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Abstract: Several new classes of hybrid catalysts have been synthesized by 

tethering heterocyclic metal (Lewis acid) chelating scaffolds to several 

different amines capable of facilitating enamine catalysis. Oxazole, thiazole, 

and imidazole-based chiral precatalysts were prepared in several steps from 

amino acid starting materials, and these were combined with a variety of 

metal Lewis acids for potential use as catalysts for various carbon–carbon 

bond formations. Air- and moisture-tolerant catalysts for enantioselective 

direct aldol reactions with activated benzaldehyde acceptors were identified, 

with optimal results obtained with proline-derived oxazole–carboxamide 

precatalysts combined with Zn(OTf)2 or lanthanide (III) salts. Control studies 

support the hypothesis that these act as unimolecular hybrid catalysts for the 

aldol reaction of propionaldehyde and 4-nitrobenzaldehyde. 
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1. Introduction 

The use of multifunctional catalysts capable of activating 

multiple reaction partners remains an underutilized strategy in organic 

synthesis.1 One such approach involves the use of hybrid catalysts 

with Lewis acids and Lewis bases in close proximity on the same 

molecule,1; 2 ;  3 which differs from the more common strategy of using 

separate catalysts, which is termed cooperative, synergistic, or dual 

catalysis (Fig. 1, top).4 ;  5 Instructive examples of hybrid Lewis 

acid/Lewis base catalysts include type-II aldolases which utilize 

hydroxyketone substrates,6 ferrocenylphosphine–gold(I) complexes 

with tethered amines reported by Ito and Hayashi for asymmetric aldol 

reactions with isocyanoacetate substrates,7 bifunctional phosphine 

oxide/aluminum(III) catalysts for aldehyde cyanosilylation,8 and 

cinchona alkaloid–salicylate ligated In(III) for chiral β-lactam 

synthesis.9 

 
Fig. 1. Dual catalysis versus hybrid catalysis. 

Small molecule organocatalysis has emerged as an extremely 

powerful tool in synthetic chemistry,10 but practical limitations include 

low turnover frequencies relative to many industrial transition metal 

catalysts, as well as limited substrate scope in some cases. 

Additionally, the ability to access alternative diastereoisomeric 

products by catalyst modification is presently a significant challenge 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
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that is not unique to organocatalysis, despite recent successes in the 

area of synergistic organo/transition metal catalysis.11 

We believe that hybrid Lewis acid/Lewis base catalysts capable 

of stabilizing well-defined transition states and assembled using 

modular, easily modifiable organic building blocks may show improved 

performance and/or complementary scope relative to current 

organocatalysts. A reaction of particular interest to us for the 

preparation of antibiotic and anticancer natural product analogs is the 

direct aldol reaction, which forms carbon–carbon bonds between 

‘donor’ and ‘acceptor’ aldehydes and ketones without the requirement 

of substrate preactivation. Numerous catalytic asymmetric direct aldol 

reactions have been reported,12 ;  13 but many of these suffer from 

sluggish reactions with less activated acceptors, and few catalysts are 

presently capable of promoting enantioselective syn-selective reactions 

without α-heteroatom containing donors. 14; 15; 16 ;  17 To address these 

challenges, but more generally to investigate underexplored strategies 

for the catalysis of carbon–carbon bond formations, we have initiated 

detailed investigations into hybrid Lewis acid/Lewis base catalysts for 

use in several transformations. 

The amino acid proline,18 as well as numerous proline 

derivatives, are well established for the production of anti-aldol 

products. Replacement of the carboxylic acid moiety of proline with 

suitably positioned chelated Lewis acids offers the opportunity to 

access alternative product stereochemistries, and could additionally 

provide improved reactivity over monofunctional catalysts. The use of 

metal Lewis acids with various amino acid derivatives as bifunctional 

aldol reaction catalysts has been reported over the years by the 

groups of Watanabe, 19 Darbre,20 Mlynarski,21 Aoki,22 Wang, 23; 24 ;  25 

and Reiser.26 However, to our knowledge, no data has been reported 

on the use of such hybrid aldol reaction catalysts with aldehyde donors 

that would be particularly useful for the synthesis of chiral 

polyproprionate fragments and building blocks for the synthesis of 

modified natural products.27 This manuscript describes the preparation 

of several novel heterocyclic precatalysts, as well as their application 

in direct aldol reactions. 
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2. Results and discussion 

One of the main challenges associated with creating a 

bifunctional hybrid catalyst is the need to keep the Lewis acid and 

Lewis base moieties from reacting with each other, while at the same 

time positioning them close enough in space to facilitate the key bond 

formation between nucleophile and electrophile. To meet these 

requirements, we have focused on the preparation of five-membered 

heterocycles that are capable of complexing Lewis acidic metals, and 

we have prepared a focused library of bifunctional precatalysts 

possessing these heterocycles tethered to several amines capable of 

enamine formation (Fig. 1, bottom). 

2.1. Azole–carboxylate precatalysts 

Our first series of bifunctional precatalysts are derived from chiral α-

amino acids and possess oxazole–carboxylate chelating functionality. 

The synthesis of our first precatalyst in this category is outlined in 

Scheme 1. 

 
Scheme 1. Oxazole–carboxylates via oxidation-condensation sequence. 

The synthesis started with a peptide coupling between N-Boc-l-

proline and l-threonine methyl ester hydrochloride, which afforded the 

known dipeptide 3 in moderate yield. The dipeptide was oxidized to 

ketone 4 with Dess-Martin Periodinane (DMP), then subjected to a 

cyclization reaction with conditions developed by Wipf 

(triphenylphosphine, iodine, and triethylamine)28 to generate the 

protected oxazole 5 in 52% yield. Lithium hydroxide hydrolysis of the 

https://dx.doi.org/10.1016/j.tet.2016.05.014
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methyl ester followed by acid-mediated removal of the Boc group 

afforded amino acid oxazole 7 as the HCl salt in good yield. 

The limited solubility of putative amino acid precatalysts such as 

7 in low polarity solvents inspired us to prepare variants with lipophilic 

solubility handles. For example, the use of 4-hydroxyproline as a 

starting material permits the convenient incorporation of lipophilic 

groups that would be expected to have a negligible impact on 

catalysis. The benzyl ether of N-Boc-l-proline (1b) was coupled with l-

serine methyl ester to yield dipeptide 9b in excellent yield. Cyclization 

of 9b to generate an oxazoline with Deoxo-Fluor™ was followed by in-

situ bromination/elimination to form oxazole 10b, according to a 

protocol reported by Wipf and Williams,29 which we modified slightly to 

incorporate an aqueous wash between steps. The methyl ester 10b 

was hydrolyzed to yield acid 11b, which could be coupled with 

additional building blocks (vide infra), or the Boc group could be 

removed with HCl to give amino acid 11b. An identical sequence was 

also used to prepare an intermediate without a solubility handle (11a). 

Valine-based precatalysts were also prepared in a similar manner, via 

Boc-protected compound 14 (Scheme 3). 

 
Scheme 2. Pyrrolidine–oxazole–carboxylates via cyclization/oxidation sequence. 

 

 
Scheme 3. Valine-based oxazole–carboxylates via cyclization/oxidation sequence. 

https://dx.doi.org/10.1016/j.tet.2016.05.014
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Analogous thiazole-based precatalysts were also synthesized via 

intermediate thioamides (Scheme 4). Treatment of keto-amide 4 with 

Lawesson's reagent30 in refluxing THF generated thiazole 15 in 

moderate yield, which was subjected to the standard 

hydrolysis/deprotection conditions to yield acid 16 and amino acid 17. 

 
Scheme 4. Thiazole–carboxylates via thioamide formation. 

2.2. Azole–carboxamide precatalysts 

In order to generate several alternative functionalities capable 

of coordinating to Lewis acids and holding them in favorable 

orientations for bifunctional catalysis, we have coupled our N-

protected amino acids with a variety of building blocks. A small library 

of amides was prepared using standard peptide coupling reagents, and 

select examples generated from oxazoles 6, 11a, and 14, and thiazole 

16, are given in Table 1. Representative syntheses are given in 

Schemes 6 and 7. Anilide compounds were the focus of these efforts, 

since they provide the opportunity to easily modulate the electronics of 

the coordinating amide. Additionally, amino alcohols were coupled 

using analogous conditions, and the resulting amido alcohols were 

used to prepare oxazoline moieties. The resulting precatalysts are the 

subject of a sister manuscript.31 

Table 1. Azole–carboxamide precatalystsa 

 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
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Starting material Product Starting material Product 

6 

 

6 

 

11a 

 

11a 

 

11a 

 

11a 

 

11a 

 

16 

 

16 

 

14 

 

14 

 

14 

 

14 

 

14 

 

aReactions were performed with either EDC, PyBOP, or i-BuOCOCl as coupling agent. 
See Experimental section for representative examples. 

2.3. Imidazole–phenolate precatalysts 

In addition to carboxylic acids and carboxamides as chelating 

groups, we have also prepared a novel class of imidazole–phenolate 

precatalysts, with a representative example given in Scheme 5. 

Benzylation of o-hydroxyacetophenone 21 with sodium hydride and 

benzyl bromide proceeded smoothly to afford benzyl ether 22, 

followed by α-bromination with NBS under solvent-free conditions.32 

The resulting bromoketone 23 was treated with sodium azide in DMF 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
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to afford azide 24. A protocol was developed that enabled the azide 

reduction and isolation of the sensitive amino ketone 25 cleanly as the 

HCl salt. After several low yielding and messy Staudinger reduction 

reactions, the azide was cleanly hydrogenated using Pd/C poisoned 

with diphenylsulfide, according to the report by Sajiki.33 The reaction 

was performed in acidic methanol to ensure that the resulting amine 

would immediately be protonated to circumvent intermolecular 

reactions with the acetophenone. The aminoketone 25 was then 

coupled with N-Boc-l-phenylalanine to obtain amide 26. Heating with 

ammonium acetate facilitated a cyclodehydration reaction to yield the 

desired imidazole 27, which was globally deprotected with hydrogen 

and Pd/C, followed by HCl, to provide the primary amine precatalyst 

28a. The N-methyl phenylalanine-derived precatalyst 29 and the 

proline-derived precatalyst 30 were synthesized in a similar manner 

(see Supplementary data for details). 

 
Scheme 5. Imidazole–phenolate precatalysts. 

2.4. Screening results 

Our interest in the preparation of modified natural products 

inspired us to explore the catalytic direct aldol reaction, using 

aldehyde donors as an initial testing ground for our first generation 

hybrid catalysts. After an initial lack of observed reactivity with less-

activated acceptors such as benzaldehyde, we elected to use the direct 

aldol reaction between propionaldehyde and 4-nitrobenzaldehyde as a 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
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model reaction. Our initial screens involved the combination of each of 

our precatalysts with at least 13 different metal salts, many of which 

have some precedent for acting as oxophilic, water-tolerant Lewis 

acids.34 For productive enamine catalysis to occur, water must be 

generated during enamine formation, but is also required to hydrolyze 

the imine or iminium ion intermediates generated upon carbon–carbon 

bond formation. Therefore, we took no special precautions to use dry 

glassware or to exclude air or moisture from reactions, though a 

commercial source of dry THF was used in the initial reaction screen 

(Table 2). The detailed screening protocol is provided in the 

Supplementary data, but in short the precatalysts and metal salts 

were simply added to reaction vials prior to the addition of substrate 

solutions, and the reactions were stirred for 24 h prior to a reductive 

quench with sodium borohydride solution to generate more stable 1,3-

diol products. Unless otherwise noted, all precatalysts were used as 

free bases or zwitterions. Yields and selectivities were determined by 

chiral HPLC. 

Table 2. Representative screening results for direct aldol reaction of 

propionaldehyde and 4-nitrobenzaldehyde with acid and phenol precatalystsa 

 

Entry Precatalyst Metal salt % syn syn ee % anti anti ee % Yield 

1 7 Zn(OTf)2 — — — — NR 

2 12b None ND ND ND ND 3 

3 12b Zn(OTf)2 15 29 85 36 41 

4 12b InCl3 38 23 62 27 13 

5 12b Eu(OTf)3 32 44 68 66 33 

6 12b Yb(OTf)3 32 29 68 60 34 

7 28b None 76 15 24 20 8 

8 28b Zn(OTf)2 58 13 42 26 14 

9 28b InCl3 93 38 7 2 26 

10 28b Eu(OTf)3 70 4 30 13 20 

11 28b Yb(OTf)3 68 34 32 9 15 

12 29 Zn(OTf)2 24 58 76 76 43 

13 29 Yb(OTf)3 41 5 59 50 65 

14 30 InCl3 51 4 49 4 69 

15 30 Eu(OTf)3 50 3 50 3 59 
aEnantiomeric excess (ee) and yields determined by chiral HPLC with 1,2-
dichlorobenzene as internal standard. Reactions were run for 24 h with 0.10 mmol 
nitrobenzaldehyde (0.1 M final concentration), 0.20 mmol propionaldehyde, and 

https://dx.doi.org/10.1016/j.tet.2016.05.014
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10 mol % precatalyst and metal salt, unless otherwise noted. NR=no reaction (<1% 

yield). ND=not determined. 

Results with carboxylic acid and phenol-containing precatalysts 

are given in Table 2. Some of our early amino acid precatalysts, such 

as 7 (entry 1), and 12a and 17 (not in table), proved to be quite 

insoluble in organic solvents, even in the presence of metal salts with 

added base. Therefore, we were not surprised to see a lack of reaction 

in such cases (e.g., entry 1). A solubility handle was added to these 

amino acid precatalysts by using hydroxyproline as a starting material; 

for example, benzyl ether 12b (Scheme 2) was synthesized and 

subjected to the model reaction. Moderate levels of reactivity and anti 

enantioselectivity were observed when combined with a number of 

Lewis acids (entries 3–6). The imidazole–phenol 28b, containing a 

primary amine as the organocatalytic moiety, gave very good syn 

selectivity when combined with InCl3, but low enantioselectivity and 

only moderate yield (entry 9). The secondary amine analogs 29 and 

30 preferably formed the anti products with improved yields and in 

some cases moderately good enantioselectivity (with Zn(OTf)2, entry 

12). Unfortunately there is a potential background reaction with the 

imidazole–phenol class of catalysts, as precatalysts such as 28b 

are able to catalyze somewhat the syn-selective addition of 

propionaldehyde to 4-nitrobenzaldehyde without the use of metal salts 

(entry 7). Therefore, this compound class was deprioritized for this 

reaction. 

The most promising results were obtained with the 

carboxamide-containing precatalysts (Table 3). The combination of 

these precatalysts with lanthanide Lewis acids frequently generated 

catalysts with improved reactivities and stereoselectivities, such as 

with the use of 18a and Eu(OTf)3 (entry 2: 61% yield, 79% anti 

selective, 61% ee). There were few clear-cut structure–activity 

relationships with these catalysts; there were examples of primary 

amides (e.g., 18g, entries 13–17), secondary amides, and tertiary 

amides (e.g., 18f, entries 11–12) that provided catalysts with good 

reactivities and enantioselectivities. However, we observed no 

thiazole-based catalysts with both good reactivity and 

enantioselectivity (entries 18–21). There were also not obvious 

electronic effects at the arene of the carboxamide, though the more 

electron-rich carboxamide 18e gave a superior yield to the 4-chloro-

https://dx.doi.org/10.1016/j.tet.2016.05.014
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substituted 18d with Zn(OTf)2 (entries 7 vs 9). Of particular note was 

that Zn(OTf)2 frequently generated catalysts with high anti 

enantioselectivities. 

Table 3. Representative screening results for direct aldol reaction of 

propionaldehyde and 4-nitrobenzaldehyde with carboxamide precatalystsa 

Entry Precatalyst Metal salt % syn syn ee % anti anti ee % Yield 

1 18a Sm(OTf)3 20 16 80 80 37 

2 18a Eu(OTf)3 21 9 79 61 61 

3 18b Zn(OTf)2 35 13 65 11 19 

4 18b InCl3 25 9 75 35 23 

5 18c Zn(OTf)2 15 42 85 88 40 

6 18c InCl3 45 18 55 21 78 

7 18d Zn(OTf)2 21 24 79 92 27 

8 18d Sm(OTf)3 36 28 64 65 55 

9 18e Zn(OTf)2 18 44 82 84 51 

10 18e Sm(OTf)3 33 19 67 64 74 

11 18f Zn(OTf)2 18 49 82 91 45 

12 18f InCl3 34 12 66 52 61 

13 18g Mg(OTf)2 18 15 82 77 41 

14 18g Zn(OTf)2 20 52 80 84 48 

15 18g InCl3 41 15 59 25 80 

16 18g Eu(OTf)3 32 21 68 54 72 

17 18g Yb(OTf)3 33 18 67 65 55 

18 19a Eu(OTf)3 39 2 61 26 77 

19 19a Yb(OTf)3 46 20 54 11 63 

20 19b InCl3 42 8 58 27 38 

21 19b Zn(OTf)2 35 14 65 29 33 

22 20a None ND ND ND ND 3 

23 20a Zn(OTf)2 59 58 41 63 19 

24 20a InCl3 79 20 21 13 25 

25 20a Eu(OTf)3 38 1 62 7 49 

26 20a Yb(OTf)3 50 12 50 17 42 

27 20b Zn(OTf)2 59 47 41 33 16 

28 20b Eu(OTf)3 46 0 54 11 42 

29 20c Zn(OTf)2 65 33 35 41 20 

30 20c InCl3 72 49 28 2 25 

31 20d Zn(OTf)2 66 27 34 52 16 

32 20d InCl3 84 6 16 5 27 

33 20e Zn(OTf)2 59 39 41 32 28 

34 20e InCl3 82 12 18 5 31 
aEnantiomeric excess (ee) and yields determined by chiral HPLC with 1,2-
dichlorobenzene as internal standard. Reactions were run for 24 h with 0.10 mmol 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0040402016303878#tbl3fna
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nitrobenzaldehyde (0.1 M final concentration), 0.20 mmol propionaldehyde, and 

10 mol % precatalyst and metal salt. ND=not determined. 

To differentiate the catalysts further, select examples were 

tested in reactions with propionaldehyde and the less activated 

acceptor benzaldehyde. One of the few combinations giving any 

observable reaction was 18c–Zn(OTf)2 (Table 7). We therefore studied 

this catalyst in further detail to optimize reaction conditions with the 

original model reaction. Results with 18c and a variety of metal salts 

are given in Table 4. Only trace reaction was observed with triflate 

salts of Mg(II), Sc(III), and Cu(II) (entries 1–3). Interestingly, only 

trace reaction was observed with ZnBr2 (entry 4), but moderate 

reactivity and good enantioselectivity was measured with Zn(OTf)2 

(entry 5). Conversely, catalysis with InCl3 provided good yield, albeit 

with low enantioselectivities (entry 7), while In(OTf)3 gave only trace 

reaction (entry 8). Ga(OTf)3 was the only metal complex providing any 

level of syn selectivity (61%, entry 6). Lanthanide (III) triflates 

(entries 9–12) promoted the reaction with moderate yields and 

moderate to good anti enantioselectivities. Based on the promising 

results with the initial benzaldehyde reactions and the good anti 

selectivity and enantioselectivity (entry 5), we continued to study 

18c–Zn(OTf)2 in further detail. 

Table 4. Detailed metal salt screening with 18ca 

 

Entry Metal salt % syn syn ee % anti anti ee % Yield 

1 Mg(OTf)2 ND ND ND ND 4 

2 Sc(OTf)3 ND ND ND ND 4 

3 Cu(OTf)2 ND ND ND ND 2 

4 ZnBr2 ND ND ND ND 2 

5 Zn(OTf)2 15 42 85 88 40 

6 Ga(OTf)3 61 1 39 54 12 

7 InCl3 45 18 55 21 78 

8 In(OTf)3 ND ND ND ND 3 

9 Sm(OTf)3 20 16 80 80 37 

10 Eu(OTf)3 37 41 63 70 51 

11 Gd(OTf)3 19 14 81 86 21 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0040402016303878#tbl7
http://www.sciencedirect.com/science/article/pii/S0040402016303878#tbl4
http://www.sciencedirect.com/science/article/pii/S0040402016303878#tbl4fna


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Tetrahedron, Vol 72, No. 27-28 (July 7, 2016): pg. 3905-3916. DOI. This article is © Elsevier and permission has been 
granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be 
further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

14 

 

Entry Metal salt % syn syn ee % anti anti ee % Yield 

12 Yb(OTf)3 31 3 69 68 38 

13 Bi(OTf)3 ND ND ND ND 1 
aEnantiomeric excess (ee) and yields determined by chiral HPLC with 1,2-
dichlorobenzene as internal standard. Reactions were run for 24 h with 0.10 mmol 
nitrobenzaldehyde (0.1 M final concentration), 0.20 mmol propionaldehyde, and 
10 mol % precatalyst and metal salt. ND=not determined. 

 

Table 5. Solvent screen with 18c–Zn(OTf)2
a 

 

Entry Solvent % syn syn ee % anti anti ee % Yield 

1 Benzene 11 14 89 91 13 

2 DCE 16 62 84 63 19 

3 IPA 15 56 85 59 18 

4 THF 15 42 85 88 40 

5 1000:1 THF:H2O 12 39 88 82 40 

6 500:1 THF:H2O 13 37 87 84 35 

7 100:1 THF:H2O 45 9 55 64 35 

8 9:1 THF:H2O 50 2 50 28 35 

9 1:1 THF:H2O 28 25 72 19 37 

10 MeCN 24 53 76 43 31 

11 1000:1 MeCN:H2O 17 54 83 76 35 

12 500:1 MeCN:H2O 22 71 78 71 39 

13 100:1 MeCN:H2O 19 65 81 74 40 

14 9:1 MeCN:H2O 20 32 80 76 54 

15 1:1 MeCN:H2O 53 22 47 4 75 
aEnantiomeric excess (ee) and yields determined by chiral HPLC with 1,2-
dichlorobenzene as internal standard. Reactions were run for 24 h with 0.10 mmol 
nitrobenzaldehyde (0.1 M final concentration), 0.20 mmol propionaldehyde, and 

10 mol % precatalyst and metal salt, unless otherwise noted. ND=not determined. 

 

  

https://dx.doi.org/10.1016/j.tet.2016.05.014
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Table 6. Control reactions for 18c–Zn(OTf)2–catalyzed direct aldol reactiona 

 

Entry Precatalyst(s) 
(10 mol %) 

Metal salt 
(10 mol %) 

% 
syn 

syn 
ee 

% 
anti 

anti 
ee 

% 
Yield 

1 18c Zn(OTf)2 20 32 80 76 54 

2 18c None 48 7 52 41 6 

3 None Zn(OTf)2 — — — — NR 

4 18c–HCl None — — — — NR 

5 18c–HCl Zn(OTf)2 26 17 74 53 3 

6 (±)-2-Phenyl-pyrrolidine None 61 — 39 — 30 

7 (±)-2-Phenyl-pyrrolidine Zn(OTf)2 61 — 39 — 11 

8 N-Acetyl-18c None — — — — NR 

9 N-Acetyl-18c Zn(OTf)2 ND ND ND ND 1 

10 N-Acetyl-18c+(±)-2-
phenyl-pyrrolidine 

Zn(OTf)2 57 3 43 0 27 

11 N-Methyl-18c None — — — — NR 

12 N-Methyl-18c Zn(OTf)2 — — — — NR 

13 N-Methyl-18c+(±)-2-

phenyl-pyrrolidine 

Zn(OTf)2 67 38 33 0 25 

14 l-Proline None 14 6 86 73 45 
aEnantiomeric excess (ee) and yields determined by chiral HPLC with 1,2-
dichlorobenzene as internal standard. Reactions were run for 24 h at rt with 
0.20 mmol propionaldehyde (0.1 M final concentration), 0.10 mmol 4-
nitrobenzaldehyde, and 10 mol % precatalyst(s) and metal salt, unless otherwise 

noted. ND=not determined. NR=no reaction. 

 

Table 7. Exploration of substrate scope 

 

Entry Donor Acceptor Product % syn % syn ee % anti % anti ee % Yield 

1 31a 32a 33aa 20 32 80 76 54 

2 31a 32b 33ab — — — — NR 

3 31a 32c 33ac — — — — NR 

4 31b 32a 33ba — — — — NR 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
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Entry Donor Acceptor Product % syn % syn ee % anti % anti ee % Yield 

5 31b 32b 33bb — — — — NR 

6 31b 32c 33bc — — — — NR 

7 31c 32a 34a 18 6 82 73 14a 

8 31c 32b 34b 46 ND 54 ND 12 

9 31c 32c 34c 33 44 67 51 15 

Reactions were run with 0.4 mmol acceptor and 0.8 mmol donor with 10 mol % 18c 
and 10 mol % Zn(OTf)2 in 9:1 MeCN:H2O, for 24 h at 20 °C (with 32a) or for 48 h at 
70 °C (with 32b and 32c). Enantiomeric excess (ee) and yield was determined by 

chiral HPLC with 1,2-dichlorobenzene as internal standard. Reductive work-ups were 
performed for reactions with aldehyde donors (31a, 31b). NR=no reaction. 

aYield and diastereoselectivity determined by NMR. 

Next, an investigation of solvent effects was carried out (Table 

5). The model reaction was sluggish in benzene, but very good anti 

enantioselectivity (91% ee) was observed (entry 1). In prior aldol 

studies, we had observed improved reactivities with added water, but 

in this case increasing amounts of water with THF as the organic 

solvent did nothing to improve reaction yields or enantioselectivities 

(entries 4–9). In fact, sharply diminished anti enantioselectivities were 

observed with higher concentrations of water, potentially due to a 

reversible reaction. In contrast, the use of water as cosolvent with 

acetonitrile gave improved yields and anti enantioselectivity; we 

selected 9:1 MeCN:H2O (entry 14) as our solvent of choice for these 

reactions, despite the slightly higher enantioselectivities observed with 

the less polar solvents. 

At this stage, it was important to determine if 18c–Zn(OTf)2 is 

actually acting as a hybrid catalyst to promote the model aldol 

reaction. To address this question, we carried out a series of control 

reactions (Table 6). A slight reaction (6% yield) was observed with 

only 18c (entry 2) and no reaction was observed with only Zn(OTf)2 

(entry 3). Little to no reaction was observed with the HCl salt of 18c, 

either in the absence (entry 4) or presence (entry 5) of Zn(OTf)2. To 

explore the possibility of a dual catalyst mechanism, whereby 18c 

activates the donor via enamine formation for attack on the acceptor 

activated by a separate molecule of Zn(OTf)2, we examined the use of 

several precatalyst analogs that lacked either the metal chelating 

functionality or the amine moiety capable of activating the donor. 

First, the use of (±)-2-phenyl-pyrrolidine catalyzed the reaction to a 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0040402016303878#tbl7fna
http://www.sciencedirect.com/science/article/pii/S0040402016303878#tbl5
http://www.sciencedirect.com/science/article/pii/S0040402016303878#tbl5
http://www.sciencedirect.com/science/article/pii/S0040402016303878#tbl6
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significant extent (30% yield, entry 6), indicating that simple amines 

can catalyze the model reaction, but this catalysis was attenuated by 

Zn(OTf)2 (11% yield, entry 7), likely due to self-quenching. A 

precatalyst without an amine, N-acetyl-18c, was unable to promote 

the reaction with or without Zn(OTf)2 (entries 8–9). The addition of 

(±)-2-phenyl-pyrrolidine to a mixture of N-acetyl-18c, presumably still 

with the ability to complex Zn(OTf)2, and Zn(OTf)2 (all in 10 mol %), 

gave results very similar to that of (±)-2-phenyl-pyrrolidine alone 

(entry 10), in both yield and lack of enantioselectivity. This sequence 

of experiments was repeated with N-methyl-18c, which could possess 

the ability to act as a chiral base in the reaction (e.g., for enolate 

formation). However, no reaction was observed with N-methyl-18c 

(entries 11–12), and the addition of (±)-2-phenyl-pyrrolidine to a 

mixture of N-methyl-18c and Zn(OTf)2 again provided some reaction, 

though interestingly in this case some enantioselectivity was observed 

for formation of the syn isomer (entry 13). Clearly, the combination of 

18c and Zn(OTf)2 is synergistic (entry 1), in particular with the 

elevated yields and significant enantioselectivity observed for the 

model reaction. The results of Table 5 are consistent with a 

unimolecular hybrid catalysis mechanism, whereby the Lewis acid and 

Lewis base are present in the same molecule (Fig. 1). To benchmark 

the performance of 18c–Zn(OTf)2, and to confirm our HPLC peak 

assignments, we compared it to l-proline, tested under the same 

conditions (entry 14). 18c–Zn(OTf)2 performs very similarly to 

generate the anti product selectively with good, but not excellent, 

enantioselectivity (76% ee under these conditions). 

To determine the potential utility of our catalyst system, 

alternative aldol reactions were investigated (Table 7). Unfortunately, 

little practical substrate scope was observed with our optimal 

conditions. No reaction was observed between propionaldehyde and 

the less activated acceptors 4-chlorobenzaldehyde (entry 2) and 

benzaldehyde (entry 3), even at 70 °C. The use of isobutyraldehyde 

(31b) as donor also failed with all substrates (entries 4–6). Pleasingly, 

cyclohexanone gave reactions with all 3 acceptors, albeit in low yield. 

Moderately good anti enantioselectivity (73% ee) was observed with 

4-nitrobenzaldehyde as acceptor (entry 7). 

  

https://dx.doi.org/10.1016/j.tet.2016.05.014
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2.5. Structural studies 

In order for hybrid catalysis to be feasible, it is critical that the 

Lewis acid and Lewis base moieties do not poison each other. Our 

catalysts have been designed with this objective in mind, but 

structural studies could potentially confirm this. To shed light on the 

specific interactions between the precatalysts and Lewis acids, we 

have initiated NMR, MS, and X-ray studies of a variety of systems. 

Preliminary NMR studies of Zn(II) containing catalysts demonstrate 

that complexation is indeed occurring, but the highly broad signals 

have thus far precluded characterization of discrete complexes. Mass 

spectrometry with electrospray ionization of 18c mixed with Zn(OTf)2 

shows signals corresponding to two precatalyst molecules bound to 

zinc (see Supplementary data). Though it is possible that such 2:1 

complexation observed in the mass spectrometer is not reflective of 

the major species present under reaction conditions, at this stage we 

cannot rule out the presence of higher order complexes with 

precatalysts such as 18c that may involve the reversible coordination 

of the amine nitrogen to zinc. 

Thus far, we have obtained one crystal structure to indicate that 

our general catalyst design with a central five-membered heterocycle 

can facilitate the formation of metal complexes without self-quenching 

of the Lewis acid and Lewis base sites. A single crystal was obtained 

by mixing 12a and NiI2 in 1:1 MeCN:benzene (Fig. 2). Though this 

catalyst gave only trace reaction in the model reaction, it does 

illustrate that the amine and Lewis acid moieties can be situated close 

together without self-quenching. Two independent octahedral 

complexes, each with a 2:1 precatalyst to metal ratio, were present in 

the unit cell. It is clear that the pyrrolidine nitrogens in this structure 

are uncomplexed to metals, and thus would be available for activation 

of a donor reactant. Efforts are ongoing to obtain crystal structures of 

active aldol catalysts. 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0040402016303878#appsec1
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Fig. 2. X-ray crystal structure of 12a–NiI2(H2O)2. 

3. Conclusion 

21 different amino acid-derived precatalysts have been 

synthesized, with each example containing an amine moiety capable of 

organocatalysis appended to a functionalized heterocycle designed to 

complex a Lewis acidic metal in an appropriate orientation for carbon–

carbon bond formation between ‘donor’ and ‘acceptor’ reactants. The 

functionalized heterocycles synthesized include examples of oxazole– 

and thiazole–carboxylates, imidazole–phenols, and oxazole– and 

thiazole–carboxamides. Many different putative hybrid catalysts were 

generated by mixing these catalysts with a variety of Lewis acids, and 

the catalysts were screened initially in the aldol reaction between 

propionaldehyde and 4-nitrobenzaldehyde. The carboxamide-based 

precatalysts gave the best combination of reactivity and 

enantioselectivity when used with certain metal salts, including zinc 

triflate and lanthanide (III) salts. The optimal catalysts were also 

selective for the anti stereoisomer, with enantiomeric excess of up to 

91% observed. One of the optimal catalysts, 18c–Zn(OTf)2, was 

studied with a series of controls to support the hypothesis that it acts 

as a true hybrid catalyst to promote the desired aldol reaction. 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
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Despite these proof of concept results, our first-generation 

hybrid catalysts at this stage offer no obvious benefits over simpler 

organocatalysts for direct aldol reactions. Though the catalysts we 

have identified are tolerant of air and moisture and are highly robust 

(preliminary results show prolonged catalyst activity well beyond 

24 h), the substrate scope is very limited, and they suffer the same 

disadvantage of organocatalysts, namely sluggish reactions and/or 

high catalyst loading. The relatively low catalyst activity is also 

consistent with some previously reported hybrid catalysts for the direct 

aldol reaction.24 We believe that alternative geometries for hybrid 

systems may lead to more reactive catalysts, and computational and 

synthetic efforts are underway to explore next-generation hybrid 

systems with well-defined ligand/metal geometries for the aldol and 

other carbon–carbon bond forming reactions. 

4. Experimental section 

4.1. General information 

All reagents and solvents were purchased from commercial 

vendors and used as received. NMR spectra were recorded on Varian 

300 MHz or 400 MHz spectrometers as indicated. Proton and carbon 

chemical shifts are reported in parts per million (ppm; δ) relative to 

tetramethylsilane, CDCl3 solvent, or DMSO-d6 (1H δ 0, 13C δ 77.16, 

or 13C δ 39.5, respectively). NMR data are reported as follows: 

chemical shifts, multiplicity (obs=obscured, app=apparent, br=broad, 

s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, 

comp=complex overlapping signals); coupling constant(s) in Hz; 

integration. Unless otherwise indicated, NMR data were collected at 

25 °C. Flash chromatography was performed using Biotage SNAP 

cartridges filled with 40–60 μm silica gel, or C18 reverse phase 

columns (Biotage® SNAP Ultra C18 or Isco Redisep® Gold C18Aq) on 

Biotage Isolera systems, with photodiode array UV detectors. 

Analytical thin layer chromatography (TLC) was performed on Agela 

Technologies 0.25 mm glass plates with 0.25 mm silica gel. 

Visualization was accomplished with UV light (254 nm) and aqueous 

potassium permanganate (KMnO4) stain followed by heating, unless 

otherwise noted. Tandem liquid chromatography/mass spectrometry 

(LC-MS) was performed on a Shimadzu LCMS-2020 with autosampler, 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/
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photodiode array detector, and single-quadrupole MS with ESI and 

APCI dual ionization, using a Peak Scientific nitrogen generator. Unless 

otherwise noted, a standard LC-MS method was used to analyze 

reactions and reaction products: Phenomenex Gemini C18 column 

(100×4.6 mm, 3 μm particle size, 110 A pore size); column 

temperature 40 °C; 5 μL of sample in MeOH at a nominal 

concentration of 1 mg/mL was injected, and peaks were eluted with a 

gradient of 25–95% MeOH/H2O (both with 0.1% formic acid) over 

5 min, then 95% MeOH/H2O for 2 min. Purity was measured by UV 

absorbance at 210 or 254 nm. High-resolution mass spectra were 

obtained at the University of Wisconsin–Milwaukee Mass Spectrometry 

Laboratory with a Shimadzu LCMS-IT-TOF with ESI and APCI 

ionization. Gas chromatography/mass spectrometry (GC–MS) was 

performed with Agilent Technologies 6850 GC with 5973 MS detector, 

and Agilent HP-5S or Phenomenex Zebron ZB-5MSi Guardian columns 

(30 m, 0.25 mm ID, 0.25 μm film thickness). IR spectra were obtained 

as a thin film on NaCl or KBr plates using a Thermo Scientific Nicolet 

iS5 spectrometer. Optical rotations were measured with a Perkin Elmer 

341 polarimeter at λ=589 nm, with a 10 mL cell with 10 cm path 

length. Specific rotations are reported as follows: [α]D
T °C 

(c=g/100 mL, solvent). 

4.2. Synthesis of precatalysts 

4.2.1. tert-Butyl (S)-2-(((2S,3R)-3-hydroxy-1-methoxy-1-

oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate (3) 

N-Boc-l-Proline 1a (1.02 g, 4.65 mmol), l-threonine methyl 

ester HCl salt 2 (0.788 g, 4.65 mmol), HOBt (0.356 g, 2.32 mmol) and 

DIPEA (2.83 mL, 16.3 mmol) were dissolved in DCM (40 mL) at room 

temperature. After all solids had gone into solution, EDC-HCl (1.07 g, 

5.58 mmol) was added and the mixture was stirred at room 

temperature for 3 h. The reaction mixture was diluted with DCM 

(100 mL), washed with water (50 mL), saturated NaHCO3 (50 mL), 

brine (50 mL), and dried over sodium sulfate. The combined organics 

were concentrated and purified by flash chromatography (SiO2, 75%–

85% EtOAc/hexanes) to give the title compound as a colorless oil 

(887 mg, 58%). This compound has been previously reported and 

characterized (CAS# 80897-23-0). 1H NMR (300 MHz, DMSO-d6) 

https://dx.doi.org/10.1016/j.tet.2016.05.014
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δ=0.86–0.1.11 (m, 3H), 1.23–1.46 (m, 9H), 1.90–1.59 (m, 3H), 

1.93–2.26 (m, 1H), 3.04–3.42 (m, 3H), 3.62 (t, J=2.1 Hz, 3 H), 3.80–

4.18 (m, 1H), 4.19–4.37 (m, 2H), 4.82–5.02 (m, 1H), 7.80 (d, 

J=8.5 Hz, 1H). 

4.2.2. Methyl (S)-2-(1-(tert-butoxycarbonyl)pyrrolidin-2-yl)-5-

methyloxazole-4-carboxylate (5) 

Alcohol 3 (887 mg, 2.69 mmol) was dissolved in DCM (25 mL). 

Dess–Martin periodinane (1.36 g, 3.22 mmol) was added. The reaction 

was stirred at room temperature for 2 h, after which time the reaction 

was concentrated and pushed through a silica plug eluting with 7:3 

EtOAc:hexanes. The eluent was concentrated to yield 1.21 g of the 

crude oil 4, which was carried onto the next step without further 

purification. 

Triphenylphosphine (1.63 g, 6.20 mmol) and iodine (1.45 g, 

5.71 mmol) were sealed in a flask under N2 and dissolved with dry THF 

(25 mL), then cooled to −78 °C. Triethylamine (1.50 mL, 5.71 mmol) 

was added via syringe, followed by the dropwise addition of crude 4 

(1.21 g) in THF (15 mL) via syringe. After addition, the reaction was 

stirred at −78 °C for 3 h, then warmed to room temperature and 

diluted with water (100 mL) and extracted with DCM (2×75 mL). The 

combined organics were washed with water (75 mL), sodium 

thiosulfate solution in water (75 mL), and brine (75 mL), then dried 

over sodium sulfate and concentrated. The crude oil was purified by 

chromatography (SiO2, 12%–100% EtOAc/hexanes) to give the title 

compound as a colorless oil (590 mg, 52%). This compound has been 

previously reported and characterized (CAS# 182360-15-2). 1H NMR 

(400 MHz, CDCl3) δ=1.27–1.49 (m, 9H), 1.85–1.98 (m, 1H), 1.99–

2.17 (m, 2H), 2.2–2.38 (m, 1H), 2.60 (s, 3H), 3.36–3.67 (m, 2H), 

3.8–3.97 (m, 3H), 4.81–4.99 (m, 1H). 

4.2.3. (S)-2-(4-Carboxy-5-methyloxazol-2-yl)pyrrolidin-1-ium 

chloride (7) 

Oxazole 5 (593 mg, 1.90 mmol) was dissolved in THF (15 mL) 

and water (15 mL), followed by the addition of LiOH (80.0 mg, 

1.90 mmol). The reaction was stirred at room temperature for 2 h, 

after which time the pH was adjusted to 2 with concentrated aqueous 
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HCl, and the mixture was extracted with DCM (3×50 mL). The 

combined organics were washed with water (50 mL) and brine 

(50 mL), then dried over sodium sulfate and concentrated to yield a 

viscous oil. The oil was dissolved in DCM (30 mL), excess 4N HCl in 

dioxane was added, and the reaction was stirred for 16 h, yielding a 

white precipitate. The precipitate was collected by filtration, washed 

with DCM, and dried under high vacuum to give the title compound as 

a white solid (379 mg, 86%). [a]D
25 −16 (1.1, MeOH); IR (thin film): 

2954, 2755, 2669, 2538, 1724, 1409, 1165, 1107, 1019, 786 cm−1; 1H 

NMR (400 MHz, DMSO-d6) δ=1.88–2.11 (m, 2H), 2.11–2.26 (m, 1H), 

2.27–2.41 (m, 1H), 2.56 (s, 3H), 3.25 (t, J=7.3 Hz, 2H), 4.79 (t, 

J=7.8 Hz, 1H), 9.67 (s, 1H),10.62 (s, 1H); 13C NMR (75 MHz, DMSO) 

δ=11.9, 23.4, 28.4, 45.1, 53.8, 127.8, 156.6, 156.9, 162.6; HRMS 

(ESI+) calcd for C9H12N2O3 [M+H] 197.0921, found 197.0925. 

4.2.4. tert-Butyl (2S)-2-[(3-hydroxy-1-methoxy-1-oxopropan-2-

yl)carbamoyl]pyrrolidine-1-carboxylate (9a) 

N-Boc-l-proline 1a (4.00 g, 18.6 mmol), l-serine methyl ester 8 

(3.18 g, 20.4 mmol) and HOBt (4.27 g, 27.9 mmol) were added to a 

500 mL round bottom flask with stir bar and dissolved in DCM 

(150 mL). DIPEA (7.95 mL, 46.5 mmol) was then added by syringe, 

followed by EDC-HCl (5.34 g, 27.9 mmol). The reaction was stirred at 

room temperature for 48 h, then the reaction was transferred to a 

separatory funnel and washed with water (∼125 mL), 1M HCl 

(∼125 mL), then saturated sodium bicarbonate (∼125 mL). The 

organic portion was dried with sodium sulfate, filtered, and 

concentrated to a white foam. The crude compound was dissolved in 

DCM (∼10 mL) and purified by flash chromatography (100 g SiO2 

cartridge; 0–10% MeOH/DCM gradient) to yield the title compound 

(5.08 g, 86%) as a white foam. This compound has been previously 

reported and characterized (CAS# 955401-52-2). 1H NMR (300 MHz, 

CDCl3) δ=1.45 (s, 9 H), 1.68 (s, 1 H), 1.89 (br), 2.06 (br), 2.18 (br), 

3.47 (br), 3.80 (s, 3 H), 3.89 (br), 4.03 (br), 4.18 (br), 4.62 (br m, 

1 H), 7.06 (br). 

 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Tetrahedron, Vol 72, No. 27-28 (July 7, 2016): pg. 3905-3916. DOI. This article is © Elsevier and permission has been 
granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be 
further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

24 

 

4.2.5. Methyl 2-[(2S)-1-[(tert-butoxy)carbonyl]pyrrolidin-2-yl]-

1,3-oxazole-4-carboxylate (10a) 

Dipeptide 9a (3.42 g, 10.8 mmol) was added to a 250 mL flask 

with stir bar and sealed under nitrogen, then DCM (120 mL) was 

added, and the solution was cooled to −20 °C. Deoxo-Fluor (2.12 mL, 

11.9 mmol) was added via syringe, and the reactions was stirred for 

45 min at −20 °C. The reaction was then quenched with saturated 

aqueous sodium bicarbonate (∼30 mL). The organic portion was dried 

with sodium sulfate, filtered, and concentrated and dried under high 

vacuum. The crude material was redissolved in DCM (120 mL) and 

cooled to 0 °C in an ice bath. Bromotrichloromethane (3.94 mL, 

40.0 mmol) was added via syringe, followed by DBU (5.16 mL, 

40.0 mmol), which was added dropwise over ∼5 min. The reaction was 

removed from the ice bath and allowed to warm to room temperature 

while stirring overnight. Water (100 mL) was added to the solution, 

then the mixture was extracted with EtOAc (×3) in a separatory 

funnel. The combined organics were dried with sodium sulfate, filtered, 

and concentrated to a dark brown oil. The crude was purified by flash 

chromatography (100 g SiO2 cartridge; 0–100% EtOAc/hexanes 

gradient) to yield the title compound (2.51 g, 78%) as a white foam. 

This compound has been previously reported and characterized (CAS# 

955401-52-2). 1H NMR (300 MHz, CDCl3) δ=1.22−1.46 (comp, 9 H), 

1.86−2.01 (m, 1 H), 2.03−2.20 (comp, 2 H), 2.24−2.45 (m, 1 H), 

3.44−3.68 (comp, 2 H), 3.84−3.98 (comp, 3 H), 4.89−5.07 (comp, 

1 H), 8.18 (s, 1 H). 

4.2.6. 2-[(2S)-1-[(tert-Butoxy)carbonyl]pyrrolidin-2-yl]-1,3-

oxazole-4-carboxylic acid (11a) 

Ester 10a (2.48 g, 8.37 mmol) was added to a 50 mL flask with 

stir bar along with THF (25 mL) and water (8 mL). LiOH (261 mg, 

17.6 mmol) was added and the flask was stirred for 24 h, after which 

time TLC analysis (10% MeOH/DCM) indicated that the reaction was 

complete. The reaction was diluted with DCM (∼75 mL) and water 

(∼75 mL), then the pH was adjusted to 4 with 2 M aq HCl. The layers 

were separated and the aqueous phase was re-extracted with DCM 

(2×50 mL). The combined organics were then dried with sodium 

sulfate, filtered, and concentrated to yield the title compound (1.23 g, 
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94%) as an off-white foam. This compound has been previously 

reported and characterized (CAS# 1511857-57-0). 1H NMR (300 MHz, 

CD3OD) δ=1.27 (rotamer 1); 1.44 (rotamer 2) (9 H), 1.90−2.16 

(comp, 3 H), 2.37 (m, 1 H), 3.49 (m, 1 H), 3.59 (m, 1 H), 4.94 (m, 

2H), 8.47 (s, 1 H). IR (thin film) 3435, 2978, 2537, 1685, 1585, 1406, 

1250, 1611, 1113, 982 cm−1. 

4.2.7. tert-Butyl (2S,4R)-4-(benzyloxy)-2-[(3-hydroxy-1-

methoxy-1-oxopropan-2-yl)carbamoyl] pyrrolidine-1-carboxylate 

(9b) 

Benzyloxy-proline 1b (5.20 g, 16.2 mmol), l-serine methyl ester 

8 (2.77 g, 17.8 mmol) and HOBt (3.72 g, 24.3 mmol) were added to 

flask with stir bar and dissolved in DCM (150 mL). DIPEA (6.93 mL, 

40.5 mmol) was then added by syringe, followed by EDC-HCl (4.65 g, 

24.3 mmol). The reaction was stirred at room temperature for 48 h, 

then the reaction was washed with water (∼125 mL), 1M HCl 

(∼125 mL), then saturated sodium bicarbonate (∼125 mL). The 

organic portion was dried with sodium sulfate, filtered, and 

concentrated to a white foam. The crude compound was dissolved in 

DCM (∼10 mL) and purified by flash chromatography (100 g SiO2 

cartridge; 0–10% MeOH/DCM gradient) to yield the title compound 

(6.45 g, 94%) as a white foam. [a]D
20 +75 (0.010, DCM); IR (thin 

film): 3421.0, 2976.9, 1746.3, 1668.8, 1525.8, 1392.9, 1206.3, 

1160.6, 1068.7, 909.5 cm−1; 1H NMR (400 MHz, CDCl3) δ ppm 1.47 (s, 

9 H) 2.25 (s, 1 H) 2.29 (d, J=5.9 Hz, 1 H) 3.24−3.49 (m, 1 H) 3.57 

(br, 1 H) 3.67 (br, 1 H) 3.78 (s, 2 H) 3.85 (br, 2 H) 4.12 (br, 2 H) 

4.18−4.28 (m, 1 H) 4.32 (t, J=7.4 Hz, 1 H) 4.45−4.57 (m, 2 H) 4.62 

(br, 1 H) 6.95−7.11 (m, 1 H) 7.21−7.40 (m, 5 H); 13C NMR (75 MHz, 

CDCl3) δ=21.3, 28.53, 35.1, 52.9, 55.6, 59.6, 62.3, 70.6, 71.3, 81.16, 

127.83, 127.92, 128.1, 128.6, 128.7, 137.8, 155.4, 171.0, 171.4, 

172.1; HRMS (ESI+) calcd for C21H30N2O7 [M+H] 423.2125, found 

423.2120. 
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4.2.8. Methyl 2-[(2S,4R)-4-(benzyloxy)-1-[(tert-

butoxy)carbonyl]pyrrolidin-2-yl]-1,3-oxazole-4-carboxylate 

(10b) 

Dipeptide 9b (3.13 g, 7.41 mmol) was added to a 250 mL flask 

with stir bar and sealed under nitrogen, then DCM (120 mL) was 

added, and the solution was cooled to −20 °C. Deoxo-Fluor (1.50 mL, 

8.18 mmol) was added via syringe, and the reactions was stirred for 

45 min at −20 °C. The reaction was then quenched with saturated 

aqueous sodium bicarbonate (∼30 mL). The organic portion was dried 

with sodium sulfate, filtered, and concentrated and dried under high 

vacuum. The crude material was dissolved in DCM (120 mL) and 

cooled to 0 °C in an ice bath. Bromotrichloromethane (3.94 mL, 

40.0 mmol) was added via syringe, followed by DBU (5.16 mL, 

40.0 mmol), which was added dropwise over∼5 min. The reaction was 

removed from the ice bath and allowed to warm to room temperature 

while stirring overnight. Water (100 mL) was added to the solution, 

then the mixture was extracted with EtOAc (×3). The combined 

organics were dried with sodium sulfate, filtered, and concentrated to 

a dark brown oil. The crude was purified by flash chromatography 

(100 g SiO2 cartridge; 0–100% EtOAc/hexanes gradient) to yield the 

title compound (1.37 g, 46%) as a colorless oil. [a]D
25 −81 (0.029, 

DCM); IR (thin film): 2976.5, 1744.3, 1697.7, 1583.7, 1393.2, 

1366.4, 1160.8, 1109.9, 1001.9 cm−1; 1H NMR (400 MHz, CDCl3) 

δ=1.21−1.35 (m, 6 H), 1.40−1.48 (m, 4 H), 2.22−2.39 (m, 1 H), 2.50 

(br, 1 H), 3.69 (dd, J=11.5, 4.5 Hz, 1 H), 3.88−3.95 (m, 3 H), 

4.20−4.32 (m, 1 H), 4.47−4.61 (m, 2 H), 5.03−5.17 (m, 1 H), 

7.28−7.41 (m, 3 H), 8.07−8.20 (m, 1 H); 13C NMR (75 MHz, CDCl3) 

δ=28.4, 28.6, 38.8, 53.9, 71.3, 76.0, 80.6, 127.9, 128.1, 128.8, 

143.6; HRMS (ESI+) calcd for C21H26N2O6 [M+H] 403.1860, found 

423.1864. 

4.2.9. 2-[(2S,4R)-4-(Benzyloxy)-1-[(tert-

butoxy)carbonyl]pyrrolidin-2-yl]-1,3-oxazole-4-carboxylic acid 

(11b) 

Ester 10b (1.68 g, 4.18 mmol) was added to a 50 mL flask with 

stir bar along with THF (25 mL) and water (8 mL). LiOH (210 mg, 

8.77 mmol) was added and the flask was stirred for 24 h, after which 
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time TLC analysis (10% MeOH/DCM) indicated that the reaction was 

complete. The reaction was diluted with DCM (∼75 mL) and water 

(∼75 mL), then the pH was adjusted to 4 with 2 M aq HCl. The layers 

were separated and the aqueous phase was re-extracted with DCM 

(2×50 mL). The combined organics were then dried with sodium 

sulfate, filtered, and concentrated to yield the title compound (1.61 g, 

90%) as an off-white foam. This compound was moved forward 

without further characterization. 

4.2.10. 2-[(2S,4R)-4-(Benzyloxy)pyrrolidin-2-yl]-1,3-oxazole-4-

carboxylic acid (12b) 

Carboxylic acid 11b (0.723 g, 1.85 mmol) was added to a 

50 mL flask with stir bar and dissolved in DCM (∼5 mL). 4M HCl in 

dioxane (4.62 mL, 18.5 mmol) was added and the flask was stirred for 

24 h. The resulting slurry was filtered through paper and rinsed with 

hexanes. The white solid was moved to a 25 mL flask, dissolved in 

water (∼5 mL), and 30% aqueous ammonium hydroxide (1 mL) was 

added and stirred for 5 min 2M HCl was then added until the pH was 

neutral. The solution was then extracted with DCM (3×10 mL), and the 

combined organics were concentrated to yield the title compound 

(0.41 g, 76%) as a colorless oil. [a]D
25 +77 (0.023, DCM); IR (thin 

film): 2931.1, 1583.0, 1495.6, 1453.9, 1384.9, 1249.3, 1215.4, 

1093.7, 1027.4, 907.9 cm−1; 1H NMR (300 MHz, CD3OD) δ=2.56 (ddd, 

J=14.2, 10.4, 4.4 Hz, 1 H), 2.81 (dd, J=14.1, 6.7 Hz, 1 H), 3.55−3.69 

(m, 2 H), 4.52−4.57 (m, 1 H), 4.57−4.69 (m, 2 H), 5.15 (dd, J=10.9, 

7.0 Hz, 1 H) 7.21−7.49 (m, 5 H), 8.64 (s, 1 H); 13C NMR (75 MHz, 

CD3OD) δ=35.2, 51.3, 54.0, 71.0 76.8, 127.8, 127.9, 128.4, 134.16, 

137.6, 159.4, 162.3; HRMS (ESI+) calcd for C15H16N2O4 [M+H] 

289.1183, found 289.1186. 

4.2.11. Methyl 2-[(1S)-1-{[(tert-butoxy)carbonyl]amino}-2-

methylpropyl]-1,3-oxazole-4-carboxylate (13) 

Dipeptide 12c (6.50 g, 20.5 mmol) was added to a 500 mL flask 

with stir bar and sealed under nitrogen, then DCM (200 mL) was 

added, and the solution was cooled to −20 °C. Deoxo-Fluor (4.14 mL, 

22.5 mmol) was added via syringe, and the reactions was stirred for 

45 min at −20 °C. The reaction was then quenched with saturated 

https://dx.doi.org/10.1016/j.tet.2016.05.014
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Tetrahedron, Vol 72, No. 27-28 (July 7, 2016): pg. 3905-3916. DOI. This article is © Elsevier and permission has been 
granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be 
further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

28 

 

aqueous sodium bicarbonate (∼70 mL). The organic portion was dried 

with sodium sulfate, filtered, concentrated, and dried under high 

vacuum. The crude material was redissolved in DCM (200 mL) and 

cooled to 0 °C in an ice bath. Bromotrichloromethane (7.44 mL, 

75.5 mmol) was added via syringe, followed by DBU (9.75 mL, 

75.5 mmol), which was added dropwise over∼5 min. The reaction was 

removed from the ice bath and allowed to warm to room temperature 

while stirring overnight. Water (200 mL) was added to the solution, 

then the mixture was extracted with EtOAc (×3). The combined 

organics were dried with sodium sulfate, filtered, and concentrated to 

a dark brown oil. The crude was purified by flash chromatography 

(100 g SiO2 cartridge; 0–100% EtOAc/hexanes gradient) to yield the 

title compound (6.09 g, 79%) as a white solid. This compound has 

been previously reported and characterized (CAS# 158068-97-4). 1H 

NMR (300 MHz, CDCl3) δ=0.87−0.98 (m, 6 H), 1.44 (s, 9 H), 

2.10−2.29 (m, 1 H), 3.92 (s, 3 H), 4.74−4.88 (m, 1 H), 5.28 (d, 

J=7.2 Hz, 1 H), 8.19 (s, 1 H). 

4.2.12. 2-[(1S)-1-{[(tert-Butoxy)carbonyl](methyl)amino}-2-

methylpropyl]-1,3-oxazole-4-carboxylic acid (14) 

Ester 13 (1.90 g, 6.13 mmol) was added to a 250 mL flask with 

stir bar along with THF (60 mL) and water (5.6 mL). LiOH (306 mg, 

12.3 mmol) was added and the flask was stirred for 24 h, after which 

time TLC analysis (10% MeOH/DCM) indicated that the reaction was 

complete. The reaction was diluted with DCM (∼75 mL) and water 

(∼50 mL), then the pH was adjusted to 4 with 2 M aq HCl. The layers 

were separated and the aqueous phase was re-extracted with DCM 

(2×50 mL). The combined organics were then dried with sodium 

sulfate, filtered, and concentrated to yield the title compound (1.76 g, 

97%) as a pale yellow solid. The compound was advanced without 

further purification. This compound has been previously reported and 

characterized (CAS# 220717-54-4). 1H NMR (300 MHz, CDCl3) δ=0.94 

(s, 6 H), 1.42 (s, 9 H), 1.86 (s, 1 H), 2.21 (s, 1 H), 3.76 (s, 1 H), 4.82 

(br, 1 H), 5.92 (br, 1 H), 8.29 (s, 1 H). 
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4.3. Representative procedure A (for valine-based 

secondary and tertiary amides) (Scheme 6) 

4.3.1. tert-Butyl N-[(1S)-2-methyl-1-{4-[(4-

methylphenyl)carbamoyl]-1,3-oxazol-2yl}propyl] carbamate 

(14a) 

Carboxylic acid 14 (0.505 g, 1.76 mmol) was dissolved in DCE 

(8 mL), and 4-methylaniline (0.191 g, 1.76 mmol) and PyBOP (1.10 g, 

2.11 mmol) were added to the solution. DIPEA (0.763 mL, 4.40 mmol) 

was added and the reaction was stirred for 3 h. The solution was 

diluted with DCM (∼20 mL). The reaction solution was washed with 2M 

HCl (25 mL), then half-saturated aqueous sodium bicarbonate 

(25 mL). The organic layer was then dried with sodium sulfate and 

concentrated. The crude was purified by flash chromatography (50 g 

SiO2 cartridge; 0–100% EtOAc/hexanes gradient) to yield the title 

compound as a colorless oil (0.510 g, 78%). [a]D
25 +77 (0.094, DCM); 

IR (thin film): 3322.9, 2969.9, 1676.5, 1600.8, 1520.6, 1456.3, 

1391.8, 1239.9, 1163.1, 1099.5 cm−1; 1H NMR (300 MHz, CDCl3) 

δ=0.97 (d, J=8.5 Hz, 3 H), 0.95 (d, J=8.2 Hz, 3 H), 1.47 (s, 9 H), 

2.11−2.28 (m, 1 H), 2.34 (s, 3 H), 3.82−3.89 (m, 1 H), 4.75−4.86, 

(m, 2 H) 5.16, (d, J=8.8 Hz, 1 H), 7.17 (d, J=8.2 Hz, 2 H), 7.42 (ddd, 

J=8.4, 7.1, 1.1 Hz, 1 H), 7.54−7.60 (m, 2 H), 7.66−7.74 (rotamer 1, 

dt J=8.4, 1.1 Hz, 0.5 H), 8.03 (rotamer 2, dt, J=8.4, 1.1 Hz, 0.5 H), 

8.22 (s, 1 H), 8.61 (s, 1 H); 13C NMR (75 MHz, CDCl3) δ=18.3, 18.9, 

21.2, 28.6, 32.9, 40.4, 54.6, 79.8, 108.9, 120.1, 120.5, 125.1, 128.6, 

129.8, 134.4, 135.0, 136.5, 141.6, 158.3; HRMS (ESI+) calcd for 

C20H27N3O4 [M+H] 374.2074, found 374.2074. 

 
Scheme 6. Synthesis of carboxamide precatalyst 20a. 
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4.3.2. 2-[(1S)-1-Amino-2-methylpropyl]-N-(4-methylphenyl)-

1,3-oxazole-4-carboxamide (20a) 

Carbamate 14a (0.72 g, 1.85 mmol) was added to a 50 mL 

flask with stir bar and dissolved in DCM (∼5 mL). 4M HCl in dioxane 

(4.62 mL, 18.5 mmol) was added and the flask was stirred for 24 h. 

The resulting slurry was filtered through paper and rinsed with 

hexanes. The white solid was moved to a 25 mL flask, dissolved in 

water (∼5 mL), and 30% aqueous ammonium hydroxide (1 mL) was 

added and stirred for 5 min 2M HCl was then added until the pH was 

neutral. The solution was then extracted with DCM (3×10 mL). The 

combined organics were concentrated to yield the title compound as 

an off-white solid (0.41 g, 76%). mp 140–144 °C. [a]D
25+134 (0.013, 

DCM); IR (thin film): 2958.9, 1657.9, 1598.4, 1520.4, 1466.1, 

1318.2, 1090.1, 914.6, 815.5 cm−1; 1H NMR (300 MHz, CDCl3) δ=0.97 

(dd, J=6.7, 4.10 Hz, 6 H), 1.72 (s, 2 H), 2.06−2.23 (m, 1 H), 2.33 (s, 

3 H), 3.59−3.80 (m, 1 H), 3.90 (d, J=5.9 Hz, 1 H), 7.17 (d, J=7.9 Hz, 

2 H), 7.54−7.61 (m, 2 H), 8.22 (s, 1 H), 8.66 (br, 1 H); 13C NMR 

(75 MHz, CDCl3) δ=18.0, 19.2, 21.1, 33.8, 56.1, 120.0, 129.8, 134.4, 

135.1, 136.4, 141.5, 158.6, 167.2; HRMS (ESI+) calcd for C15H19N3O2 

[M+H] 274.1550, found 274.1546. 

4.4. Representative procedure B (for primary amides) 

(Scheme 7) 

4.4.1. Methyl 2-[(1S)-1-{[(tert-butoxy)carbonyl]amino}-2-

methylpropyl]-1,3-oxazole-4-carboxylate (14b) 

7N Ammonia in methanol (6.0 mL, 42.2 mmol) was added to 

DCM (60 mL). Ester 14 (0.40 g, 1.40 mmol) was added to the 

ammonia solution and stirred for 16 h, after which time LC-MS analysis 

indicated that the reaction was complete. The reaction solution was 

then washed with water (3×25 mL), dried with sodium sulfate, and 

concentrated. The crude oil was purified by flash chromatography 

(50 g SiO2 cartridge; 0–10% MeOH/DCM gradient) to yield the title 

compound (0.48 g, 86%) as a colorless oil. This compound was moved 

forward without further characterization. 
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Scheme 7. Synthesis of carboxamide precatalyst 20e. 

4.4.2. 2-[(1S)-1-Amino-2-methylpropyl]-1,3-oxazole-4-

carboxamide (20e) 

Carbamate 14b (0.33 g, 1.15 mmol) was added to a 25 mL 

flask with stir bar and dissolved in DCM (5 mL). 4M HCl in dioxane 

(1.44 mL, 5.77 mmol) was added and the reaction was stirred for 

24 h. The solvent was evaporated by blowing nitrogen gas through the 

flask, then the crude solid was dissolved in water (∼5 mL), and 30% 

aqueous ammonium hydroxide (0.20 mL) was added and stirred for 

5 min 2M HCl was then added until the pH was neutral. The mixture 

was then extracted with DCM (3×10 mL). The combined organics were 

concentrated to yield the title compound as an off-white solid (0.21 g, 

97%). mp 240–245 °C; [a]D
25 −18 (0.012, DCM); IR (thin film): 

3101.5, 2959.6, 1654.4, 1616.1, 1411.5, 1317.1, 1109.2, 987.9, 

921.5, 864.9 cm−1; 1H NMR (300 MHz, CDCl3) δ=0.95 (dd, J=6.9, 

4.25 Hz, 6 H), 1.63 (s, 3 H), 2.04−2.21 (m, 1 H), 3.87 (d, J=5.9 Hz, 

1 H), 5.62 (br, 1 H), 6.82 (br, 1 H), 8.17 (s, 1 H); 13C NMR (75 MHz, 

CDCl3) δ=18.0, 19.2, 33.7, 56.0, 135.6, 141.6, 162.8, 167.3; HRMS 

(ESI+) calcd for C8H13N3O2 [M+H] 184.1081, found 184.1086. 

4.5. Representative procedure C (for proline-based 

secondary and tertiary amides) (Scheme 8) 

4.5.1. tert-Butyl (S)-2-(4-(p-tolylcarbamoyl)oxazol-2-

yl)pyrrolidine-1-carboxylate (11c) 

Acid 11a (600 mg, 2.13 mmol) was added to a 20 mL reaction 

vial, followed by HOBt (586 mg, 3.83 mmol) 4-methylaniline (273 mg, 

2.55 mmol), DCM (15 mL), and DIEA (1.09 mL, 6.37 mmol). EDC-HCl 

(733.4 mg, 3.83 mmol) was then added to the vial and the mixture 

was stirred at room temperature for 16 h. The reaction was diluted 

with DCM (30 mL) and washed with 0.1 N HCl (50 mL), saturated 

sodium bicarbonate (50 mL), and brine (30 mL). The organic layer was 
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then dried over sodium sulfate and concentrated, and the crude 

material was purified by chromatography (SiO2, 0–60% 

EtOAc/hexanes) to give the title compound as a white solid (789 mg, 

83%). mp=125–130 °C; Rf (50% EtOAc/hexanes) 0.60; [a]D
25 -62 

(1.0, DCM); IR (thin film): 3360, 2975, 1686, 1599, 1512, 1364, 

1101, 876, 666 cm−1; 1H NMR (300 MHz, CDCl3) δ=1.30 (s, 6H), 1.46 

(s, 3H), 1.88–2.02 (m, 1H), 2.04–2.18 (m, 2H), 2.34 (s, 4H), 3.22–

3.8 (m, 2H), 4.85–5.07 (m, 1H), 7.18 (d, J=7.8 Hz, 2H), 7.57 (d, 

J=8.2 Hz, 2H), 8.19 (s, 1H),8.62 (s, 1H); 13C NMR (75 MHz, CDCl3) 

δ=20.9, 23.6, 28.2, 28.4, 32.4, 46.4, 54.7, 80.1, 119.8, 129.5, 134.2, 

134.8, 136.4, 140.9, 141.3, 158.2, 165.4; HRMS (ESI+) calcd for 

C20H25N3O4 [M+Na] 394.1737, found 394.1732. 

 
Scheme 8. Synthesis of carboxamide precatalyst 18c. 

4.5.2. (S)-2-(Pyrrolidin-2-yl)-N-(p-tolyl)oxazole-4-carboxamide 

(18c) 

Carbamate 11c (555 mg, 1.50 mmol) was added to a 50 mL 

round bottom flask, followed by DCM (20 mL). 4 M HCl in dioxane 

(9.30 mL) was added, and the reaction was stirred for 3 h. The 

reaction was diluted with DCM (50 mL) and washed with satd aq 

NaHCO3 (300 mL). The phases were separated, and the aqueous phase 

was extracted with DCM (3×50 mL). The combined organics were 

dried over Na2SO4, concentrated to a crude oil, and purified by flash 

chromatography (SiO2, 0–20% MeOH/DCM) to give the deprotected 

amine as a yellow solid (260 mg, 64%). mp=65–70 °C; Rf (10% 

MeOH/DCM) 0.29; [a]D
20 −15 (1.0, MeOH); IR (thin film): 3360, 2974, 

1686, 1662, 1512, 1101, 816 cm−1; 1H NMR (300 MHz, CDCl3) 

δ=1.83–2.01 (m, 2H), 2.09 (ddt, J=12.3, 7.7, 6.2 Hz, 1H), 2.19–2.32 

(m, 2H), 2.34 (s, 3H), 3.07 (ddd, J=10.2, 7.5, 6.2 Hz, 1H), 3.19 (ddd, 

J=10.0, 7.2, 6.0 Hz, 1H), 4.40 (dd, J=8.0, 5.9 Hz, 1H), 7.17 (d, 

J=8.3 Hz, 2H), 7.57 (d, J=8.4 Hz, 2H), 8.21 (s, 1H), 8.64 (s, 1H); 13C 

NMR (75 MHz, CDCl3) δ=21.2, 25.6, 31.2, 47.2, 55.6, 120.1, 129.8, 
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134.4, 135.1, 136.5, 141.8, 158.6, 166.8; HRMS (ESI+) calcd for 

C15H17N3O2 [M+H] 272.1394, found 272.1399. 

4.6. Representative procedure D (synthesis of 

imidazole–phenols from azido-ketone 24) 

4.6.1. 1-(2-(Benzyloxy)phenyl)-2-bromoethan-1-one (22) 

O-hydroxyacetophenone (5.00 g, 36.7 mmol) 21 was added to 

an oven-dried flask with a magnetic stir bar and sealed under nitrogen. 

Anhydrous DMF (15 mL) was added via syringe followed by sodium 

hydride (60% dispersion in paraffin oil, 1.62 g, 40.4 mmol). The 

mixture was stirred at room temperature under nitrogen for 15 min 

before benzyl bromide (5.05 mL, 40.4 mmol) was added dropwise via 

syringe. The reaction was left to stir under nitrogen for 16 h. The 

reaction mixture was added to TBME (300 mL) and washed with 

saturated ammonium chloride (2×75 mL), followed by water (150 mL) 

and brine (150 mL). The organic layer was then dried over sodium 

sulfate and concentrated to yield a pale yellow oil. The oil was purified 

by flash chromatography (SiO2, 5% TBME in hexanes) to afford the 

title compound as a colorless oil (7.41 g, 89%). This compound has 

been previously reported and characterized (CAS# 31165-67-0). 1H 

NMR (300 MHz, CDCl3) δ=2.62 (s, 3H), 5.17 (s, 2H), 6.91–7.84 (m, 

9H). 

4.6.2. 1-[2-(Benzyloxy)phenyl]-2-bromoethan-1-one (23) 

Ketone 22 (7.40 g, 32.7 mmol) was placed in a 25 mL flask 

followed by PTSA (622 mg, 3.27 mmol) and NBS (6.40 g, 35.9 mmol) 

and the resulting slurry was stirred at room temperature for 16 h. The 

reaction mixture was diluted with MTBE (500 mL) and washed with 

water (2×400 mL) and brine (400 mL). The organic layer was then 

dried over sodium sulfate, filtered, and concentrated to yield a yellow 

oil. The oil was purified by flash chromatography (SiO2, 5% EtOAc in 

hexanes), and the resulting yellow oil was recrystallized from hot 

ethanol to afford the title compound as an off-white solid (8.18 g, 

82%). This compound has been previously reported and characterized 

(CAS# 56443-24-4). 1H NMR (300 MHz, CDCl3) δ 4.54 (s, 2H), 5.19 (s, 

2H), 6.93–7.14 (m, 2H), 7.31–7.57 (m, 6H), 7.75–7.9 (m, 1H). 
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4.6.3. 2-(2-(Benzyloxy)phenyl)-2-oxoethan-1-aminium chloride 

(24) 

Bromoketone 23 (7.40 g, 24.25 mmol) was added to a 100 mL 

round bottom flask with a magnetic stir bar. Anhydrous DMF (40 mL) 

was added via syringe followed by sodium azide (3.15 g, 48.5 mmol). 

The flask was fitted with a septum and flushed with nitrogen. The 

reaction was stirred at room temperature for 5 h, after which time the 

mixture was diluted with EtOAc (350 mL) and washed with water 

(3×150 mL) and brine (150 mL). The organic layer was then dried 

over sodium sulfate, filtered, and concentrated to afford an orange oil. 

The orange oil was dissolved with a 50:50 mixture of DCM and 

hexanes and purified by flash chromatography (SiO2, 5–25% EtOAc in 

hexanes) to give title compound as a pale yellow oil (3.93 g, 60%). Rf 

(10% EtOAc in hexanes) 0.20; IR (thin film): 2101, 1678, 1596, 1483, 

1449, 1290, 1234, 1197, 1163, 1007, 911, 757 cm−1; 1H NMR 

(300 MHz, CDCl3) δ=4.44 (s, 2H), 5.16 (s, 2H), 7–7.15 (m, 2H), 7.3–

7.46 (m, 4H), 7.46–7.58 (m, 1H), 7.93 (dd, J=8.0, 1.9 Hz, 1H); 13C 

NMR (75 MHz, CDCl3) δ=59.7, 71.2, 113.0, 121.6, 125.1, 128.0, 

128.9, 129.1, 131.4, 135.2, 135.7, 158.7, 194.6; HRMS (ESI+) calcd 

for C15H13N3O2 [M+H] 290.0900, found 290.0905. 

4.6.4. (S)-2-(2-(1-Amino-2-phenylethyl)-1H-imidazol-4-

yl)phenol (28b) 

Azide 24 (62.3 mg, 0.233 mmol) was dissolved in MeOH (5 mL) 

in a 20 mL vial. Concentrated aqueous HCl (37%–12N) (39 μL, 

0.47 mmol) was then added, followed by diphenyl sulfide (0.39 μL, 

0.0019 mmol). The flask was flushed with nitrogen, then 10% Pd/C 

(12.5 mg) was added. The flask was sealed with a septum and a 

balloon of hydrogen was placed on the flask. 1 balloon was allowed to 

bubble through the solution to displace the nitrogen, then the balloon 

was refilled and the reaction was stirred under hydrogen for 3 h. The 

mixture was passed through a cake of Celite to remove the Pd/C 

catalyst and concentrated to afford an off-white solid. This crude 

product was used directly in the next step without further purification. 

The crude aminoketone 25 was dissolved in DCM (5 mL) in a 

20 mL vial, of Boc-protected amino acid (0.233 mmol), and HOBt 
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(53.5 mg, 0.350 mmol) were added. DIEA (79 uL, 0.466 mmol) was 

added via syringe. EDC-HCl (67.0 mg, 0.350 mmol) was then added 

and the flask was stirred at room temperature overnight. The reaction 

with DCM (10 mL) and washed with 0.25 N HCl (25 mL), saturated 

sodium bicarbonate (10 mL), and brine (10 mL). The organic layer was 

then dried over sodium sulfate and concentrated to yield a yellow oil. 

The crude oil was dissolved in DCM and passed through a 5″ Pasteur 

pipet packed with silica gel, then eluted with EtOAc. The organic phase 

was then concentrated to give the crude amide 26 as a colorless oil, 

which was used directly in the next step. 

The crude amide 26 was dissolved in xylenes (5 mL) in a 20 mL 

vial. Ammonium acetate (449 mg, 5.83 mmol) was added and the vial 

was fitted with a drying tube. The reaction was heated at 135 °C for 

16 h, after which time TLC showed complete consumption of the 

starting material. The reaction was concentrated, taken up in EtOAc, 

and passed through a 5″ Pasteur pipet packed with silica gel, eluting 

with EtOAc. The resulting solution was concentrated to give the crude 

imidazole 27 as a brown oil, which was used directly in the next step. 

The crude oil 27 (2.00 g) was dissolved in MeOH (20 mL) in a 

50 mL round bottom Schlenk flask. The flask was purged with N2×3, 

then 10% Pd/C (24.8 mg) was added. The flask was then fitted with a 

hydrogen balloon via a 3 way valve and it was evacuated and purged 

with hydrogen ×5. The reaction was stirred under hydrogen for 16 h, 

then the mixture was passed through a pad of Celite and concentrated 

to afford a yellow oil. The crude oil was is dissolved in DCM (20 mL) 

and transferred to a 20 mL vial, and 4M HCl in dioxane (291 μL, 

1.16 mmol) was added and the reaction was stirred for 16 h. The 

reaction was quenched by adding saturated NaHCO3 solution (10 mL), 

then the phases were separated and the aqueous phase was extracted 

with EtOAc (10 mL). The combined organics were dried over Na2SO4 

and concentrated to give a brown oil, which was purified by flash 

chromatography (SiO2, 10–20% MeOH/DCM) to give the title 

compound 28b (65 mg, 48%) over 4 steps. Rf (10% MeOH in DCM) 

0.29; [a]D
20 −52 (1.0, CH2Cl2); IR (thin film): 3407, 1641, 1251, 1113, 

751 cm−1; 1H NMR (300 MHz, CDCl3) δ=1.70 (s, 2H), 2.91 (dd, 

J=13.7, 8.7 Hz, 1H), 3.38 (dd, J=13.7, 4.5 Hz, 1H), 4.37 (dd, J=8.6, 

4.5 Hz, 1H), 6.84 (td, J=7.5, 1.3 Hz, 1H), 6.99 (dd, J=8.2, 1.3 Hz, 

1H), 7.09–7.37 (m, 7H), 7.46 (dd, J=7.7, 1.7 Hz, 1H), 9.68 (s, 1H); 
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13C NMR (75 MHz, CDCl3) δ=43.8, 51.3, 109.9, 117.4, 117.4, 119.3, 

124.8, 127.1, 128.4, 128.9, 129.6, 137.5, 140.7, 149.2, 156.0; HRMS 

(ESI+) calcd for C17H17N3O [M+H] 280.1444, found 280.1440. 

4.7. Crystallographic data 

CCDC 1463770 contains the supplementary crystallographic 

data for Fig. 2 in this paper. These data can be obtained free of charge 

from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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Teresa Yeung: Synthesized precatalyst intermediates. 
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Sergey Lindeman: Determined x-ray structure. 

Chris Dockendorff: Designed catalysts; designed synthetic routes; analyzed data; designed 
experiments; wrote and edited the manuscript and supporting information; supervised research. 

 

2. General reaction screening protocol 

 

Stock solutions of precatalyst (0.02 M), benzaldehyde acceptor (0.40 M), and aldehyde or 
ketone donor (0.80 M) were prepared. All precatalysts were used as free bases (or zwitterions) 
by neutralizing HCl salts with aqueous ammonium hydroxide and extracting with DCM prior to 
use. 

1) Metal salts (0.01 mmol) were weighed into separate 1.5 mL HPLC vials. 

2) If solid additives were included, they were added to the vials at this time. 

3) Precatalyst solutions (500 µL of 0.02 M stock solution, 0.01 mmol) were added to each vial. 

4) If additive solutions were included, they were added to the vials next. 

5) Aldehyde acceptor solution (250 µL of 0.40 M solution, 0.1 mmol), was added to each vial. 

6) Aldehyde or ketone donor (250 µL of 0.80 M solution, 0.2 mmol) was added to each vial.  

 After addition of all reagents, the vials were capped (PTFE septa) and placed in a cardboard 
vial box attached to a vortex shaker. Vials were shaken for 24 hours on the lowest speed to avoid 
leakage from the vials. 9 mL glass test tubes were labeled to correspond to each of the reaction 
vials and sodium borohydride (~75 mg, 2 mmol, 20 eq.) was added to each tube and cooled on 
ice. 4:1 DCM:MeOH (1 mL) was added, then the reaction solutions were pipeted dropwise (over 
~30 s) to the test tubes. The tubes were removed the ice bath and warmed to room temperature 
over thirty minutes, with periodic mixing. Saturated aqueous ammonium chloride solution (1 
mL) was then added via pipet dropwise (~ 1 min.) to each tube to quench the reduction reaction, 
followed by 1 M aqueous HCl (1 mL) added via pipet dropwise (~1 min.) to further neutralize 
the solutions and to help dissolve solid precipitates. DCM (~1 mL) was added to each tube to 
resolve the phases. The organic phases were separated to fresh 9 mL tubes, then the remaining 
solutions were extracted with additional DCM (2 x 2 mL). The combined organic solutions were 
concentrated via Speedvac (initially at 400 torr with low heating, then 25 torr). A stock solution 

O

NO2

H

O

H

10 mol% Precatalyst
10 mol% Lewis acid

solvent (1 mL)
reductive workup
(NaBH4 in MeOH)

OH OH

NO2

+

0.2 mmol 0.1 mmol
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of LC-MS grade isopropanol with 5 mg/mL of o-dichlorobenzene as an internal standard was 
made. Each crude sample was dissolved in 1 mL of this stock solution and filtered through a 0.22 
micron nylon syringe filter into a 1.5 mL HPLC vial. The samples were analyzed by HPLC using 
5 uL injections and 13:87 IPA:hexane isocratic method (1 mL/min.) for 20 min., with a 
Phenomenex Lux 5 µm Cellulose-2 column (250 x 4.6 mm) and UV detection at λ = 254 nm. 
Representative retention times: 3.3 min: o-dichlorobenzene; 9.3 min: benzyl alcohol; 10.7 min., 
syn enantiomer 1; 12.0 min., syn enantiomer 2; 14.5 min., anti enantiomer 1; 15.6 min., anti 
enantiomer 2. 

 
3. Synthetic protocols for the preparation of precatalysts 29 and 30 

 
 (S)-2-(2-(pyrrolidin-2-yl)-1H-imidazol-4-yl)phenol (29b) 

    The compound was made following Representative Procedure D (see main manuscript) using 
N-Boc-L-proline as starting material: beige solid, Rf (10% MeOH in DCM) 0.21; [a]D

20 -123 
(1.0, CH2Cl2); IR (thin film): 2870, 1578, 1476, 1398, 1252, 756 cm-1; 1H NMR (300 MHz, 
CDCl3) δ = 1.7–1.9 (m, 2H), 1.98–2.32 (m, 2H), 2.83–3.15 (m, 2H), 4.41 (dd, J = 8.0, 5.5 Hz, 
1H), 6.73–6.87 (m, 1H), 6.88–7.01 (m, 1H), 7.06–7.17 (m, 1H), 7.19 (d, J = 0.5 Hz, 1H), 7.35–
7.5 (m, 1H); 13C NMR (75 MHz, CDCl3) δ = 25.9, 28.7, 32.1, 47.0, 55.8, 109.8, 117.4, 119.2, 
124.7, 124.7, 128.3, 141.0, 149.3, 156.0; HRMS (ESI+) calculated for C13H15N3O	 [M+H] 
230.1288, found 230.1281. 

 (S)-2-(2-(1-(methylamino)-2-phenylethyl)-1H-imidazol-4-yl)phenol (30) 

    The compound was made following Representative Procedure D (see main manuscript) using 
N-methyl-N-Boc-L-phenylalanine as starting material: yellow solid, Rf (10% MeOH in DCM) 
0.42; [a]D

20 -7 (1.0, CH2Cl2); IR (thin film): 3118, 1585, 1479, 1412, 1244, 1126, 735 cm-1; 1H 
NMR (400 MHz, CDCl3) δ = 2.33 (t, J = 1.5 Hz, 3H), 2.97 (dd, J = 13.9, 8.4 Hz, 1H), 3.23 (dd, 
J = 13.9, 4.8 Hz, 1H), 3.88–4.22 (m, 1H), 6.84 (td, J = 7.5, 1.7 Hz, 1H), 6.99 (dd, J = 8.4, 1.8 

N
H

Ph

N

H
N

HO

Me

N
H N

H
N

HO

30

29

O
N3

24

OBn

Represenative 
Procedure D

N-Boc-proline

N-Methyl-N-Boc-
phenylalanine
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Hz, 1H), 7.14 (d, J = 7.1 Hz, 3H), 7.2–7.38 (m, 5H), 7.46 (dd, J = 7.9, 1.8 Hz, 1H), 9.53 (s, 1H); 
13C NMR (75 MHz, CDCl3) δ = 34.8, 41.5, 60.1, 110.0, 117.3, 117.5, 119.2, 124.7, 127.2, 128.4, 
129.0, 129.4, 137.3, 140.9, 148.2, 156.1; HRMS (ESI+) calculated for C18H19N3O	 [M+H] 
294.1601, found 294.1605. 
 
 
4. MS study of 18c–Zn(OTf)2 
 
 Zn(OTf)2 (2.0 mg, 0.006 mmol) and 18c (0.006 mmol) were added to a 4.0 mL vial then 
dissolved in CH3CN (1.0 mL). The solids were dissolved and the mixtures sat for 1 h before 
being analyzed by mass spectrometry. Samples were made by adding an aliquot of ligand-metal 
mixture to LC-MS grade methanol (approximately 1 mL). The samples were directly injected 
into the mass spectrometer (Shimadzu 2020 single quadrupole) using methanol as the mobile 
phase. The mass range analyzed was 100-1300 m/z and the interface voltage was set to 4.5 kV. 
Dual ESI and APCI ionization modes were used (positive mode). 
  

18c	+	Zn(OTf)2	

	

	

	

  

L+H

L2Zn2+Na

L2Zn(OTf)
+ L2Zn(OTf) 2

+
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5. NMR spectra 
	

arb-orc-5-1

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

2.950.819.413.071.603.113.001.402.110.950.95

7.
82

7.
80

5.
01

4.
97

4.
27

4.
13

4.
03

4.
00

3.
62

3.
33

3.
27

3.
25

2.
49

2.
12

1.
98

1.
85

1.
75

1.
38

1.
32

1.
16

1.
07

1.
05

N

O

NHBoc

CO2Me

OH

arb-orc-7-1

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

6.583.401.142.331.123.002.123.080.91

7.
27

4.
96 4.
88 4.
86

4.
85

4.
13

4.
11

3.
91

3.
88

3.
61

3.
59

3.
57 3.
55

3.
53

2.
60

2.
15 2.
13 2.

05
1.

95 1.
94

1.
92

1.
45

1.
30

1.
26

1.
24

0.
00

N

Boc N

O

CO2Me

	



		 6	

arb-orc-8-1
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WYB-orc-085-4-methylalanine-1
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WYB-ORC-087-2-H

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

2.221.432.833.671.161.161.132.302.461.060.99

8.
64

8.
21

7.
58 7.

55
7.

27
7.

18
7.

15

4.
42 4.

40
4.

40
4.

38
3.

77 3.
21 3.
19

3.
18 3.

17
3.

15 3.
09

3.
07

3.
06

2.
34

2.
30

2.
24

2.
22

2.
09 1.
95

1.
92

1.
90

0.
00

NH

N

O

NH

O

WYB-ORC-087-2-C

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

16
6.

78

15
8.

57

14
1.

78
13

5.
10

13
4.

37
12

9.
79

12
0.

09

77
.7

0
77

.2
8

76
.8

6

55
.6

1

47
.1

6 31
.2

0
25

.6
5

21
.1

8



		 19	

arb-orc-115-2

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

3.002.202.085.730.91

7.
78

7.
76 7.
47

7.
44

7.
41

7.
39

7.
36

7.
05 7.

02
6.

99

5.
17

2.
62

O OBn

	

	

arb-orc-116-2

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

2.002.512.586.701.06

7.
44

7.
42

5.
19

4.
54

O

Br

OBn

	

	

	



		 20	

WYB-ORC-137-1H
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