle activation during nearly all 

functional tasks, these muscles are often active isometrically and at submaximal levels 
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during sustained contractions such as during a carrying task, or repetitive contractions, as 

during lifting tasks.   

Given the importance of optimal abdominal muscle function and the lack of 

knowledge on the function of this muscle group, a more thorough understanding of the 

strength, fatigability and force control of these muscles is required.  Sex differences in 

strength and fatigability have been identified in upper and lower limb muscles, with 

females typically demonstrating lower strength but decreased fatigability compared with 

males (Hunter 2014, Hunter 2016).  Smidt et al (1983) showed decreased fatigability of 

the trunk flexor and extensor muscles in females during a maximal, reciprocal, dynamic 

fatiguing protocol; however, this study did not assess the contribution of the hip flexor 

muscles to the trunk flexion task (Smidt, Herring et al. 1983).  Similarly, females were 

less fatigable in the back extensor muscles compared with males for a sustained 

submaximal isometric contraction at 50% maximal voluntary isometric contraction 

(MVC) (Clark, Manini et al. 2003).  Intermittent isometric contractions of the abdominal 

muscles may be more functionally relevant, because postural stabilization is often 

achieved with isometric contractions, and many activities of daily living are repetitive in 

nature.  Use of intermittent contractions also removes the confounding factor of the 

reduced blood flow experienced during sustained contractions.  It is not known if there 

are sex differences in strength or fatigability for the trunk flexor muscles for a 

submaximal intermittent, isometric task.   

An important aspect of force control that can affect functional performance is the 

steadiness of a contraction, which can be measured as the magnitude of force (or torque) 

fluctuations (Enoka, Christou et al. 2003, Almuklass, Price et al. 2016).  During isometric 
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contractions of limb muscles, the fluctuations in force are quantified as the standard 

deviation (SD) about a target force of a sustained contraction, or as the coefficient of 

variation (CV) of torque when normalized to mean force produced (Enoka, Christou et al. 

2003).  In limb muscles, force fluctuations are primarily explained by oscillations in 

common drive to the motor neuron pool and the motor unit discharge rate variability 

(Enoka, Christou et al. 2003, Farina and Negro 2015, Hunter, Pereira et al. 2016) 

resulting in larger force fluctuations at higher contraction intensities when calculated as 

the SD of force. The force fluctuations expressed as the CV, however, is reduced at the 

higher intensities of contraction, creating an inverse relationship between force 

fluctuations and contraction force (Tracy 2007, Tracy, Dinenno et al. 2007, Jesunathadas, 

Klass et al. 2012).  Whether this relationship between steadiness and contraction intensity 

is also present during trunk flexion contractions is unknown, particularly given that 

activation of the motor neuron pool occurs from multiple spinal levels during trunk 

flexion (Neumann 2016).  In addition to input of common drive onto the motor neuron 

pool, other factors may influence the shape of this relationship for the abdominals. 

Additionally, in limb muscles, force fluctuations will increase throughout a fatiguing 

contraction (Hunter and Enoka 2003, Hunter, Critchlow et al. 2004), and it is also 

unknown if this is true during fatiguing exercise of the trunk flexor muscles in males and 

females. Generally, at low intensities, females exhibit greater force fluctuations than 

males.  This has been observed in the elbow flexors, first dorsal interosseous (finger 

abduction) and knee extensor muscles (Christou, Jakobi et al. 2004, Clark, Collier et al. 

2005, Brown, Edwards et al. 2010), but it is not known if sex differences in force 

steadiness exist for the trunk flexor muscles.  A better understanding of the force control 
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of the abdominal muscles would be beneficial because the abdominal muscles play a 

major role in regulation of intraabdominal pressure and stiffness of the spine (Hodges, 

Kaigle Holm et al. 2003), so it is possible that large fluctuations in abdominal muscle 

force could cause fluctuations in IAP, thus impacting spinal stiffness. 

This study determined if there were sex differences in isometric trunk flexion for 

MVC torque across a range of trunk flexion angles, fatigability, and torque steadiness in 

young, healthy males and females.  We hypothesized that males would generate greater 

peak isometric trunk flexion torque because males typically have a greater muscle mass 

than females, especially in the upper body (Janssen, Heymsfield et al. 2000). Due to the 

critical role of the abdominal muscles in postural support and as accessory muscles of 

ventilation (Neumann 2016), we also hypothesized that, although females would be less 

fatigable than males, the sex differences would be small compared to those observed in 

limb muscles (e.g. elbow flexors) (Hunter and Enoka 2001, Hunter, Critchlow et al. 2004, 

Hunter 2016).   

METHODS 

 

 

 

Eighteen females (24.3 ± 4.8 years) and 15 males (24.1 ± 6.6 years) participated 

in two experimental sessions, separated by at least one day and no more than one week, 

to examine abdominal muscle function.  All participants were healthy and free from 

cardiovascular disease, neurological impairment, chronic pain syndromes, and orthopedic 

conditions of the spine and lower extremities, and did not use any medications that 

impact neurotransmitters and/or neuromuscular excitability.  Female participants reported 

they had never been pregnant.  All participants provided written informed consent.  The 
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protocol was approved by the Institutional Review Board at Marquette University, in 

accordance with the Declaration of Helsinki. 

 A dual x-ray absorptiometry (DXA) scan was performed during the first session 

to obtain estimates of lean body mass, fat mass, and bone mineral density of the whole 

body and specific regions using a GE Lunar iDXA (GE Healthcare, Little Chalfont, 

United Kingdom).  Real-time ultrasound (GE Vivid e; 8 LRS linear probe) was used to 

assess thickness of the rectus abdominis muscles. Participants also completed a 

questionnaire to estimate physical activity (Kriska, Knowler et al. 1990). The physical 

activity questionnaire involved recall of occupational and leisure physical activity over 

the previous 12 months and each activity was weighted to estimate the metabolic cost of 

the activity (METs).  Participants were provided with a list of 37 activities (with space for 

additional activities) and asked to provide frequency, quantity and intensity of activities 

over the previous 12-month period. METs were also able to be estimated for occupational 

physical activity based on occupational history and questions. Thus, the weekly 

metabolic equivalents (MET∙hour∙week-1) was calculated from the occupational and 

leisure physical activity.  Laboratory measurements of isometric trunk flexion MVC 

torque, submaximal torque steadiness and fatigability were made using a Biodex System 

4 dynamometer (Biodex, Shirley, New York), as described below. 

Trunk Flexion Torque 

 

 

 

Participants were seated in a Back Flexion-Extension attachment for a Biodex 

dynamometer (Figure 2.1A) such that the right anterior superior iliac spine was aligned 

with the axis of rotation of the dynamometer.  A scapular roll (15 cm diameter) was 
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positioned at the level of the scapular spine, and the head rest of the device was adjusted 

to participant comfort.  The pelvis was stabilized with a sacral pad posteriorly and two 

tightly fastened straps anteriorly.  A strap was also used to restrain the thighs.    Vertical 

straps were placed on the anterior aspect of each shoulder to restrain the upper body, and 

these straps were joined at the midline of the chest with a buckle.  Participants were 

instructed to flex their trunk, as though performing an abdominal curl-up, without 

allowing their legs to lift off from the seat.  All trunk flexion attempts were visually 

assessed by the investigator (a physical therapist), and feedback was provided to 

participants if compensatory movement patterns were observed. 

Trunk flexion torque was recorded online using a Power 1401 A-D converter and 

Spike2 software [Cambridge Electronics Design (CED), Cambridge, UK].  Torque 

signals were digitized at 500 Hz and displayed on a 48-cm monitor placed ~150 cm in 

front of the participant. 

Electromyography 

 

 

 

Electromyography (EMG) signals were obtained for the right rectus abdominis, 

left external oblique, and right rectus femoris using two 8-mm silver chloride surface 

recording electrodes (Coulbourn Instruments, Whitehall, PA) arranged in a bipolar 

configuration according to recommended placements (Cram 2011).  EMG signals were 

amplified (1000×) and band-pass (13-1000 Hz) and Notch (60 Hz) filtered with 

Coulbourn modules (Coulbourn Instruments, Allentown, PA).  Signals were recorded 

online using a Power 1401 A-D converter (CED) and were digitized at 2000 Hz. 
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Experimental Protocol 

 

 

 

All participants were instructed to refrain from caffeine for at least 2 hours and 

alcohol, pain medication, and anti-inflammatory medications for at least 12 hours prior to 

experimental sessions. 

Session One  

 

 

 

Body Composition. A DXA scan was performed to estimate fat mass, lean muscle 

mass and bone mineral density.  Participants were asked to remove all metal before the 

scan.  Participants were positioned on the scanner bed in supine with forearms in neutral 

position.  Legs were bound just superior to the knees and the ankles with straps to prevent 

external rotation of the hips during the scan.  Participants were asked to lie as still as 

possible and to not talk, unless there was a problem, during the scan. 

Muscle Thickness. Ultrasonography was used to determine thickness of the right 

rectus abdominis muscle. Participants were positioned in supine on a plinth with their 

shirt removed.  Muscle thickness measurements of the right rectus abdominis (Whittaker, 

Warner et al. 2013) were taken at 2.5 cm above and below the umbilicus.  The full 

medial-lateral width of the rectus abdominis was scanned at each of these positions and 

the measurement was taken, while the participant held their breath at end expiration, in 

the region that visually appeared to be the thickest. 

Torque-Angle Curve. To assess MVC torque at varying muscle lengths, and 

establish a torque-angle curve for the trunk flexor muscles, participants were placed in six 

different positions within the Back Flexion/Extension attachment (Biodex).  A calibrated 
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digital angle gauge (Wixey WR300 Digital Angle Gauge, Barry Wixey Development, 

Sanibel, FL) was used inferior to the sternal notch to ensure that each participant was at 

the same position.  Upright sitting was identified as zero degrees.  MVC isometric torque 

was evaluated at 20 degrees of flexion, upright sitting, and 10, 20, 30, and 40 degrees of 

extension, in a randomized order.   

Maximal Voluntary Contractions.  Participants performed at least three isometric 

trunk flexion MVCs for ~3 s at each position. MVCs were separated by at least one 

minute of rest, in order to limit fatigability. MVCs were performed, with verbal 

encouragement, until the participant was able to perform two contractions where torques 

were within 5% of each other.  The higher of these two contractions was used as the 

MVC. For each MVC, the participant was asked to flex the trunk forward, as though 

curling the shoulders down toward the hips without engaging the lower extremities. 

Participants were closely examined while performing trunk flexion MVCs in order to 

identify evidence of movements involving other muscle groups (e.g. legs elevating 

slightly off of chair due to activation of hip flexor muscles), and trials were only included 

in analysis if correct form was performed by the participant.  On average, four MVCs 

were performed at each trunk angle, with a range of 3 to 6 MVCs for most participants.  

One participant did require 7 trials at one position, but was able to successfully perform 

the correct trunk flexion maneuver in 3-5 attempts for the remaining trunk angles.  

Participants were also cued to not hold their breath. 

Although flexion of the upper trunk is primarily performed by the rectus 

abdominis muscles (Neumann 2016), EMG of the rectus femoris muscle in the lower 

limb was measured to provide quantifiable evidence that lower extremity muscles, 
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particularly those that contribute to hip flexion, were not being excessively utilized 

during the trunk flexion contractions.  In order to normalize EMG of the rectus femoris 

during trunk flexion contractions, knee extension MVCs were performed to obtain 

maximal EMG.  Three trials were performed at each position, with at least one minute 

rest in between each contraction.  To perform MVCs of the knee extensors, an adjustable 

strap was placed around the shank of each participant to stabilize the limb.  

Steadiness (Torque Fluctuations).  Submaximal isometric contractions at five 

different intensities (5, 10, 20, 50, and 70% MVC) were performed among a subgroup of 

participants (9 females, 11 males) in order to assess torque fluctuations (steadiness). 

Participants were positioned upright (0º) and a computer monitor provided visual 

feedback of a target line at the respective trunk flexion torque.  Participants were 

instructed to trace the line as steady as possible for six seconds.  Two trials were 

performed at each intensity, with intensities performed in a random order.   

Session Two 

 

 

 

Intermittent Submaximal Fatiguing Protocol. Participants performed an 

intermittent isometric fatiguing protocol with the trunk flexor muscles in the upright 

position (0º), as many postural tasks are performed in upright positions, at an intensity of 

50% MVC torque. Prior to the fatiguing exercise, participants performed baseline MVCs 

for trunk flexion and knee extension, as previously described.  For the fatiguing exercise 

of the trunk flexor muscles, a target line representing 50% MVC was displayed on a 

computer screen in front of the participant. Vertical cursors were displayed to cue the 

participants when to contract (6 seconds) and when to relax (4 seconds).  Participants 
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were instructed to trace the target line as accurately as possible during each separate 

contraction.  A trunk flexion MVC was performed every minute, and sustained for six 

seconds, in order to match the contraction/relaxation cycle of the fatiguing task.  Every 

60 seconds participants verbally rated their perceived exertion during the 50% MVC 

fatiguing task (modified Borg scale, 0-10 scale) (Borg 1982). 

Each participant was verbally encouraged to continue the fatiguing task as long as 

possible.  Task failure was defined as inability to maintain target torque (50% MVC) for 

3 of the 6 s of a contraction or an MVC ≤ 50% of baseline MVC.  If task failure was 

reached during a submaximal contraction, an MVC was performed as the next 

contraction and then the fatiguing task was terminated. Representative torque and EMG 

activity of a fatiguing exercise bout is shown in Figure 1B.  To measure recovery, MVCs 

of the trunk flexor muscles were performed 10 minutes and 20 minutes after the end of 

the intermittent submaximal fatiguing protocol. 

Figure 2.1. Experimental Set Up & Representative Data of Fatigue Task.  

A 
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B 

 

 

 

Figure 2.1. (A) Experimental set up of the Biodex Back Flexion/Extension attachment in 

the upright sitting (0°) position, used for the fatigue task. The frame of the attachment is 

represented in light gray, with padding in medium gray and restraints in dark gray.  The 

red dot indicates the axis of rotation of the device.  (B) Representative trace of raw data 

for a young male.  EMG traces for right rectus femoris, left external oblique, and right 

rectus abdominis are shown.  The bottom trace is trunk flexion torque and shows the 50% 

submaximal contractions with MVCs performed every minute starting at minute six for a 

9.7-minute fatiguing exercise bout.   

 

 

 

Data Analysis 

 

 

 

Data obtained from the Biodex (MVC torque, steadiness of contraction, 

submaximal torque) was analyzed offline using Spike 2 software (CED). The MVC 

torque during trunk flexion contractions was determined by averaging the force over a 0.5 

s interval around the peak torque during the MVC.  Time-to-task failure for the 
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intermittent submaximal fatigue task was calculated from the onset of the first 

submaximal contraction to the end of the final MVC.   

Torque steadiness was quantified as the standard deviation (SD) of torque during 

submaximal contractions and during the fatiguing protocol. Because the amplitude of the 

torque fluctuations is dependent on the absolute torque (Enoka, Christou et al. 2003), 

steadiness was also quantified as the coefficient of variation (CV) of torque, calculated 

as: (SD of torque/mean torque) × 100%. During the sets of submaximal isometric 

contractions (5, 10, 20, 50, and 70% MVC), torque steadiness was quantified over a three 

second interval of a six second contraction. In order to represent changes in the control of 

force during the intermittent submaximal fatigue task, torque steadiness was calculated as 

the average torque fluctuations from three submaximal contractions at each quartile of the 

exercise protocol (beginning, 25%, 50%, 75%, and 100% of time-to-task failure).  

The maximal EMG activity of each muscle during trunk flexion MVCs was 

quantified as the Root Mean Square (RMS) value during the same 0.5 s interval as the 

MVC torque. During the intermittent submaximal fatigue task, EMG was quantified as 

the average RMS of the EMG signal from three submaximal contractions, and was 

obtained at the same intervals of the same submaximal contractions as torque and 

steadiness were calculated.  MVCs for knee extension were also performed during each 

test session to obtain maximal EMG from the rectus femoris.  Rectus abdominis and 

external oblique EMG during submaximal contractions was normalized to the RMS of 

the maximum EMG signal of each respective muscle obtained during trunk flexion 

MVCs in each test session.  A 30 Hz high-pass filter was applied to rectus abdominis and 

external oblique EMG to remove ECG artifact (Redfern, Hughes et al. 1993).  EMG of 
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rectus femoris during trunk flexion contractions (MVCs and submaximal contractions) 

was normalized to the RMS of the maximum EMG signal obtained from knee extension 

MVCs at each respective trunk position. 

Ultrasound images were analyzed using the GE vivid e ultrasound machine.  

Thickness of the right rectus abdominis muscle was measured from the inferior aspect of 

the superior fascial border to the superior aspect of the inferior fascial border (Whittaker, 

Warner et al. 2013). 

Statistical Analysis 

 

 

 

Data within the text and tables are presented as means ± SD and in figures as 

means ± standard error of the mean (SEM).  Independent samples t-tests were used to 

compare sex differences (males and females) for the following variables: subject 

characteristics, self-reported physical activity levels, rectus abdominis muscle thickness, 

MVC torque of trunk flexor muscles prior to fatiguing exercise, and time-to-task failure 

of the fatiguing task.  Repeated measures analysis of variance (ANOVA) was used to 

compare across conditions with sex as a between subject factor for the following 

variables: torque steadiness (SD of torque and CV of torque) across time during fatiguing 

task and across intensities (% MVC) for submaximal contractions, MVC torque at each 

trunk position (torque-angle curve), and MVC torque from task failure through recovery. 

Pearson correlation was performed to determine the associations between dependent 

variables, with only significant correlations reported.  Statistical analysis was performed 

on SPSS version 24 (IBM, Armonk, NY, USA).  Significant differences were defined as 

p ≤ 0.05. 
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RESULTS 

 

 

 

Baseline Measures 

 

 

 

Age, Body Mass Index (BMI), and physical activity levels were similar for males 

and females (Table 2.1).  Males were taller (t31 = -3.7, p = 0.001), weighed more (t31 = -

2.0, p = 0.049), and had lower body fat (t31 = 7.4, p < 0.001) than females.  Males also 

had greater lean mass in the trunk (t31 = -6.4, p < 0.001) than females, even when trunk 

lean mass was normalized to height (t31 = -6.1, p < 0.001).  Thickness of the right rectus 

abdominis muscle belly was 1.4 times greater in males than females when measured at 

2.5 cm above the umbilicus (t31 = -3.48, p = 0.003), and 1.3 times thicker in males than 

females at 2.5 cm below the umbilicus (t31 = -3.7, p = 0.002). See Table 2.1. 
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Table 2.1. Subject Characteristics 

 

    

 

 Females 

(n=18) 

Males 

(n=15) 

    

Age years 24.3 ± 4.8 24.1 ± 6.6     

Weight kg 65.2 ± 12.6 73.1 ± 8.8*     

Height 

cm 

166.6 ± 8.4 

176.8 ± 

7.6* 

    

Body Mass Index  kg·m-2 23.3 ± 3.5 23.1± 2.3     

Body Fat % 32.5 ± 5.1 18.6 ± 5.7*     

Lean Mass in Trunk  kg 20.0 ± 3.6 27.0 ± 3.2*     

Trunk Lean Mass/Height 

kg/cm 

0.12 ± 0.02 

0.15 ± 

0.02* 

    

Self-reported physical activity 

over preceding 12 months 

(Data from 16 females and 14 

males) 

Met·hours·week-

1 

44.7 ± 27.4 60.1 ± 39.9 
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kg=kilograms; cm= centimeters; m=meters; MET= Metabolic Equivalents; * indicates p≤ 

0.05. 

 

Torque-Angle Curve 

 

 

 

Both males and females generated larger MVC torque in extended positions (-40°, 

-30°, -20°) relative to more flexed positions (-10°, 0°, 20°; position: F5, 27 = 25.4, p < 

0.001, 
2

p  = 0.825; Figure 2.2).  Pairwise comparison indicated all positions, with the 

exception of -30°, were statistically different (p < 0.05) than the position of peak torque (-

40°).  However, males had greater isometric torque than females (sex: F1,31 = 7.5, p = 

0.01, 
2

p  = 0.194), but not for all positions (position × sex: F2.4, = 6.9, p = 0.001, 
2

p  = 

0.182).  Post-hoc testing (t-tests with adjusted α < 0.025) demonstrated sex differences in 

strength for the extended positions (-40°, t31 = -3.0, p = 0.006; -30°, t31 = -3.2, p = 0.003; 

-20°, t31 = -2.5, p = 0.022) with males generating greater torque than females in these 

positions.  No sex differences in MVC strength were present in the -10°, 0°, and 20° 

positions. 

 

 

 

Rectus Abdominis Muscle 

Thickness (above umbilicus) 

cm 1.0 ± 0.18 1.4 ± 0.36* 

    

Rectus Abdominis Muscle 

Thickness (below umbilicus) 

cm 0.97 ± 0.13 1.3 ± 0.35* 
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Figure 2.2. Torque Angle Curve. 
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Figure 2.2. Maximal voluntary isometric torque of trunk flexor muscles at multiple 

sagittal plane trunk positions for males and females.  * = sex difference in torque at this 

position.  # = torque statistically different from position of peak torque. 

 

 

 

EMG for torque-angle curve 

 

 

 

EMG activity of the rectus femoris did not differ across trunk position (position: 

F5, 27 = 1.6, p = 0.199, 
2

p  = 0.227) and was not different between sexes (sex: F1,31 = 1.0, p 

= 0.319, 
2

p  = 0.032), suggesting that the differences in torque across positions was not a 

result of contributions from the hip flexor muscles. 
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Fluctuations in Torque (Steadiness) 

 

 

 

Torque steadiness was quantified for contraction intensities ranging between 5% 

and 70% MVC in the upright sitting position (0º). Torque produced at each target 

intensity increased for both males and females (intensity: F4,15 = 60.4, p < 0.001, 
2

p  = 

0.941; intensity × sex: F4,15 = 1.2, p = 0.363, 
2

p  = 0.238), with no difference in absolute 

or relative torque (% MVC) between the sexes (sex: F1,18 = 2.4, p = 0.142, 
2

p  = 0.116 

and F1,18 = 2.0, p = 0.205,  
2

p  = 0.087, respectively).   

Standard deviation of torque was greater at high intensities compared with low 

intensities (intensity: F4,15 = 6.6, p = 0.003, 
2

p  = 0.639), for both males and females 

(intensity × sex: F4,15 = 1.3, p=0.299, 
2

p  = 0.264; Figure 2.3).   CV of torque was highest 

at a target intensity of 5% MVC and declined as target torque increased (intensity: F4, 15 = 

21.4, p < 0.001, 
2

p  = 0.851) for both males and females (intensity × sex: F4, 15 = 2.5, p = 

0.085, 
2

p  = 0.402; Figure 2.3). There were no sex differences in SD or CV of torque 

(sex: F1,18 = 0.339, p = 0.568, 
2

p  = 0.018 and F1,18 = 0.001, p = 0.977, 
2

p  < 0.001, 

respectively). 
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Figure 2.3. Torque Steadiness of Trunk Flexion at Different Intensities of 

Contraction. 
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Figure 2.3. Mean (± SEM) torque fluctuations for males and females represented as the 

standard deviation (SD) of torque and the coefficient of variation (CV) of torque, at 5, 10, 

20, 50, and 70% of maximal voluntary contraction (MVC) in upright sitting.  Torque 

steadiness differed with contraction intensity for SD and CV but there were no 

differences between males and females.   

 

 

 

Fatigability and Recovery 

 

 

 

Time-to-Task Failure and MVC Torque. Time-to-task failure for the isometric 

intermittent fatigue task did not differ between males and females (sex: t31 = -0.78, p = 

0.440; Table 2.2). MVC torque was not different between males and females at baseline 

(57.3 ± 23.8 vs 49.5 ± 22.2, respectively; p = 0.336) and declined during the fatiguing 
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exercise so that at task failure, the relative reduction in MVC torque from baseline was 

similar for the males and females (-30.64 ± 18.6% and -29.4 ± 13.7%, respectively; sex:  

t31 = 0.18, p = 0.862).  MVC torque increased in recovery similarly for males and females 

(time × sex: F2,30 = 0.6, p = 0.571, 
2

p  = 0.037) with no difference between males and 

females (sex: F1,31 = 1.1, p = 0.313, 
2

p = 0.033).  By 20 minutes post exercise, MVC 

torque was fully recovered and similar between sexes (t31 = 1.0, p = 0.315; Table 2.2).   
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Table 2.2. Muscle Function and Fatigability Characteristics 

MVC=maximal voluntary contraction; US=ultrasound; DXA=dual x-ray absorptiometry; 

min=minutes; * indicates p≤ 0.05. 

 

 

  Females (n=18) Males (n=15)   

Baseline MVC at Zero 

position  

Nm 49.5 ± 22.2 57.3 ± 23.8   

Baseline MVC normalized to 

trunk lean mass/height from 

DXA  

Nm/kg·cm-1 1.6 ± 0.6 1.5 ± 0.7   

Baseline MVC normalized to 

abdominal muscle thickness 

below umbilicus from US  

Nm·cm-1 51.0 ± 22.0 48.5 ± 20.3   

Time to Task Failure  min 10.6 ± 5.5 12.4 ± 7.4   

Rating of Perceived Exertion 

at task failure  

0-10 scale 6.9 ± 2.0 6.0 ± 2.4   

MVC at task failure % baseline 

MVC 

70.6 ± 13.7% 69.6 ± 18.6%   

MVC at 10 min recovery % baseline 

MVC 

98.9 ± 23.7 90.5 ± 18.8   

MVC at 20 min recovery % baseline 

MVC 

102.2 ± 18.7 94.2 ± 26.3   
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Torque and Steadiness during the Fatiguing Task.  Average torque (Nm) and 

relative torque (% MVC) produced during the submaximal contractions was similar 

between the sexes (sex: F1,31 = 0.58, p = 0.454, 
2

p  = 0.018 and F1,31 = 0.07, p = 0.797, 
2

p

= 0.002, respectively) and declined over time (time: F4, 28 = 10.7, p < 0.001, 
2

p  = 0.604 

and F4, 28 = 12.4, p < 0.001, 
2

p  = 0.638, respectively) for both males and females (time x 

sex: F4,28 = 0.43, p = 0.789, 
2

p  = 0.057 and F4,28 = 0.72, p = 0.584, 
2

p  = 0.094, 

respectively). 

SD of torque increased during the fatiguing task (time: F4, 28 = 6.1, p = 0.001, 
2

p = 

0.467) for both males and females (time × sex: F4, 28 = 0.64, p = 0.642, 
2

p  = 0.083; 

Figure 2.4a).  CV of torque also increased throughout the fatiguing protocol (time: F4, 28 = 

6.4, p = 0.001, 
2

p  = 0.476) for both males and females (time × sex: F4, 28 = 0.94, p = 

0.456, 
2

p = 0.118; Figure 2.4b).  There was no sex difference in force fluctuations when 

measured with SD or CV of torque (sex: F1,31 = 2.0, p = 0.168, 
2

p  = 0.060 and F1,31 = 3.0, 

p = 0.094, 
2

p = 0.088, respectively). 
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Figure 2.4. Steadiness of Submaximal Contractions During the Fatiguing Task. 
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Figure 2.4. Steadiness of submaximal contractions performed during the intermittent 

isometric trunk flexion fatiguing protocol.  Standard deviation (SD) of torque (A) and 

coefficient of variation (CV) of torque (B) are shown as the mean ± SEM of three 

submaximal contractions at each quartile (beginning, 25%, 50%, 75%, and end) of total 

time-to-task failure.  Fluctuations in torque increase over time for both males and females 

(p<0.05) with no sex difference in steadiness between males and females. 
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EMG activity during the Fatiguing Task. EMG activity (% MVC) of the rectus 

abdominis (Figure 2.5) and external oblique muscles increased throughout the fatiguing 

protocol (time: F4, 28 = 5.7, p = 0.002, 
2

p  = 0.449 and F4, 28 = 5.9, p = 0.001, 
2

p  = 0.457, 

respectively), similarly for males and females (time × sex: F4, 28 = 0.615, p = 0.432, 
2

p  = 

0.123 and F4, 28 = 0.615, p = 0.655, 
2

p  = 0.081, respectively).  There was no sex 

difference of rectus abdominis or external oblique EMG activity during the fatigue task 

(sex: F1,31 = 0.02, p = 0.899, 
2

p  = 0.001 and F1,31 = 2.9, p = 0.096, 
2

p  = 0.087, 

respectively). 

Rectus femoris EMG remained low (<12% of maximal EMG) throughout the 

fatiguing protocol for both males and females (time × sex: F4, 28 = 1.6, p = 0.190, 
2

p = 

0.191), with no effect of time (time: F4, 28 = 1.7, p = 0.175, 
2

p  = 0.197) or sex (sex: F1,31 = 

1.2, p = 0.275, 
2

p  = 0.038). 
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Figure 2.5. EMG of the Rectus Abdominis During the Fatiguing Task.   
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Figure 2.5.  Mean (± SEM) RMS EMG (expressed as percent of maximal RMS EMG, 

%) of the Rectus Abdominis during submaximal trunk flexion contractions across the 

fatiguing protocol.  Rectus Abdominis EMG increased over time (p<0.05) for both sexes 

(p>0.05) with no sex difference (p>0.05). 

 

 

 

Associations between Variables 

 

 

 

Trunk flexor MVC torque in upright sitting (0º trunk flexion) was positively, 

linearly correlated with fatigability of the trunk flexor muscles (r = 0.473, r2 = 0.223, p = 

0.005; Figure 2.6A).  Trunk flexor MVC torque was also positively correlated with lean 

mass in the trunk, and this correlation was strongest at the -40° position, where both 
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sexes generated the greatest peak torque (-40°, r = 0.595, r2 = 0.354, p < 0.001; 0°, r = 

0.378, r2 = 0.143, p = 0.03, Figure 2.6B).  Longer time to failure of the trunk flexor 

muscles was associated with greater self-reported physical activity over the previous 12 

months (r = 0.456, r2 = 0.208, p = 0.011; Figure 2.6C).  Greater self-reported physical 

activity over the previous 12 months was also associated with greater lean mass in the 

trunk (r = 0.486, r2 = 0.236, p = 0.007; Figure 2.6D). 
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Figure 2.6. Associations 
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Figure 2.6  A. Greater MVC torque of trunk flexor muscles was associated with larger 

lean mass in the trunk (r=0.378, p= 0.011). B. Longer time to task failure during an 

intermittent isometric trunk flexion fatiguing exercise task was associated with greater 

MVC torque of trunk flexor muscles (r=0.473, p= 0.005).  C. Longer time to task failure 

of the trunk flexor muscles was associated with self-reported physical activity levels over 

the preceding year (r=0.456, p= 0.030).  D. Greater self-reported physical activity levels 

over the preceding year were associated with greater lean mass in the trunk (r=0.486, 

p=0.007). 
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DISCUSSION 

 

 

 

 There were several novel findings in this study.  First, there was no sex-related 

difference in fatigability or steadiness of the trunk flexor muscles.  Second, men were 

stronger than women (MVC torque), but this was only at the more extended positions. 

Accordingly, males had more lean mass than females (measured with DXA scan) and 

greater rectus abdominis muscle thickness (measured with ultrasonography).  The 

strength of the relationship between lean mass and strength was strongest in the extended 

positions (-40, -30, -20), where a sex difference in strength was also observed.  However, 

there was no sex difference in fatigability, or in strength in the upright and flexed 

positions (-10, 0, 20).  Third, MVC torque and fatigability (time-to-task failure) of the 

trunk flexor muscles, both performed in upright sitting, were positively correlated, such 

that stronger individuals were less fatigable, and this is in contrast to several other muscle 

groups, such as the elbow flexor muscles (Hunter and Enoka 2001).  Physical activity 

levels (self-reported) were associated with fatigability, demonstrating that more 

physically active people were less fatigable.   

The relationship between torque steadiness and contraction intensity that we 

observed is consistent with that seen in other muscle groups such as the plantar flexors, 

dorsiflexors, finger abductors and elbow flexor muscles, such that the SD of torque 

increased and CV of torque decreased as contraction intensity increased (Tracy 2007, 

Jesunathadas, Klass et al. 2012).  However, there was no sex difference in the torque 

steadiness during trunk flexion contractions while in upright sitting. For both sexes, 

however, the CV of torque of the trunk flexor muscles (15%), was higher than that 
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typically seen in other muscle groups at low contraction intensities (<10% MVC) (Figure 

3), such as the first dorsal interosseous (~4%), elbow flexors (~2%), and quadriceps 

muscles (~1.5%) (Hunter, Critchlow et al. 2004, Tracy, Maluf et al. 2005, Welsh, 

Dinenno et al. 2007). As for other muscles, common drive to the motor units and their 

discharge rates of the trunk flexor muscles impact the steadiness of contraction (Farina 

and Negro 2015), probably explaining the similarity in the shape of the CV- force 

intensity curve between the abdominals and limb muscles.  

There are several possible explanations for these muscle group differences in 

torque steadiness amplitude, i.e. the greater CV of torque of the trunk flexor muscles.  

First, the abdominal muscles are innervated from several spinal levels (T7-L1) (Neumann 

2016).  The activation of many alpha motor neurons from multiple spinal levels is 

required to control torque generated by the multiple large muscles that comprise the trunk 

flexors (Neumann 2016).  The neurological complexity of this task may contribute to the 

large fluctuations in torque.  The large CV of torque of the trunk flexor muscles may also 

be impacted by the relatively long and massive trunk, which may make this body 

segment more difficult to control than smaller limb segments, like the forearm or index 

finger.  Ventilation may also impact torque steadiness, as the active abdominal muscles 

must accommodate the rhythmic expansion and contraction of the thorax and abdomen 

(trunk) during strength testing. This movement of the rib cage may also reduce the 

stability of the proximal attachments of the abdominal muscles (Hunter, Ryan et al. 

2002).  There may be minor contributions in the force output from chest and shoulder 

muscles, such as the upper trapezius muscles, because during the task the trunk was 

restrained by two large straps that contact the superior aspects of the shoulders.  Lastly, 
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during contraction, the summation of forces from multiple motor units is influenced by 

the interaction between contractile tissue and connective tissue (Taylor, Christou et al. 

2003).  Thus, the presence of multiple tendinous intersections within the rectus abdominis 

(Neumann 2016), and the fascial attachments of the internal and external obliques, may 

impact the stability of the force generated by the muscle fibers and transferred across the 

connective tissue, possibly influencing the magnitude of the torque fluctuations during 

trunk flexion. The contribution of the mechanical and anatomical features of this unique 

muscle group, and the influence of discharge rate variability of the motor units from 

multiple muscles originating from common drive, is yet to be explored.   

There was no sex-related difference in fatigability of the trunk flexor muscles for 

strength-matched males and females during the submaximal, intermittent isometric 

fatiguing protocol.  This finding is in contrast to other muscles, such as the elbow flexors, 

where males demonstrated greater fatigability compared with strength-matched females 

(Hunter, Critchlow et al. 2004).  The lack of sex difference in fatigability may be due to 

the fact that the abdominal muscles are a postural and ventilatory muscle group, and thus 

may be designed to be especially fatigue resistant in both sexes.  Haggmark & 

Thorstensson (1979) showed that the abdominal muscles of males and females are 

comprised of approximately 55-58% type I muscle fibers, which are fatigue resistant 

relative to other fibers (type II) (Häggmark and Thorstensson 1979).  In other muscle 

groups, females tend to have a greater proportion of type I muscle fibers than males, 

which may contribute to females being more fatigue resistant than males (Hunter 2014, 

Hunter 2016).  However, in muscle groups that have a high proportion of type I fibers in 

both males and females, such as the tibialis anterior, the sex difference in fatigability is 
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diminished or absent (Avin and Law 2011, Hunter 2014), which is consistent with our 

findings.  Furthermore, ratings of perceived exertion at task failure were not different 

between sexes in our study, suggesting that males and females gave similar effort during 

the fatiguing exercise task (Table 2.2).  Ratings of perceived exertion at task failure were 

not, on average, at maximal levels, because some participants reported feeling as though 

they could continue the task if allowed to utilize compensatory movement strategies. 

However, all participants met the criteria for failure of the fatiguing task. Importantly, our 

study showed that physical activity was more a determinant of fatigability than the sex of 

the individual, as shown by the significant correlation between time-to-task failure and 

self-reported physical activity.  

Strength and fatigability of the trunk flexor muscles were positively correlated.  

This is in contrast to most other muscle groups, where weaker individuals are more 

fatigue resistant, such as for sustained isometric contractions of the elbow flexor and 

hand grip muscles in young adults (Hunter and Enoka 2001, Hunter, Critchlow et al. 

2004, Hunter, Schletty et al. 2006), where occlusion of blood flow is the primary 

mechanism responsible for the inverse relationship between strength and fatigability.   

The current study utilized an intermittent isometric protocol for which occlusion of blood 

flow is not a primary mechanism, thus making it less likely that strength-related blood 

flow differences between participants would influence fatigability.  The role of the 

abdominal muscles in stability of the lumbar spine and pelvis, and as accessory muscles 

of ventilation (Neumann 2016), may explain the physiological need for a positive 

correlation between strength and fatigability in order to minimize injury risk and to avoid 

possible impairments with breathing during exercise.  While these mechanisms were not 
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tested in this study, it is possible that some combination of neural input, muscle and 

connective tissue architecture (Gracovetsky 2008), blood flow (Manohar 1986), and 

sympathetic drive (Derchak, Sheel et al. 2002) may contribute to improved fatigue 

resistance with increasing strength.   

The positive correlation between strength and fatigability in this study may 

provide insight into the lack of a sex difference in fatigability.  Females are typically 

weaker than males and demonstrate greater resistance to fatigue but there was no sex 

difference in strength for the trunk flexor muscles in upright sitting, and this was the 

position for the test of fatigability.  In strength matched males and females who 

performed an intermittent, isometric submaximal fatiguing protocol with the elbow 

flexors, also at 50% of MVC torque, women were less fatigable than men (Hunter, 

Critchlow et al. 2004).  We did not observe this sex difference in fatigability of the trunk 

flexors in the males and females in this study, who did not differ in strength in upright 

sitting.  While this study did not examine mechanisms responsible for fatigability, we 

hypothesize that several factors may contribute to the lack of a sex difference in 

fatigability. However, future research is needed to identify the mechanisms responsible 

for the relationship between strength and fatigability in this muscle group.  This 

association also supports the importance of “core” strengthening. 

Conclusion 

 

 

 

 This study shows that there are no sex differences in fatigability or force control 

during isometric trunk flexion contractions. These findings of minimal differences in 

fatigability for the trunk muscles is in contrast to other studies that show clear differences 
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in fatigability of other muscle groups, such as the elbow flexors and knee extensors 

(Hunter 2016). Furthermore, although men were stronger than females in the extended 

trunk positions of sitting, there was a minimal difference in maximal strength in upright 

and flexed sitting positions. Stronger males and females during upright sitting, however, 

were less fatigable than weaker individuals, and both strength and fatigability may be 

modulated by physical activity levels.  The relationship between strength and fatigability 

of the trunk flexor muscles and physical activity supports the importance of abdominal 

muscle strengthening to offset fatigability. 
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IIB. Effect of Trunk Flexor Fatiguing Exercise on Pain Perception in Healthy Men 

and Women 

 

 

 

INTRODUCTION 

 

 

  

The reduction in pain perception following exercise is known as exercise-induced 

hypoalgesia (EIH).  The magnitude of EIH is dependent upon both the intensity and 

duration of exercise (Hoeger Bement, Dicapo et al. 2008, Naugle, Fillingim et al. 2012); 

greater pain relief occurs with fatiguing contractions (Hoeger Bement, Dicapo et al. 

2008). Additionally, EIH may be larger at the exercising muscle than distal body sites 

(Kosek and Lundberg 2003, Vaegter, Handberg et al. 2014). Less is known about the 

importance of muscle specificity and the role of strength and muscle mass (Strasser, 

Draskovits et al. 2013). There is negligible data on the pain response to fatiguing exercise 

of the abdominal muscles. despite the frequent use of abdominal exercises in the 

treatment of a multitude of pain conditions (Wang, Zheng et al. 2012). The purpose of 

this study was to determine both local and systemic pain responses to abdominal muscle 

fatiguing exercise. 

MATERIALS AND METHODS  

 

 

 

Thirty-four adults (15 men, 24±7 years and 19 women, 24±5 years) performed an 

intermittent isometric fatiguing trunk flexion task. The protocol involved performance of 

trunk flexion contractions at 50% of maximal voluntary contraction (MVC) for 6 seconds 

with 4-seconds rest between contractions and 1 MVC every minute and at task failure 
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(Biodex Medical, Shirley, NY). Subjects were positioned in upright sitting that was 

verified with an angle meter.   

Pain testing was performed before and after the exercise protocol in the Biodex 

apparatus.  Pressure pain thresholds (PPTs) were assessed at the nailbed of the left middle 

finger and at the left upper rectus abdominis (5 cm above and 2 cm lateral to the 

umbilicus) using a computerized pressure algometer (Medoc Ltd, Yishai, Israel).  Three 

trials were performed at each site with an inter-stimulus interval of 10 seconds at a rate of 

10 kPa/s.  Participants were instructed to press a timing device “as soon as pressure 

changes to pain.”  While testing the abdominal muscle site, participants received the 

same instructions with the added instruction to breathe normally and not to press their 

abdomen out against the algometer.  Pain thresholds were recorded for all three trials and 

averaged. 

Muscle thickness measurements of the right rectus abdominis were recorded at 

2.5 cm above and below the umbilicus with a GE vivid e ultrasound machine (GE 

Healthcare, Little Chalfont, United Kingdom; 8LRS transducer).  The full width of the 

rectus abdominis was scanned and the measurement was taken in the region that visually 

appeared to be the thickest at end expiration. 

Change in PPTs were analyzed with repeated measures analysis of variance 

(ANOVA) over time (pre-post exercise) with sex as a between-subject factor, and 

independent t-tests compared subject characteristics and baseline PPTs between sexes. 

Correlation analysis between change in PPTs (post-pre) at the rectus abdominis muscle 

and muscle thickness was conducted with Spearman’s rho nonparametric correlation due 

to non-normal distribution of ultrasound data.  Pearson correlation was used to explore 
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the relationship between baseline pain and pain response to exercise at both the nailbed 

and the abdomen.  Significance was identified at p < 0.05.   

RESULTS 

 

 

 

There was no sex difference in trunk flexion strength (MVC torque) in upright 

sitting, time to task failure for the intermittent isometric fatiguing protocol, or baseline 

PPTs at the abdominal muscle (p > 0.05).  Men had greater muscle thickness while 

supine, greater trunk flexion strength while reclined (p = 0.002), and higher baseline 

PPTs at the nailbed (p = 0.05) than women.  

Men and women demonstrated a similar increase in PPTs (i.e., similar EIH) at the 

rectus abdominis site after fatiguing exercise (time effect p < 0.001; time x sex p > 0.05; 

sex p > 0.05).  Change in PPTs at the abdominal muscle site was positively correlated 

with muscle thickness (rs = 0.416, p = 0.014).  A trial by sex interaction (p = 0.022) was 

present for pain thresholds at the nail bed with fatiguing exercise: men demonstrated a 

decline in PPTs (i.e., hyperalgesia) at the nailbed following isometric trunk flexion 

fatiguing exercise (318 kPa pre-exercise vs 288 kPa post-exercise, p = 0.021), and 

women had no change in PPTs (226 kPa pre-exercise vs 228 kPa post-exercise, p = 

0.732).  Baseline PPTs at the nailbed were also associated with the change in PPT after 

exercise (r = -0.425, p = 0.010), but baseline PPTs at the abdomen were not associated 

with EIH at the abdomen (r = -0.028, p = 0.872). 
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Figure 2.7. Change in PPT at the Nailbed in Response to Trunk Flexion Exercise 
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Figure 2.7.  At baseline (pre-exercise), men demonstrate higher PPT at the nailbed (*).  

Following exercise, only men report a decrease in PPT (ie.. hyperalgesia; #). 
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Figure 2.8. Change in PPT at the Abdomen in Response to Trunk Flexion Exercise 
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Figure 2.8.  At baseline, men and women demonstrate similar PPTs before and after 

exercise.  Following exercise, PPTs increased for both sexes (i.e hypoalgesia). 
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Figure 2.9. Association between EIH at the abdomen and Rectus Abdominis Muscle 
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Figure 2.9.  EIH was associated with muscle thickness of the left upper rectus abdominis.  

Individuals with thicker muscle demonstrated a greater increase in PPT following 

fatiguing exercise of the abdominal muscles. 

 

 

 

DISCUSSION 

 

 

 

The main findings of this study are: (1) EIH occurs locally (i.e., abdomen) 

following trunk flexor exercise in men and women; (2) men, but not women, report 

hyperalgesia at a site distal (i.e., nailbed) from the exercising muscles; and (3) EIH 
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measured at the abdominal muscle was associated with thickness of the rectus abdominis 

muscle.  

To our knowledge, this is the first study to show EIH following fatiguing trunk 

flexor exercises. The hypoalgesia was localized to the exercising muscle, which is similar 

to others showing greater EIH at the exercising muscle compared with distal sites (Kosek 

and Lundberg 2003). Despite the local EIH effect that was similar between men and 

women, men reported hyperalgesia at the nailbed following the trunk flexor exercise 

while women reported no change in pain perception at the distal site. Interestingly, sex 

differences were also present in the baseline pain threshold at the nailbed with men 

reporting higher PPTs compared with women.  Previously, we have shown associations 

between baseline pain and EIH (Hoeger Bement, Weyer et al. 2011, Lemley, Senefeld et 

al. 2016). In women with fibromyalgia, baseline pain sensitivity predicted reports of pain 

following exercise; those with lower pain sensitivity reported an increase in pain 

following exercise (Hoeger Bement, Weyer et al. 2011). Similarly, in this study, when 

men reported less baseline pain sensitivity compared with women they were more likely 

to report hyperalgesia following exercise.  

Men typically demonstrate higher PPTs than women (Racine, Tousignant-

Laflamme et al. 2012), which was shown at the nailbed site in this study, thus making the 

lack of a sex difference in pain threshold at the abdominal site in this study unique.  The 

lack of a sex difference may be partially explained by the fact that women tend to have 

greater abdominal fat than men (Deering, Senefeld et al. 2017).  Price and colleagues 

have shown higher pain thresholds in areas with excess subcutaneous fat (Price, Asenjo et 

al. 2013).  
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Individuals with thicker abdominal muscles demonstrated greater EIH. Previous 

work from our lab in a similar cohort demonstrated an association between lean muscle 

mass in the trunk and physical activity levels, with more active individuals having greater 

lean muscle (Deering, Senefeld et al. 2017).  Physical activity has also been shown to be 

associated with endogenous pain inhibition (Lemley, Drewek et al. 2014).  It is possible 

that individuals with greater muscle thickness were also more physically active, thus 

exhibited a greater increase in PPT in response to exercise.  

Fatiguing exercise of the abdominal muscles, using an intermittent isometric 

protocol, successfully produced localized EIH in both men and women. Sex differences 

were present with men reporting less pain sensitivity at the nailbed, and following the 

trunk flexor exercise only men reported hyperalgesia at the nailbed (distal from the 

exercising muscle).  Thus, baseline pain perception may be an important factor in the 

potential for EIH sex differences.  
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III. TRUNK FLEXOR STRENGTH & FATIGABILITY IN WOMEN 8 & 26 

WEEKS POSTPARTUM 

 

 

 

Introduction 

 

 

 

Background/rationale.  Several physiological processes occur during pregnancy that 

impact the mother’s musculoskeletal system.  The abdominal muscles experience 

substantial stretch and increased inter-recti distance (IRD) commonly occurs 

(Boissonnault and Blaschak 1988, Coldron, Stokes et al. 2008).  Hormones act on 

connective tissues throughout the mother’s body, resulting in joint laxity, particularly in 

the pelvis (Kristiansson, Svardsudd et al. 1999, Negishi, Li et al. 2005, Chearskul 2006).  

The loss of passive lumbopelvic joint stabilization increases the importance and role of 

muscular stabilization, which is provided by the core muscles, including the abdominal 

muscles (Hodges, Kaigle Holm et al. 2003, Stokes, Gardner-Morse et al. 2011, Neumann 

2016).  Function of the abdominal muscles may also be compromised with pregnancy, 

although this is not well quantified.   

Appropriate function of the abdominal muscles is critical for several life functions, 

including continence, breathing, and lumbopelvic stability (Hodges, Kaigle Holm et al. 

2003, Lee, Lee et al. 2008). Postpartum women report impaired control of the abdominal 

muscles (Coldron, Stokes et al. 2008), and increased IRD in postpartum women is 

associated with abdominal and pelvic pain (Parker and Millar 2008).  Dysfunction of the 

abdominal muscles is also associated with low back pain (Hodges and Richardson 1996, 

Hides, Boughen et al. 2010, Gildea, Hides et al. 2013). Up to 75% of pregnant women 
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experience low back pain or pelvic girdle pain during pregnancy (Albert, Godskesen et 

al. 2000, Wu, Meijer et al. 2004) and ~25% of these women continue to report pain after 

delivery (Ostgaard, Zetherström et al. 1994, Albert, Godskesen et al. 2000, Wu, Meijer et 

al. 2004).  In addition, mode of delivery may impact recovery: Cesarean delivery 

involves profound disruption of the anterior abdominal wall (Corton, Leveno et al. 2009) 

and is associated with greater reports of postpartum pain and slower, more arduous 

recovery (Lobel and DeLuca 2007) than vaginal birth. 

Given these reported changes in pain and recovery that suggest an impaired core 

musculoskeletal system in postpartum women, we investigated several aspects of muscle 

function including strength and fatigability of the abdominal muscles. Fatigability is an 

acute, activity-induced decline in the force or power of a muscle (Enoka and Duchateau 

2008).  This metric of muscle function plays an important role in motor performance, 

injury prevention, and rehabilitation (Enoka and Duchateau 2008).  However, fatigability 

of the abdominal muscles is rarely assessed clinically. Additionally, the musculoskeletal 

system is not assessed as part of standard care in pregnant or postpartum women (Borders 

2006, Cheng, Fowles et al. 2006, Liddle and Pennick 2015), and musculoskeletal 

impairments are often dismissed as ‘normal’.  Paid maternity leave in the United States, 

when available, is typically 6-8 weeks in duration (Vahratian and Johnson 2009) and 

often dictated by recovery of the smooth muscle of the uterus and perineal or surgical 

incision healing (Borders 2006, Archuleta 2015).  Thus, we assessed abdominal function 

when women are typically returned to work (~8 weeks postpartum), as well as at 26 

weeks postpartum, to determine recovery of the abdominal muscles.  
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Objectives. This study examined recovery of the maternal musculoskeletal system 

after vaginal and Cesarean delivery. Maximal strength and fatigability of the trunk flexor 

muscles in women 8-10 weeks and 24-26 weeks postpartum were compared with 

nulligravid controls. We focused on the abdominal muscles, which are the primary 

movers during trunk flexion.  We hypothesized that (1) postpartum women would 

demonstrate significant deficits in maximal strength and fatigability of the trunk flexor 

muscles up to 26 weeks after delivery, and (2) women who underwent Cesarean delivery 

would have greater deficits in strength and fatigability than those who delivered 

vaginally. 

Methods 

 

 

 

Study design. Both a longitudinal and cross-sectional design were used to preserve 

subject numbers. 

Setting. Data was collected from 2014-2016 in a University research laboratory.  

Recruitment was conducted from the University, physician referral from a local medical 

center, and the surrounding communities via print, internet and radio advertisements. 

Participants. All participants were females between 18 and 45 years old, not pregnant 

at the time of testing, free of chronic health conditions, did not smoke or use smokeless 

tobacco, had no known neurological impairment, did not take medications that impact 

neuromuscular excitability (including anti-depressants), and had no medical or orthopedic 

contraindications to exercise.  Control women had never been pregnant. 
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Thirty-two postpartum women (vaginal delivery n=19, Cesarean delivery n=13) and 

22 control women participated in the study.  Control women were also tested at two time 

points, separated by 16 weeks, to control for the effects of time and learning.   

Variables and data sources/measurement.  

 

 

 

Trunk flexion torque. Maximal and submaximal trunk flexion torques were 

measured with a Biodex System 4 dynamometer (Biodex, Shirley, New York) using a 

Back Flexion-Extension attachment.  Maximal torque was assessed in six positions 

(upright sitting [0°]; 10°, 20°, 30°, and 40° of extension; 20°of flexion) to determine the 

strength of the trunk flexor muscles at different muscle lengths. Details of device set up 

and subject positioning are described elsewhere (Deering, Senefeld et al. 2017).  In brief, 

subjects performed trunk flexion, as if curling the shoulders toward the hips, without 

engaging the lower extremities.  A study investigator (physical therapist) visually 

inspected all trunk flexion trials, and any trials with lower extremity involvement were 

excluded.   

A minimum of three trials of maximal voluntary contractions (MVC) were performed 

at each position, with 1 minute of rest between trials, until two trials were within 5% of 

each other.  The maximum value was considered the MVC.  Torque was recorded online 

using a Power 1401 A-D converter and Spike2 software [Cambridge Electronics Design 

(CED), Cambridge, UK].  Torque signals were digitized at 500 Hz and displayed on a 

monitor in front of the participant. 

Hand Grip Strength.  Bilateral handgrip strength was assessed with a JAMAR 

handgrip dynamometer (Patterson Medical, Warrenville, IL), with the arm positioned 
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fully extended at the side, as a control muscle group. Three trials were performed 

bilaterally, and the highest value for each hand was used.   

Fatigability.  Fatigability of the trunk flexor muscles was assessed with an 

intermittent, isometric submaximal fatiguing protocol. Subjects performed trunk flexion 

contractions in upright sitting (0°) in the Biodex attachment at 50% MVC (target line 

displayed on a monitor) for 6 seconds, followed by 4 seconds of rest.  A 6-second MVC 

was performed every minute (in lieu of 50% MVC), followed by 4 seconds of rest.  

Strong verbal encouragement was provided to continue until failure.  Task failure was 

identified as torque <50% MVC for ≥ 3 seconds of the 6-second contraction or an MVC 

of <50% of baseline MVC.  The fatiguing protocol always ended with an MVC.  

Recovery of maximal strength was assessed with an MVC at 10 minutes and 20 minutes 

after task failure. 

Inter-recti distance and rectus abdominis muscle thickness. Real-time ultrasound 

(GE Vivide; 8 LRS linear probe) was used to assess IRD and thickness of the rectus 

abdominis muscles in supine.  Measurement of IRD was made 4 cm below the umbilicus, 

because increased IRD below the umbilicus is usually more severe.(Boissonnault and 

Blaschak 1988)  Muscle thickness measurements of the right rectus abdominis were taken 

2.5 cm above and below the umbilicus.   

Physical activity.  Self-reported physical activity was estimated with a questionnaire, 

which estimated the metabolic cost (METs) and the weekly metabolic equivalents 

(MET∙hour∙week-1) of activities performed over the previous year (Kriska, Knowler et al. 

1990). Physical activity around the time of experimental testing was quantified with 

ActiGraph accelerometers (ActiGraph Corp, Pensacola, Florida) worn around the waist 
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for 2 week days and 2 weekend days. Average minutes/day of moderate intensity exercise 

was quantified using ActiLife analysis software (ActiGraph). 

Body composition.  Dual x-ray absorptiometry (DXA) was used to estimate fat mass 

with a GE Lunar iDXA (GE Healthcare, Little Chalfont, United Kingdom). 

Functional mobility.  The six minute walk test (Ross, Murthy et al. 2010) was 

performed on an indoor course to quantify the maximal walk distance in six minutes.  

Reported pain and low back pain related disability.  The McGill Pain Questionnaire-

short form (Melzack 1987) was used to quantify pain. The Oswestry Disability Index 

(Fairbank, Couper et al. 1980, Fairbank and Pynsent 2000, Fairbank 2014) was used to 

determine the impact of low back pain on performance of activities of daily living. 

Bias.  Postpartum women in this study reported minimal pain/disability. 

Study size. Sample size was determined from a priori power analysis using G-Power 

(Heinrich-Heine-Universitat Dusseldorf, Dusseldorf, Germany) and the main variables of 

strength and fatigability. 

Statistical methods.  Differences between groups (postpartum and control) were 

determined for subject characteristics, pre-exercise MVC torque, IRD, and time-to-task 

failure (fatigability) using independent samples t-tests.  Differences between groups for 

torque-angle curve and recovery of MVC torque following fatiguing exercise were 

assessed using repeated measures analysis of variance (ANOVA) with group as a 

between-subjects factor.  Impact of method of delivery (Cesarean vs vaginal) was 

assessed with independent samples t-tests for subject characteristics, MVC torque and 

fatigability. Pearson correlation was used to examine relationships between scale level 

variables that demonstrated a linear relationship.  Spearman correlation was used to 
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examine relationships between variables that had a curvilinear relationship and/or were 

ordinal level data.  Significance was set as p<0.05.  Missing data was excluded analysis 

by analysis.  Statistical analyses were performed with SPSS version 24 software (IBM, 

Armonk, NY, USA). 

Results 

 

 

 

Participants. Twenty-nine postpartum women (Vaginal delivery n=18, Cesarean 

delivery n=11) and 15 control women completed initial (8-10 weeks postpartum) testing.  

Twenty-eight postpartum women (Vaginal delivery n=17, Cesarean delivery n=11) and 

14 control women completed testing at follow up (24-26 weeks postpartum).  For paired 

samples testing, eight control women and 26 postpartum women (Vaginal delivery n=17, 

Cesarean delivery n=9) had complete data sets at both time points.  Loss of follow up for 

seven control women and two women from the Cesarean group was due to schedule 

conflicts.  One woman from the vaginal group did not complete follow up testing due to 

pregnancy.  Two women from the Cesarean group completed testing only at 24-26 weeks 

postpartum. 

Descriptive data. Group characteristics, including body composition, handgrip 

strength, muscle thickness, and physical activity, are presented for controls vs postpartum 

women in Table 3.1 and vaginal delivery vs Cesarean delivery in Table 3.2. 
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Table 3.1. Subject characteristics: Control vs Postpartum 

  
INITIAL (8wks 

Postpartum) 

FOLLOW UP (26 wks 

Postpartum) 

Variable 
Control 

(n=15) 

Postpartum 

(n=29) 

Control 

(n=14) 

Postpartum 

(n=28) 

Age (yrs) 25.5 ± 5.3  31.4 ± 5.2*  25.8 ± 6.1  32.0 ± 5.1* 

Weight (kg) 
63.6 ± 

12.7  
74.4 ± 13.4*  62.7 ± 7.8  71.4 ± 14.0*  

Height (cm) 
166.6 ± 

7.1  
164.1 ± 4.6  

166.9 ± 

8.4  
164.1 ± 4.8  

BMI (kg/m2) 22.7 ± 3.8  27.6 ± 5.0*  22.4 ± 1.8  26.9 ± 5.1*  

Body Fat (%) 31.0 ± 5.4  38.5 ± 6.9*  31.8 ± 4.6  36.7 ± 8.4*  

McGill Pain Questionnaire-

short form 
0.4 ± 1.0 0.3 ± 0.7 0.3 ± 0.7 0.9 ± 2.0 

Oswestry Disability Index 1.1 ± 2.5 4.6 ± 5.4* 0.9 ± 1.9 4.7 ± 7.1 

Thickness of right rectus 

abdominis muscle belly (2.5 

cm above umbilicus) (cm) 

1.0 ± 0.2  0.8 ± 0.2*  
1.0 ± 0.1 

(n=13) 
0.8 ± 0.2*      

Thickness of right rectus 

abdominis muscle belly (2.5 

cm below umbilicus) (cm) 

1.0 ± 0.2  0.8 ± 0.2*  
0.9 ± 0.1 

(n=13) 
0.8 ± 0.2    

Average minutes/day of 

moderate intensity physical 

activity 

47.8 ± 

23.4 

(n=9) 

18.8 ± 18.8* 

(n=20) 

31.2 ± 

14.0 

(n=7) 

16.7 ± 10.5* 

(n=13) 

Self-reported physical activity 

over the previous 12 months 

(MET·hours·week-1) 

43.0 ± 

28.3 

(n=14) 

22.2 ± 19.2* 

(n=27) 

34.0 ± 

25.1  

14.9 ± 17.3* 

(n=25) 

Distance walked in 6 minutes 

(m) 

686.2 ± 

58.7  
640.0 ± 64.8  

693.3 ± 

58.2  
652.7 ± 65.1  

Hand grip maximal strength, 

right hand (kg) 
33.4 ± 6.7  33.1 ± 5.9  34.2 ± 5.3  

34.1 ± 6.5 

(n=27) 

Hand grip maximal strength, 

left hand (kg) 
31.4 ± 5.9  31.1 ± 4.9  30.8 ± 4.5  

32.3 ± 5.6 

(n=27) 

Change in MVC torque at end 

of fatiguing exercise protocol 

(% MVC) 

-26.2 ± 

15.9   
-14.6 ± 32.4   

-30.0 ± 

13.4  
-24.0 ± 18.8  

* Indicates p<0.05 
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Table 3.2. Subject Characteristics: Vaginal vs Cesarean Delivery 

  8 weeks Postpartum 
26 weeks 

postpartum 

Variable 
Vaginal 

(n=18) 

Cesarean 

(n=11) 

Vaginal 

(n=17) 

Cesarean 

(n=11) 

Age (yrs) 30.6 ± 6.0  32.8 ± 3.5  
31.4 ± 

5.8  
33.0 ± 4.0  

Weeks postpartum 9.4 ± 1.1 9.3 ± 0.5 
26.1 ± 

1.6 
26.2 ± 0.6 

Total Number of Pregnancies 
2.1 ± 1.2 

(n=17) 

3.0 ± 1.9 

(n=10) 

2.1 ± 1.1 

(n=15) 

3.0 ± 2.1 

(n=9) 

Duration of Most Recent 

Pregnancy (weeks) 

39.3 ± 1.0 

(n=14) 

38.1 ± 

1.2* 

(n=10) 

39.3 ± 

1.0 

(n=12) 

38.3 ± 1.4   

(n=9) 

Weight (kg) 74.3 ± 14.4  
74.2 ± 

12.2  

70.9 ± 

15.3  

72.4 ± 

12.4  

Height (cm) 164.6 ± 4.3  
163.1 ± 

5.3  

165.1 ± 

4.8  

162.6 ± 

4.8  

BMI (kg/m2) 27.5 ± 5.4  27.8 ± 4.3  
26.4 ± 

5.6  
27.5 ± 4.3  

Body Fat % 39.0 ± 7.0  37.7 ± 7.0  
36.1 ± 

8.8  
37.7 ± 8.2  

McGill Pain Questionnaire-short 

form 
0.4 ± 0.8 0.2 ± 0.5 1.2 ± 2.4 0.3 ± 0.7 

Oswestry Disability Index 6.4 ± 6.0 1.6 ± 2.5* 5.4 ± 7.9 3.6 ± 5.9 

Thickness of right rectus 

abdominis muscle belly (2.5 cm 

above umbilicus) (cm) 

0.8 ± 0.2  0.8 ± 0.1  0.8 ± 0.2  0.8 ± 0.1      

Thickness of right rectus 

abdominis muscle belly (2.5 cm 

below umbilicus) (cm) 

0.8 ± 0.2  0.8 ± 0.2  0.8 ± 0.3  0.8 ± 0.2    

Average minutes/day of moderate 

intensity physical activity 

17.1 ± 19.1 

(n=10) 

20.4 ± 

19.4 

(n=10) 

16.8 ± 

11.2 

(n=10) 

13.1 ± 4.9 

(n=3) 

Self-reported physical activity 

over the previous 12 months 

(MET·hours·week-1) 

22.0 ± 16.3 

(n=17) 

22.6 ± 

24.3 

(n=10) 

15.4 ± 

20.8 

(n=15) 

14.3 ± 

11.3 

(n=10) 

Distance walked in 6 minutes (m) 
645.0 ± 

62.0  

631.8 ± 

71.3  

663.4 ± 

60.8  

636.1 ± 

70.9  

Hand grip maximal strength, right 

hand (kg) 
33.4 ± 5.9  32.5 ± 6.1  

34.9 ± 

6.5  

32.7 ± 6.6 

(n=10) 

Hand grip maximal strength, left 

hand (kg) 
31.7 ± 5.2  30.2 ± 4.6  

33.2 ± 

5.9  

30.7 ± 4.9 

(n=10) 
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Change in MVC torque at end of 

fatiguing exercise protocol (% 

MVC) 

-12.0 ± 

27.4  

(n=16) 

-18.4 ± 

39.7   

-22.9 ± 

21.0  

-25.8 ± 

15.4  

* Indicates p<0.05 

 

 

Outcome Data & Main Results.  

 

 

 

Maximal Torque Across Different Positions (Torque-Angle Curve). Postpartum 

women were weaker than controls across all positions at 8 weeks (39.6 ± 22.6 Nm vs 

65.8 ± 29.2 Nm, respectively, p<0.001; Figure 3.1A) and 26 weeks (36.5 ± 19.8 Nm vs 

54.3 ± 24.2 Nm, p=0.001; Figure 3.1B) postpartum. The shape of the torque-angle curve 

was similar between groups at both time points (initial: position × group, p=0.927; follow 

up: position × group, p=0.766), with both control and postpartum women generating 

greatest trunk flexion MVC torque at 40 degrees of extension (effect of position, p<0.001 

at both time points).   

Mode of Delivery: There was no difference in the torque-angle curve between 

delivery types at 8 weeks (position: p<0.001; position × delivery type: p=0.169; delivery 

type: p=0.058; Figure 3.1C) or 26 weeks (position: p<0.001, position × delivery type: 

p=0.964, delivery type: p=0.485; Figure 3.1D). 
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Figure 3.1. Torque-Angle Curve 
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Figure 3.1. Torque-angle curve for the trunk flexor muscles at the initial and follow up 

time points for postpartum vs control [A & B] and vaginal vs Cesarean delivery [C & D]. 

Negative numbers indicate positions of trunk extension, upright sitting is 0°, and positive 

numbers indicate positions of trunk flexion.  Postpartum women had lower maximal 

trunk flexion torque across all positions at both time points compared to control.  

However, the torque-angle curve shape was similar for all groups. There were no 

differences between delivery types (vaginal vs Cesarean). 
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Fatigability.  Postpartum women had a shorter time to task failure (i.e. greater 

fatigability) than control women at 8 weeks postpartum (189 ± 156 s vs 644 ± 327 s, 

respectively; p<0.001; Figure 3.2A).  By 26 weeks, postpartum women demonstrated 

longer time-to-task failure (i.e. improved fatigability) (p=0.015), but were more fatigable 

than control women (288 ± 167 s vs 605 ± 396 s; p=0.011; Figure 3.2A). 

Mode of Delivery: At 8 weeks postpartum, the Cesarean delivery group 

demonstrated a shorter time-to-task failure (greater fatigability) than the vaginal delivery 

group (99 ± 58 s vs 244 ± 173 s; p=0.004; Figure 3.2B).  By 26 weeks postpartum, there 

was no difference in time-to-task failure between delivery groups (262 ± 168 s vs 304 ± 

169 s; p=0.523; Figure 3.2B).  The vaginal delivery group showed no change in time-to-

task failure from 8 to 26 weeks (p=0.306), but the Cesarean delivery group demonstrated 

improvement in time-to-task failure (p=0.005).  

Figure 3.2. Fatigability of the Trunk Flexor Muscles 
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Figure 3.2. Time-to-task failure for the intermittent isometric submaximal trunk flexion 

fatiguing exercise at time points for postpartum vs control [A] and vaginal vs Cesarean 
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delivery [B].  *=group difference at the time point (postpartum vs control); 

=improvement compared to initial timepoint; #=delivery group difference at the time 

point (vaginal vs Cesarean). 

 

 

 

Pre-Exercise Maximal Trunk Flexion Torque:  Trunk flexion MVC torque was less 

for the postpartum women than control women at both 8 weeks (28.6 ± 12 Nm vs 46.5 ± 

26.1 Nm; p=0.022; Figure 3.3A) and 26 weeks postpartum (24.6 ± 10.1 Nm vs 44.1 ± 

16.6 Nm; p=0.001; Figure 3.3B).   

At task failure, the postpartum and control women had a similar reduction in MVC 

torque, at both the 8 week and 26 week time points (Table 3.1).  At 8 weeks, the MVC 

torque of postpartum women was lower 20 minutes following fatiguing exercise, while 

the MVC torque of control women had recovered by 10 minutes post-exercise (Time, 

p<0.001; Time × group, p<0.001; Group, p=0.001; Figure 3.3A).  At 26 weeks, 

postpartum women demonstrated a recovery (increase) of MVC torque post-exercise that 

was similar to control women, though postpartum women demonstrated lower MVC 

torque than control women at all time points after exercise (Time, p<0.001; Time × 

Group, p=0.463; Group, p<0.001; Figure 3.3B). 

Mode of Delivery: There were no differences between vaginal and Cesarean delivery 

for pre-exercise MVC strength at 8 weeks (31.4 ± 13.0 Nm vs 24.0 ± 8.8 Nm, 

respectively, p=0.106, Figure 3.3C) nor at 26 weeks (24.9 ± 11.4 Nm vs 24.3 ± 8.1 Nm, 

respectively, p=0.886, Figure 3.3D). There was also no difference in MVC torque 

recovery following fatiguing exercise at 8 weeks (time, p=0.775; time × delivery type, 

p=0.592; delivery type, p=0.829) and 26 weeks (time, p=0.006; time × delivery type, 

p=0.163; delivery type, p=0.386). 
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Figure 3.3. Trunk Flexor Strength Before and After Fatiguing Exercise 
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Figure 3.3.  Trunk flexion MVC strength before fatiguing exercise (baseline), 

immediately following fatiguing exercise (task failure, TF), and 10 minutes (R10) and 20 

minutes (R20) after fatiguing exercise at the initial time point and follow up time point 

for control vs postpartum [A & B] and vaginal vs Cesarean [C & D] groups.  Postpartum 

women generate lower maximal torque than control women at all time points.  

Postpartum women demonstrate impaired recovery of MVC strength up to 10 weeks 

postpartum [A], but show a similar recovery pattern to control women at 26 weeks 

postpartum [B].  No statistical difference is present between modes of delivery at either 

time point [C & D]. Postpartum women demonstrate a decline in baseline MVC strength 

from 8-26 weeks, driven by a loss of strength for women in the vaginal delivery group. 
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Inter-recti distance. Postpartum women demonstrated greater IRD than controls at 8 

weeks (1.4 ± 1.1 cm vs 0.4 ± 0.2 cm, p<0.001) and 26 weeks (1.3 ± 1.1 cm vs 0.3 ± 0.2 

cm, p<0.001).    

Mode of delivery. There was no difference in IRD between vaginal and Cesarean 

delivery types at 8 weeks (1.2 ± 1.1 cm vs 1.8 ± 1.2 cm, respectively, p=0.271) or 26 

weeks (1.2 ± 1.0 cm vs 1.5 ± 1.3 cm, respectively, p=0.431). 

Associations (postpartum and control).  

 

 

 

Trunk flexor MVC torque was associated with fatigability (8 weeks: r=0.602, 

p<0.001 & 26 weeks: r=0.415, p=0.006), thickness of the rectus abdominis (8 weeks: 

r=0.311, p=0.040 & 26 weeks: r=0.388, p=0.012), self-reported physical activity (8 

weeks: r=0.430, p=0.005) and the six-minute walk (8 weeks: r=0.306, p=0.044 and 26 

weeks: r=0.449, p=0.003). Stronger women had a longer time-to-task failure, greater 

rectus abdominis thickness, were more active, and walked further in six minutes.   

Fatigability was associated with body fat (8 weeks: r=-0.342, p=0.023 & 26 weeks: 

r=-0.402, p=0.008) and IRD (8 weeks: rs=-0.548, p<0.001 & 26 weeks: rs=-0.484, 

p=0.002), such that women with greater total body fat and a greater IRD were more 

fatigable.   

Discussion 

 

 

 

The novel findings are that the trunk flexor muscles of postpartum women were 

weaker and more fatigable than nulligravid women, and these impairments in trunk 
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strength and fatigability persisted at 26 weeks postpartum. The strength deficits were 

specific to the trunk flexor muscles, as there was no difference in hand grip strength 

between groups. Furthermore, mode of delivery impacted muscle endurance: women who 

had a Cesarean delivery demonstrated greater trunk flexor fatigability at 8 weeks 

postpartum than women who delivered vaginally. A larger IRD was associated with 

greater fatigability at both time points.  Furthermore, greater trunk flexor strength was 

associated with lower fatigability and greater functional mobility. 

This is the first study to establish that postpartum women demonstrate deficits in 

strength and increased fatigability of core muscles, which are important to many daily 

activities.  At 8 weeks, the deficits, relative to controls, were 38% in strength and 71% in 

fatigability, and 44% and 52%, respectively, at 26 weeks; long past when women have 

returned to work (~8 weeks postpartum).  Strength deficits in postpartum women were 

localized to the trunk flexor muscles, which highlights the need for specific postpartum 

assessment and rehabilitation of the trunk flexors, including the abdominal muscles.   

At 8 weeks after delivery, postpartum women also demonstrated impaired recovery of 

maximal strength after fatiguing exercise, as evidenced by reduced MVC strength 20 

minutes after exercise.  In contrast, control women had returned to baseline strength 10 

minutes after exercise.  This prolonged reduction in maximal strength may increase risk 

of injury when performing repetitive tasks, such as lifting and carrying.  Furthermore, 

postpartum women in this study had only sub-clinical levels of pain and low back pain-

related disability, but they still demonstrated severe deficits in strength and fatigability.  

Further research is needed to determine if postpartum women with clinically significant 

pain and disability experience even greater deficits in core strength and fatigability. 
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Method of delivery was a contributing factor to the increased fatigability of 

postpartum women at 8 weeks after delivery, with Cesarean delivery being associated 

with greater fatigability.  Women who had a Cesarean delivery often have greater pain 

reports in the immediate postpartum period and report a more difficult postpartum 

recovery than women who delivered vaginally.(Lobel and DeLuca 2007)  However, no 

differences exist in the length of paid maternity leave based on delivery 

method.(Archuleta 2015)  This research suggests that women who undergo Cesarean 

delivery require a longer period of time to recover from the musculoskeletal deficits 

experienced from pregnancy and childbirth than women who experience a vaginal 

delivery. Given the severe deficits in abdominal function of postpartum women, it 

appears all women would benefit from rehabilitative interventions; however, this 

rehabilitation is even more crucial for women who deliver by Cesarean section. 

Trunk flexor strength appears to be a critical factor in musculoskeletal recovery after 

pregnancy and childbirth.  Stronger women were less fatigable and demonstrated better 

functional mobility. The association between strength and fatigability has also been 

observed in healthy young men and women,(Deering, Senefeld et al. 2017) supporting 

the importance of core strength.  Strength was also associated with thickness of the rectus 

abdominis muscle and with self-reported physical activity over the previous year. Thus, 

our results suggest that lack of physical activity in postpartum women may have 

contributed to lower trunk flexor strength. Physical activity levels of postpartum women 

were significantly lower than those of control women, and declined even further between 

8 and 26 weeks postpartum.  Further, postpartum women did not meet the recommended 

average of 30 minutes per day of moderate intensity physical activity (Leavitt 2008).   
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These results provide a rationale for prescription of individualized exercise for 

postpartum women to offset the strength decrements, and thus the impairments in 

fatigability and functional mobility, seen in this study. 

The astounding deficits in trunk flexor strength and fatigability in postpartum women 

in this study support the need for skilled assessment of the musculoskeletal system by 

health care providers who have expertise in the examination, diagnosis, and treatment of 

musculoskeletal disorders. Incorporating physiatrists and physical therapists in the 

standard care of pregnant and postpartum women may offset some of the neuromuscular 

impairments seen in this study, and may improve the incidence and severity of other 

pregnancy-related musculoskeletal disorders, such as low back pain and pelvic girdle 

pain.  Further research is needed to determine the impact of rehabilitation on the 

musculoskeletal health of pregnant and postpartum women. 
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IV. FATIGABILITY OF THE LUMBOPELVIC STABILIZING MUSCLES & 

EXPERIMENTAL PAIN PERCEPTION IN WOMEN 8 & 26 WEEKS 

POSTPARTUM 

 

 

 

Introduction 

 

 

 

Pregnancy and child birth have a significant impact on the musculoskeletal 

system of the mother.  Hormonal changes during pregnancy facilitate the softening of 

connective tissue, which leads to joint laxity, particularly in the pelvic joints (Chearskul 

2006).  Vaginal birth can further disrupt the pelvic joints and/or cause injury to the pelvic 

floor muscles, especially when intervention is needed in the form of instrumentation, 

such as forceps or vacuum (Ashton-Miller and Delancey 2009).  Cesarean delivery also 

causes further trauma to the fascia of the anterior abdominal wall and the abdominal 

musculature (Gilstrap III, Cunningham et al. 2002).  Additionally, the combination of 

hormonal changes and the progressive and prolonged stretch on the anterior abdominal 

wall contributes to an increase in inter-recti distance (IRD), or an increased separation of 

the rectus abdominis muscles (Boissonnault and Blaschak 1988, Gilleard and Brown 

1996, Coldron, Stokes et al. 2008).  Pregnancy and child birth have been associated with 

a number of physical impairments which are commonly treated by physical therapists, 

such as low back pain, pelvic girdle pain and incontinence (MacLennan, Taylor et al. 

2000, Gutke, Ostgaard et al. 2008, Parker and Millar 2008, Sjodahl, Gutke et al. 2013).   



93 

 

The abdominal muscles and pelvic floor muscles have been shown to play a role 

in stability of the spine and pelvis (Hodges, Kaigle Holm et al. 2003, Pool-Goudzwaard, 

van Dijke et al. 2004), and dysfunction of these muscle groups has been linked with pain 

syndromes (Hodges and Richardson 1996, Hodges and Moseley 2003, Hungerford, 

Gilleard et al. 2003, Pool-Goudzwaard, Slieker ten Hove et al. 2005, Gildea, Hides et al. 

2013).  The fascial integrity of the abdominal wall has been shown to be critical to the 

transfer of force generated by the abdominal muscles to the skeletal system (Brown and 

McGill 2009), and this integrity can be assessed with ultrasound by measuring inter-recti 

distance.  Currently, the Active Straight Leg Raise (ASLR) test is used as a clinical 

measure of stability of the lumbar spine and pelvis, ability to perform an abdominal 

bracing maneuver, and measure of posterior pelvic pain severity, and has been validated 

in both pregnant and postpartum populations (Mens, Vleeming et al. 1999, Mens, 

Vleeming et al. 2002, Liebenson, Karpowics et al. 2009, Mens, in 't Veld et al. 2012). 

Assessment of the musculoskeletal system is not part of standard postpartum care 

at this time (Borders 2006).  Furthermore, clinical measures of abdominal muscle 

function, such as manual muscle testing (MMT), are often subjective and insensitive, and 

frequently limited to assessing strength alone.  Maintenance of sustained and intermittent 

abdominal muscle contractions, however, is relevant to daily functional tasks and is 

characterized as fatigability of the muscle group.  Fatigability is defined as the reduction 

in maximal or required force or power of a muscle in response to activity (Enoka and 

Duchateau 2008), and it is an important metric of muscle function that is often 

overlooked in clinical assessment.  Fatigability can also be quantified as a reduction in 

the maximal strength or power, or as the amount of time an individual is able to 
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successfully sustain a motor task, known as time-to-task failure.  Chapter 3 of this 

dissertation reported that the trunk flexor muscles of postpartum women are significantly 

more fatigable at 26 weeks postpartum than controls.  It is unknown if the lumbopelvic 

stabilizing muscles demonstrate similar deficits in fatigability after pregnancy.   

In this study, the ASLR test was modified into a fatigue task to assess the 

fatigability of the lumbopelvic stabilizing muscles in nulligravid women and women who 

were up to 26 weeks postpartum, and to determine feasibility of this test for clinical use. 

Participants also performed the six-minute walk test and a number of questionnaires.  We 

hypothesized that postpartum women would be more fatigable (have a shorter time-to-

task failure) than control women during the newly developed ASLR fatigue task, and that 

time-to-task failure would be associated with performance on the six-minute walk test 

and questionnaires. We also hypothesized that the time to task failure of the ASLR 

fatigue test would be associated with the time to task failure of the trunk flexor muscles 

measured in the Biodex dynamometer that was reported in chapter 3.  

Methods 

 

 

  

Subjects. Twenty-three control women (26.7 ± 9.9 years) and 31 postpartum 

women (31.4 ± 5.2 years; vaginal delivery n=18, Cesarean delivery n=13) participated in 

the study.  All participants were from the original study described in Chapter 3, and met 

the same inclusion and exclusion criteria, and provided written informed consent. 

Participants completed two experimental sessions, separated by one to seven days, at two 

time points.  Postpartum women completed testing between 8-10 weeks after delivery 

and returned to the laboratory between 24-26 weeks postpartum.  Control women 
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completed their initial testing sessions and returned 16-18 weeks later to repeat the 

testing sessions.  Study approval was obtained by the Institutional Review Boards at 

Marquette University and the Medical College of Wisconsin, and the Office of Clinical 

Research and Innovative Care Compliance at Froedtert Hospital. 

Session one consisted of measurement of height and weight, a dual x-ray 

absorptiometry (DXA) scan to estimate body composition, manual muscle testing, 

experimental pain testing, the active straight leg raise test, and the active straight leg raise 

fatigue task.  Session two involved performance of the six-minute walk test and 

completion of multiple questionnaires regarding pain, sleep quality, physical activity, 

pelvic floor dysfunction, disability, and postpartum depression.  Participants also wore a 

triaxial accelerometer for four days outside of the laboratory to quantify physical activity 

levels. 

Standard Clinical Measurements of Abdominal Muscle Function 

 

 

 

Manual Muscle Testing.  Participants were positioned on a plinth in supine with 

legs extended, without a pillow behind their head.  Participants were instructed to lift 

their head and shoulders up off the table as far as possible without moving their legs.  

Strength was graded on a 1-5 scale, based on the position of the participants’ upper 

extremities when they were able to perform trunk flexion to the point of clearing the 

inferior angle of the scapula from the plinth.  A score of 5 was awarded if the participant 

could clear the inferior angle of the scapula with both hands behind their head.  If this 

position was unsuccessful, the arms were then placed across the chest and trunk flexion 

was attempted again.  If successful in this position, a grade of 4 was assigned.  If 
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unsuccessful, the participant was then cued to reach toward their toes with both arms 

while performing trunk flexion, which was scored as a 3 if successful.  A grade of 2 

required the participant to assume a supine hook lying position, with both knees bent and 

feet flat on the plinth.  If the participant was unable to clear the inferior angle of the 

scapula in any of these positions, a grade of 1 would be assigned if the participant could 

produce a forceful cough (Hislop and Montgomery 2002). 

Active Straight Leg Raise Test.  The ASLR test assesses load transfer between 

the lower extremity and the trunk, and stability of the lumbar spine and pelvis, and relies 

on appropriate activation and sufficient strength of the abdominal muscles, among other 

muscle groups, to maintain stability.  While lying supine on a plinth, participants were 

asked to raise one leg 20 cm off the plinth, hold at 20 cm for 5 seconds, and slowly lower 

the leg back to the plinth.  Stability of the spine and pelvis was assessed with an inflatable 

air bladder that was positioned under the participants’ lumbopelvic region and inflated to 

40 mm Hg.  The change in cuff pressure was recorded for each leg.  Participants were 

also asked to rate how difficult, on a scale of 0-5 (0=not difficult at all, 5=unable to lift 

leg), it was to raise their leg off of the plinth.  For ratings above zero, the test was 

performed again, this time with the examiner providing manual compression to the 

pelvis.  If the difficulty rating decreased with manual compression, the test was 

considered positive for instability of the pelvis (Mens, Vleeming et al. 2001, Mens, 

Vleeming et al. 2002, Vleeming, Albert et al. 2008, Liebenson, Karpowics et al. 2009, 

Mens, in 't Veld et al. 2012).  Pain ratings were also given if the participant experienced 

any pain in the lumbar spine or pelvic areas while performing the task.  Pain was rated on 

a 0-10 scale, with 0 being no pain and 10 being worst possible pain.  
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Novel Clinical Measurement of Fatigability of the Lumbopelvic Stabilizers 

 

 

 

Active Straight Leg Raise Fatigue Task.  The ASLR test was modified into a 

fatigue task as a test of fatigability of the muscles that stabilize the lumbopelvic region 

and that could be easily performed in clinical settings.  Participants performed the ASLR 

test prior to performing the fatigue task.  If the participant rated the difficulty of raising 

the leg the same on both sides, the dominant leg (self-reported) was used for the fatigue 

task.  If the difficulty ratings were different between legs, or if the participant had a 

positive test and/or a painful side, the leg that was less difficult (or not painful) was used.  

Participants lifted the test leg to 20 cm and were instructed to hold their leg in that 

position for as long as possible.  Participants were also asked to maintain the pressure in 

the cuff beneath their back as close to 40 mm Hg as possible.  Visual feedback on cuff 

pressure was provided throughout the task, but no instruction was given on how to affect 

cuff pressure.   

Participants provided Ratings of Perceived Exertion (RPE) and pain ratings on a 0-10 

scale at random intervals (every 45-60 seconds) throughout the test and at task failure.  

Task failure was defined as an inability to maintain the heel of the test leg >10 cm off the 

plinth and/or a change in cuff pressure >20 mm Hg. 

Functional Test: Six Minute Walk   

 

 

 

In order to assess muscular and cardiovascular endurance during functional 

mobility, the six minute walk test was performed (Ross, Murthy et al. 2010).  Participants 

were instructed to walk as quickly as possible, without running, for six minutes on an 
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indoor walking track. The distance walked was then measured.  Standard instructions and 

encouragement were provided for each participant.  Distance walked was also used to 

estimate peak oxygen uptake as a measure of cardiovascular fitness (Ross, Murthy et al. 

2010). 

Physical Activity 

 

 

 

Self-reported Physical Activity.  The Physical Activity Questionnaire (Kriska, 

Knowler et al. 1990) was used to allow participants to self-report physical activity over 

the previous year.  In short, the questionnaire evaluates both recreational and 

occupational physical activity and quantifies it in metabolic equivalents per hour per 

week (MET·hour·week-1). 

Accelerometry.  Physical Activity around the time of testing was quantified using 

triaxial accelerometers (Actigraph, Pensacola, FL) worn around the waist for four days, 

including two weekend days.  Average minutes per day of moderate intensity exercise 

was determined (ActiLife software, Actigraph) in accordance with American College of 

Sports Medicine and the American Heart Association physical activity recommendation 

of 30 minutes of moderate intensity exercise five days per week (Haskell, Lee et al. 

2007).  

Questionnaires 

 

 

 

 Pain was assessed with the McGill Short Form Pain Questionnaire (Melzack 

1987) prior to performance of the six-minute walk test. The impact of low back and 

pelvic girdle pain on daily function was assessed with the Oswestry Low Back Disability 
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Questionnaire (Fairbank, Couper et al. 1980, Fairbank and Pynsent 2000) and the Pelvic 

Girdle Questionnaire (Stuge, Garratt et al. 2011).  The Fear Avoidance Beliefs 

Questionnaire (Waddell, Newton et al. 1993) and The Pain Catastrophizing Scale 

(Sullivan, Bishop et al. 1995) were used to gauge participant’s thoughts and feelings 

regarding pain.  Pelvic floor symptoms were assessed with the Pelvic Floor Distress 

Inventory (Barber, Kuchibhatla et al. 2001) and the Pelvic Pain and Urgency/Frequency 

Patient Symptom Scale (Parsons, Dell et al. 2002).  Sleep disturbances were quantified 

with the Pittsburgh Sleep Quality Index (Buysse, Reynolds et al. 1989).  Postpartum 

depression was assessed with the Edinburgh Postnatal Depression Scale (Cox, Holden et 

al. 1987). 

Body Composition 

 

 

 

A GE Lunar iDXA (GE Healthcare, Little Chalfont, United Kingdom) was used 

to estimate lean body mass, body fat, distribution of body fat, and visceral adipose tissue.  

Participants were scanned in supine with hips and forearms in neutral position.  All metal 

was removed prior to the scan. 

Inter-Recti Distance and Muscle thickness 

 

 

 

Characteristics of the anterior abdominal wall were assessed with a GE vivid e 

ultrasound machine (8 LRS linear probe; GE Healthcare, Little Chalfont, United 

Kingdom).  Inter-recti distance was measured 4 cm above, 2.5 cm above, 2.5 cm below, 

and 4 cm below the umbilicus, and thickness of the right rectus abdominis muscle belly 

was measured at 2.5 cm above and below the umbilicus.  Participants were positioned in 
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supine on a plinth (Beer, Schuster et al. 2009), and the measurement sites were identified 

with a measuring tape and marked with marker.  Images were taken at end expiration 

with recommended transducer orientation (Teyhen, Gill et al. 2007).  For IRD, three 

images were obtained at each site and averaged.  For muscle thickness, the largest 

measurement was used.  Images were excluded from analysis if the muscular borders 

were not clearly defined.  For women whose IRD exceeded the viewing range of the 

transducer, the maximal width of the transducer viewing rage (3.85 cm) was recorded. 

Experimental pain perception.   

 

 

 

Pressure pain thresholds were assessed at the nailbed of the left middle finger and 

at the lower abdomen (2 finger widths above pubic symphysis in control women and 

women who experienced vaginal delivery, midpoint of Pfannenstiel incision for women 

who had a Cesarean delivery) using a computerized pressure algometer (AlgoMed, 

Medoc Ltd, Yishai, Israel).  Participants were provided with a patient control button and 

instructed to press the button as soon as they would rate pain above a zero on a zero to 

ten pain scale.  Pressure was applied at a rate of 10 KPa/s.  Three trials were performed at 

each site with an inter-stimulus interval of ten seconds.  Pressure pain thresholds for the 

three trials were averaged. 

Statistical Analysis 

 

 

 

 Data within the text and tables are presented as means ± standard deviation (SD) 

and in figures as means ± standard error of the mean (SEM).  Subject characteristics (age, 

height, weight, body composition), ASLR time-to-task failure, six-minute walk test 
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performance, pressure pain thresholds, physical activity (self-reported and 

accelerometer), inter-recti distance at each position, and rectus abdominis muscle 

thickness were compared between control and postpartum women with independent 

samples t-tests.  Inter-recti distance across positions was analyzed with repeated measures 

analysis of variance (ANOVA) with group (control or postpartum) as the between-

subjects factor.  Nonparametric tests were used to compare MMT strength grades (Mann-

Whitney U), questionnaire results (Mann-Whitney U) and ASLR test outcome (Chi-

square) between groups.  Spearman’s Rho nonparametric correlation was used to test 

associations between variables that (1) were not ordinal level data (such as MMT), (2) 

did not demonstrate a linear relationship (such as IRD), or (3) were not normally 

distributed. 

 Impact of delivery type (vaginal vs Cesarean) was assessed for subject 

characteristics, ASLR time-to-task failure, physical function test performance, pressure 

pain thresholds, physical activity (self-reported and accelerometer), and rectus abdominis 

muscle thickness with independent samples t-tests.  Inter-recti distance across positions 

was analyzed with repeated measures ANOVA with delivery type as between subjects 

factor.  Nonparametric tests, as described above, were used to compare MMT strength 

grades, questionnaire results and ASLR test outcome between delivery types. 

 In a subgroup of participants (16 control women, 22 postpartum women [15 

vaginal delivery]), the effect of time was assessed by comparing dependent variables at 

each time point (8 weeks and 26 weeks postpartum).  For scale level data, paired samples 

t-tests were performed.  For ordinal level data, or data that was not normally distributed, 

Wilcoxon rank signed test was performed. 
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Results 

 

 

 

Participants.  Twenty-three control women and 27 postpartum women (vaginal 

delivery n=17, Cesarean delivery n=10) completed testing at the initial (8 weeks 

postpartum) time point.  Sixteen control women and 26 postpartum women (vaginal 

delivery n=16, Cesarean delivery n=10) completed testing at the follow up time point (26 

weeks postpartum).  Seven control women, two women from the vaginal delivery group, 

and three women from the Cesarean delivery group were lost to follow up due to 

schedule conflicts. Two women from the Cesarean delivery group and one woman from 

the vaginal delivery group completed testing only at the 24-26 week time point. 

Descriptive data.  Subject characteristics, including height, weight, rectus 

abdominis muscle thickness, and inter-recti distance, are presented for controls vs 

postpartum women in Table 4.1 and for vaginal delivery group vs Cesarean delivery 

group in Table 4.2.  Results for clinical assessments, including ASLR test and 

questionnaires, are presented for postpartum vs control in Table 4.3 and for vaginal 

delivery vs Cesarean delivery in Table 4.4. 

  



103 

 

Table 4.1. Control vs Postpartum Subject Characteristics. 

 

INITIAL                                        

 (8-10 wks postpartum) 

FOLLOW UP                         

    (24-26 wks postpartum) 

 

Control 

(n=23) 

Postpartum 

(n=27) 

Control 

(n=16) 

Postpartum 

(n=26) 

Age (yrs) 26.7 ± 9.9 31.3 ± 5.4* 25.4 ± 5.8 32.1 ± 5.3* 

Weight (kg) 64.5 ± 11 75.1 ± 13.2* 63.4 ± 7.5 71.5 ± 14.6* 

Height (cm) 166.6 ± 8.4 164.3 ± 4.8 166.4 ± 8.1 164.1 ± 4.8 

BMI (kg/m2) 23.1 ± 3.4 27.9 ± 4.9* 22.8 ± 2.1 26.9 ± 5.3* 

Body Fat % 32.2 ± 5.4 38.9 ± 6.5* 32.7 ± 5.1 36.8 ± 8.6 

RA muscle thickness (2.5 cm above 

umbilicus) (cm) 

1.0 ± 0.2 0.8 ± 0.2* 1.0 ± 0.1 0.8 ± 0.1* 

RA muscle thickness (2.5 cm below 

umbilicus) (cm) 

1.0 ± 0.2 0.8 ± 0.2* 0.9 ± 0.1 0.8 ± 0.2 

IRD 4 cm above umbilicus (cm) 1.1 ± 0.4 

2.3 ± 1.1 

(n=22)* 

1.1 ± 0.6  

2.3 ± 1.0 

(n=25)* 

IRD 2.5 cm above umbilicus (cm) 1.1 ± 0.4 

2.5 ± 1.1 

(n=21)* 

1.0 ± 0.5  

2.4 ± 1.0 

(n=24)* 

IRD 2.5 cm below umbilicus (cm) 0.5 ± 0.2 

1.8 ± 0.9 

(n=19)* 

0.5 ± 0.2 

(n=15) 

2.0 ± 1.0 

(n=21)* 

IRD 4 cm below umbilicus (cm) 0.4 ± 0.2 

1.5 ± 1.1 

(n=22)* 

0.3 ± 0.2  

1.4 ± 1.1 

(n=23)* 

Average minutes/day of moderate 

intensity physical activity 

37.9 ± 23.2 

(n=18) 

16.2 ± 15.5 

(n=19)* 

29.3 ± 14.1 

(n=8) 

16.7 ± 10.5 

(n=13)* 
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Self-reported physical activity over 

the previous 12 months 

(MET·hours·week-1) 

41.2 ± 28.4 

(n=22) 

20.7 ± 18.9 

(n=25)* 

33.6 ± 24.3 

(n=15) 

12.0 ± 9.8 

(n=23)* 

Wks=weeks; yrs=years; kg=kilogram; cm=centimeter; m=meter; RA=rectus abdominis; IRD=inter-recti 

distance; MET=metabolic equivalents 

 

 

 

Table 4.2. Cesarean vs Vaginal Delivery Subject Characteristics. 

 8-10 wks postpartum 24-26 wks postpartum 

 
Vaginal 

Delivery 

(n=17) 

Cesarean 

Delivery 

(n=10) 

Vaginal 

Delivery 

(n=16) 

Cesarean 

Delivery 

(n=10) 

Age (yrs) 30.6 ± 6.2 32.5 ± 3.6 31.3 ± 6.0 33.3 ± 4.0 

Weeks Postpartum 

(Session 1) 
8.6 ± 1.0 8.6 ± 0.4 25.3 ± 1.6  25.1 ± 0.7 

Weeks Postpartum 

(Session 2) 
9.4 ± 1.2 9.4 ± 0.5 26.1 ± 1.7  26.2 ± 0.6 

Duration of pregnancy 

(weeks) 

39.3 ± 1.0 

(n=13) 

38.0 ± 1.2*     

(n=9) 

39.3 ± 1.1 

(n=12) 
38.3 ± 1.4 

Fundal height prior to 

delivery (cm) 

38.7 ± 1.3  

(n=6)  

37.0 ± 1.2 

(n=5) 

38.7 ± 1.3 

(n=7) 
37.0 ± 1.2* 

Total Number of 

pregnancies 

2.2 ± 1.2 

(n=16) 

3.2 ± 1.9 

(n=9) 
2.1 ± 1.1  3.0 ± 2.1 

Weight (kg) 74.5 ± 14.8 76.2 ± 10.7 70.8 ± 15.8 72.7 ± 13.0 

Height (cm) 164.8 ± 4.3 163.3 ± 5.6 165.4 ± 4.6 162.1 ± 4.8 

BMI (kg/m2) 27.5 ± 5.6 28.6 ± 3.7 26.3 ± 5.8 27.7 ± 4.5 

Body Fat % 38.8 ± 7.2 39.1 ± 5.5 36.5 ± 8.9 37.5 ± 8.6 

RA muscle thickness 

(2.5 cm above 

umbilicus) (cm) 

0.8 ± 0.2 0.8 ± 0.1 0.8 ± 0.2 0.8 ± 0.1 

RA muscle thickness 

(2.5 cm below 

umbilicus) (cm) 

0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 

IRD 4 cm above 

umbilicus (cm) 

2.5 ± 1.2 

(n=16) 

1.9 ± 0.7 

(n=6) 
2.3 ± 1.1 2.3 ± 0.9 

IRD 2.5 cm above 

umbilicus (cm) 

2.7 ± 1.1 

(n=16) 

2.0 ± 1.0 

(n=5) 

2.4 ± 1.1 

(n=15) 

2.4 ± 0.7 

(n=9) 

IRD 2.5 cm below 

umbilicus (cm) 

1.8 ± 0.9 

(n=15) 

1.6 ± 1.2 

(n=4) 

1.9 ± 0.9 

(n=16) 

2.1 ± 1.3 

(n=5) 
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IRD 4 cm below 

umbilicus (cm) 

1.3 ± 1.1 

(n=16) 

2.0 ± 1.2 

(n=6) 
1.2 ± 1.1 1.7 ± 1.3 

Average minutes/day of 

moderate intensity 

physical activity 

17.1 ± 19.1 

(n=10) 

15.3 ± 11.2  

(n=9) 
17.0 ± 11.9 16.0 ± 7.8 

Self-reported physical 

activity over the 

previous 12 months 

(MET·hours·week-1) 

21.4 ± 16.6 

(n=16) 

19.4 ± 23.4  

(n=9) 
10.4 ± 8.1 14.4 ± 12.0 

Wks=weeks; yrs=years; kg=kilogram; cm=centimeter; m=meter; RA=rectus abdominis; IRD=inter-recti 

distance; MET=metabolic equivalents 

 

 

Clinical Measures of Abdominal Muscle Function 

 

 
 

Manual Muscle Testing.  Postpartum women demonstrated lower MMT strength 

grades than control women at 8 and 26 weeks postpartum (p<0.001, Table 4.3).  There 

was no difference in MMT strength grades between women in the vaginal delivery and 

Cesarean delivery groups at 8 weeks or 26 weeks postpartum (p=0.115 and p=0.397, 

respectively, Table 4.4). 

Active Straight Leg Raise Test.  At the initial testing time point, 23% of control 

women and 37% of postpartum women had a positive ASLR test (p = 0.280, Table 4.3).  

Of the women who had positive ASLR tests, 40% of the postpartum women were 

positive bilaterally, and 20% of the control women had a positive ASLR test bilaterally. 

At follow up, 12.5% of the control women and 44% of the postpartum women tested 

positive for impaired lumbopelvic stability (p = 0.035, Table 4.3).  Fifty-five percent of 

the positive ASLR tests in the postpartum group were bilateral positives, while no control 

women had a bilateral positive ASLR test at the follow up time point. 

At 8 weeks postpartum, 41% of women who had a vaginal delivery and 30% of 

women who had a Cesarean delivery were positive for lumbopelvic instability (p=0.692, 
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Table 4.4). In the vaginal delivery group, 43% of the women with a positive ASLR test 

were positive bilaterally, and 33% of the women in the Cesarean group with a positive 

ASLR test had bilateral instability.  At 26 weeks postpartum, 44% of both the women in 

the vaginal delivery group and the Cesarean delivery group had bilateral positive ASLR 

tests (p=1.00, Table 4.4).  Of the women in the vaginal delivery group with a positive 

ASLR test, 57% had a positive test bilaterally. Fifty percent of the women in the 

Cesarean group with a positive ASLR test were positive bilaterally. 
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Table 4.3. Postpartum vs Control Clinical Assessments. 

  INITIAL (8-10 wks PP) 

FOLLOW UP (24-26 wks 

PP) 

  Control (n=23) 

Postpartum 

(n=29) 

Control (n=15) 

Postpartu

m (n=26) 

MMT (AU) 4.3 ± 1.0 2.7 ± 1.2* 4.5 ± 0.7 2.9 ± 1.1* 

(+) ASLR test (% of 

subjects tested) 

23% 37% 12.5% 44%* 

Unilateral (+) 18.20% 22% 12.50% 20% 

Bilateral (+) 4.50% 15% 0.00% 24% 

(-) ASLR test (% of 

subjects tested) 

77% 23% 87.5% 56% 

Oswestry (% disability) 1.7 ± 3.2 4.6 ± 5.4* 0.8 ± 1.8 5.0 ± 7.2* 

FABQ (AU) 3.9 ± 10.3 8.5 ± 10.5 0.5 ± 1.3 

8.2 ± 

12.2* 

PFDI (AU) 8.2 ± 17.6 (n=10) 

38.6 ± 42.6* 

(n=24) 

6.1 ± 12.2 (n=4) 

28.7 ± 

24.7* 

(n=26) 

PGQ (AU) 0.4 ± 1.3 (n=10) 

4.4 ± 6.9* 

(n=23) 

0 (n=4) 

3.3 ± 6.2 

(n=26) 

Pelvic Pain & 

urgency/frequency (AU) 

2.7 ± 2.5 3.4 ± 2.6 (n=27) 1.7 ± 1.6 3.4 ± 3.3  

PSQI (AU) 4.0 ± 2.0 (n=22) 8.2 ± 2.8* 4.5 ± 2.3  7.4 ± 2.9* 

PCS (AU) 9.7 ± 7.3 10.9 ± 9.8 5.8 ± 6.0 9.2 ± 9.5 
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6MWT (m) 689 ± 57 640 ± 65* 692.5 ± 56.1 

648.7 ± 

61.4* 

AU=Arbitrary Units; FABQ=Fear Avoidance Beliefs Questionnaire; PFDI=Pelvic Floor Distress 

Inventory; PGQ=Pelvic Girdle Questionnaire; PSQI=Pittsburgh Sleep Quality Questionnaire; PCS=Pain 

Catastrophizing Scale; 6MWT=Six Minute Walk Test 
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Table 4.4. Cesarean vs Vaginal Delivery Clinical Assessments. 

  INITIAL (8-10 wks PP) FOLLOW UP (24-26 wks PP) 

  

Vaginal 

Delivery (n=18) 

Cesarean 

Delivery (n=11) 

Vaginal 

Delivery (n=17) 

Cesarean 

Delivery (n=11) 

MMT  (AU) 2.9 ± 1.1 2.4 ± 1.4 3.0 ± 1.1 2.7 ± 1.2 

(+) ASLR test (% 

of subjects tested) 

41% 30% 44% 44% 

Unilateral (+) 23.50% 20% 19.00% 22% 

Bilateral (+) 17.60% 10% 25.00% 22% 

(-) ASLR test (% 

of subjects tested) 

59% 70% 56% 56% 

Oswestry (% 

disability) 

6.4 ± 6.0 1.6 ± 2.5* 5.8 ± 8.0 3.9 ± 6.1 

FABQ (AU) 9.1 ± 9.7 7.5 ± 12.1 9.0 ± 11.2 6.8 ± 14.2 

PFDI (AU) 43.8 ± 34.0 30.9 ± 49.8* 30.7 ± 27.5 25.4 ± 20.3 

PGQ (AU) 7.3 ± 8.6 1.4 ± 2.8* 2.2 ± 4.9 5.1 ± 7.8 

Pelvic Pain & 

urgency/frequency 

2.9 ± 1.9 4.1 ± 3.5 2.3 ± 1.8 5.3 ± 4.3 

PSQI (AU) 8.2 ± 2.4 8.1 ± 3.4 6.9 ± 3.0 8.2 ± 2.7 

PCS (AU) 12.3 ± 10.0 8.7 ± 9.6 10.3 ± 7.7 7.4 ± 12.0 

PP Depression 

(AU) 

4.4 ± 3.5 2.5 ± 2.8 4.3 ± 3.5 5.0 ± 4.3 

6MWT (m) 645 ± 62.0 631.8 ± 71.3 655.6 ± 53.2 637.6 ± 74.5 

AU=Arbitrary Units; FABQ=Fear Avoidance Beliefs Questionnaire; PFDI=Pelvic Floor Distress 

Inventory; PGQ=Pelvic Girdle Questionnaire; PSQI=Pittsburgh Sleep Quality Questionnaire; PCS=Pain 

Catastrophizing Scale; PP Depression=Edinburgh Postnatal Depression Questionnaire; 6MWT=Six Minute 

Walk Test 
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Active Straight Leg Raise Fatigue Task.  Postpartum women at 8 weeks had a shorter 

time-to-task failure (more fatigable) than control women (109 ± 50 s vs 165 ± 66 s, p = 

0.001) and this persisted at 26 weeks postpartum (125 ± 45 s vs 163 ± 63 s, p = 0.028; 

Figure 4.1A).  There was no difference in time-to-task failure between delivery types at 8 

weeks (114 ± 52 s vaginal vs 101 ± 49 s Cesarean, p = 0.512) or 26 weeks postpartum 

(113 ± 38 s vaginal vs 144 ± 50 s Cesarean, p = 0.086; Figure 4.1B). 

Subjects were also grouped by ASLR test status (positive vs negative test).  No 

difference in time-to-task failure was observed between women with a positive ASLR 

test and women with a negative ASLR test at the initial (126 ± 47 s vs 142 ± 69 s, p = 

0.431) or follow up (123 ± 52 s vs 147 ± 56 s, p = 0.179; Figure 4.1C) time points. 

Paired samples t-tests revealed that no group demonstrated a change in ASLR 

time-to-task failure from one time point to the next (Control p = 0.843, Postpartum p = 

0.735, Vaginal p = 0.807, Cesarean p = 0.310). 
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Figure 4.1. ASLR Fatigability 
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Figure 4.1. Fatigability of the lumbopelvic stabilizing muscles at both time points (8 

weeks [initial] and 26 weeks [follow up] postpartum) using the newly developed ASLR 

fatigue task. Postpartum women demonstrate greater fatigability (shorter time-to-task 

failure) than control women at both time points (A), with no difference between women 

who had a vaginal delivery and women who had a Cesarean delivery (B).  Women with a 

positive ASLR test, suggesting lumbopelvic instability, did not differ in time-to-task 

failure compared to women with a negative ASLR test (C). 
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Experimental Pain Perception  

 

 

  

At 8 weeks, postpartum women were more sensitive to pain (lower pressure pain 

threshold) at the nailbed than control women (191 ± 102 KPa vs 264 ± 98 KPa, 

respectively, p = 0.015) and the lower abdomen (119 ± 50 KPa vs 184 ± 54 KPa, 

respectively, p < 0.001).  At 26 weeks postpartum, pressure pain threshold at the nailbed 

was not different than control women (175 ± 98 KPa vs 220 ± 72 KPa, respectively, p = 

0.141), but postpartum women remained more sensitive to pain at the lower abdomen 

(113 ± 49 KPa vs 180 ± 48 KPa, respectively, p < 0.001; Figure 4.2A). 

There was no difference in pressure pain thresholds at the nailbed between 

delivery types at 8 weeks postpartum (178 ± 83 KPa vaginal vs 212 ± 131 KPa Cesarean, 

p = 0.480) or 26 weeks postpartum (150 ± 79 KPa vaginal vs 212 ± 116 KPa Cesarean, p 

= 0.120).  Pressure pain thresholds at the lower abdomen were similar between delivery 

types at 8 weeks (126 ± 53 KPa vaginal vs 106 ± 43 KPa Cesarean, p = 0.326) and 26 

weeks (115 ± 52 KPa vaginal vs 110 ± 47 KPa Cesarean, p = 0.826; Figure 4.2B) 

postpartum. 

Participants were again grouped by ASLR test result (positive vs negative).  

Pressure pain thresholds were similar between groups at the initial time point for both the 

nailbed (228 ± 94.5 KPa positive vs 218.4 ± 101.9 KPa negative, p = 0.759) and the 

lower abdomen (145 ± 40.4 KPa positive vs 148 ± 68.8 KPa negative, p = 0.889).  At the 

follow up time point, women with a positive ASLR test had lower pressure pain 

thresholds at the nailbed (148 ± 68.9 KPa vs 214 ± 96.4 KPa, p = 0.035) and lower 
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abdomen (107 ± 42.8 KPa vs 152 ± 59.5 KPa, p=0.019; Figure 4.2C) than women with a 

negative ASLR test. 

Control women demonstrated a decline in pressure pain threshold at the nailbed 

between the initial and follow up testing (p=0.047), but no difference in pressure pain 

threshold at the abdomen (p=0.542).  Postpartum women did not demonstrate a change in 

pressure pain threshold at the nailbed (postpartum grouped p=0.269; vaginal p=0.176; 

Cesarean p=0.866) or lower abdomen (postpartum grouped p=0.734; vaginal p=0.199; 

Cesarean p=0.179). 
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Figure 4.2.  Pressure Pain Thresholds 
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Figure 4.2.  Postpartum women were more sensitive to pain (lower pressure pain 

threshold [PPT]) than control women at both the nailbed and the lower abdomen at 8 

weeks postpartum (A).  By 26 weeks, postpartum women had a similar PPT as control 

women at the nailbed, but continued to demonstrate heightened sensitivity to pain at the 

lower abdomen (A).  There were no differences in pain sensitivity between delivery types 

(vaginal vs Cesarean) at either body site at 8 weeks or 26 weeks postpartum (B). 
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Associations 

 

 

 

Performance on the ASLR Fatigue Task was associated, at both time points, with 

body composition, inter-recti distance, pain sensitivity, rectus abdominis muscle 

thickness, self-reported physical activity over the previous year, and manual muscle 

testing.  Shorter time-to-task failure was associated with higher body fat percentage (8 

weeks: r = -0.601, p < 0.001, Figure 4.3A; 26 weeks: r = -0.468, p = 0.002, Figure 4.3B). 

Women with a greater inter-recti distance 2.5 cm below the umbilicus had a shorter time-

to-task failure (8 weeks: r = -0.443, p = 0.003, Figure 4.3C; 26 weeks: r = -0.508, p = 

0.002; Figure 4.3D). Thinner rectus abdominis muscle belly at 2.5 cm above the 

umbilicus was also associated with greater fatigability (8 weeks: r = 0.332, p = 0.018, 

Figure 4.3E; 26 weeks: r = 0.404, p = 0.010; Figure 4.3F). Women who walked a shorter 

distance in six minutes were also more fatigable at 8 weeks postpartum (8 weeks: r = 

0.451, p = 0.001, Figure 4.4A) although this did not reach significance at 26 weeks (r = 

0.307, p = 0.051; Figure 4.4B). Lower self-reported physical activity over the previous 

year was associated with a shorter time-to-task failure on the ASLR fatigue task (8 

weeks: r = 0.345, p = 0.017, Figure 4.4C; 26 weeks: r = 0.376, p = 0.020, Figure 4.4D), 

as were lower pressure pain threshold at the lower abdomen (8 weeks: r = 0.407, p = 

0.003, Figure 4.4E; 26 weeks: r = 0.375, p = 0.020, Figure 4.4F), and lower manual 

muscle testing strength grade (8 weeks: r = 0.532, p < 0.001; 26 weeks: r = 0.360, p = 

0.026). 
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Performance on the ASLR fatigue task was not correlated with time-to-task 

failure on the intermittent isometric trunk flexion fatiguing exercise task at 8 weeks (r = 

0.297, p = 0.056) or 26 weeks (r = 0.288, p = 0.071). 

Figure 4.3. Associations 
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Figure 4.3. Longer time-to-task failure on the ASLR fatigue task was associated at both 

time points with lower body fat (A & B), smaller inter-recti distance (C & D), and thicker 

rectus abdominis muscle (E & F). 
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Figure 4.4. Associations 
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Figure 4.4 Longer time-to-task failure on the ASLR fatigue task was associated at both 

time points with greater distance walked in six minutes (A & B), greater self-reported 

physical activity over the previous year (C & D), and higher pressure pain threshold at 

the lower abdomen (E & F). 
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 Discussion 

 

 

 

The novel finding of this study is that postpartum women demonstrated 

significant deficits in fatigability of the lumbopelvic stabilizing muscles, up to 26 weeks 

after childbirth, as assessed by the newly-developed ASLR Fatigue Task.  The greater 

fatigability of the postpartum women was independent of lumbopelvic stability, as no 

difference in time-to-task failure was noted between women who had a positive ASLR 

test and women who had a negative ASLR test.  Women who reported greater physical 

activity over the preceding year and who had lower body fat, smaller inter-recti distance, 

a thicker rectus abdominis muscle, and a higher manual muscle testing strength grade 

performed best on the ASLR Fatigue Task.  Women with a short time-to-task failure also 

demonstrated greater sensitivity to pain at the lower abdomen.  Women with lumbopelvic 

instability, as evidenced by a positive ASLR test, also demonstrated greater sensitivity to 

pain than women with a negative ASLR test. 

This is the first study to establish the ASLR Fatigue Task as a possible clinical 

measure of fatigability of the lumbopelvic stabilizing muscles.  This test showed that 

postpartum women are more fatigable than women who have never been pregnant, and 

that this increased fatigability was still present approximately 6 months after childbirth.  

The finding of increased fatigability in postpartum women is consistent with findings in 

Chapter 3 that showed greater fatigability of trunk flexor muscles for an intermittent, 

isometric trunk flexion fatiguing task in the Biodex dynamometer. While the differences 

in fatigability between postpartum and control women (34% at 8 weeks postpartum, 23% 

at 26 weeks postpartum) for the ASLR fatigue task are significant, they are not as 
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profound as the deficits in trunk flexor fatigability measured in the Biodex dynamometer 

(71% at 8 weeks, 52% at 26 weeks).  Time-to-task failure for the ASLR fatigue task was 

also significantly lower for both controls and postpartum women than demonstrated with 

the trunk flexor fatigue task at initial (165 ± 66 s vs 644 ± 327 s Control; 109 ± 50 s vs 

189 ± 156 s Postpartum).  It is expected that the ASLR fatigue task would have a shorter 

time-to-task failure than the Biodex fatigue task because the ASLR fatigue task is a 

sustained task, which compromises blood flow, while the Biodex fatigue task was 

intermittent, which allows periods of muscle perfusion and clearance of metabolic 

byproducts (Hunter, Critchlow et al. 2004, Hunter, Critchlow et al. 2004, Enoka and 

Duchateau 2008, Hunter 2014, Keller-Ross, Pereira et al. 2014).  The two tests also 

assess different functions of the abdominal muscles (lumbopelvic stabilization vs 

thoracolumbar flexion), and thus target different muscles within the abdominal muscle 

group: the ASLR fatigue task is more representative of the function of the transverse 

abdominis, while the trunk flexion tasks are representative of the rectus abdominis and 

bilateral internal and external oblique muscles.  The shorter time-to-task failure of the 

ASLR fatigue task, along with the fact that it requires minimal additional equipment 

(pressure biofeedback unit, stopwatch), makes it a more ideal test for clinical use. 

Performance on the ASLR fatigue task was also associated with manual muscle 

testing strength grade.  Postpartum women were weaker than control women when 

assessed with MMT at 8 weeks and 26 weeks postpartum, which is consistent with a 

previous study from our group that demonstrated lower isometric trunk flexion strength 

in postpartum women using the Biodex dynamometer (Chapter 3). However, in the 

current study, there was no change in MMT strength grade across time for postpartum 
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women, while our previous work actually showed a decline in maximal voluntary trunk 

flexion strength at 26 weeks in postpartum women, driven by a decline in strength of 

women who experienced a vaginal birth (Chapter 3). This suggests that manual muscle 

testing may not be sensitive enough to detect subtle changes in strength across time.  

Thus, the ASLR fatigue task may be a more sensitive screening tool than MMT for 

clinical use to determine change in function over time. 

Fatigability of the lumbopelvic stabilizing muscles was also associated with inter-

recti distance.  Inter-recti distance did not change for control women, the postpartum 

group as a whole, or women who experienced a vaginal delivery.  The Cesarean delivery 

group did demonstrate a decrease in inter-recti distance at 4 cm below the umbilicus at 

the 26 week time point; however, inter-recti distance in this group remained wider than 

controls and was similar to women in the vaginal delivery.  The association between 

fatigability and IRD may be partially explained by an impaired ability of the anterior 

abdominal wall fascia to transfer muscularly generated forces (Brown and McGill 2009).  

The thinning of the connective tissue caused by pregnancy hormones and substantial 

stretch of the abdominal wall may compromise the integrity of the fascia, and some of the 

force generated by the abdominal muscles may be “lost” in this incompetent tissue.  

Gracovetsky (2008) proposed a theory of the importance of fascia in muscle fatigability 

and spinal stability, using the lumbodorsal fascia as an example (Gracovetsky 2008), 

based on a mathematical model of the lumbar spine (Gracovetsky, Farfan et al. 1977).  

Because fascia is viscoelastic, and thus stretches, it is impossible to load it in a 

continuous manner.  Gracovetsky (2008) suggests that muscles employ an oscillatory 

activation pattern to cyclically load and unload the collagen structures, which in turn 
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prolongs the amount of time the muscle is capable of performing a motor task by utilizing 

these short “rest” periods during the unloading phase (Gracovetsky, Farfan et al. 1977, 

Gracovetsky 2008).  It is possible that the anterior abdominal fascia, already stretched 

and thinned from pregnancy, has different viscoelastic properties than the fascia of a 

nulligravid woman, thus requiring greater muscular effort to appropriately load the tissue 

for successful completion of motor tasks, leading to greater fatigability in postpartum 

women. 

Postpartum women were more sensitive to pain than control women, especially at 

the abdomen, up to 26 weeks postpartum.  The increased sensitivity to pain exhibited by 

the postpartum women at the nailbed at the 8-week postpartum time point indicates 

possible central mechanisms at play (Graven-Nielsen and Arendt-Nielsen 2002, Woolf 

2011).  The lack of a difference in pressure pain thresholds at the nailbed between control 

and postpartum women at 26 weeks is driven by a decline in PPT in the control group.  

This may be due to a learning effect in the control women.  However, it does not 

definitively rule out the presence of continued central mechanisms being responsible for 

altered pain perception in the postpartum women, who experienced no change in PPT at 

the nailbed between 8 and 26 weeks.  The lower pressure pain thresholds at the lower 

abdomen observed in the postpartum women as compared to control women also suggest 

some local changes, such as increased nociceptor sensitivity, that may contribute to 

heightened pain sensitivity in this group (Graven-Nielsen and Arendt-Nielsen 2002).   

Postpartum women in this study demonstrated worse scores than control women 

on several questionnaires regarding muscular function, pain, and disability.  While 

postpartum women demonstrated Oswestry and FABQ scores that were statistically 
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higher than control women, these results were not clinically significant.  Further 

investigation of the fatigability of the lumbopelvic stabilizing muscles in women 

(postpartum and nulligravid) with clinically significant Oswestry scores would be 

beneficial to the understanding of the role of fatigability of this muscle group with low 

back pain and disability.  Postpartum women also demonstrated impaired sleep quality, 

pelvic floor function, and increased pelvic girdle symptoms as compared to control 

women.  While women in the vaginal delivery group had higher Oswestry, PFDI, and 

PGQ scores than women in the Cesarean delivery group at 8 weeks postpartum, no 

difference in these questionnaires was observed between delivery types at 26 weeks 

postpartum.  This lack of difference at 26 weeks was driven by improvement in the 

vaginal delivery group, while scores for the Cesarean delivery group did not change 

across time.  These findings suggest that vaginal birth is a risk factor for low back pain, 

pelvic floor dysfunction, and pelvic girdle pain only in the immediate postpartum period, 

which is in contrast to the popular opinion that Cesarean delivery is protective against 

these impairments (Bost 2000). 

Fatigability of the lumbopelvic stabilizing muscles was also associated with total 

body fat, thickness of the rectus abdominis muscle, functional mobility, and self-reported 

physical activity over the preceding 12 months.  This should be interpreted cautiously, 

especially at 8 weeks postpartum, as pregnancy facilitates fat storage in the mother to use 

as a fuel source during late pregnancy when blood glucose is prioritized to the fetus 

(Chearskul 2006), thus a higher body fat percentage may be physiologically “normal” in 

the immediate postpartum period.  However, it appears that women who are able to 

reduce this excess body fat by 26 weeks postpartum are less fatigable than women whose 
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body fat percentage remains elevated.  Thus, it may be more clinically relevant to assess 

changes in body fat rather than changes in weight after childbirth. 

Women who were more fatigable during ASLR also walked a shorter distance in 

six minutes than those who were less fatigable.  This association was strongest at the 8-

week time point, and was only a trend (p = 0.051) at 26 weeks postpartum.  The 

mechanism for this relationship is unknown at this time.  It is possible that instability in 

the pelvic joints from pregnancy and childbirth, or impaired transfer of muscularly 

generated forces, contribute to decreased performance of functional mobility.  It is also 

possible that cardiovascular fitness is lower in the postpartum group due to the changes in 

physical activity during pregnancy and immediately after childbirth, and this observation 

is supported by the self-reported and objectively measured lower physical activity in the 

postpartum group.  The association between physical activity and ASLR fatigability has 

also been shown with the trunk flexor muscles using an intermittent, isometric fatiguing 

exercise protocol in healthy men and women (Deering, Senefeld et al. 2017) and 

postpartum women (Chapter 3).  These findings support the importance of individualized, 

prescribed exercise to increase muscle mass and decrease body fat in the postpartum 

period.   

Further research is needed to determine the impact of rehabilitation on fatigability 

of the lumbopelvic stabilizing muscles.  The significantly increased fatigability in this 

group of rather high-functioning postpartum women also highlights the need to evaluate 

fatigability in postpartum women with clinically significant pain syndromes and 

musculoskeletal impairments (such as incontinence and pelvic organ prolapse). 
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V. CONCLUSION 

 

 

 

This dissertation examined the impact of pregnancy and method of childbirth on 

strength and fatigability of the abdominal muscles, as well as exploring abdominal 

muscle function in healthy men and healthy, nulligravid women.  The abdominal muscles 

play an important role in stability of the lumbar spine and pelvis, maintenance of 

continence, and regulation of intra-abdominal pressure, and function of these muscles is 

linked to several pregnancy-related impairments, such as low back pain, pelvic girdle 

pain, and incontinence.  Because the abdominal wall is subjected to significant 

perturbation during pregnancy (Boissonnault and Blaschak 1988, Kristiansson, 

Svardsudd et al. 1999, Chearskul 2006, Coldron, Stokes et al. 2008), and may be further 

compromised by Cesarean delivery (Corton, Leveno et al. 2009), it is surprising that the 

abdominal musculature is not objectively assessed as part of standard medical care 

(Borders 2006).  As such, there is limited understanding of changes in abdominal muscle 

function following pregnancy and childbirth.  This dissertation primarily examined 

maximal strength of the trunk flexor muscles and fatigability of the trunk flexor and 

lumbopelvic stabilizing muscles in order to quantify function of the abdominal muscles.  

This chapter summarizes and interprets the main findings of these studies, highlights their 

scientific and clinical significance, and provides suggestions for further investigation in 

future studies. 

 This dissertation established a new trunk flexion testing protocol, utilizing the 

Biodex dynamometer, to limit contribution of the hip flexor muscles to a trunk flexion 

task to better understand the function of the abdominal muscles.  To establish the 
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experimental protocol, and to determine if sex differences exist in abdominal muscle 

function, study one examined trunk flexor strength, fatigability, and torque steadiness in 

healthy men and healthy, nulligravid women.  The novel findings of this study included: 

(1) lack of a sex difference in fatigability and torque steadiness (torque fluctuations); (2) 

a positive relationship between maximal strength and fatigability; (3) a sex difference in 

the shape of the torque-angle curve, with men demonstrating greater torque than women 

in positions of trunk extensions, but no sex difference in strength in upright or flexed 

trunk positions; (4) torque fluctuations for both sexes were significantly higher in the 

trunk flexor muscles (~15%) than those typically observed in limb muscles (~1.5-4%) 

(Hunter, Critchlow et al. 2004, Tracy, Maluf et al. 2005, Welsh, Dinenno et al. 2007).  

The lack of a sex difference in fatigability and the positive association between strength 

and fatigability may both be partially explained by the fact that the abdominal muscles 

are important postural and stabilizing muscles, thus making fatigue resistance a necessity 

for both sexes.  The large torque fluctuations observed during trunk flexion contractions 

may be influenced by several factors, including ventilation, the size of the trunk, and the 

neurological complexity involved with activating several large muscles.  Further research 

into the mechanisms of trunk flexor fatigue and force control is needed to better 

understand the impact of these metrics of muscle function on low back injury and spinal 

stability.  

 The current method to assess abdominal function is certainly not without 

limitations.  First, limiting hip flexor involvement required a significant amount of 

education, monitoring, and cueing of study participants to ensure proper technique.  This 

was also challenging during the fatiguing exercise task, when contractions were separated 
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by only 4 seconds, and participants were receiving strong encouragement to continue the 

task as long as possible.  Frequent reminders for proper technique and cueing to not 

utilize compensatory techniques (such as hip flexor involvement) were required for many 

participants.  In addition to technique, the objective measurement of trunk flexion torque 

requires the use of significant equipment (in this case, the Biodex System 4 dynamometer 

and the back flexion/extension attachment) and time.  This makes quantifying trunk 

flexor torque difficult in clinical settings where access to such equipment may not be 

possible and time is often limited.  Further, this dissertation only examined abdominal 

muscle function during isometric contractions.  It is possible that different results may be 

observed under conditions utilizing dynamic contractions. 

 Chapters 3 and 4 examined the impact of pregnancy and mode of delivery on 

trunk flexor strength and fatigability of the trunk flexor muscles and lumbopelvic 

stabilizing muscles, as well as experimental pain perception.  These chapters also 

explored associations of abdominal muscle function and several other factors to provide 

insight into the mechanisms for any differences between groups, and also to determine 

the functional significance of the laboratory-based tests.  These factors included muscle 

thickness, inter-recti distance, physical activity, and functional mobility.  At 8 weeks after 

delivery, postpartum women demonstrated severe deficits in isometric voluntary strength 

(33%) and fatigability (71%) of the trunk flexor muscles (Chapter 3), and fatigability of 

the lumbopelvic stabilizing muscles (34%) (Chapter 4) compared to control women.  

Postpartum women were also more sensitive to an experimental pressure pain stimulus at 

the nailbed (26% more sensitive), lower abdomen (37%), and superior rectus abdominis 

(36%) (Chapter 4).  These findings are alarming because many women who work outside 
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of the home have already returned to work by 8 weeks postpartum.  For women who have 

jobs that involve heavy lifting, or repetitive lifting/carrying tasks, the profound deficits in 

strength and increased fatigability could put these women at increased risk of spinal 

injury.  These findings also highlight a gap in women’s healthcare practice: the current 

standard practice of care for postpartum women makes the assumption that when the 

smooth muscle of the uterus has recovered from pregnancy and childbirth, all body 

systems (including the musculoskeletal system) have recovered, as well.  Incorporating 

assessment of the musculoskeletal system by healthcare professionals who are experts in 

musculoskeletal assessment, diagnosis, and rehabilitation (such as physiatrists and 

physical therapists) may improve musculoskeletal recovery in postpartum women. 

Furthermore, the deficits in function were substantial at 6 months postpartum. At 

26 weeks after delivery, postpartum women continued to demonstrate significant 

impairments in strength (44%) and fatigability (52%) of the trunk flexor muscles 

(Chapter 3), and fatigability of the lumbopelvic stabilizing muscles (23%) (Chapter 4) 

compared to control women.  Postpartum women demonstrated a similar pressure pain 

threshold as control women at the nailbed, but continued to demonstrate increased 

sensitivity to experimental pain at the lower abdomen (37%) and superior rectus 

abdominis (30%) (Chapter 4).  Postpartum deficits in fatigability of the lumbopelvic 

stabilizing muscles and trunk flexor muscles have not been previously reported and the 

large deficits in function even 6-months postpartum highlight that the neuromuscular 

function of this population is neglected. 

In addition, this body of work established a new clinical measure of fatigability of 

the lumbopelvic stabilizing muscles that can be used in clinical populations and is able to 
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be performed in the clinic by health care professionals.  Women with the greatest deficits 

in abdominal muscle function demonstrated thinner rectus abdominis muscle thickness, 

larger inter-recti distance, worse performance on the six-minute walk test, and lower 

physical activity levels than the women with the best abdominal muscle function.  

Postpartum women also demonstrated the positive association between trunk flexor 

strength and fatigability (Chapter 3) that was observed in men and nulligravid women 

(Chapter 2).  These findings highlight the importance of skilled assessment and 

rehabilitation of the musculoskeletal system as standard medical care following 

pregnancy.  Appropriate management of pain during and after pregnancy is also 

important, in order to reduce the likelihood of development of chronic pain syndromes. 

 This dissertation established that musculoskeletal function, especially of the 

abdominal muscles, is significantly impaired following pregnancy and childbirth.  While 

these studies did explore some variables, such as physical activity, inter-recti distance, 

and body composition, that may be associated with abdominal muscle function, it did not 

directly test specific mechanisms that may be responsible for the profound impairments 

in strength and fatigability observed in postpartum women.  Future research is needed to 

probe the neuromuscular system to identify the physiological mechanisms that are 

primarily responsible for decreased strength and increased fatigability of the abdominal 

muscles in postpartum women.  For example, fMRI studies have identified alterations in 

neurotransmitters and neural circuitry in the brains of mothers (Kim, Strathearn et al. 

2016).  It is possible that these alterations may impact central mechanisms of fatigability 

in postpartum women, contributing to the greater fatigability of the trunk flexor muscles 

and lumbopelvic stabilizing muscles of postpartum women.  It is also possible that the 
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mechanical stress (ie, stretch) experienced by the abdominal wall during pregnancy 

combined with the influence of systemically circulating pregnancy hormones can alter 

the contractile properties of the muscle fibers themselves, thus resulting in a greater 

contribution of peripheral mechanisms to the increased fatigability of the lumbopelvic 

stabilizing and trunk flexor muscles of postpartum women.  A third hypothesis involves 

the dramatic changes to the connective tissue of the anterior abdominal wall.  Animal 

studies (Brown and McGill 2009) and computer modeling studies (Gracovetsky, Farfan et 

al. 1977) have pointed to the importance of fascia for the transfer of muscularly generated 

forces and the distribution of forces to avoid overstressing of one structure as a means to 

decrease fatigability.  If the fascia of the anterior abdominal wall is incompetent 

following pregnancy, and possibly further damaged by Cesarean delivery, it is possible 

that, even if the contractile tissue of the abdominal muscles is functioning appropriately, 

the force generated by the abdominal muscles may not be appropriately transferred to the 

skeletal system.  Finally, future research into the impact of rehabilitation on muscular 

function in postpartum women is also warranted to establish the most effective treatment 

protocols. 
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