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ABSTRACT
A PARAMETRIC INVESTIGATION AND OPTIMIZATION OF

A CYLINDRICAL EXPLOSIVE CHARGE

Logan Ellsworth Beaver

Marquette University, 2017

Explosive device design has a wide impact in the space, manufacturing,
military, and mining industries. As a step toward computer assisted design of
explosives, an optimization framework was developed using the Design Analysis Kit
for Optimization and Terrascale Applications (Dakota). This software was coupled
with the hydrocode CTH. This framework was applied to three exploding cylinder
models, two in 1D and one in 2D.

Gradient descent, dividing rectangles, and a genetic algorithm were each
applied to the one-dimensional models. Parametric studies were performed as a
basis for comparison with the optimization algorithms, as well as qualifying the 1D
model’s accuracy. The gradient descent algorithm performed the best, when it
converged on the optimum. Dividing rectangles took approximately twice as many
iterations to converge as gradient descent, and the genetic algorithm performed
marginally better than a full parametric study.
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1. INTRODUCTION

1.1 Motivation and Scope

The design of explosive devices has a wide reaching impact in mining,

demolition, space, manufacturing, and military applications. Traditionally the

design of devices using explosives is an expensive and time consuming process

involving: extensive machining, building experimental setups, and going to great

lengths to ensure the safety of everyone involved. These material and labor costs

can be significantly reduced by using computational tools to assist in the design of

an explosive.

By coupling a physics based simulation package with an optimization toolkit

it is possible to automate most of the design process for explosive devices. In this

thesis an automated optimization framework is developed by coupling the Design

Analysis Kit for Optimization and Terascale Applications[1] (DAKOTA) with

CTH[2], a state of the art hydrocode.

As a step toward computer assisted explosives design, the classic exploding

cylinder problem was analyzed and run through several optimization algorithms.

The software framework was deployed to perform optimizations and parametric

studies across the design space. The framework’s extensibility was also

demonstrated by applying it to a related design problem.

The framework was applied to maximize the kinetic energy output of an

exploding cylinder. Specifically, the kinetic energy of the metal case was maximized

by optimizing the cylinder geometry. A dimensional analysis was also performed to

visualize the kinetic energy density of the explosive.
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1.2 Literature Review

Explosives have a rich history, reaching back from the alchemical origin of

gunpowder in the late middle ages[3] to the first modern explosives developed in the

late 1800s[4]. Nitroglycerin, the first practical explosive, was synthesized in 1847 by

the Italian chemist Ascanio Sobrero[5]. Unlike previous explosives at the time

Nytroglycerin detonates rather than deflagrating. When an explosive substance

ignites there is an oxidation reaction which produces hot gaseous byproducts. If the

heat generated from this reaction cannot be conducted away faster than it is

generated a runaway burn ensues. For deflagrating materials, such as gunpowder,

this burn front advances slower than the speed of sound in the material. In the case

of a high explosive, such as TNT, this reaction will accelerate past the speed of

sound in the material and form a steady shock wave[6]. This detonation shock wave

releases energy at an extremely fast rate over a very short period of time, resulting

in a much higher intensity explosion than a deflagrating material[7]. Most high

explosives detonate at a speed near 8 kilometers per second[6], whereas deflagrating

wavefronts generally move slower than 1.3 kilometers per second[8].

The standard explosive Trinitrotoluene (TNT) was first synthesized by the

German chemist Julius Wilbrand in 1863[9], and it would be another 28 years before

another German chemist, Carl Häussermann, fully understood the usefulness of

TNT as an industrial scale explosive[10]. At the same time Alfred Nobel was

ushering in the age of modern explosives with the invention of modern blasting caps

in 1863[11], dynamite[12], and gelignite, the first plastic explosive, in 1875[13].

Plastic explosives are manufactured by mixing a detonating compound with binding

agents and filler to produce a significantly more stable compound. Some plastic

explosives are so stable that they can be machined, extruded, and even re-cast into

different shapes without detonating[6].
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The first large scale use of modern explosives in military applications

occurred during World War 1. The modern hand grenade was patented by Leon

Roland in 1915[14] and improved upon by William Millis in 1916[15]. Additionally,

the practice of strategic bombing began when a German zeppelin dropped eight

shrapnel bombs on the Belgian city of Antwerp in 1914[16]. By the end of the war

both sides understood the devastating potential of explosives in warfare, and a host

of sophisticated bombs and explosives were developed by both sides. This ballistic

arms race continued on into the 1940s.

At the height of the second world war bombs with interesting mechanical

designs were being developed to maximize the damage to personnel and

infrastructure. Many novel designs were developed with unique aerodynamic

properties, such as the British bouncing bomb and the German butterfly bomb[17].

This was also the time when G.I. Taylor, R. Gurney, and N.F. Mott published their

seminal works analyzing explosives.

In Taylor’s 1941 paper[18] an analytical model for the transient shape of an

exploding cylinder was developed. Taylor used a Lagrangian reference frame

traveling with the detonation wave to simplify the analysis. By relating the radial

displacement of the case to its position behind the detonation front Taylor was able

to calculate the gas pressure and velocity acting on the case along its entire length.

This resulted in a set of differential equations describing the shape and velocity of

the cylinder during detonation.

Taylor also developed a fracture model for cylindrical explosives in a 1944

paper[19]. Based in part on earlier experimental findings, Taylor noted that as a

cylindrical bomb expanded surface cracks would form along the length of the

cylinder. At first these shallow cracks would cause a compressive circumferential

stress on the inner surface of the shell. As the cylinder continued to expand the

cracks deepened as the internal compressive stress decreased. Eventually the cracks
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would fully penetrate the outer shell, releasing the high pressure gas. From his

analysis, Taylor found that the ratio of the inner radius at failure to the initial inner

radius was nearly constant and independent of wall thickness. This ratio ranged

from 1.7 for steels to 3.2 for aluminum. This phenomenon was called the

“Expansion Ratio” in a 1977 BRL report by Predebon et al[20], which seemed to

confirm Taylor’s findings.

Meanwhile, in 1943 Gurney authored a report[21] which soon became the

fundamental model for the velocity of the exploding cylinder. Gurney noted that

the radial velocity of the shell fragments was much greater than their longitudinal

velocity. This fact, coupled with the relatively high speed of the detonation wave,

meant that the explosion could be effectively modeled as a one dimensional gas

expansion. This resulted in a radial energy balance relating the potential energy of

the explosive with the kinetic energy of the reactant gases and the kinetic energy of

the shell. Solving this energy balance resulted in an expression for the velocity of

the shell wall at the point of failure as a function of: initial explosive mass, shell

mass, and an empirical energy constant. This constant, sometimes referred to as the

Gurney constant, has been experimentally measured for many explosives. The

Gurney constant has also been shown to correlate well with the steady state

detonation wave speed in many high explosives[6].

Significant advances were made with respect to the fragmenting and fracture

of cylindrical explosives by Mott in his 1945 paper[22], where he describes the

process of fragmenting as “the tearing apart of a rapidly expanding tube when the

material of the tube reaches the limit of its ductility.” Due to imperfections in the

explosive’s outer shell, the strength of the casing will vary along its circumference.

At the moment of fracture the weaker points will fail, and a stress release wave will

travel outward from that point. The area between the fracture and the relief wave

creates a region of low stress where further fracture cannot occur. Using this
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approach Mott also derived a stochastic model for fragment length based on the

properties of the explosive.

Further analytical models for gas dynamics and fragmentation have been

developed based on the works of Taylor, Gurney, and Mott. Several

studies[23][24][25] have matched experimental data to the models developed by

Gurney fairly well when using cylinders with a length to diameter ratio above

2-3[26]. It has also been observed that the velocity at the ends of the cylinder are

significantly lower than the equation derived by Gurney predicts[26] due to edge

effects. Several studies have added empirical correction factors to match these edge

effects, including equivalent mass equations[26] and velocity correction

factors[23][27]. A two dimensional formulation of the Gurney equation has also been

proposed[28]. Work[29] has been done to modify the Gurney equation to more

accurately match experiments with small shell thicknesses. Attempts have also been

made to model the effects of the blast wave on the shell’s velocity[30], and functions

have been empirically formulated to account for the shock interaction and edge

effects of the explosive[31].

Many modern models for the fracture of exploding cylinders have also

applied elastic and plastic strain models to the foundational work of Mott and

Taylor. Physics-based models[32] have included the effects of plastic work

hardening, rate-dependent plastic flow, thermal softening, and void nucleation on

the fracture process. Two dimensional material flow in the radial and tangential

directions of the cylinder have also been considered in the same work.

With the advent of terrascale computing, and massively parallel processing

becoming more widespread, a significant amount of effort has gone towards

developing high fidelity computational models of the exploding cylinder problem. A

gas leakage model was initially added to the finite difference code HEMP in the mid

70s[33], and as computers have gotten faster more realistic models have been
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developed, such as a high fidelity three dimensional model of an exploding cylinder

which included air gaps between material layers and a feedback controlled cookoff

system[34]. A standardized test setup for exploding cylinders, the Scaled Thermal

Explosion Experiment (STEX), was developed at Lawrence Livermore National

Laboratories[35] in 2002, leading to a plethora of new experimental data which can

be used to verify computational models.

There is not a significant body of work in explosives design with respect to

optimization which has relied on experience and intuition in the past. Many

analytical models are not general enough to cover the wide design space required by

optimization algorithms. The most significant work in explosives optimization

actually appears in computer graphics literature. It is desirable to have a very

specific shape and motion for explosions in movies and video games, and papers

have been published[36] which seek to optimize an initial explosive charge with

respect to the shape of the explosion. In general these explosive models are neither

rigorous nor realistic, and as such are not applicable to engineering. However, they

do give a useful insight to the process of optimizing an explosives system.



7

2. ANALYTICAL MODELS

2.1 Physical Phenomena

When analyzing the exploding cylinder, many analytical models set up the

geometry in such a way that the shock effects are negligible[37], or neglect the effect

of the blast wave entirely by considering just the effects of the expanding gas[38]. In

general the of energy contribution of the detonation wave is insignificant compared

to the gas expansion, and these gas dynamics models are applicable to

approximately solve a wide range of problems[30] .

During an explosion the blast wave propagates through the material

significantly faster than the speed of sound in the explosive. This results in the shell

being affected by the blast wave before it interacts with the expanding gas. This

effectively results in two regimes of energy transfer between the explosive and the

outer shell[30]. Usually the high pressure gas has a much greater impact on the final

velocity than the detonation wave, but thin-walled explosives are significantly

affected by the shock dynamics[30].

Two of these fundamental gas-based analytical models for cylinder expansion

come from G.I. Taylor and R.W. Gurney. To calculate the profile of an exploding

cylinder Taylor used a Lagrangian approach with the conservation equations.

Gurney calculated the case velocity at the moment of fracture using a conservation

of energy approach.
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2.2 Taylor Model

To analyze the shape of an exploding cylinder Taylor made several key

assumptions to reduce the problem down to a two dimensional steady-state analysis.

He assumed that the chemical reaction in the flame front was instantaneous, the

mass of the shell was significantly higher than the mass of the explosive charge, and

the cylinder was infinitely long and axisymmetric.

To simplify the gas dynamics calculations a Lagrangian reference frame was

fixed to the detonation wave as it traveled down an infinitely long cylinder. Taylor

utilized a combination of Bernoulli’s equation, Newton’s laws, and continuity to

derive the final shape and velocity of the case along its length. The velocity of the

case is given by

V = 2U sin

(
1

2
tan
(dr

dx

)−1
)

(1)

where V is the velocity of the case, U is the velocity of the detonation wave, dr is

the radial displacement of the case, and dx is the distance behind the flame front.

Equation 1 must be solved numerically, and the solutions can be found in [39].

2.3 Gurney Model

The Gurney model of an exploding cylinder uses a conservation of energy

approach to relate the chemical potential energy of an explosive to the output

kinetic energy[21]. For simplicity Gurney also assumed a linear velocity profile, such

that Vr = V0
r
a
, where Vr is the radial velocity of the expanding gas, a is the inner

radius of the explosive and V0 is the velocity of the case. Applying conservation of
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energy results in the equation

EC =
1

2
MV 2

0 +
1

2
V 2
0

∫ a

0

2πrρ
r2

a2
dr (2)

where E is the initial chemical energy density of the explosive, C is the mass of the

charge, M is the case mass, V0 is the case velocity at the moment of fractures, ρ is

the density of the explosive gas, and a is the inner radius of the case.

By using a constant density assumption Equation 2 simplifies to the form

V√
2E

=

(
M

C
+

1

2

)− 1
2

(3)

where C is the initial mass of the explosive charge. The term
√

2E is sometimes

referred to as the Gurney constant and has units of velocity. Equation 3 is

convenient for analytical calculations of kinetic energy as it only has three

parameters; the charge and shell mass, which can easily be calculated from material

properties, and the Gurney constant, which is empirically determined for each

explosive.

It has been shown that the Gurney equation overestimates fragment velocity

when the aspect ratio, L
D

, is less than 2 or when the mass ratio, M
C

, is less than

0.1[26][29]. Several attempts have been made to correct the Gurney equations, such

as adding an artificial solid core to the explosive[29], empirically fitting a correction

function to velocity measurements[23][31]. Even with these drawbacks the Gurney

equation is still a practical tool for developing an initial estimate of the fragment

velocity of an explosive[33].
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2.4 Expansion Ratios

When modeling the response of an exploding cylinder it is useful to know at

what state the cylinder walls will fracture. As a cylindrical explosive expands long

cracks develop on the surface in the axial direction[39]. At some points these cracks

will penetrate the outer wall, resulting in gas leakage. This leakage reduces the

energy available to accelerate the fragments, significantly reducing the radial

acceleration of the case and limiting the terminal velocity[33]. Therefore, by

increasing the maximum expansion of the case before fracture it is possible to

increase the terminal velocity of the fragments[20].

Work has been done by Taylor[39] and Predeborn[20] to help determine the

expansion ratios for several metals. The expansion ratio is the radius where gas

leakage first occurs divided by the initial radius of the cylinder. The expansion

ratios for steel, copper, and aluminum are approximately 1.9, 2.4, and 3.2

respectively. Expansion ratios also appear to be independent of wall thickness in the

limited experiments that have been performed.

2.5 Dimensional Analysis

A dimensional analysis approach can be taken to the model exploding

cylinder problem using the variables summarized in Table 1.
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Table 1: Variables and their dimension used for nondimensionalization of the explod-
ing cylinder problem

Name Variable Dimension

Shell Mass M Mass

Charge Mass C Mass

Outer Radius Ro Length

Thickness t Length

Final Velocity V Length
Time

Gurney Constant g Length
Time

By combining like variables in a Bukingham Pi analysis it is possible to

reproduce the dimensionless groups in Equation 3. It is also possible to group terms

based on the kinetic energy of the case and potential energy of the explosive,

resulting in two nondimensional groups. The kinetic energy of the case is 1
2
MV 2,

leaving the terms C, g, t, and Ro. An analogue to potential energy can be created

with the term 1
2
Cg2, and the remaining terms can be grouped into the geometric

variable t
Ro

. These nondimensional groups results in the function

MV 2

Cg2
= f

( t

Ro

)
(4)

with each variable coming from Table 1. Although Equation 4 does not give the

explicit functionality of each term, it may give a useful insight on how to flatten

higher dimension simulation results, experimental data, and Equation 3 to two

variables. This flattening can be seen in Figure 1 using the gurney equation with

several geometries for an aluminum case filled with TNT.
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Figure 1: The Gurney equation nondimensionalized to fit the form of Equation 4.

As the wall thickness of the cylinder approaches zero the wall mass and

kinetic energy also go to zero, as seen in Figure 1. It is also reasonable that the wall

thickness approaches the outer radius, the mass of explosive should go to zero.

Intuitively, a very thick cylinder should have a negligible kinetic energy and a

nonzero potential energy. It would be expected then that as t
Ro
→ 1, MV 2

Cg2
→ 0.

However, applying this limit to Equation 3 using L’hopital’s rule results in a value

of 1, as seen in Figure 1. This nondimensionalization scheme applied to the CTH

parametric study results in Chapter 4.
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2.6 Blast Wave and Shock Effects

Modern approaches for modeling shock and detonation waves use

sophisticated equation of state (EOS) tables and analytical models, such as

Jones-Wilkins-Lee or Mie-Grüneissen. These approaches are based on models

developed by W.J.M. Rankine and P.H. Hugoniot in the late 1800s[40] of how shock

waves travel through materials. By applying the fundamental conservation equations

of mass, momentum, and energy the Rankine-Hugoniot jump condition was derived.

From experimental data, the relationship between the velocity of a shock

wave, Us, and the velocity of the particles behind the shock, Up, is approximately

linear in many materials[41] with the form

Us = sUp + c0 (5)

where c0 is the bulk longitudinal sound speed of the material and s is the empirical

Hugoniot constant. Equation 5 can be combined with the conservation equations to

obtain a relationship between pressure and volume with the form[6]

p2 = p1 +
c20(v1 − v2)

(v1 − s(v1 − v2))2
(6)

where 1 is the state of the unshocked material and 2 is the state of the material just

behind the shock wave, pi is the pressure at each state, and vi is the specific volume

at each state. It should be noted that the Hugoniot of a material represents the

discontinuous jump between the initial and final state of the material. The

thermodynamic path between states can be modeled as a straight line, known as the

Rayleigh Line, or an isentrope[6].

In a detonation the blast wave induces a particle velocity in the case as it

moves along the cylinder. This wave can ring between the inner and outer surfaces
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several times; this behavior is based on the shock impedance of each material.

Eventually the hot expanding gas catches up to the case, supplying it with

additional kinetic energy until the case bursts and the gas can escape[30]. By

analyzing the detonation wave it is possible to include the energy from the shock

wave into existing models, as well as allowing for a physics-based derivation for the

state of the expanding gas as it drives the outer shell.

An idealized detonation consists of unburned explosive, a flame front, and

high pressure gas products[6][7]. As the explosion proceeds the flame front reaches a

steady shock speed, known as the detonation velocity. This detonation velocity is

relatively constant, but it can decrease when the outer radius of an explosive is very

small[31]. By applying conservation of mass and momentum to the flame front it is

possible to derive the Chapman–Jouguet (C-J) Condition which predicts the initial

state of the reactants behind the detonation wave[7].

The chemical transition between the unshocked solid explosive and the

reactant gases can not be easily modeled with the Hugoniot equations. To account

for this the Jones-Wilkins-Lee (JWL) EOS was developed to model the shock

response of the reactant gases[42]. The JWL EOS is an empirical model which can

be combined with the Hugoniot jump condition to approximately model the

detonation. Two interesting relationships can be observed by plotting the JWL

EOS fo the product gases and the Hugoniot of a solid explosive in P-v space.
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Figure 2: The Hugoniot of TNT plotted alongside the JWL equation of state for
TNT. The Rayleigh line, initial state, C-J state, and von Neumann spike are also
shown.

The Rayleigh line in Figure 2 starts at the initial state of the solid, is tangent

to the JWL EOS curve, and passes through the Hugoniot of the solid TNT at a

higher pressure. The tangent point between the Rayleigh line and the JWL EOS

coincides with the C-J state of the explosive while the upper intersection of the

Rayleigh line with the Hugoniot represents the peak pressure (known as the von

Neumann Spike) in the flame front[7]. It is possible for the Rayleigh line to pass

through the JWL curve, resulting in either a strong shock, when the pressure is
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higher than the C-J pressure, or a weak shock, when the pressure is lower than the

C-J pressure. However, strong and weak shocks tend to be unstable, and are usually

transients that converge to the C-J point[7]. A qualitative pressure versus length

diagram is given in Figure 3 for the values in Figure 2 to show the pressure profile

in the axial direction.
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Figure 3: An example of a pressure versus position graph for the explosive in Figure 2.
From right to left, the pressure starts at 1 atmosphere, reaches to the von Neumann
spike around 0.8 units, reaches the C-J pressure at 0.7 units, and then decays due to
Taylor expansion of the case.

The properties used to generate Figures 2 and 3 are given in Table 2.
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Table 2: TNT constants used to generate the JWL EOS and Hugoniot curves in
Figure 2[6].

EOS v0 [m3/kg] p0 [Pa] c0 [m/s] s Chemical Energy [GPa]

JWL 6.105 10−4 101300 2140 1.88 6.00

EOS A [GPa] B [GPa] R1 R2 w

Hugoniot 373.8 3.747 4.15 0.90 0.35

By understanding the underlying physical mechanisms of detonation waves it

is possible to build more accurate computational and analytical models of

explosives. In current state of the art hydrocodes the flame front is handled as an

interpolation between the initial and final states of the explosive. This simplifies the

detonation processing cost while producing an accurate initial condition for the

reactant gases[43]. These approaches are used by CTH to implement accurate

detonations, and this approach will be compared to the analytical models developed

by Taylor and Gurney.

2.7 Rarefaction Waves and Edge Effects

Many cylindrical explosives are detonated at a point on one end, resulting in

a wave that travels along its length. Initially this wave expands spherically until the

inner radius of the cylinder is reached. At this point part of the detonation wave

pressure is reflected back in to the product gases, and part of it is transmitted into

the wall of the cylinder. The wave in the cylinder wall continues outward,

eventually reaching the air-case interface. Air’s impedance is significantly lower
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than any metal, so a majority of the energy in the wave is transmitted into the air

as a shock wave. The wave energy is further reduced when the metal casing

expands, resulting in a net outward velocity in the case. This process releases most

of the pressure in the case, resulting in a rarefaction, or release, wave.

A rarefaction wave reduces the pressure of any material it passes through.

Due to their low pressure rarefaction waves travel at the local sound speed of the

material, and they are reflected and transmitted through interfaces like any other

wave. This can result in a highly complex wave interactions in heterogeneous

materials, with several reflected high pressure and release waves interacting at

different points. These interactions are the main cause of edge and end effects in an

explosive, and can be seen in Figure 4.

Figure 4: A velocity contour plot of the exploding cylinder before and after the
detonation wave passes through the material. Blue is air, black is aluminum, and tan
is TNT.

The release waves can be seen in the right image of Figure 4. The

sawtooth-like pattern is caused by the interaction of release waves and the reflected

detonation front. This ringing leads to oscillations in the case velocity.

The same release waves are generated when the detonation wave reaches

either end of the cylinder. In this case the release waves are reflected back in to the
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product gases, reducing the pressure and energy available to accelerate the case.

This results in a significantly lower velocity near the edges of the explosive. The end

of the explosive which was initially detonated generates a rarefaction wave almost

immediately. This results in a significantly lower fragment velocity at the detonated

end compared to the far end. This asymmetry is seen in experimental data[23] and

is shown in Figure 5.

Relative Position
0 0.2 0.4 0.6 0.8 1

C
as

e 
V

el
oc

ity
 [

km
/s

]

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 5: Experimental data from [23] showing the variation of shell velocity with a
length to diameter ratio of approximately 1.3.

The velocity near the middle of the explosive approaches the Gurney velocity

for sufficiently large values of L
D

[44]. For this reason the optimizations were

performed with respect to an ideal explosive which has no variation in fragment

velocity along its length. This can then be transformed into a real velocity profile

using empirical shape functions or a physics-based model based on the length to

diameter ratio.
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2.8 Parameterization and Computational Efficiency

Three parameterizations of the exploding cylinder geometry can be used to

completely describe the system: inner and outer radii (ro − ri space), outer radius

and thickness (ro − t space), or charge mass and case mass (C −M space). For

design purposes, optimizing the kinetic energy of the fragments in terms of case and

charge mass isn’t especially useful. To determine the geometry of the explosive it is

first necessary to convert the charge mass into an equivalent inner radius, then

calculate an outer radius using the density of the outer shell. For this reason only

the ro − ri and ro − t parameterizations are explored further.

It should be apparent that whenever the mass or velocity of the shell is equal

to zero the kinetic energy will also be zero. There are two cases where this can

happen; when the case thickness is equal to the outer radius or when the case

thickness is zero. Additionally, the velocity term is second order while mass is first

order, and the velocity of the shell increases with the mass of the explosive. For this

reason the peak kinetic energy should occur as the mass of the case approaches zero.

This relationship is shown in Figure 6 using the Gurney equation.
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Figure 6: The kinetic energy output of an explosive cylinder problem in terms of
inner and outer radius, and outer radius and thickness. Areas of high and low kinetic
energy are yellow and red, respectively.

In Figure 6 the regions of high and low kinetic energy are represented by

yellow and red respectively. The design space of each variable is bounded by solid

lines. To perform an optimization an upper and lower bound must be set on each

variable, which generally results in a square domain. When the geometry is

described in terms of ro − ri the area of interest lies diagonally across the design

space, whereas the area of high kinetic energy is parallel to the thickness axis in

ro − t space.

It could be stated that the ro − t representation is more computationally

efficient, that is it takes more function evaluations in ro − ri space to get the exact

same information. Alternatively, the number of near-zero kinetic energy function

evaluations required to explore the entire ro − ri space is much higher. For this

reason the optimizations were all performed in terms of wall thickness and outer

radius rather than inner and outer radius.
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3. SIMULATION ENVIRONMENT

3.1 HPC Hardware

The optimization task was run on high performance computers (HPCs)

through the Army Research Lab (ARL) and Department of Defense (DoD),

specifically on the Excalibur[45] machine. Excalibur has a Cray XC operating

system with 3098 compute nodes, each containing 32 Intel Xenon E5-2698

processors and 128 GB of memory. By taking advantage of the massive

parallelization of these HPCs it is possible to run high resolution simulations in a

reasonable amount of time.

The simulation and input deck files were stored in a working drive. After

submitting the job to the PBS queue all of the required files were copied to a 50

petabyte scratch drive to run and post-process each evaluation. The output files

were then transferred to a local machine for visualization and analysis.

3.2 Software Configuration

The basic structure for running Dakota with CTH utilizes seven files split

between two folders. The main level folder contains items that only need to be used

once, namely the Dakota input deck and the queue submission script. There is a

template folder inside the main folder which contains the files required to run CTH

for each evaluation and extract the kinetic energy. This structure is shown in Figure

7.
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dakota-cth

├─── run-dakota.bash

├─── input-dakota.in

├─── template-files

├─── pre_processor.py

├─── analysis_driver.py

├─── post_processor.py

├─── read-KE.out

├─── cth-input.in

Figure 7: The tree file structure for an optimization run with Dakota coupled to
CTH.

For each evaluation of CTH, Dakota copies the template files to a unique

folder (such as workdir.10 for the 10th evaluation), and creates a parameter file

listing values for each variable. Dakota then runs the preprocessor, analysis driver,

and post-processor before writing a return file with the objective function value.

When all evaluations have been completed Dakota writes a data file to the top level

directory with the results of each evaluation. This process is summarized in Figure

8.

Figure 8: The process flowchart for a Dakota optimization.

It is not necessary for Dakota to run CTH directly. It is possible for Dakota

to instead submit jobs asynchronously to the queue and monitor each work

directory for the results file. This allows the total processing footprint of the
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optimization to vary over time rather than reserving a set number of nodes for the

entire optimization task.

After selecting an optimization method, Dakota selects the value of each

variable for every iteration until a convergence criteria is met. Some methods, such

as gradient descent, require a strict operating order and cannot be easily

parallelized. Other methods, such as genetic algorithms, can have many parallel

evaluations occurring at once, decreasing the total wall time at the cost of increased

processor load.

To run the function evaluations Dakota requires the name of the

optimization variables, the number of arguments that will be returned for each

objective function evaluation, the command used to run the simulation, and any

preprocessing or post-processing commands. The python code and C++ processing

code can be found in Appendix III.

In the Dakota’s input deck the variables for wall thickness and outer radius

are defined, along with their maximum and minimum values. It is convenient to

define the geometry in terms of inner and outer radius when building a mesh, so the

optimization variables are passed to a preprocessor and the inner radius is

calculated by subtracting the thickness from the outer radius. This information is

then passed to the analysis driver to build the geometry and run the simulation.

Finally the post-processor parses the kinetic energy from CTH output files

and calculates the maximum. This maximum value can then be scaled and returned

to Dakota as the objective function value. All Dakota optimizations are

minimizations, so it is necessary to negate the kinetic energy returned by CTH. It

may also be useful to scale the objective function to a magnitude near 1.
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3.3 Computational Model Setup

The simplest possible analysis of an exploding cylinder is a one dimensional

model of the system’s velocity in the radial direction. By neglecting the axial and

circumferential directions it is possible to model the motion of the outer shell up to

the point of failure. Additionally, it can be argued that the velocity of the wall at

failure is very close to the terminal fragment velocity. With these assumptions it is

possible to construct a fairly low cost simulation with reasonable accuracy.

A diagram of the full three dimensional cylindrical and simplified one

dimensional geometry is annotated in Figure 9.

Figure 9: Three dimensional explosive model with two and one dimensional simplifi-
cations.

In Figure 9 the measurements are all taken relative to the center axis of the

explosive. Ri is the inner radius of the case, Ro is the outer radius of the case, L is

the axial length of the explosive, and t is the wall thickness of the case. This

configuration was realized in CTH using a 20 cm mesh with a resolution of 0.01

cm/node. The explosive material and wall segment were then placed into the

domain based on the values of Ri and RO.
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Three material models are required to run this simulation, one for the

explosive, one for the shell, and one for the ambient air. Table 3 shows the material

properties and EOS used in the simulation.

Table 3: Initial state for each material in the simulation at STP.

Material State Model Density [g/cc] Sound Speed [km/s]

Aluminum Sesame 2.6993 5.2097

Air Sesame 1.218e-3 0.3388

TNT JWL 1.630 6.934

The purpose of including air in the simulation domain is twofold. First,

having air at standard temperature and pressure (STP) outside of the explosive

casing equalizes the internal and external pressure. This allows for more reasonable

initial pressure and temperature conditions within the explosive device. The second

reason is due to an inaccuracy in the numerical solver. CTH is unable to accurately

track gas expanding into a vacuum[43], so higher dimensional models require

something for the products gases to expand into. Gas was included in the one

dimensional model to maintain consistency.

C-J properties for TNT can be found in Table 4.

Table 4: C-J properties used with the JWL TNT model

Material Detonation Velocity[cm/s] C-J Pressure [GPa] C-J Temperature [K]

TNT 693,000 21.19 3801
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To propagate the detonation wave CTH uses a conservation of energy

equation to interpolate between the initial unburnt explosive and the expanding

product gases[43]. This transition is modeled with the equation

S(ρ, T, λ) = (1− λ)Si(ρ, T ) + λSf (ρ, T ) (7)

where S is the state of the material, λ is a factor between 0 and 1 representing the

extent of the reaction, ρ is the material density, and T is the material temperature.

This allows the explosive’s state to transition smoothly between the unexploded

material, Si, and the product gases, Sf . In the case of a pure explosive, such as

TNT, the reaction extent, λ, can be calculated using a basic reaction rate model.

Equation 7 is easy to calculate, but it does not include some features of the flame

front, such as the von Neumann pressure spike or complex multi-step chemical

reactions.

The one dimensional CTH domain was set up with the spatial and temporal

parameters shown in Table 5.

Table 5: Three environmental variables used to set up the CTH simulation.

Final Time [s] Min. Time Step [s] Left Boundary Right Boundary

100.0 10−8 1.010−11 Reflective Transmissive

The left boundary was reflective to enforce the axisymmetric behavior of the

explosive. The right boundary was set to allow any pressurized ambient air to flow

out of the system. In higher dimensional systems the top and bottom boundaries

were set to transmissive for the same reason. The full input decks for each CTH

simulation can be found in Appendix II.
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3.4 Boundary Conditions

There are many boundary conditions (BCs) available in CTH. The most

common BCs are reflective, periodic, transmissive, in/outflow, and constant value.

A general overview of each boundary condition is given below[43].

The reflective boundary condition causes material to reflect back into the

domain at the boundaries. This boundary condition is based on the idea that the

current simulation is reflected over each boundary, so any material attempting to

flow out comes in to contact with an identical copy of itself flowing in the opposite

direction. This reflective interaction is useful for keeping material within the domain

while conserving energy and momentum.

A periodic boundary condition must be applied to two opposite boundaries,

such as the left and right edges of a square in 2D. Any material that exits over a

periodic boundary enters on the corresponding side on the other edge of the domain.

This condition conserves energy and momentum of the system, and is useful for

modeling a strip of a material with a repeating structure, such as a crystal lattice.

Transmissive boundaries allow material to exit the domain. This can lead to

an overall loss of mass, momentum, and energy within the region. Transmission can

be useful for simulating only an important sub-region of a full sized problem, for

example it is used to allow the product gases to expand out of the domain in the

exploding cylinder problem. Transmission is also useful as outlet conditions

computational fluid dynamics problems.

The inflow and outflow boundary conditions are achieved by setting the

gradient at a boundary to a constant value. The amount of material entering or

exiting the domain is dependent on the dot product of the gradient and the normal

vectors at the boundary. If this product is positive material is flowing out of the
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domain, and if the sign is negative material is flowing in. A gradient of zero is

equivalent to the transmissive boundary condition.

Constant value is the simplest boundary condition. After each time step the

fixed boundaries are set back to their initial state. This approach can violate

conservation if the energy and momentum transferred to the boundary is not

redistributed back to the domain at each time step.

3.5 Overview of Optimization Methods

In general terms an optimization problem can be fit into the form [46]

minimize: f0(x)

subject to: fi(xi) < bi, i = 1, 2, ..., n

where xi are the optimization variables of the problem, the function f0(x) is the

objective function that maps the vector x = [x1, x2, ..., xn] to a scalar value, and

fi(xi) are the constraint functions on xi with respect to the limits bi. The exploding

cylinder problem could be stated as:

minimize: −KE

subject to: Ro = 5 cm, 0 < t < 5 cm

where t is the wall thickness, r is the outer radius, and KE is the maximum kinetic

energy of the outer shell. The kinetic energy could be calculated with an

approximate analytical model, such as those proposed by Gurney[38] and Taylor[37],

or the kinetic energy could be derived from simulations.

In Dakota the objective function can be treated as a black box with a fixed

number of optimization variables and objective functions. After prescribing an

optimization algorithm, the number of inputs and outputs, and the limits for each
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variable, it will systematically adjust the variables to reach an optimal solution. It

is also possible to perform a parametric study of the objective function through the

entire variable domain.

Calculating the variables which result in the maximum kinetic energy output

of an explosive is a nonlinear global optimization problem. The problem is nonlinear

because the kinetic energy can not be written as a linear combination of the

optimization variables; it is a global problem because there may be several

combinations of input variables that result in a local kinetic energy maxima. These

constraints significantly limit the available optimizers within Dakota’s libraries. The

three most applicable algorithms within Dakota for this problem are: multi-start

gradient descent, dividing rectangles (direct), and genetic algorithms.

Gradient descent is one of the most common and straightforward

optimization methods. In general gradient descent is two steps, calculate the

direction with the most negative gradient and take a step in that direction[46]. The

algorithm will trace the steepest path ”downward” and find the most significant

local minima. To apply this method to a global optimization problem Dakota uses a

multi-start approach[1]. N points are randomly selected within the design space and

a gradient descent is performed until a convergence threshold is reached. This

method has the benefit of a straightforward implementation, but convergence on the

global minimum is not guaranteed and the surface must be smooth and continuous

to calculate gradient data.

The direct algorithm is a global gradient-free method with the much weaker

requirement of Lipschitz continuity[47]. That is, the function being optimized must

have a bounded derivative in each direction, but that derivative does not need to be

evaluated. In general any continuous function that doesn’t tend to infinity is

Lipschitz continuous.
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One useful function for testing the robustness of an optimization algorithm is

the Rosenbrock Function[48]. The Rosenbrock function is designed in such a way

that there is a single global minima, and the gradient around that point is very

close to zero. A two dimensional form of the equation can be written as

u(x1, x2) = 100(x2 − x21)2 + (1− x1)2 (8)

where x1 and x2 are optimization variables, and u is the output of the Rosenbrock

function. The direct algorithm is used to optimize this function in Figure 10.

The direct algorithm starts by normalizing the optimization variables onto

the unit hypercube, i.e. it linearly transforms the range of the variables to [0, 1].

The space is then divided into thirds for each optimization variable, xi, such that

the dimension with the best (smallest valued) evaluation are split first[47]. This

step is shown in Figure 10 for a two dimensional form of the Rosenbrock equation.
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Figure 10: The initial two dimensional setup for a direct optimization. The labeled
points show objective function evaluations.

The best function evaluation in Figure 10 is 3.375 in the x2 direction, so that

subspace is divided first. The only remaining subspace is x1, so it is divided second

into smaller partitions. After this initial setup the direct algorithm will

systematically identify and subdivide potentially optimal partitions. A partition is

considered potentially optimal if it meets the conditions[47]:

f(cj)− K̂dj <= f(ci)− K̂di and

f(cj)− K̂d)j <= fmin− ε|fmin|

where j references the current partition, i refers to every other partition, c is the

center of a partition, f(c) is the evaluation function at point c, K̂ is some positive
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constant, d is the size of a partition, fmin is the current best evaluation, and ε is a

small convergence constant.

The constant K̂ could be thought of as a slope, and the conditions could be

conceptually restated as: “Is there a slope K̂ such that the edge of partition j could

be lower than the edge of partition i?” and “Would the edge of partition j be

significantly lower than the current best evaluation?” ‘Significantly better’ is

determined by the constant ε which can generally be set on the order of[47] 1x10−4,

or 0.01%.

The direct algorithm allows for a global gradient-free optimization with the

only condition being Lipschitz continuity. Due to the global nature of the search

there is a potential for significantly more evaluations as the number of local minima

in the optimization space increases.

Genetic algorithms are a family of biologically-inspired evolutionary

computation methods that can be successfully applied to optimization problems.

General genetic algorithms have four common elements: populations of

chromosomes; random chromosomal mutation; crossover between individual

chromosomes; and a fitness function to evaluate each individual in the

population[49][1].

As an example, again consider the Rosenbrock function. The two inputs to

the function, X1 and X2 can be represented as genetic units (or genes) in the array

solution = [x1, x2]

where hundreds of different solutions could be generated and evaluated. The

solutions with the highest fitness value (closest to zero in this case) are allowed to

reproduce and generate the next set of solutions. These successful populations could

be further improved by implementing mutation and crossover effects.

Like in nature, mutation in genetic algorithms modifies the current

population and tends to cause a divergence of solutions[50]. The mutation operator
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can take on several forms, including[51]: switching the values of two genes, reversing

the order of genes, and adding a small amount of noise to the values of the genes.

Each of these operators tend to spread out the population over the solution space.

Crossover is the genetic algorithm equivalent of reproduction between

organisms. Two parent solutions are selected, and their genes are combined to

generate a new solution. The benefit of crossover is based on the idea that short

strings of genetic information can provide high fitness, and thus crossover should

eventually combine these building blocks to produce an optimal organism. The

mixing of existing genes tends to move the population toward a local optima, and so

crossover tends to converge the population[50].

Genetic algorithms have several benefits over other optimization techniques.

The genetic units can be any type of variable, such as continuous, discrete, or

piecewise. The evaluation of solutions can be easily parallelized by increasing the

size of the population, as each individual’s fitness is independent of the total

population. Finally, the objective function does not need to meet any strict criteria;

there can be discontinuities and holes and the genetic algorithm will still be able to

find a solution[51].

A comparative summary of the optimization methods presented is presented

in Table 6.
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Table 6: A comparison of the viable optimizers in Dakota

Multi - Gradient Direct Genetic

Doesn’t require a smooth objective function X X

Doesn’t require a continuous objective function X

Doesn’t requires gradient information X X

Guaranteed to find global optima X

Allows independent evaluations X X

To predict the behavior of each optimizer, a parametric study was performed

on each of the 1D models. In general the shape of the objective function is not

known a priori, so it is very important to understand the assumptions and

requirements built into each algorithm.
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4. ONE DIMENSIONAL OPTIMIZATION

4.1 Analysis Overview

The one dimensional analysis of the exploding cylinder was performed in four

stages: first the Dakota optimization framework was developed and tested on KO, a

pure Lagrangian hydrocode based on HEMP[52]. Then a parameter study was

performed on the one dimensional CTH model using Dakota, and the results were

compared with the Gurney equation. Third, optimizations were performed on the

CTH model with the methods in Table 6. Finally a simple design problem was

analyzed where the outer radius was fixed and a second layer of wall material was

introduced.

4.2 Dakota Structure for 1D

To run the one dimensional simulations on the HPCs a queue submission

script was developed to reserve a single node for the duration of the parametric

study or optimization. The HPC Excalibur has a total of 32 multi-threaded cores

per node, allowing 64 concurrent processes, or 63 CTH evaluations alongside

Dakota. The queue submission scripts and input decks can be found in Appendix II.

For the one dimensional simulations a templated input deck was developed

for KO and CTH with the variables for inner and outer radius in curly braces as

{r o} and {r i}. These values were calculated by Dakota between each iteration,

and then they were passed to the preprocessor where they were substituted into the

input deck. In the case of KO, the number of nodes per material was also calculated
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and substituted into the input deck. KO is compiled with a fixed number of nodes,

so the this nodes per material was calculated to minimize the change in aspect ratio.

It is possible for significant numerical error to occur at the interface for a large

changes in aspect ratio.

4.3 KO Analysis

KO is a Lagrangian hydrocode developed at Marquette University based on

the equations of continuity and the conservation of momentum and energy[52]. KO

supports several equations of state, including Mie-Grüneissen, snowplow, and ideal

gas. To approximate the explosion within KO the bulk pressure, temperature, and

velocity of the expanding gas was taken from STEX data[35] and set as the initial

condition for the interior gas. The properties used in the KO simulation are given in

Table 7.

Table 7: Material properties used in the KO simulation. Initial gas states from [35],
Mie-Grüneissen constants from [52], thermodynamic variables from [53].

Material Po [MBar] ρ0 [g/cc] Uo [km/s] S γ σyield [MBar]

Product Gas 2.0 10−2 0.532 0.8 0.00 1.4 0.0

Casing 0.0 8.930 0.00 1.49 1.99 0.477

Ambient Air 1.0 10−6 0.002 0.00 0.00 1.4 0.0

The resulting parametric study is shown in Figure 11 along side the

analytical gurney solution.
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Figure 11: Parametric study results for the one dimensional KO simulation (left) and
the analytical Gurney equation (right).

Considering all the assumptions built into the KO simulation, the shape of

the two solutions is qualitatively consistent. The difference in magnitude is likely

caused by the lack of an explosive model in KO, which would continue pressurizing

the gas within the cylinder over time. The difference in surface shape can be

explained by nondimensionalizing the results in Figure 11 with Equation 4, as

shown in Figure 12.
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Figure 12: The nondimensional curve for a single parametric study in KO.

From Equation 4 the Gurney constant in Figure 12 is either 2.7 or 2.6 m/s,

depending on which peak is chosen. This was likely caused by the initial gas

pressure and velocity remaining constant while the case geometry varied. Each KO

simulation effectively used a different explosive to achieve identical gas pressures

and velocities independent of geometry.

Figure 12 also appears to approach zero as the ratio of thickness to outer

radius approaches one. This trend is more intuitive and is compared with CTH in a

later section.
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4.4 CTH Analysis

CTH is an Eulerian shock physics code developed at Sandia National

Laboratories. It contains several EOS and material models, and it is able to

simulate one, two, and three dimensional meshes with second-order accurate

numerical methods[54].

The one dimensional domain was 50 centimeters wide with 5000 cells,

resulting in 0.1 mm resolution. As a rule of thumb, the smallest feature in CTH

should be 10-20 cells across[43], allowing a minimum resolvable wall thickness of 1

mm.

A parametric study was performed with the aluminum and TNT values in

Table 7 and compared to the Gurney equation. The resulting surface is shown in

Figure 13.
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Figure 13: Parametric study results for the one dimensional CTH simulation (left)
and the analytical Gurney equation (right).

The surfaces in Figure 13 are much closer than the KO results in Figure 11.

As the wall thickness increases the kinetic energy of both surfaces approaches 200

MJ, but the maximum kinetic energy in the CTH simulations is much higher. This

difference in shape is explored further in the section on 1D model drawbacks.
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A gradient descent, direct, and genetic algorithm optimization were each

performed on the one dimensional model. The surface in Figure 13 is smooth,

continuous, finite, and contains a single maximum point, so each optimization

algorithm is likely to converge. Analytically the optimal thickness and outer radius

can be derived from the Gurney equation

(
ro
ri

)2

= 1 +

√
ρe
2ρc

(9)

where ρe is the density of the explosive and ρc is the density of the case. Equation 9

is derived in Appendix I. The CTH and Gurney parametric studies are compared

with a straight line drawn between the origin and the optimal point in Figure 14.
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Figure 14: Contour plot for the one dimensional CTH simulation (left) and the ana-
lytical Gurney equation (right) with the optimal thickness line in black for each case.
The CTH optimum line is calculated from the surface, while the Gurney line uses
Equation 9

Figure 14 shows two different optimum lines. From the Gurney equation

with the materials in Table 3 the slope of the line is 5.0853, whereas the CTH line

has a slope of 9.5. This is a 61% difference between the simulation and analytical

solution. To decouple any modeling error the optimization results are presented
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with the parametric study rather than Equation 9. The evaluations for each

algorithm are shown in Figures 15 and 20, and summarized in Table 8. The

optimization visualizations are colored by evaluation number, with the initial

guesses black and the final evaluation white for each case.
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Figure 15: CTH Optimization trials plotted over the parametric study with gradient
descent (left) and direct (right).
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Figure 16: Results of the genetic algorithm optimization overlaid on the 1D CTH
parametric study
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Due to the smooth, continuous, and locally convex nature of this problem it

is possible for the gradient descent method to efficiently reach the global maximum

kinetic energy. The one caveat is the unphysical region where the wall thickness is

greater than or equal to the outer radius of the cylinder. Kinetic energy in this

region is zero everywhere, and so the gradient descent method would immediately

converge. This can be avoided by intelligently picking initial parameters that

correspond to a physical system.

The direct algorithm divides the solution space into rectangles, and continues

subdividing areas that are potentially optimal. This results in more objective

function evaluations than gradient descent, as the nonphysical region must still be

sampled several times. It’s interesting to note that in Figure 13 the gradient in the

thickness direction is significantly steeper than in the radial direction. This resulted

in the algorithm sampling more objective functions parallel to the thickness axis

from the implicit gradient assumption built into the direct algorithm.

Dakota’s Single Objective Genetic Algorithm (SOGA) successfully moved a

majority of the genetic population to the high energy region at ro = 6 cm in three

generations. For this specific setup there were only two pieces of genetic

information, the outer radius and thickness of the cylinder. This effectively negated

the convergent properties of crossover as discussed in Chapter 3, which negatively

impacted overall performance. The final results of each simulation are given in

Table 8.
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Table 8: One dimensional optimizer results compared to the parametric study. Thick-
ness in the parametric study used a resolution of ±0.07cm. *The genetic algorithm
used a population of 50, corresponding to 10 generations of evaluations.

Method [cm] Radius [cm] Thickness [cm] Max KE [MJ] Evaluations

Parametric Study 6.00 0.63 37.88 400

Gradient 6.00 0.63 37.90 90

Direct 6.00 0.69 37.81 133

Genetic 5.94 0.58 37.09 500∗

4.5 1D CTH Nondimensionalization

Equation 4 relates the energy density of the exploding cylinder to the ratio of

wall thickness and outer radius. The 1D CTH parametric study in Figure 13 was

nondimensionalized with this equation, and the results are shown in Figure 17.
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Figure 17: The nondimensional results of the parametric study for the one dimensional
model.

Figure 17 was generated by dividing the kinetic energy output from the

parametric study by the charge mass, as calculated from the geometry and Table 3,

and the Gurney constant squared[6].

Each thickness above 1.5 centimeters the solution follows a single continuous

curve. The curve in Figure 17 peaks much sooner than the Gurney solution in

Figure 1, and quickly tends toward 0 rather than asymptoting to a value of 1.

The anomalous values (squares in Figure 17) only occur for very thin wall

thicknesses. This inconsistency could stem from the low inertia of thin walls, which
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are accelerated away from the explosive faster than the product gases can

expand[29].

One adaptation of the Gurney equation inserts an infinitely hard solid core

at the explosive’s center, effectively removing the material not used to accelerate the

case[29]. The size of this core can be calculated with the equation

rh
R

= 1 + 3
M

C
−
√

(1 + 3
M

C
)2 − 1 (10)

where rh is the core radius, M and C are the case and explosive masses respectively,

and R is the outer radius of the explosive. This approach reduces the charge mass of

the system, which in turn would increase the energy density for the thin walled

cylinders. By only considering the explosive that actually accelerate the case it is

possible that the anomalous values in Figure 17 would line up with the other

results. Unfortunately Equation 10 is derived from the Gurney equation, and would

not necessarily fit Figure 17 to a single curve. The derivation of Equation 10 can be

found in Appendix III.

4.6 Design Optimization

A secondary problem was developed to optimize the design of an explosive

cylinder with a fixed outer radius and a case made of two materials. The

parameters used for this optimization are given in tables 9 and 10.

Table 9: Geometric parameters for the design of a cylinder with two wall materials.

Outer Radius [cm] Outer Thickness Range [cm] Inner Thickness Range [cm]

5 0− 2 0− 2



47

Table 10: Material properties for the design of a cylinder with two wall layers.

Material [cm] Density [g/cc] Location [cm]

TNT 2.6 Inside Cylinder

Aluminum 3.2 Inner Case

Steel 7.8 Outer Case

In this case the inner wall material was aluminum, and the outer wall was

steel. This structure has high ductility and density. The inner layer of aluminum is

able to stretch to a much greater expansion ratio than steel, capturing more kinetic

energy from the expanding gases. The dense iron allows the walls to be thinner

while still maintaining high mass, and therefore high kinetic energy.

It is also possible to reverse the layering such that the lighter aluminum

fragments expand faster than the iron core. Unfortunately it is not possible to

confirm or deny either of these models without a gas leakage mechanism. Instead

the sandwich configuration was used to generate a more complex kinetic energy

profile to optimize.

In Figure 13 the maximum kinetic always occurred at the upper limit of the

outer radius. In contrast the design problem is zero at the upper and lower limit of

both variables, which should result in a more interesting optimal solution. The

resulting parametric study is shown in Figure 18
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Figure 18: The result of the parametric study of the two material wall design. The
energy surface is rotated 180 degrees for easier visualization.

From Figure 18 there is a long peak where both thicknesses are near zero.

This shape could be explained by modeling the wall as a homogeneous material

with an equivalent thickness and mass. It is possible to reach the optimal

wall-to-charge mass ratio in Equation 9 with infinite combinations of thicknesses.

The global maximum kinetic energy would occur at the lowest thickness that

maintained the optimal case to charge weight ratio.

Additionally, the kinetic energy of the iron case is driven by the motion of

the aluminum, rather than the gas directly. This configuration puts extra inertia

behind the force acting on the outer iron layer, while also physically constraining

the aluminum.

It is likely that the heterogeneous interactions also affects the results in

Figure 18. As the product gas expands it acts on the inner aluminum shell,

compressing it behind the much heavier iron shell. The expansion ratio of

Aluminum is also much higher than steel, which should result in an overall increase

in energy transfer between the gas and case. This phenomena is not testable with

1D CTH because there is no gas leakage model available.
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The optimization results are given in Figures 19 and 20, and summarized in

Table 11.
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Figure 19: Gradient descent (left) and direct (right) optimizations of the simple design
problem in 1D. Dot color represents evaluation index, with the initial guesses in black
and the final evaluations in white.
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Figure 20: Genetic algorithm optimization of the simple design problem in 1D. Dot
color represents evaluation index, with the initial guesses in black and the final eval-
uations in white.
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Table 11: One dimensional design problem optimization results. Each algorithm is
compared to the parametric study, which had a thickness resolution of ±0.1047 cm.
*The genetic algorithm contained 50 members which took 5 generations to converge

Method [cm] tinner [cm] touter [cm] Max KE [MJ ] Evaluations

Parametric Study 0.4289 cm 0.0100 cm 31.9 400

Gradient 0.3780, cm 1.40 cm 17.73 36

Direct 0.3778, cm 0.0101, cm 32.0 171

Genetic 0.4324 cm 0.0097 cm 31.91 250∗

As with the basic 2D model, the results in Table 11 show the gradient

descent and direct methods converging relatively quickly, while the genetic

algorithm took significantly longer. In this case the gradient descent method got

stuck at a local minimum, and was unable to converge at the same solution as the

parametric study and gradient descent. In cases like this it would be appropriate to

use a multi-start gradient descent method, which involves running the algorithm

from several initial points to try and converge at the global optimum.

4.7 Improvements on 1D Model

There are two issues with a one dimensional formulation of the exploding

cylinder problem: end effects and gas leakage. Like with the analytical equations,

the one dimensional model assumes a uniform velocity profile along an infinite

cylinder length. It has been shown experimentally that the ends and edges have a

significant effect on fragment velocity. This is most likely caused by low pressure

release waves reflecting back into the product gases, reducing their pressure.
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Gas leakage can be a significant problem for one, two, and three dimensional

simulations. As an example, consider an early state of a one dimensional simulation

in Table 12.

Table 12: Peak pressure and corresponding area for an explosive cylinder simulation.

Initial Area [cm] Gas Pressure [Pa] Temperature [K]

4.5 2 1011 3000

The time scale of the gas expansion is so fast, on the order of microseconds,

that it can be modeled as adiabatic. Assuming the gas is primarily carbon dioxide

at 1000 K, the inner radius of the case at equilibrium can be calculated with the

equation

Pm
Pf

(r2m)
γ

= (r2f )
γ

(11)

where γ is approximately 1.18[53], rm is inner radius of the cylinder at peak

pressure, rf is the radius at equilibrium, Pm is the maximum pressure inside the

cylinder, and Pf is the pressure at equilibrium.

Using the values from Table 12 and a final pressure of 1 atmosphere results

in a final inner radius on the order of 20 meters. Even as a rough calculation it

should be clear that lack of a gas leakage model is significant, and without it the

simulation is only accurate up until the point of fracture.

One possible solution is to incorporate the expansion ratios described by

Taylor[39] and Predebon[20]. The expansion ratio appears to be relatively

independent of thickness, so it could be used as a spatial termination criteria either

within CTH or the post-processing script. Thin-walled cylinders are accelerated

more quickly than those with thick walls, allowing them to reach a higher expansion
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ratio and absorb more kinetic energy from the product gases. This leads to

over-prediction of the velocity at low thicknesses, such as seen in Figure 13.

There is an issue with using the expansion ratio in the postprocessing script,

as seen in Figure 21.
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Figure 21: Parametric study results for the two material wall problem when the
expansion ratio cutoff is used. Notice the significant noise compared to the same
parametric study in Figure 18.

The extra noise on the energy surface in Figure 21 comes from a

discretization error between the post-processor and CTH output files. For each

simulation CTH outputs a text file containing the state of every cell. These output

files are generated at regular intervals, around 5 microseconds in this case, and read

by the post processor. This temporal discretization allows the expansion ratio to

vary between 2.0 and 2.2, as the case only needs to travel a few millimeters at a

velocity on the order of 1 km/s.

As the case thickness gradually decreases it is able to travel further in the

same amount of time, and eventually the cylinder reaches an expansion ratio of 2.0

one time step earlier. This results in a sharp drop in kinetic energy, which can be

seen in Figure 21. A more realistic solution would involve modifying the CTH
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source code to terminate at a specific distance, thereby leveraging the variable time

step capabilities of the code to exactly meet the expansion ratio every time.
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5. Two Dimensional Optimization

5.1 2D Model Overview

The two dimensional system was modeled as a rectangle in cylindrical space,

as seen in Figure 9, with the left edge of the simulation at the centerline. Boundary

conditions for this model are given in Table 13.

Table 13: Boundary conditions for the 2D simulation.

Left Right Top Bottom

Reflective Transmissive Transmissive Transmissive

The left edge of the simulation domain is the centerline of the explosive, and

a reflective boundary was used to enforce radial symmetry. The remaining

boundaries were set to transmissive to allow the hot expanding gases to escape the

domain, rather than reflecting back into contact with the case.

As the exploding cylinder expands it forms long thin strips along its

length[39]. This axisymmetric fracturing can achieved with a rectangular cross

section, which is why it was selected over a circular cross section. This geometry

also resulted in a non-uniform velocity profile along the length of the cylinder, with

a reduced magnitude at the ends and a maximum near the center. This

complication is addressed in the section on updating the Dakota input deck and

processing scripts.

Several changes were made to the CTH input deck for the 2D model. Two

simulation geometries were developed, one where the ends of the cylinder were left



55

open, and another where heavy end caps were inserted. These geometries can be

seen in Figure 22.
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Figure 22: Free end (left) and capped end (right) CTH models for the 2D exploding
cylinder. The x-axis of the domain extends out to 20 cm.

Each material is represented by a different color in Figure 22, the explosive is

yellow, the aluminum wall is black, the ambient air is light blue, and the fixed end

caps are gray. The 2D models both used the same materials in Table 3, and the 2D

input decks can be found in Appendix II. The new parameters for the 2D model

setup are given in Table 14.

Table 14: Model properties for the 2D simulation.

Length [cm] Thickness [cm] Diameter [cm]

16 0-4 0-6
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5.2 Dakota Updates

By expanding the domain to two dimensions the number of cells in the

simulation was squared. As a rule of thumb, CTH is most efficient when there are

≈ 30, 000 cells per processor[43]. To get a reasonable resolution for small wall

thicknesses the 2D model used 4 million cells, which required approximately 130

processors, or just over two Excalibur compute nodes. This effectively required

Dakota to launch one CTH job per two nodes to complete each run in a reasonable

amount of time.

Unfortunately there is one major drawback on Excalibur, and the Cray XC

systems in general, that makes this approach infeasible: any job running on a

compute node can not start a separate job on a different compute node. This

limitation causes two problems. First, if Dakota is running on a compute node it is

unable to directly spawn a child CTH process on a separate reserved node. This was

the method used to run the 1D simulations, but it was possible to run one job

processor, resulting in 63 parallel evaluations, due to the low cell count in each

model. Second, Dakota is unable to submit CTH jobs to the queue while running on

a compute node. This effectively stops CTH and Dakota from running

simultaneously.

There are two other methods that could be used to overcome this limitation.

It is possible to run Dakota in parallel on several nodes and have each instance run

its own CTH simulation. Unfortunately running a parallel application from a

parallel parent is undefined behavior for most systems[1].

The other solution is to run Dakota interactively by having it submit several

CTH jobs to the queue and exit out. After the jobs are finished running Dakota can

run the post-processing scripts to get the final objective function values. This

method must be repeated for each iterations of jobs. This solution is adequate for
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parametric studies, and it could be used to launch 50 parallel genetic algorithm jobs

at a time, but it is infeasible to use with the direct or gradient descent algorithms.

Updated input decks for this pipeline can be found in Appendix II.

Moving to two dimensions also makes the post processing more challenging.

To deal with the extra dimension this step was split into two parts. The first step

calculated a case velocity profile by summing the velocity in the radial direction as a

function of axial position. The second step then took the maximum point of the

velocity profile and returned it to Dakota. This corresponded to the velocity of an

ideal explosive, which is what the Gurney equation and 1D simulations calculated.

If the average of the velocity profile was used instead then the results between 2D

and 1D/Gurney would not be comparable. Updated post processing scripts can also

be found in Appendix II.

5.3 CTH Results

Two 2D parametric studies were run to compare with the 1D and Gurney

Equation results. One model had free ends, which allowed the gas to quickly leave

the domain after the detonation was initiated. This simulation was compared to the

Taylor angle formula from Equation 1 as well as the previous results. A second

model was simulated with two heavy end caps, which should force the gas to

accelerate the case to a higher velocity. This model was also compared to the prior

results.

The free-end CTH model was developed first, and the kinetic energy surface

was calculated to compare with the 1D and Gurney equation results. For

comparison the Gurney equation results and 1D CTH results are given below.
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Figure 23: Original results from the 1D CTH simulation (left) and Gurney equation
solution (right).

Some kinetic energy values for the 2D free-end model were significantly lower

than expected by both surfaces in Figure 23. This was most likely cause by a file IO

misalignment between the CTH output and the C++ processing file. These

anomalous values are significantly lower than anything predicted by the 1D model

and Gurney equation; the values were removed and interpolated over to create the

second surface in Figure 24.
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Figure 24: Kinetic energy surface for the 2D model with free ends. The raw results
(left) and corrected surface (right) are both shown.

The shape and magnitude of Figures 23 and 24 are similar, and both share

the same asymptotes at t = 0 and t = ro. The 2D results are close in magnitude to
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the Gurney solution with a 15 MJ output around 0.1 and 1.5 cm thicknesses. The

2D free-end model had a lower peak kinetic energy than the 1D model, which was

expected from the additional gas leakage.

The same processing was applied to the 2D simulation with end caps, which

is shown in Figure 25.
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Figure 25: Kinetic energy surface for the 2D model with free ends. The raw results
(left) and interpolated surface (right) are both shown.

The 2D results with end caps appear to be somewhere between the 1D CTH

simulation and the Gurney equation. The Kinetic energy peak is at 25 MJ, which is

lower than 1D, but is at a thickness of 0.4 cm, which is earlier than the results of

the Gurney equation.

The 2D results were also nondimensionalized from Figures 24 and 25, and

the result is shown in Figure 26.
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Figure 26: Nondimensional 2D CTH model results.

As with the 1D results, Figure 26 appears to asymptote toward zero as the

thickness over radius ratio approaches 1. The free-ended model seems to peak at a

ratio near 0.2, while the model with end caps peaks closer to 0.35. For comparison,

the 1D results in Figure 17 peak at approximately 0.2.

The peak in Figure 26 occurred at almost exactly 400 m2/s2, which would

require a Gurney constant of 20 km/s. For TNT this value is around 24 km/s,

which is 17% higher.
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6. Analysis

6.1 Optimizer performance

Tables 8 and 11 show the performance of the gradient, direct, and genetic

algorithms compared to the parametric study with 400 evaluation points. In both

cases the gradient and direct algorithms significantly outperformed the parametric

study, while the genetic algorithm was only marginally better than a full parametric

study.

The kinetic energy surfaces for both problems were smooth and continuous.

These special conditions allowed the gradient descent to converge ≈13 times faster

than the parametric study. For problems with several peaks or poorly conditioned

gradients it is would be necessary to employ a multi-start method and re-run the

algorithm several times. This would significantly increase the number of evaluations

required, and finding the global maximum would not be guaranteed. A good

approach may be to use a simple model, such as the Gurney equation, to

characterize the optimization surface before using gradient descent.

The direct method performed significantly better than the parametric study

(≈3 times fewer iterations) and genetic algorithm(≈2 times fewer iterations). For a

system with multiple peaks it is likely that the direct algorithm would outperform

gradient descent, and it would also find each optima during the global search.

Direct is well suited to problems where the energy surface can not be easily

predicted with a simpler model, such as the Gurney equation.

The genetic algorithm found the global maximum in slightly fewer iterations

than the parametric study. This is likely due to the fact that these simple problems

only have two optimization variables, which resulted in only two pieces of genetic
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information for the algorithm to modify. The population of the genetic algorithm

was 50, which was around the same size as the number of iterations for the gradient

descent algorithm to converge.

It is likely that as the number of optimization variables increases the

performance of the genetic algorithm would also increase relative to a full

parametric study. Of course, it is possible that the genetic algorithm could get stuck

at a local maximum if not tuned properly. The genetic algorithm is well suited to

higher dimensional problems, or those with discontinuities in the optimization

variables. For example, a cylindrical explosive with two layers of material, a variable

radius, and discrete properties for each layer of material.

6.2 Computational Model Accuracy

The 2D model resulted in a kinetic energy surface similar to the 1D

simulation. Overall the 1D model had a higher peak energy output than the 2D and

gurney solutions, while also reaching this value at a lower thickness. This

inaccuracy is likely caused by the thin-walled simulations reaching a greater

expansion ratio than the thicker evaluations.

The shape of the 2D surface is closer to the Gurney solution than the 1D

model. A big part of this is the extra gas leakage in both the free-ended and capped

model. This gas leakage also significantly reduced the overall kinetic energy output

of the cylinder, as the high pressure gas is escaping to the ambient atmosphere

rather than pushing on the cylinder.
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6.3 Experimental Data

To further verify the CTH model, and as a comparison to the Gurney

equation, experimental and simulation results were taken from a variety of sources

in the literature. The Lawrence Livermore National Laboratory (LLNL) Explosives

Handbook[55] was used to approximate any material properties that were not

explicitly given. The data sets consist of copper, aluminum, and steel casings filled

with a variety of explosives, including TNT, PBX, and Composition B.

Some data sets calculated the radial velocity as a function of axial position.

The experimental data from [23] is shown in Figure 27, where the terminal velocity

profile is given for an AISI 1045 steel cylinder filled with Cyclotol, a TNT and RDX

derivative.
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Figure 27: Experimental data of terminal velocity versus axial position from [23],
with the Gurney solution shown.

The data in Figure 27 comes from a cylinder with a length to diameter ratio

near 1, and the release waves significantly affect the entire velocity profile. In
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experiments with a higher length to diameter ratios the velocity profile tends to

flatten out at the Gurney velocity[44].

When comparing position dependent data, such as Figure 27, the maximum

velocity along the profile was taken as a single data point. The previous

optimization were performed to maximize the kinetic energy of an idealized

explosive with a constant velocity profile; this corresponds to the point of maximum

velocity within the data. Due to the significant release waves in this particular data

set, it is likely that the velocity will be lower than what was predicted by CTH and

the Gurney equation.

6.4 Dimensional Analysis

The nondimensionalized CTH results are presented again in Figure 28 for

parametric study on an aluminum cylinder filled with TNT.
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Figure 28: The nondimensional relationship between energy and scale for a TNT
filled aluminum shell.

Neglecting the thin walled region in Figure 28 results in a single smooth

continuous curve with zeros at x = 0 and x = 1. The shape of Figure 28 can be

approximated by multiplying an exponential decay with a horizontally asymptoting

function. The zero at x = 0 can also be enforced by fitting the empirically

determined equation

y = AeB x (1− eC x) (1− x)D (12)

to the nondimensional data, where x and y are nondimensional scale and energy

respectively and A, B, C, and D are tunable parameters. Equation 12 was fit to the

curve as shown in Figure 29 using Matlab’s cftool command. The case material was
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aluminum with a density of 2.70 g/cc, and the explosive was TNT, with a density of

1.63 g/cc and a Gurney constant of 2.44 km/s.
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Figure 29: Nondimensional CTH results of a TNT filled aluminum case fit with
Equation 12 using the curve fit tool in Matlab.

The constants in Figure 29 are A = 1.609 B = 0.2831 C = 8.003 D = 1. This

fit had an R2 value of 0.993 and an RMS Error of 0.019. Equation 12 fits the shape

of the data almost exactly. For very thin walls ( t
ro
< 0.1) CTH appears to diverge

from the curve fit, but this cannot be confirmed without a series of high resolution

simulations. Equation 12 was also applied to a copper explosive filled with TNT,

and is shown in Figure 30.
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Figure 30: Nondimensional CTH results of a TNT filled copper case fit with Equation
12 using the curve fit tool in Matlab.

The constants in Figure 30 are A = 1.234 B = 0.7316 C = 34.70 D = 1. The

R2 value of this fit was 0.994, with an RMS error of 0.025. All of the constants in

Equation 12 are nonphysical and can only be calculated by fitting the equation to

data. The constants could be tabulated for every explosive and material

combination, and kept in a handbook for special design problems.

A more compelling case can be made for Equation 12 being a solution to the

differential equation that describes the output of an exploding cylinder. Equation

12 was applied to the Gurney solution in Figure 1 by setting A = 1, B = 0, D = 0,

and tuning the parameter C ≈ 5.2. This fit can be seen in Figure 31 with the same

material properties as Figure 29.
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Figure 31: Nondimensional plot of the Gurney equation solution fit with Equation
12.

6.5 Comparison of Gurney, CTH, and Data

To compare the Gurney equation solution and CTH experimental data was

taken from the literature[31][56][57][30][58][24][23][20][33]. The data were

nondimensionalized by values given in each source, or with the LLNL Explosives

Handbook[55] when no parameters were provided. A comparison of the CTH

results, Gurney equation, and literature data for a TNT-filled aluminum case is

given in Figure 32.
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Figure 32: Nondimensional comparison of the Gurney equation, the 1D CTH para-
metric study, and experimental data for aluminum and TNT.

A second comparison for copper and TNT can be seen in Figure 33.
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Figure 33: Nondimensional comparison of the Gurney equation, the 1D CTH para-
metric study, and experimental data for copper and TNT.

The results in Figures 32 and 33 were combined to create Figure 34. This

results show a full comparison of the CTH models, Gurney equation results, and

data from the literature.
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Figure 34: Nondimensional comparison of the Gurney equation, the 1D CTH para-
metric study, and all experimental data.

As expected the Gurney equation matches the data fairly well. CTH reaches

a maximum energy density at a much lower wall thickness than the data, as

expected from the earlier 1D analysis. Unfortunately it is impractical to test

explosives with significant thickness to diameter ratios, so there is no experimental

data to show whether the energy density asymptotes to 1 or falls off to zero on the

right side of Figure 34.

There are a couple factors that could be responsible for the difference

between CTH and the data. It is possible that the exploding cylinder problem is

fundamentally a two or three dimensional problem. This is not a convincing
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argument, as the Gurney equation is a one dimensional conservation of energy

approach that matches experimental data very well. However, this match is all but

guaranteed, as the empirical constant in the formula is based on the same

experimental data that it’s being compared to.

Another factor is the CTH simulation used a temporal termination criteria

rather than an expansion ratio. By running thin and thick walled cylinders for the

same amount of time the cylinders with thinner walls ended up with a significantly

higher expansion ratio, and therefore a larger velocity. This caused the peak kinetic

energy to shift toward lower wall thicknesses in the simulations; a trend which was

observed in the kinetic energy surfaces of Figures 13 and 18, as well as in the

nondimensionalized plots.
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7. Concluding Remarks

7.1 Conclusion

The optimizers tended to outperform the parametric study in both number

of iterations and maximum kinetic energy found. This was true for both models,

which were smooth and continuous surfaces with a single peak. The gradient

descent method had the best performance, with the direct algorithm a close second,

and the genetic algorithm performing the worst of the three. The gradient descent

method is not guaranteed to converge, and in general a multistart method may be

required for more realistic problems.

The one dimensional problem was similar to the kinetic energy predicted by

the Gurney equation. The biggest difference resulted from CTH simulating every

geometry for the same amount of time. This allowed thin-walled cylinders to

expand significantly past their expansion ratios, artificially increasing their peak

kinetic energy. This is supported by the fact that as wall thickness increased the

parametric kinetic energy surfaces generated by CTH seemed to asymptote toward

the Gurney equation solution. Unfortunately, implementing a useful spatial

termination criterion would involve modifying the sensitive CTH source code, which

is outside the scope of this thesis.

The 2D model appeared to be a more realistic model of the exploding

cylinder. Several issues with the 1D model, as discussed earlier, resulted in CTH

over-predicting the final kinetic energy of the wall for low thicknesses. It is likely

that with a spatial termination criteria the 1D model could be as accurate as a 2D

simulation. The exploding cylinder problem appears to be a fundamentally one

dimensional problem.
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7.2 Future Work

There are two immediately obvious ways the work presented could be

extended. The first is to use a more sophisticated model which leverages the full

computational power of CTH to optimize a nontrivial design problem. The second

option is to run the optimization framework with a separate simulation package,

either instead of or in parallel with CTH. Several possibilities are given in the

following paragraphs.

One ill-understood area of explosives research is in the design of shaped

charges. By using the raw computational power of an HPC it is possible to apply

this framework to the task of optimizing the profile of a shaped charge. The

objective function could be almost anything related to the system, such as

maximizing the velocity of the jet or maximizing the overall energy efficiency.

The framework could also be applied to optimizing the material properties of

a composite explosive. The optimization variables could be discrete materials, a

continuous range of values for mechanical properties, or a combination of the two.

This would be useful for cases when the geometry constraints are exactly known for

a problem, but the optimal material is unknown.

Finally, it may be reasonable to develop advanced analytical models of

cylindrical explosives by applying the shock relation equations. This could be

developing a physics-based equation for the effect of release waves on case velocity,

the variation of detonation velocity with diameter, or a relationship for wall velocity

at very thin thicknesses. For each case the literature appears to use empirical

correlations based off Gurney and other equations. These correlations are useful,

but a physics-based model may yield more information about the fundamental

phenomena behind explosives.
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9. Appendix I - Mathematical Derivations

9.1 Gurney Equation

The Gurney equation is derived from a general energy balance at the

moment before gas leakage occurs. This derivation assumes a linear velocity profile

and constant density for the reactant gases. The variables of note are E, the specific

internal energy of the explosive, C, the mass of the explosive charge, M , the mass of

the case, V0, the velocity of the case, a, the inner radius of the case at the point of

fracture, and ρg, the density of the product gases.

PE = Wall KE + Gas KE general conservation of energy

E C =
1

2
MV 2

0 +

∫ a

0

1

2

(
2πρgr

)
V 2
gas dr

E C =
1

2
MV 2

0 +

∫ a

0

πρgrV
2
0

(r
a

)2
dr linear velocity profile assumption

E C =
1

2
MV 2

0 + πρgV
2
0

∫ a

0

r3

a2
dr constant gas density assumption

E C =
1

2
MV 2

0 + πρgV
2
0

(a2
4

)
resolve the integral

2E = V 2
0

(M
C

+
1

2

πρga
2

C

)
gather velocity terms and multiply by two

Consider conservation of mass between the solid explosive and product gases:

C = Mgas = πa2ρg
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Substitute C into the conservation of energy equation,

V0√
2E

=
(M
C

+
1

2

)− 1
2

which results in the final equation derived by R.W. Gurney in his 1943 paper.[38].

9.2 Optimal Radius Derivation

The Gurney equation can be used to optimize the geometry of an exploding

cylinder. First Equation 3 must be squared and multiplied by 1
2
M to form kinetic

energy. For this optimization the variable g =
√

2E. This results in

KE =
M C g2

2M + C

As the outer radius is increased the case mass, M , becomes much greater

than the charge mass, C. This eventually results in the asymptote KE = C g2 as

ro →∞, which is seen in the nondimensional Gurney solution plot.

The definitions of M and C can also be substituted into the kinetic energy

equation to get in terms of inner and outer radius

KE = πg2ρmρc
(r2o − r2i )r2i

2ρm(r2o − r2i ) + r2i ρc

where ρc and ρe are the densities of the case and explosive, respectively.

It should be clear that the kinetic energy is zero when ri = 0 and ri = ro. For

any physical system it is also required that ro ≥ ri and ri ≥ 0. To maximize the

kinetic energy, this function must be derived and set equal to zero. From the

constraints the inner radius is bounded by 0 ≤ ri ≤ ro while the outer radius is

bounded by ri ≤ ro ≤ ∞.

The kinetic energy versus outer radius curve for a constant ri and variable ro

is positive definite and starts at KE(ro = ri) = 0. In contrast the kinetic energy
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versus inner radius curve is bounded by KE(ri = 0) = KE(ri = r0) = 0. For this

reason the optimization only requires finding the critical points of the kinetic energy

with respect to the inner radius. This is achieved by taking the partial derivative of

kinetic energy with respect to the inner radius and setting it equal to zero.

KE =
M C g2

2M + C
Expression for kinetic energy

∂ KE

∂ ri
=

∂

∂ ri

[
πg2ρmρc

(r2o − r2i )r2i
2ρm(r2o − r2i ) + r2i ρc

]
∂

∂ ri

[
(r2o − r2i )r2i

2ρm(r2o − r2i ) + r2i ρc

]
= 0 Multiplying constants

This can be simplified by applying the product rule and gathering like terms.

r5i (4 ρc − 2 ρe) + r3i (8 ρc r
2
o) + ri(4 ρc r

4
o)

r4i (ρ
2
e − 4 rhoc ρe + 4 ρ2c) + r2i (−8ρ2c + 4 ρm ρc)r2o + 4ρ2cr

4
o

= 0

The numerator of this equation is the critical points of the kinetic energy,

and the denominator gives additional constraints. One zero exists at ri = 0, to solve

for the rest define the variables,

X = r2i

Y = r2o

which results in,

X2(4ρc − 2ρe) +XY (−8ρc) + Y 2(4ρc) = 0

The relationship Y ≥ X exists by definition, therefore some function

Y = f(X) should exist such that f is never negative. This function can be solved
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for by using the quadratic formula.

Y =
8 ρcX ±

√
64 ρ2c − 4X2 (4 ρc)(4 ρc − 2 ρe)

8 ρc
Quadratic Formula

Y = X ±

√
X2

32 ρc ρe
64 ρ2c

Simplify

Y

X
= 1±

√
ρe

1 ρc
Collect like terms

r2o
r2i

= 1±
√

ρe
2 ρc

Substitute

which results in the Equation 9 when the positive form is taken. From the physical

constraint that ro ≥ ri the positive equation must be taken except when ro = ri.
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10. Appendix II - Input Decks

10.1 1D Basic Model

For the 1D CTH model a similar input deck was developed to run the

parametric studies and each optimization. The input deck for the parametric study

is given below, with the changes for each simulation type following.

1 environment ,

2 tabular_data

3 tabular_data_file = ’data_table.dat’

4

5 method ,

6 output silent

7 multidim_parameter_study

8 partitions = 19 19

9

10 variables ,

11 continuous_design = 2

12 cdv_lower_bounds 0.00, 0.00

13 cdv_upper_bounds 2.00, 6.00

14 cdv_descriptor ’t’, ’ro’

15

16 interface ,

17 fork ,

18 asynchronus

19 evaluation_concurrency = 31

20 analysis_drivers = ’python analysis_driver.py’

21 input_filter = ’python pre_processor.py’

22 output_filter = ’python post_processor.py’
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23 parameters_file = ’params.in’

24 results_file = ’results.out’

25 copy_files = ’template_files /*’

26 work_directory named ’workdir ’

27 directory_tag

28 directory_save

29 file_save

30

31 responses ,

32 num_objective_functions = 1

33 no_hessieans

34 no_gradients

Only the method region (lines 5-8) must be changed to perform an

optimization with the dividing rectangles or genetic algorithms.

1 method ,

2 output silent

3 coliny_direct

4 max_iterations = 1000

5 convergence_tolerance = 1e-12

And for the genetic algorithm:

1 method ,

2 output silent

3 soga

4 max_iterations = 1000

5 convergence_tolerance = 1e-12

The gradient descent algorithm requires changes to the method, responses,

and vairables block block. CTH can not return the derivative of kinetic energy for

each evaluation, so it is necessary for Dakota to numerically calculate a gradient.

This behavior is defined in the responses section.

1 method ,
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2 output silent

3 speculative

4 conmin_frcg

5 max_iterations = 1000

6 convergence_tolerance = 1e-12

The command speculative on line 3 tells Dakota to calculate a gradient in

each direction for every point. In some cases the gradient in each direction may not

be required, but this can decrease the wall-clock time for some highly parallelized

simulations. For the responses section:

1 responses ,

2 no_hessians

3 numerical_gradients

4 method_source dakota

5 interval_type forward

6 fd_gradient_step_size = 1.0e-4

It is also required to tell Dakota the initial point for the gradient descent

algorithm. This is achieved by adding the following line to the variables block

between lines 11 and 12.

1 cdv_intial_point 1.00, 3.00

The CTH input deck is used to generate the geometry and boundary

conditions for the problem. A templated input deck was developed, where the

variables for each simulation were stored inside {Curly Braces.} These variables

were substituted into the input deck by the preprocessor for each evaluation. The

processing scripts can be found in Appendix III.
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1 ** Title Record **

2 2d explosive

3

4 ** Control Record **

5 control

6 mmp0

7 tstop =35.0e-6

8 ntbad =999999

9 endc

10

11 **Mesh Record*

12 mesh

13 block=1 geom=1dc type=e

14 x=0.0

15 x1 n=2000 w=20.0 ratio =1.0

16 * one cell every 0.1cm

17 endx

18 xactive 0.0 20.0

19 endmesh

20

21 *Spyplot and File Output*

22 spy

23 Save("P, PM , M, VOLM , DENS , VOL ,

24 T, VX , EK , DENSM");

25 SaveTime(0, 0.5e-6);

26 PlotTime(0, 0.5e-6);

27 ImageFormat (2048, 1536);

28

29 define main() {

30 DataOut("allout_", "DENS", "VOLM+2",

31 "M+2", "VX", "T", "P", "DENSM +2");

32

33 XLimits (0 ,20);

34

35 MatColor(1, WHEAT ); %HE Color

36 MatColor(2, BLACK ); %Aluminum Color

37

38 Image("V-",WHITE ,BLACK );

39 Window(0, 0, 0.85, 1);

40 Label(sprintf("Velocity at 0.2e secs.",TIME ));

41 XBMirror(OFF);

42 Plot2DMats ();

43

44 ColorMapRange (100, 2.0e5);
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45 ColorMapClipping(ON , OFF);

46 Plot2D("VX");

47 DrawColorMap("VX", 0.8, 0.22, 1, 0.66);

48 EndImage;

49 }

50 endspy

51

52 ** Diatom Record **

53 diatom

54 package ’explosive ’

55 material =1

56 pressure =1.0e6

57 temperature =0.02585

58 insert box

59 p1 0.0

60 p2 {r_i}

61 endi

62 endpackage

63 *

64 package ’wall’

65 material =2

66 pressure =1.0e6

67 temperature =0.2585

68 insert box

69 p1 0.0

70 p2 {r_o}

71 endi

72 endpackage

73 *

74 package ’air’

75 material =3

76 pressure =1.0e6

77 temperature =0.2585

78 insert box

79 p1 0.0

80 p2 20.0

81 endi

82 endpackage

83 enddiatom

84

85 ** EOS Record **

86 eos

87 mat1 jwl tnt

88 mat2 sesame aluminum
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89 mat3 sesame air

90 endeos

91

92 ** Explosive Record **

93 heburn

94 material =1

95 detvel =693.0 e3

96 dp=0.0

97 time =0.0

98 radius =20

99 endhe

100

101 ** Boundary Record **

102 boundary

103 bhydro

104 block=1

105 bxbot =0

106 bxtop =1

107 endb

108 endh

109 endb

110

111 ** Convection Record **

112 convct

113 convection =1

114 interface=smyra

115 endcon

116

117 ** Timestep Control **

118 mindt

119 time =0.0 dt=1.0e-12

120 endmindt

121

122 ** Edit Record **

123 edit

124 *

125 shortt

126 time =0.0 dt=1e-3

127 *

128 longt

129 time =0.0 dt=1.0

130 *

131 restt

132 time =0.0 dt=5e-3
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133 * 134 endedit
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For more information on the input deck see the CTH web page on the Sandia

National Laboratories website[54].

10.2 1D Design Model

To deal with the multi-layer design problem a new variable needed to be

introduced to the Dakota input deck, and the outer radius variable was switched to

a constant state variable. The only update made from the basic 1D optimization

occurred in the variables block, which is given below.

1 variables ,

2 continuous_design = 2

3 cdv_lower_bounds 0.00, 0.00

4 cdv_upper_bounds 2.00, 2.00

5 cdv_descriptor ’t1’, ’t2’

6 continuous_state = 1

7 csv_initial_state 5.00

8 csv_descriptor ’r_o’

A new layer of geometry was added to the CTH input deck by modifying the

diatom (line 50) and the EOS records (line 82). The extra diatom package is:

1 package ’wall2’

2 material =4

3 pressure =1.0e6

4 temperature =0.2585

5 insert box

6 p1 0.0

7 p2 {r_2}

8 endi

9 endpackage
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The wall2 package was placed on line 70 between the explosive and wall

packages. The templated variable on line 67 (the original wall package) was also

updated to

1 p2 {r_1}

which represents the inner radius plus the inner material thickness.

The extra EOS was added between lines 85 and 86 as

1 mat4 sesame iron

10.3 1D Job Submission

1 #!/bin/bash

2 #PBS -S /bin/bash

3 #PBS -l select =1: ncpus =32: mpiprocs =32

4 #PBS -l walltime =24:00:00

5 #PBS -q standard

6 #PBS -A #############

7 #PBS -N 1d_cth_parm

8 #PBS -j oe

9 #PBS -l plave=scatter:excl

10 ## Optional Directives ------------------------------

11 #PBS -m be

12 #PBS -M email@domain.sfx

13

14 ## Create a job -specific subdirectory to work in ---

15 echo ">> Job start at ‘date"

16 export RUNDIR=$WORKDIR/cth/1d/parametric -study

17 mkdir -p $RUNDIR

18 cp -r $PBS_O_WORKDIR /* $RUNDIR

19 cd $RUNDIR
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20 ## Load job -specific modules -----------------------

21 module load cth /11.1

22 module load dakota

23 ## Job run commands --------------------------------

24 dakota input_dakota.in

25 echo ">> Job end at ‘date"

10.4 2D Free End Model

The 2D free end model used the same optimization variables and objective

function as the basic 1D model, so no changes were made to the initial Dakota input

deck.

To switch the domain to 2D the mesh record was updated with:

1 **Mesh Record **

2 mesh

3 block=1 geom=2dc type=e

4 x=0.0

5 x1 n=2000 w=20.0 ratio =1.0 *one cell every 0.1cm

6 endx

7 y0=0.0

8 y1 n=2000 w=20.0 ratio =1.0 *one cell every 0.1cm

9 endb

10 endmesh

As the velocity now has two dimensions the term ”VX” was replaced

everywhere with ”VMAG” in the spyplot section (line 21).

The geometry of the explosive, wall, and air were then updated to two

dimensions.

1 ** Diatom Record **

2 diatom

3 package ’explosive ’

4 material =1
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5 pressure =1.0e6

6 temperature =0.02585

7 insert box

8 p1 0.0 2.0

9 p2 {r_1} 18.0

10 endi

11 endpackage

12 *

13 package ’explosive ’

14 material =2

15 pressure =1.0e6

16 temperature =0.02585

17 insert box

18 p1 0.0 2.0

19 p2 {r_o} 18.0

20 endi

21 endpackage

22 *

23 package ’air’

24 material =3

25 pressure =1.0e6

26 temperature =0.02585

27 insert box

28 p1 0.0 20.0

29 p2 0.0 20.0

30 endi

31 endpackage

32 enddiatom

The detonation point of the explosive record was also updated to be at the

bottom edge of the explosive:

1 ** Explosive Record **

2 heburn
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3 material =1

4 detvel =693.0 e3

5 dp=0.0 2.0

6 time =0.0

7 radius =20

8 endhe

Finally, a top and bottom transmissive boundary condition were added to let

the high pressure gas escape freely.

1 ** Boundary Record **

2 boundary

3 bhydro

4 block =1

5 bxbot =0

6 bxtop =1

7 bybot =1

8 bytop =1

9 endb

10 endh

11 endb

10.5 2D Capped Model

As with the free end model, no changes were made to the Dakota input deck

from the basic 1D model.

To add the end caps the control record and diatom records were modified to

include the fixed material. The control record was updated to:

1 ** Control Record **

2 control

3 mmp0
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4 tstop =35.0e-6

5 ntbad =999999

6 rigid

7 endc

A new fixed material was also added to the diatom record.

1 package ’caps’

2 material =2

3 pressure =1.036

4 temperature =0.02585

5 rigid

6 insert box

7 p1 0.0 0.0

8 p2 {r_o} 2.0

9 endi

10 insert box

11 p1 0.0 0.0

12 p2 {r_o} 18.0

13 endi

14 endpackage

Fixed material is always put into the domain first, so it was specifically set to

only fill the empty space above and below the free-end cylinder in the previous

section.

10.6 2D Job Submission

As discussed earlier, an operating system feature of the Cray XC machines

made it effectively impossible to run CTH and Dakota in parallel. The queue

submission strategy was modified to deal with this, and the updated input decks are

given below.
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First, a shell script runs the command:

1 module load dakota

2 dakota input_dakota.in

Then the analysis driver called this bash script for each evaluation:

1 #!/bin/bash

2 #PBS -S /bin/bash

3 #PBS -l select =1: ncpus =32: mpiprocs =32

4 #PBS -l walltime =2:00:00

5 #PBS -q standard

6 #PBS -A #############

7 #PBS -N 2d_eval

8 #PBS -j oe

9 #PBS -l plave=scatter:excl

10 ## Optional Directives ------------------------------

11

12 ## Create a job -specific subdirectory to work in ---

13 cd $PBS_O_WORKDIR/

14 ## Load job -specific modules -----------------------

15 module load cth /11.1

16 ## Job run commands --------------------------------

17 aprun -n 32 mpicth setup id="h"

After the submitted jobs have finished for every evaluation, the Dakota deck

was rerun with the input filter removed and the analysis driver changed to

1 analysis_drivers = ’python post_processor.py’

which postprocessed every complete evaluation and compiled the results into a data

file.
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11. Appendix III - Processing Scripts

11.1 Analysis Driver

The analysis driver is a python script called by Dakota to substitute the

optimization variables into the input deck and run the analysis. The general analysis

driver for KO is given below, and the changes for 1D and 2D CTH are given after.
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1 #imports and dependancies

2 import sys

3 import os

4 import subprocess

5 #cmd line args come from sys.argv ,

6 #they are [driver name , input file , output file]

7 paramsFileName = sys.argv [1]

8 resultsFileName = sys.argv [2]

9 #read dakota output and replace parameters

10 params = open(paramsFileName , ’r’)

11 #read the first line for number of variables

12 line = params.readline ()

13 tokens = line.split()

14 numVars = int(tokens [0])

15 #look for the variable names and values

16 varNames = []

17 values = []

18 for i in range(0,numVars ):

19 line = params.readline ()

20 tokens = line.split ()

21 varNames.append(tokens [1])

22 values.append(float(tokens [0]))

23 #continue reading to the last line to get the #

24 otherNames = []

25 otherValus = []

26 for line in params:

27 tokens = line.split() #store the extra name/value

28 otherNames.append(tokens [1])

29 otherValus.append(tokens [0])

30 #the final line has the evaluation number

31 evalNum = tokens [0]

32 #clean up our open resources!

33 params.close()

34 #KO is fixed width

35 for i in range(0,len(varNames )):

36 varNames[i] = "{" + varNames[i] + "}"

37 values[i] = str(values[i])

38 #name of the input file and simulation run command

39 inputName = "ko.in"

40 runCommand = "./a.out"

41 #open up the input template file

42 inputFile = open(inputName , ’r’)

43 fileData = ""

44 for line in inputFile:
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45 fileData += line

46 for i in range(0, len(varNames )):

47 fileData = fileData.replace(varNames[i],

48 values[i])

49 inputFile.close()

50 #open , clear , and rewrite the input file

51 inputFile = open(inputName , ’w’)

52 inputFile.write(fileData)

53 inputFile.close ()

54 #run the simulation with any needed inputs

55 #arguments are

56 #[’Program Name ’, ’arg1 ’, ’arg2 ’, etc ...]

57 args = runCommand + ’ ’ + inputName

58 err = subprocess.call(args , shell=True)
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In general the only lines that change are 43 and 44 where the run command

and input deck name are defined. To run the 1D CTH simulations these lines are

changed to:

1 inputName = "setup id=h"

2 runCommand = "cth"

The 2D simulations required a second bash script to submit a parallel job.

This is accomplished by again changing lines 43 and 44.

1 inputName = "run_cth.bash"

2 runCommand = "qsub"

11.2 CTH Preprocessor

The CTH input deck uses the inner radius and outer radius to define

geometry, but the Dakota input deck uses outer radius and thickness. To resolve

this problem a preprocessing script was developed to modify the parameters file and

insert these new variables.
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1 # Python Preprocessor for the 1D Cylindee

2 # Performs calculations on variables

3 # October 6, 2016 import os

4 import sys

5 import StringIO

6 #cmd line args come from sys.argv

7 #they are [driver name , input file , output file]

8 paramsFileName = sys.argv [1]

9 #read the parameters file and copy it into a strg

10 params = open(paramsFileName)

11 paramText = params.read()

12 params.seek (0,0)

13 ###pull all of the variables out of the params

14 # line 1 contains the number of variables

15 line = params.readline ()

16 tokens = line.split()

17 numVars = int(tokens [0])

18 #read the width of the vars line

19 lineWidth = len(line) - len(tokens [1] + " ")

20 #look for the variable names and values

21 varNames = []

22 values = []

23 for i in range(0,numVars ):

24 line = params.readline ()

25 tokens = line.split()

26 varNames.append(tokens [1])

27 values.append(float(tokens [0]))

28 #clean up our open resources!

29 params.close()

30 ### Calculate any new variables/values

31 ### This portion of pre -processing chages

32 newVars = []

33 newVals = []

34 #calculate inner radius

35 ro = values[varNames.index(’r_o’)]

36 t = values[varNames.index(’t’)]

37 ri = ro - t

38

39 newVars.append(’r_i’)

40 newVals.append(ri)

41 ## End of the variable definition section ##

42 ###Write the new variables to the params ###

43 # Initial writing to a .tmp file

44 params = open(paramsFileName + ’.tmp’, ’w’)
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45 #increase the number of variables

46 #numVars is stored on the first line

47 strbuf = StringIO.StringIO(paramText)

48 line = strbuf.readline ()

49 line=line.replace(str(numVars), str(numVars +1))

50 params.write(line)

51 #write the existing variables

52 for i in range(0, numVars ):

53 line = strbuf.readline ()

54 params.write(line)

55 #write the new variables

56 for i in range(0, len(newVars )):

57 line = str(newVals[i]). rjust(lineWidth -1) +

58 " " + newVars[i] + "\n"

59 params.write(line)

60 #write the rest of the file

61 for line in strbuf:

62 params.write(line)

63 #atomicly write the parameters file

64 os.rename(paramsFileName + ’.tmp’, paramsFileName)

65 params.close()
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The only lines that should ever need to change in the preprocessor are 35-41.

This is where new variables, in this case the inner radius, are defined. This region

can was changed for the design problem to instead define the inner, outer, and

middle radii for the design problem.

1 ### This portion of pre -processing chages per script

2 newVars = []

3 newVals = []

4 #calculate inner and middle

5 ro = values[varNames.index(’r_o’)]

6 t1 = values[varNames.index(’t1’)]

7 t2 = values[varNames.index(’t2’)]

8

9 ri = ro -t1 -t2

10 r1 = ro -t1

11

12 newVars.append(’r_i’)

13 newVals.append(ri)

14 newVars.append(’r_1’)

15 newVals.append(r1)

16 ## End of the variable definition section ##

This flexible approach allows any compatible combination of CTH and

Dakota variables to be used while changing only a few lines of code in a single file.

11.3 CTH Postprocessor

The postprocessing python file is given below.
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1 # Python Postprocessor for the 1D Cylinder

2 # Converts the KO output of ke.dat

3 #into a single KE value

4 # October 6, 2016

5 import sys

6 import glob

7 import subprocess

8 #file that dakota reads

9 resultsFileName = sys.argv [2]

10 ### Run the C postprocessor

11 #get the filenames for each time step

12 for filename in glob.glob("allout_*"):

13 ## arguments are

14 #[’Program Name ’, ’arg1 ’, ’arg2 ’, etc ...]

15 args = ["./ processKE.out", filename]

16 err = subprocess.call(args)

17 ### KO process script output file name ###

18 data = open(’ke_profile.dat’, ’r’)

19 ### the post -processing specifics ###

20 ke = 0

21 numL = 0

22 for line in data:

23 if line != "\n":

24 tokens = line.split()

25 ke_n = float(tokens [0])

26 ke = max(ke, ke_n)

27 data.close()

28

29 f0 = -1*ke; ## this is the function evaluation value ##

30

31 #write the results file for dakota to read

32 results = open(resultsFileName , ’w’)

33 results.write(str(f0) + " f0")

34 results.close()
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Line 13 specifies a compiled C++ program to actually read through the CTH

output files with the name allout ########.dat. For the 1D model this script

creates the text file ‘ke profile.dat’ which contains a list of kinetic energies ordered

by time. This file is used on lines 20-24 to calculate the objective function. The

C++ file can be found in the C++ Processing Script section.

In the 2D case the C++ processor created a copy of the allout data file with

the extension ‘ profile’. This additional file contained the total kinetic energy of the

wall as a function of axial position. Due to the parallel operation of CTH these

allout files split the x axis into four domains which needed to be recombined. Lines

18-25 were modified to calculate the kinetic energy as a function of Y for each time

step, then the maximum value from each was taken as the objective function value.
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1 nProcs = 32

2 ke_values = []

3 for n in range(0, 32/4): #x is 4 files

4 str1 = "allout_ *." + str((n*4)+0)

5 + ".dat_profile"

6 str2 = "allout_ *." + str((n*4)+1)

7 + ".dat_profile"

8 str3 = "allout_ *." + str((n*4)+2)

9 + ".dat_profile"

10 str4 = "allout_ *." + str((n*4)+3)

11 + ".dat_profile"

12 list1 = sorted(glob.glob(str1))

13 list2 = sorted(glob.glob(str2))

14 list3 = sorted(glob.glob(str3))

15 list4 = sorted(glob.glob(str4))

16 #instantiate the array for first iteration

17 if n == 0:

18 ke_values = [0]* len(list1)

19 #loop through each file in time

20 for i in range(0, len(list1 )):

21 ke_x = 0

22 with open(list1[i], ’r’) as f:

23 for line in f:

24 ke_x += float(line)

25 with open(list2[i], ’r’) as f:

26 for line in f:

27 ke_x += float(line)

28 with open(list3[i], ’r’) as f:

29 for line in f:

30 ke_x += float(line)

31 with open(list4[i], ’r’) as f:

32 for line in f:

33 ke_x += float(line)

34 ke_values[i] = max(ke_maxes[i], ke_x)

35

36 max_ke = max(ke_values)

37

38 f0 = -1*max_ke ##function evaluation value ##
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The 20x20 domain was split into 32 equal chunks by CTH, one per processor,

and in this case the radial axis was divided 4 times. For this reason an indexing

variable ranged from 0 to 32/4 on line 3, and lines 4-7 count up by four to cover the

whole range. The loop on line 16 then moves through every time step and calculates

the kinetic energy at each. This eventually results in an array of the maximum

energy values for each time step, and the overall maximum is taken on line 32.

For 1D simulations the ‘ke profile’ data file also contains information on the

inner radius of material. The initial postprocessing file was modified at one point to

include an expansion ratio with the following code:

1 ri_o = 0

2 ke = 0

3

4 for line in data:

5 if line != "\n":

6 tokens = line.split()

7 ke_n = float(tokens [0])

8 ri = float(tokens [1])

9 #set the initial inner radius

10 if (ri_o == 0):

11 ri_o = ri

12 if ri < ri_o * 2.2: #expansion ratio

13 ke = max(ke , ke_n);

14

15 data.close()

16

17 f0 = -1*ke ## this is the function evaluation value ##

11.4 C++ Processing Scripts
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1 #include <string > //C++ strings

2 #include <iostream > // ifstream file read

3 #include <fstream > //cout

4

5 int main(int argc , char** argv) {

6 //vars to read

7 float x, dx , dens , v2 , m2 , vx, T, P, dens2

8 float toal_ke;

9 std:: string filename = "";

10 // constants

11 float PI = 3.14159265359;

12 // calcualted values

13 float ri = 0;

14

15 if (argc >= 2) {

16 filename = argv [1];

17 } else {

18 std::cout << No Args Passed in!

19 Filename Required << std::endl;

20 return 0;

21 }

22

23 //open the file

24 std:: ifstream file(filename.c_str ());

25 if (file.fail ()) {

26 std::cout << "Error! Could not open file!"

27 << std::endl;

28 return 0;

29 }

30 // gobble the first line of headers

31 std:: string tmp;

32 getline(file , tmp);

33 // calculate total KE of solid (material 2)

34 while(file >>x>>dx>>dens >>v2>>m2>>vx>>T>>P>>dens2) {

35 total_ke += (2*PI*(m2*x)*vx*vx )/2.0;

36 if (ri==0 && m2 >0) {

37 ri = x;

38 }

39 }

40

41 //open and append the KE file

42 std:: ofstream of("ke_profile.dat", std:: ofstream ::app);

43 if (!of) {

44 std::cout << "Could not open ke_profile.dat"
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45 << std::endl;

46 return 0;

47 }

48 of << total_ke << " " << ri << "\n";

49 of.close ();

50

51 return 0;

52 }
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For the case with two materials the kinetic energy was updated to use a ‘mass

fraction’ variable which was calculated as the aluminum+iron mass in each cell.

For the 2D simulation the C++ processor was significantly altered to

generate a kinetic energy profile for each time step. A new section was added before

the file read loop between lines 30 and 31 to grab the current x0 position in the

divided mesh.

1 file >>x>>y>>dx >>dy >>dens >>v2 >>m2 >>vm >>T>>P>>dens2

2 x0 = x;

3 mf2 = m2;

4 total_ke += (2*PI*(mf*x)*vm*vm )/2.0;

Within the file read loop the kinetic energy was stored as

1 if (x == x0) {

2 ke_profile.push_bac(total_ke );

3 total_ke = 0;

4 }

5 mf = m2;

6 total_ke += (2*PI*(mf*x)*vm*vm )/2.0;

where ‘ke profile’ is of the type

1 std::vector <float >()



112

To record the kinetic energy profile an output file was created and the profile

was stored in a new file with the suffix ‘ profile’ added to differentiate it from the

original.

1 max_ke = 0;

2 std:: ofstream kep(std:: string(

3 filename+"_profile").c_str(),

4 std::ios::out | std::ios:: trunc);

5 if(!kep) {

6 std::cout << "ERROR! Could not open file"

7 << std::endl;

8 return 0

9 }

10 for (std:: size_t i=0; i<ke_profile.size ();i++) {

11 kep << ke_profile[i] << "\n"l

12 }

13 return 0;
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12. Appendix IV - Visualization Scripts

12.1 Dakota Visualization

A Matlab script was developed to read optimization results from Dakota.

The file ”ReadDakota” was developed by opening the data table file into Matlab’s

import editor and selecting the ‘import section → generate function’ option.
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1 %visualizes the results of the 1d simulations

2 %DIRECT , Multistart gradient descent , SOGA

3 % and parametric study results

4 %% Part 1 - load data

5 clear; close all; clc;

6

7 ANIMATE = false;

8

9 %constants for the explosive

10 g = 2.44 * 1000; %[m/s]gurney constant

11 rho_e = 1.630 * 1000; %[kg/m3]explosive density

12 rho_c = 2.6993 * 1000;%[kg/m3]case density

13

14 %pull out the simulation results

15 [d_t , d_ro , d_ke] = ...

16 ReadDakotaData(’direct/data_table.dat’);

17 [g_t , g_ro , g_ke] = ...

18 ReadDakotaData(’gradient/data_table.dat’);

19 [s_t , s_ro , s_ke] = ...

20 ReadDakotaData(’soga/data_table.dat’);

21 [t, ro, ke] = ...

22 ReadDakotaData(’parametric ’ ... ’

23 /data_table_aluminum.dat’);

24

25 %convert KE to J -> MJ

26 d_ke = d_ke * 1e-7 * 1e-6;

27 g_ke = g_ke * 1e-7 * 1e-6;

28 s_ke = s_ke * 1e-7 * 1e-6;

29 ke = ke * 1e-7 * 1e-6;

30 % max values:

31 d_i = find(d_ke == max(d_ke ));

32 g_i = find(g_ke == max(g_ke ));

33 s_i = find(s_ke == max(s_ke ));

34 p_i = find(ke == max(ke));

35

36 fprintf(’Maximum Values :\n’)

37 fprintf(’DIRECT METHOD:----------------\n’)

38 fprintf(’\t KE=%g\t r=%g\t t=%g\n’, ...

39 d_ke(d_i), d_ro(d_i), d_t(d_i ));

40 fprintf(’GRADIENT METHOD:---------------\n’)

41 fprintf(’\t KE=%g\t r=%g\t t=%g\n’, ...

42 g_ke(g_i), g_ro(g_i), g_t(g_i ));

43 fprintf(’SOGA METHOD:-------------------\n’)

44 fprintf(’\t KE=%g\t r=%g\t t=%g\n’, ...
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45 s_ke(s_i), s_ro(s_i), s_t(s_i ));

46 fprintf(’PARAMETRIC METHOD:--------------\n’)

47 fprintf(’\t KE=%g\t r=%g\t t=%g\n’,

48 ...ke(p_i), ro(p_i), t(p_i));

49 %save some vars for later

50 tp = t; rop = ro; kep = ke;

51 %line width var for visualization

52 lw = 3;

53

54 %parametric surface

55 x = linspace(min(t), max(t), ...

56 sqrt(length(t)));

57 y = linspace(min(ro), max(ro), ...

58 sqrt(length(ro)));

59 [xx, yy] = meshgrid(x, y);

60 %2d interpolation

61 zz = griddata(t,ro ,ke ,xx ,yy , ’v4’);

62 %% Part 2 - visualization

63 figure (1)

64 surf(xx , yy , zz);

65 xlabel(’Thickness [cm]’);

66 ylabel(’Outer Radius [cm]’);

67 zlabel(’Kinetic Energy [MJ]’)

68 SetPlotStyle ();

69

70 figure (10)

71 contourf(xx, yy, zz, 10);

72 hold on;

73 plot ([0 t(p_i)], [0, ro(p_i)], ’k’, ...

74 ’linewidth ’, lw);

75 xlabel(’Thickness [cm]’);

76 ylabel(’Outer Radius [cm]’);

77 zlabel(’Kinetic Energy [MJ]’)

78 SetPlotStyle ();

79 grid off;

80 %get the resolution of the mesh

81 %on the thickness (x) axis

82 tu = unique(t);

83 resT = tu(2) - tu(1);

84

85 fprintf(’Slope:\n’)

86 fprintf(’Min: %g \t Max: %g \t ...

87 Avg: %g \t\n’, ...

88 ro(p_i )/(t(p_i)+resT), ...
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89 ro(p_i )/(t(p_i)-resT), ro(p_i )/(t(p_i )));

90

91 %% DIRECT results

92 figure (2)

93 hold on;

94 contourf(xx, yy, zz, 10);

95 plot(d_t , d_ro , ’ok’, ’markerfacecolor ’, ’k’);

96 xlabel(’Thickness [cm]’);

97 ylabel(’Radius [cm]’);

98 %plot(t_cth(ind), ro_cth(ind), ’.k’, ...

99 ’linewidth ’, 2);

100 SetPlotStyle ();

101 grid off;

102

103 figure (20)

104 surf(xx , yy , zz);

105 hold on;

106 plot3(d_t , d_ro , d_ke *1.01 , ’ko’, ...

107 ’markerfacecolor ’, ’k’);

108 xlabel(’Thickness [cm]’);

109 ylabel(’Radius [cm]’);

110 zlabel(’Kinetic Energy [MJ]’);

111 SetPlotStyle ();

112 %% animation

113 if ANIMATE

114 figure (200); clf; hold on;

115 contourf(xx, yy, zz, 10);

116 xlabel(’Thickness [cm]’);

117 ylabel(’Radius [cm]’);

118 SetPlotStyle ();

119 grid off;

120 clr = bone(length(d_t));

121 for i = 1: length(d_t)

122 plot(d_t(i), d_ro(i), ...

123 ’ok’, ’markerfacecolor ’, clr(i ,:));

124 saveas(gcf , [’direct -images/’ ....

125 num2str(i) ’.png’]);

126 pause (0.1);

127 end

128 end

129 %% GENETIC ALGORITHM

130 figure (3)

131 hold on;

132 contourf(xx, yy, zz, 10);
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133 plot(s_t , s_ro , ’ok’, ’markerfacecolor ’, ’k’);

134 xlabel(’Thickness [cm]’);

135 ylabel(’Radius [cm]’);

136 SetPlotStyle ();

137

138 figure (30)

139 surf(xx , yy , zz);

140 hold on;

141 plot3(s_t , s_ro , s_ke , ’ko’, ...

142 ’markerfacecolor ’, ’k’);

143 xlabel(’Thickness [cm]’);

144 ylabel(’Radius [cm]’);

145 zlabel(’Kinetic Energy [MJ]’);

146 SetPlotStyle ();

147

148 %% animation

149 if ANIMATE

150 figure (300); clf; hold on;

151 contourf(xx, yy, zz, 10);

152 xlabel(’Thickness [cm]’);

153 ylabel(’Radius [cm]’);

154 SetPlotStyle ();

155 clr = bone(length(s_t ));

156

157 for i = 1:50: length(s_t) - 50

158 plot(s_t(i:i+50), s_ro(i:i+50), ...

159 ’ok’, ’markerfacecolor ’, clr(i ,:));

160 saveas(gcf , [’soga -images/’ ...

161 num2str(i) ’.png’]);

162 pause (0.1);

163 end

164 end

165 %% GRADIENT ALGORITHM

166 figure (4)

167 hold on;

168 contourf(xx, yy, zz ,10);

169 plot(g_t , g_ro , ’-ok’, ’markerfacecolor ’ ,...

170 ’k’, ’linewidth ’, 2);

171 xlabel(’Thickness [cm]’);

172 ylabel(’Radius [cm]’);

173 SetPlotStyle ();

174 grid off;

175

176 figure (40)
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177 surf(xx , yy , zz);

178 hold on;

179 plot3(g_t , g_ro , g_ke *1.01 , ’ko’ ,...

180 ’markerfacecolor ’, ’k’);

181 xlabel(’Thickness [cm]’);

182 ylabel(’Radius [cm]’);

183 zlabel(’Kinetic Energy [MJ]’);

184 SetPlotStyle ();

185

186 %% animation

187 if ANIMATE

188 figure (200); clf; hold on;

189 contourf(xx, yy, zz, 10);

190 xlabel(’Thickness [cm]’);

191 ylabel(’Radius [cm]’);

192 SetPlotStyle ();

193 clr = bone(length(g_t));

194 for i = 1: length(g_t)-1

195 clf; hold on;

196 contourf(xx, yy, zz, 10);

197 plot(g_t (1:i), g_ro (1:i), ’-k’, ...

198 ’linewidth ’, 2);

199 for j = 1:i

200 plot(g_t(j), g_ro(j),...

201 ’ok’, ’markerfacecolor ’, clr(j ,:));

202 end

203 xlabel(’Thickness [cm]’);

204 ylabel(’Radius [cm]’);

205 SetPlotStyle ();

206 saveas(gcf , [’gradient -images/’...

207 num2str(i) ’.png’]);

208 pause (0.1);

209 end

210 end

211

212 %% Part 6-Nondimensional plot colored by thickness

213 %grab vars from parametric study

214 % & convert to standard units

215 tn = tp / 100; ron = rop / 100; ken = kep;

216

217 width = find(ron(1) == ron , 1, ’last’);

218 depth = length(ron) / width;

219

220 tn = reshape(tn , [width , depth])’;
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221 ron = reshape(ron ,[width , depth])’;

222 ken = reshape(ken ,[width , depth])’ * 1e6;

223

224 radii = unique(ron (: ,1));

225

226 %remove values where t >= ro

227 b = find(tn >= ron);

228 tn(b) = 0; ron(b) = 0; ken(b) = 0;

229 Cn = pi*(ron -tn).^2 * rho_e;

230

231 lim = 5; %"small" limit

232 linecolors = jet(length(tn));

233

234 figure(’position ’, [500, 50, 800, 800]);

235 clf; hold on;

236 %plot this in a for loop for color

237 hold on;

238 for i = 1: length(tn)

239 marker = ’o’;

240 if i <= lim

241 marker = ’s’;

242 end

243 plot(tn(:,i)./ ron(:,i), ...

244 2*ken(:,i)./(Cn(:,i)*g^2), ...

245 marker , ’markerfacecolor ’, linecolors(i,:) ,...

246 ’color ’, ’k’, ’markersize ’, 10);

247 end

248

249 xlabel(’Thickness / Radius ’);

250 ylabel(’MV^2/Cg^2’);

251

252 %set the legend

253 legendCell = {};

254 tu = unique(tn);

255

256 for i = 1: length(tu)

257 legendCell = {legendCell {:}, ...

258 [’t = ’ num2str(tu(i)*100 , ’%2.2f’) ’ cm’]};

259 end

260

261 legend(legendCell );

262 SetPlotStyle ();
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12.2 Curve Fitting

A matlab script was also developed to visualize and fit Equation 12 to the

CTH data using the ‘cftool’ command.
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1 %Fits a curve to the CTH parametric study data

2 %of the form E = A (1-e^-{k1*x}) * (e^-{k2*x})

3 clear; close all; clc;

4 [t,r,ke]= ReadDakotaData(’data_table_copper.dat’);

5 %scale variables

6 ke = -1*ke;

7 %split into 2d arrays

8 nRows = length(find(r == r(1)));

9 nCols = length(r) / nRows;

10 %delete t, r, ke that are non -physical

11 inval = find(t >= r);

12 t(inval) = NaN;

13 r(inval) = NaN;

14 ke(inval)= NaN;

15 %finish reshaping

16 t = reshape(t, [nRows , nCols ]);

17 r = reshape(r, [nRows , nCols ]);

18 ke = reshape(ke , [nRows , nCols ]);

19

20 %%

21 %x variavle for curve fit

22 x_f = linspace(0, 1);

23 %calculate nondimensional X and Y, and fit!

24 x = t./r;

25 y = 2*ke./(C*g^2);

26 x = reshape(x, [1, numel(x)]);

27 y = reshape(y, [1, numel(y)]);

28 %don ’t try to fit NaN

29 dontfit = find(isnan(x) | isnan(y));

30 x(dontfit) = [];

31 y(dontfit) = [];

32 %the function we want to fit this to is

33 % E = A*exp(-k1x)*(1-exp(k2x))

34 figure (); clf; hold on;

35 ool with a linear term and no weights (copper)

36 a = 1.234;

37 k1 = 0.7316;

38 k2 = 34.7;

39 d = 1;

40 %equation to fit

41 y_f = a * exp(-k1*x_f) ...

42 .* (1 - exp(-k2*x_f )).*(1 - x_f ).^d;

43 %plot CTH results

44 plot(x, y, ’ok’, ...
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45 ’markerfacecolor ’, [0.9100 0.4100 0.1700] , ...

46 ’markersize ’, 8);

47 %plot curve fit

48 plot(x_f , y_f , ’-.k’, ’linewidth ’, 4);

49

50 xlabel(’Nondimensional Size’);

51 ylabel(’Nondimensional Energy ’);

52 legend(’CTH’, ’Curve Fit’);

53 SetPlotStyle ();
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12.3 Gurney Equation

Matlab was used to visualize the dimensional and nondimensional forms of

the Gurney equation. A sample of this code is given below.
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1 %% Gurney Results

2 %material constants

3 g_c = 2.44; %gurney constants in [mm/us]

4 rho_e = 1.630; %explosive density [g/cc]

5 rho_c = 2.6993; %case density [g/cc]

6 %convert to standard units

7 g_c = g_c * 1000; %% mm/us to m/s

8 rho_e = rho_e * 1000; %% g/cc to kg/m3

9 rho_c = rho_c * 1000; %% g/cc to kg/m3

10 %generate mesh of t, ro pairs

11 t = linspace(0, 2, 20)/100; %% m

12 ro= linspace(0, 6, 20)/100; %% m

13 [t, ro] = meshgrid(t, ro);

14 ri = ro - t;

15 %calculate charge and case mass

16 %charge mass [kg/m]

17 C = pi * ri.^2 * rho_e;

18 %case mass [kg/m]

19 M = pi * (ro.^2 - ri.^2) * rho_c;

20 %calculate velocity

21 V = g_c./sqrt( (M./C) + 0.5); % velocity in m/s

22 V(1,1) = 0;

23 %remove values where M or C are less than zero

24 M(t>ro) = 0;

25 %calculate KE

26 ke = 0.5 * M.*V.*V;

27 %plot dimensional values

28 figure (3);

29 surf(t*100, ro*100, ke/1e6);

30 xlabel(’Thickness [cm]’)

31 ylabel(’Outer Radius [cm]’)

32 zlabel(’Kinetic Energy [MJ]’);

33 axis equal square

34 SetPlotStyle ();

35 %plot nondimensional values

36 t(t>ro) = 0;

37 figure (4);

38 plot(t./ro , 2*ke./(C*g_c^2), ’ok’, ...

39 ’markerfacecolor ’, ’k’, ’markersize ’, 8);

40 xlabel(’t/r’);

41 ylabel(’2KE / Cg^2’);

42 SetPlotStyle ();
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12.4 Figure Formatting

A general Matlab function was developed to create a consistent style for each

figure. This function ‘SetPlotStyle’ can be seen in all of the previous code snippets.

1 function SetPlotStyle(fs)

2 %Styles matlab generated plots to be consistent

3 %Logan Beaver , 2/28/2017

4 %set figure size to a default of 14 if none is specified

5 if ~exist(’fs’,’var’)

6 fs=14;

7 end

8 %Set font size and type to all elements

9 set(findall(gca ,’type’,’text’),’FontSize ’,fs+2, ...

10 ’fontName ’,’Times New Roman’)

11 set(gca ,’FontName ’,’Times New Roman’, ’fontsize ’, fs);

12 %turn on the grid and set the axes

13 grid on

14 axis equal square

15 set(gca ,’XMinorTick ’,’on’,’YMinorTick ’,’on’)

16 %centers the plot in the figure window

17 fig = gcf;

18 fig.PaperPositionMode = ’auto’;

19 fig_pos = fig.PaperPosition;

20 fig.PaperSize = [fig_pos (3) fig_pos (4)];

21 %turns on the black box around the the window

22 box on;

23 end
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