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ABSTRACT 

THEORETICAL STUDY OF OZONE FORMING RECOMBINATION REACTION 

AND ANOMALOUS ISOTOPE EFFECT ASSOCIATED WITH IT 

 

 

Alexander Teplukhin, M.S. 

 

Marquette University, 2017 

 

 

The ozone forming recombination reaction stands out among many chemical 

processes that take place in the atmosphere. This reaction is responsible for the 

reconstruction of ozone layer, which protects life on Earth from harmful ultra-violate 

radiation and is a source of so-called anomalous isotope effect in ozone. The reaction was 

intensively studied, but at a very basic level. There were only couple of papers where the 

recombination rate coefficient was computed and found to roughly agree with the 

experimental data. 

In this dissertation, the recombination process in ozone is approached using new 

and efficient method, which includes several modern techniques. The rovibrational 

scattering resonances of O3 are characterized by solving three-dimensional time-

independent Schrödinger equation in symmetric-top approximation. The widths (or 

lifetimes) of scattering resonances are computed using complex absorbing potential. The 

high efficiency is achieved by using convenient vibrational coordinates, optimal grid for 

dissociative coordinate and construction of small Hamiltonian matrix in locally optimal 

basis. The symmetry of the problem is also utilized by implementing a symmetry-adapted 

basis for one of vibrational coordinates. Stabilization of scattering resonances is described 

approximately, using mixed quantum/classical theory, for which an efficient frozen rotor 

approximation is developed. 

The rate coefficient of ozone recombination, predicted here for unsubstituted 

ozone, 48O3, as well as its pressure and temperature dependencies, agrees very well with 

experimental data. The isotope effects, one related to zero-point energy and another to 

symmetry, are studied for a limited number of rotational excitations and for two 

isotopologues 50O3 and 52O3 (singly and doubly substituted with 18O). Both effects were 

found to be in the right direction and of right order of magnitude. The width of scattering 

resonances control these isotope effects. The approach is universal and can be applied to 

any other similar system, for example, S3. 
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Chapter 1. Introduction 

1.1. Motivation to study ozone 

Ozone (O3) is one of the most important species in Earth’s atmosphere. Perhaps, 

the most well-known global problem related to ozone is a depletion of ozone layer in the 

stratosphere (upper atmosphere). This layer absorbs ultra-violet (UV) radiation from the 

Sun, which in large amount could damage life on Earth. The scientists at NASA and 

around the world are closely monitoring the evolution of ozone holes in this layer with 

the help of satellites.  The negative consequences for people include skin cancer, 

cataracts and reduction of immune system response.1,2 As for Earth’s flora and fauna, it 

could have even more complex and implicit impacts. For example, negatively affecting 

the oceanic plankton, the ozone depletion damages the ocean food chains and the carbon 

cycle.3,4 

Another major problem with ozone is that O3 is a dangerous pollutant in the 

troposphere (lower atmosphere). It forms in a smog from volatile organic compounds 

(VOCs) and is a problem for many industrial cities and cities close to the areas of 

possible wildfires. As a consequence, the ozone triggers asthma, irritates lungs and could 

exacerbate lung disease, like pneumonia and bronchitis. Besides, ozone may cause a crop 

damage and contributes to greenhouse effect, indirectly affecting Earth’s temperature. 

Thus, for quite a long time ozone has been worrying humanity with these two 

major problems, one in the upper atmosphere and another in the lower atmosphere, both 

requiring study and identifying the ways to resolve these problems.  
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In addition, there is one more reason to study ozone. An ozone molecule can be 

composed of different oxygen isotopes. The oxygen isotope fractionation has many 

applications in geo- and cosmochemistry, paleoclimatology, hydrology, and atmospheric 

chemistry. These applications include identification of chemical compounds, studying 

food webs in aquatic ecosystems, reconstruction of climate change and even extending 

our knowledge about solar system origin and its evolution. In 1981 the group of 

Mauersberger5 discovered in a balloon flight measurement the phenomenon generally 

known as “anomalous isotope effect for ozone formation”, which will be discussed 

further. The current work continues the theoretical investigation of this phenomenon and, 

hopefully, will complete the full picture of anomalous isotope effect in ozone formation. 

1.2. Anomalous isotope effect in ozone formation  

The oxygen atom has three stable isotopes: 16O, 17O, and 18O. The oxygen 

molecule (two oxygen atoms) mostly includes 16O, because this isotope is dominant in 

atmosphere. As the magnitude of isotope mass ratio differs just a little, the isotope ratio 

has been measured relative to a standard in the following way: 

18 18 16 18 16

sample standardO(per mil) [( O / O) / ( O / O) 1] 1,000     

Here the standard is, by convention, the standard mean ocean water (SMOW). Figures 

1.1 and 1.2 show the fractionation of 17O and 18O in ozone, taken from the three most 

recent reviews.6–8 A normal, expected for thermodynamic or kinetic processes, mass-

dependent isotope fractionation δ17O ≈ 0.5δ18O has been found in any terrestrial source, 

like water, rocks and air (see Figure 1.1).  
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Figure 1.1. The 17O and 18O fractionation plot taken from different sources. All the terrestrial sources lie 

along mass-dependent fractionation line with the slope of 0.5. However, the isotope enrichments found in 

meteoritic sources and in stratospheric ozone draw up along mass-independent fractionation line with the 

slope of 1.0.7 

Surprisingly, the ozone molecules in the stratosphere are heavily enriched in 17O 

and 18O, with respect to molecular oxygen,5 (the arrow at the up-right corner of Figure 

1.1). In addition to this already intriguing fact, the enrichments in 17O and 18O appeared 

to be nearly equal, as was shown in laboratory experiments of Thiemens and 

Heidenreich9 in 1983. This phenomenon is called a mass-independent fractionation (MIF) 

of ozone.  Initially, the anomalous isotope distribution δ17O ≈ δ18O has been found in 

meteorites, for example, in Allende meteorite, before Mauersberger has identified it in 

stratospheric ozone.5 In fact, this inspired Thiemens to run laboratory experiments, where 
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he obtained enormously enriched ozone from molecular oxygen. On the Figure 1.2, it is 

clearly seen that both formed ozone and residual O2 in the reservoir follow the anomalous 

δ17O ≈ δ18O trend. This work proved that anomalous isotope effect in ozone comes from 

a chemical process, rather than nuclear reactions, as was thought previously.  

 

Figure 1.2. The oxygen isotope composition of ozone produced from molecular oxygen starting at (0, 0). 

The product ozone is equally 17O- and 18O-enriched, whereas the residual O2 is by material balance, 

identically depleted.8 

Interestingly, MIF takes place not only in ozone, but also in sulfur compounds.7,10 

Because the sulfur has four stable isotopes 32S, 33S, 34S and 36S, the fractionation plot 

becomes three-dimensional, δ33S vs. δ34S vs. δ36S (see Figure 1.3). The sulfur 

fractionations measured in Archean sulfide follows a MIF trend, as seen by deviation of 

points from the mass-dependent line.  
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Figure 1.3. Anomalous sulfur fractionation in Archean sulfide (cubes). MDL is the mass-dependent line 

defined by δ33S = 0.515 δ34S and δ36S = 1.90 δ34S.10 Deviation of points from MDL is caused by MIF. 

After Thiemens experiment9 in 1983, it took about seven years for scientist to 

identify the reaction responsible for isotope selectivity in ozone chemistry. In 1990, the 

group of Mauersberger11 experimentally showed that the ozone formation reaction is 

responsible for the discussed phenomena:  

 O2 + O + M → O3 + M* (1.1)  

Here an oxygen molecule O2 recombines with oxygen atom (previously formed from 

another O2 molecule broken by ultraviolet light) in a bath gas of atoms or molecules M 

(e.g. N2, Ar). It was emphasized by many authors that in the low pressure regime 

(atmospheric pressure) the process (1.1) occurs in two consequent steps:  
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 O2 + O → O3
* (1.2)  

 O3
* + M → O3 + M* (1.3)  

The first step is a formation of ozone molecule excited both rotationally and 

vibrationally. The second step is an energy transfer (ET) process, where the energy is 

transferred from excited zone molecule to the third body M (the quencher) that takes 

energy away.  

The identity of M does not affect the isotope effect.12,13 Figure 1.4 demonstrates 

that the absolute rate coefficient does depend on identity of the bath gas M, and the rate is 

higher for molecular quenchers. However, the relative rate coefficient does not. Both 

experimental groups continued regularly and concurrently reporting their progress in 

studying ozone formation, trying to measure in experiment the rates of different isotope 

combinations.14,15  

In the reaction (1.1) any oxygen atom can be one of three stable isotopes 16O, 17O, 

and 18O. This results in 36 different reactions. The most extensive experimental study of 

these reactions has been done by Janssen16–19 in the Mauersberger group. Table 1.1 lists 

the measured rates of these reactions relative to the rate of 16O + 16O16O → 16O16O16O. 

From this table it becomes clear that the rates somehow depend on isotope combinations. 

Though differences in masses are quite small, the rates difference could reach 60%. 
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Figure 1.4. (a) Rate coefficient dependency on third body M, relative to N2/O2. (b) Rates coefficient ratios, 
18O16O16O are measured relative to 18O18O18O and for 16O18O18O relative to 16O16O16O. 
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Table 1.1. Measured rates for different isotope combinations, relative to the rate of 16O + 16O16O → 
16O16O16O. Obtained at 267 hPa and room temperature.16 

Mass Reaction channel no. Reaction Relative rate coefficient 

48 1 16O + 16O16O → 16O16O16O 1.00 

49 2 16O + 16O17O → 16O16O17O 
 

 
3 → 16O17O16O 

 

 
4 17O + 16O16O → 17O16O16O 1.03 

 
5 → 16O17O16O 

 

50 6 16O + 17O17O → 16O17O17O 1.23 
 

7 → 17O16O17O 
 

 
8 17O + 16O17O → 17O16O17O 

 

 
9 → 17O17O16O 

 

 
10 16O + 16O18O → 16O16O18O 1.45 

 
11 → 16O18O16O 1.08 

 
12 18O + 16O16O → 18O16O16O 0.92 

 
13 → 16O18O16O 0.006 

51 14 17O + 17O17O → 17O17O17O 1.02 
 

15 16O + 17O18O → 16O17O18O 
 

 
16 → 16O18O17O 

 

 
17 → 17O16O18O 

 

 
18 to 23 six similar reactions 

 

52 24 16O + 18O18O → 16O18O18O 1.50 
 

25 → 18O16O18O 0.029 
 

26 18O + 16O18O → 18O16O18O 1.04 
 

27 → 18O18O16O 0.92 
 

28 17O + 17O18O → 17O17O18O 
 

 
29 → 18O17O18O 

 

 
30 18O + 17O17O → 18O17O17O 1.03 

 
31 → 17O18O17O 

 

53 32 17O + 18O18O → 17O18O18O 1.31 
 

33 → 18O17O18O 
 

 
34 18O + 17O18O → 18O17O18O 

 

 
35 → 18O18O17O 

 

54 36 18O + 18O18O → 18O18O18O 1.03 

a These rates may contain small contributions from the subsequent symmetric molecules. 

b For reactions (10), (11) and (26), (27) involving heteronuclear oxygen molecules the relative 

reaction probability is shown while relative rate coefficients are obtained by dividing the quoted 

numbers by two. 
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1.3. Theoretical interpretation of anomalous isotope effect 

There existed several hypotheses on correlation of measured reaction rate with 

some physical property or parameter that characterizes the recombination process. The 

rates do not correlate with masses of produced ozone isotopologues, neither with their 

symmetry, as it was thought previously.12,20 The Mauersberger group discovered that the 

property the rates depend on is a change of O2 zero-point energy (ΔZPE) in the atom-

exchange version of step (1.3), for example for 16O18O18O:  

 16O + 18O18O ↔ (16O 18O18O)* ↔ 16O18O + 18O (1.4)  

The oxygen molecules 18O18O and 16O18O on the left and right sides of Eq. (1.4) have 

different reduced masses μ, which the ZPE depends on it as seen in harmonic oscillator 

example: 

 
ZPE

2 2

k


   (1.5)  

The ZPE difference of two possible channels of atom exchange reaction (1.4) is small, 

just within 22 cm-1. This change makes the process (1.4) slightly endothermic or 

exothermic. However, it is insufficient to affect the rate and explain the isotope effect. 

The dependence on ΔZPE has been illustrated by Janssen16 and is shown in Figure 1.5. 

Here the rates of the isotopically different reactions (Table 1.1) are plotted versus ΔZPE 

of atom-exchange step (4). The most pronounced feature in Figure 1.5 is a near-linear 

dependence on ΔZPE. Two pairs of points in corners of the plot, around ΔZPE ≈ ±22 cm-

1, correspond to reactions with 16O and 18O. Two points at the lower left corner 

correspond to decrease of ZPE, specific to reactions 18O + 16O16O → 18O16O16O and 18O 

+ 18O16O → 18O18O16O. Two points in the upper right corner correspond to increase of 
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ZPE, specific to reactions 16O + 16O18O → 16O16O18O and 16O + 18O18O → 16O18O18O. 

The rates of these two pairs differs by 60%, as it was mentioned earlier. Another set of 

four points around ΔZPE ≈ ±10 cm-1 stands for the reactions that include only 16O and 

17O. Together these two sets at ΔZPE ≠ 0 set the main linear trend.  

 

Figure 1.5. Relative rate coefficients vs. ZPE differences in oxygen molecules of the corresponding isotope 

exchange reactions. Exothermic or endothermic isotope exchange reactions (circles) can be distinguished 

from energetically neutral collisions (squares). Collisions with homonuclear diatom are shown with full 

symbols, while collisions with heteronuclear diatom are designated by open symbols. 

The second pronounced feature in the Figure 1.5 is a deviation of five points at 

ΔZPE = 0 from the main trend. These points correspond to reactions forming symmetric 

ozone molecules, both heteronuclear, such as 16O18O16O and 18O16O18O, and the 
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homonuclear 16O16O16O, 17O17O17O and 18O18O18O. The deviation from the trend is about 

20%, which is also significant, even relative to the maximum difference 60%. 

Marcus proposed21–23 that these two features, near-linear dependence on ΔZPE 

and lowering of rates for points with ΔZPE = 0, result from two different phenomena. 

These phenomena have two distinctly different theoretical origins and may be revealed 

separately by the two types of experiments. The first phenomenon applies to asymmetric 

ozone molecules (as ZPE increases), so further we will call it ZPE-effect, while the 

second phenomenon is responsible for lowering the rates of formation of all symmetric 

ozone molecules. Marcus also suggested that the second effect is related to symmetry of 

the molecule produced in the recombination process and named it the -effect. 

Together all these experiments stimulated a series of theoretical studies to explain 

both qualitatively and quantitatively the main part of isotope effect: the ZPE-effect. The 

first study of this process was published by Marcus within framework of statistical 

mechanics.21–23 He extended RRKM (Rice, Ramsperger, Kassel, Marcus) theory with 

several adjustable parameters in a statistical model for density of states in O3. With this 

adjusted version he was able to reproduce the ZPE-effect in ozone quite well. 

It is worth to mention, that the zero-point energy discussed here and everywhere 

in the related literature has nothing to do with stable O3. Fundamental frequencies of O3 

are almost irrelevant to the recombination process, because stable O3 is formed in the 

deep covalent well, more than 1 eV below the dissociation threshold. Only the zero-point 

energy of O2 matters, since it defines the depth of a reaction channel. However, the 

proper explanation of the effect requires analysis of the metastable intermediate 

complexes O3
* formed from O + O2 collisions, which could not be obtained within a 
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statistical theory. These complexes are quantum scattering resonances excited rotationally 

and vibrationally above the dissociation threshold. Their energies and lifetimes are 

essential to the process, and those can only be obtained from quantum dynamics theory, 

not from a statistical approach. Also, it should be stressed, that anomalous isotope effects 

in ozone should not be confused with conventional kinetic isotope effects (KIE), 

observed for reactions with activation barrier between the reactants and products and 

caused by tunneling through this barrier. The potential energy surface of ozone has no 

activation barrier.  

1.4. The ΔZPE-effect 

The first theoretical treatment of scattering resonances and analysis of their role in 

ZPE-effect has been done by Babikov et al. in 2003.24–26 His work proves high 

importance of the resonance states in ozone chemistry. These calculated resonances 

exhibit very non-statistical distribution of lifetimes. Particularly, the calculated spectrum 

of scattering resonances appeared to be quite dense in ZPE energy band, relative to 

continuum, called “Background” in Figure 1.6.25 Not only is the density of resonances in 

ZPE higher, but also they have more chances to be stabilized (than resonances in 

“Background”) as they are located much closer to bound states. Together these two 

factors, the density of resonances and their proximity to the bound spectrum cause a 

faster recombination of 16O with 18O18O, than 18O with 16O18O. Substitution of lifetimes 

in an ozone kinetic model, where different metastable O3
* states are treated as different 

species, correctly reproduced the order of magnitude and direction of anomalous isotope 

effect.26 As the study has been done on first-principal basis, it indicated the quantum 
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mechanical origin of the anomalous isotope effect. However, calculations were done only 

for non-rotating ozone, i.e. for total angular momentum J = 0, so comparison with room 

temperature experiments should be done with caution. The reason was computational 

unaffordability. Nevertheless, the authors qualitatively showed26 that inclusion of rotation 

in ozone quantum dynamics would improve the agreement with experiment. In 2009, 

Grebenshchikov et al.27 incorporated the rotation by means of K-conserving 

approximation. Notably, the ZPE-effect obtained by Grebenshchikov was in excellent 

agreement with experiment.  

 

Figure 1.6. Energy diagram for 16O+18O18O ↔ 16O18O18O ↔ 16O18O+18O. Dotted line is PES. Solid line is 

PES+ZPE. Difference in reduced mass of O2 results in ΔZPE>0. Yellow area contains stable bound states 

of O3. Though some resonance states could form both channels in the “Background” area, the 16O+18O18O 

channel has an extra energy band ΔZPE, which contains the dense spectrum of most contributing 

resonances. The larger number of stabilizing states (red arrows) causes faster reaction (see experimental 

rates on the top). 
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Thus, the quantum origin of ZPE-effect has been justified by many authors 

using different theories and approaches. The near-linear dependence of recombination 

rates on ZPE has been attributed to lifetimes and energies of O3
* and by now has been 

reproduced by statistical,21–23 quantum mechanical,24–27 semi-classical,28–30 and even by 

the ad-hoc modified classical trajectory31,32 models for the process (1.4). 

1.5. The η-effect 

The -effect (lowering of rates for symmetric ozone formation by 20%) has not 

been explained within all theories enumerated above. Several attempts have been made to 

incorporate it. In order to reproduce experimental observations, Marcus21–23 introduced 

this effect empirically, with the purpose to split oxygen isotopomers in two groups, so 

that the rate should be low for symmetric isotopomers, such as 16O18O16O and 18O16O18O, 

and high for isotopomers, such as 16O16O18O and 16O18O18O. In practice -effect was just 

a multiplication of the rate constant by the -factor, chosen to reproduce the experiment. 

The value close to 1.2 was obtained, which directly relates to the 20% deviation seen 

in the experimental results of Figure 1.5. Marcus formulated several possible sources of 

-effect in his series of papers. One of suggestions22 is that symmetry plays a role in ET 

reaction (1.3), where excited O3
* is been stabilized in collision with a third-body M. 

Indeed, as applied to H + Ne2 reaction33 some state-to-state transitions are forbidden by 

symmetry in symmetric molecules. This in turn could lead to reduced stabilization cross 

section and lowered recombination rate.34 However, such effects were not found in O3 + 

Ar.35 Another possible cause22 is that in symmetric molecules the number of states 

dynamically active in the process (1.4) is lower, compared to asymmetric molecules (but 
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these are hard to define). Also, he suggested several types of couplings that may be 

different in symmetric and asymmetric isotopomers of O3 as alternative sources of -

effect, such as spin-orbit coupling36 in the asymptotic region of the PES, resonance 

coupling effect,37 chaotic behavior of trajectories at high energies36 and, more recently, 

the Coriolis coupling effect.38 Though all his ideas are of quite sound, no convincing 

prove has ever been given for any of these. 

Other researchers influenced by Marcus’ first suggestion attempted to find -

effect performing calculations of ozone stabilization step. Several attempts39–42 have been 

done to treat process (1.3) using quantum mechanics. As it is a very challenging task, the 

inclusion of all degrees of freedom quantum mechanically was not affordable 

computationally. For this reason, all the models of this process proposed at that time 

involved significant approximations, in order to ease computational costs. For example, 

the first study by Charlo and Clary39,40 used time independent coupled-channel formalism 

and included two approximations, the frozen-bending approximation for O3
* and a 

sudden-collision assumption for O3
* + Ar. Besides, they fixed the bending angle, so the 

calculations has been done in two dimensions. The next study has been done by Xie and 

Bowman.41 They implemented full quantum treatment of O3
*. However, increased 

computational costs resulted in a calculation of just a few number of trajectories (namely, 

three) with different combinations of Ar impact parameter and orientation of O3
*. They 

implemented a sudden-collision assumption and did not compute resonance lifetimes. 

The third study has been done by Ivanov and Schinke,42 also based the sudden-collision 

assumption. In addition, despite the fact that calculations converged with respect to the 
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number of partial waves, their basis set included just the bound states of non-rotating O3 

(no scattering resonances). None of these studies revealed the origin of -effect. 

As mentioned above the exact quantum calculations are impossible for process (3) 

as seen on works done by the groups of Clary,39,40 Bowman41 and Schinke.42 They all 

used the sudden collision approximation and carried out calculations for non-rotating 

ozone molecule (J = 0 only). In addition to these two approximation, they employed at 

least one more simplifying assumption, and none of them included lifetimes of O3
* into 

their treatment of kinetics. 

Five years ago, the group of Babikov35,43–47 developed a more advanced theory to 

study ET process (1.3), namely – the mixed quantum/classical theory (MQCT) for 

collisional energy transfer and ro-vibrational energy flow. Although this theory is still 

approximate, it allows to improve the description of rotation and avoid the sudden 

collision approximation and treat the dynamics of O3
* + Ar scattering in a time-dependent 

manner (classically, not quantum mechanically). This is a very reasonable way of 

approaching this problem, since a typical O3
* + Ar collision is rather adiabatic than 

sudden. Second, they covered a large range of possible rotations, up to J ~ 90, and 

computed the rotational quenching of O3
* in collisions with Ar. The classical treatment of 

rotation and translation is appropriate, since any quantum effects due to scattering of 

heavy Ar or due to rotation of heavy O3
* are not expected here. At the same time, the 

vibrational motion of atoms within ozone molecule is treated quantum mechanically, so 

zero-point concept and vibrational symmetry are incorporated. The scattering resonances 

of O3
* are accessible, including quantization of their energies, accurate calculations of 

their decay rates and the collision-induced dissociation. However, MQCT has been 
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implemented for the dimensionally reduced model of ozone,35,43,46 where bending angle is 

relaxed. This approximation resulted in “semiquantitative” agreement with 

experimentally observed ΔZPE- and η- effects. Namely, the both linear dependence on 

ΔZPE and lowering of rates for symmetric molecules was reproduced, but all absolute 

values of rate constants appeared to be 50 % smaller than experimental.47 This is 

attributed to reduced density of states of dimensionally reduced O3
*. Decreased density 

means larger energy spacing between levels in O3
*, making state-to-state transitions 

harder to occur and the whole stabilization process slower. Therefore, the theoretical 

treatment of ozone needs to be improved by implementing full three-dimensional 

description of ozone molecule. 

1.6. Objectives 

Up to now, the MQCT35,43–47 approach is the most successful and most accurate in 

description of both ΔZPE-effect and η-effect. However, the treatment of O3 has two 

major problems. 

First, the MQCT describes the ozone molecule using only two degrees of 

freedom, as the bending angle is relaxed. As explained above, to get a quantitative 

agreement with experiment the theory must incorporate full three-dimensional vibrational 

dynamics of ozone, i.e. no reduced dimensionality. Treating all three internal degrees of 

freedom of ozone on equal basis will give a rovibrational spectrum with proper density of 

states. We expect, that the substitution of this spectrum into the same kinetic model of 

ozone formation even without the recalculation of stabilization cross sections will 

significantly improve current rate constants.47 
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The extension of existing dimensionally reduced formalism35,43–47 with a bending 

angle coordinate will considerably increase problem complexity, preventing calculations 

to be finished in reasonable time. Specifically, the computational time will scale as N2 or 

N3, where N is a number of points or basis function used to represent a new degree of 

freedom. Thus, we formulate the following goal: 

1. Develop an efficient theoretical method for calculations of energies and 

lifetimes, accurate and affordable for a broad range of rotational 

excitations and for all isotope compositions. 

The efficient calculation includes a convenient internal coordinate system, 

Hamiltonian expression in chosen coordinates, optimal distribution of grid points to cover 

the configuration space, usage of optimal bases set, efficient numerical calculation of 

derivatives, construction of small Hamiltonian matrix, solution for eigenvalues, efficient 

parallelization and load distribution scheme, the way to extract resonance lifetimes, and 

potential energy surface to perform calculations on. 

Second, the scattering process within MQCT has one technical artifact (will be 

discussed later) and still has high computational cost. Both problems could be solved by 

simplifying the rotational description keeping the same accuracy. The formulated second 

goal is as follows: 

2. Develop an effective numerical approach to describe the stabilization of 

ozone molecule in collision with third body within MQCT. 

This required the development of frozen rotor approximation, where molecular 

orientation in space is fixed, however the energy exchange between rotational, 

vibrational, and translational digresses of freedom still occurs, allowing computing 
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rovibrational excitation and quenching. Finally, the results of both steps 1 and 2 will be 

combined. We formulate the third goal as: 

3. Use computed energies and lifetimes of metastable states (goal 1) and 

computed stabilization cross sections (goal 2) in the kinetic model of ozone 

formation and calculate the rates of formation for different isotope 

combinations. 

This dissertation is structures as follows. Chapter 2 gives an extensive explanation 

of hyperspherical coordinates, used in calculations and important methodologically. The 

efficient numerical approach for calculations of energies and lifetimes of scattering 

resonances is described in Chapter 3 (Goal 1). In Chapter 4, the MQCT35,43–47 is reviewed 

and a frozen rotor approximation is introduced to simplify and speedup the scattering 

calculations without losing much accuracy (Goal 2). The absolute rate coefficient of 

recombination reaction is computed in Chapter 5 and is applied to isotope problem in 

ozone in Chapter 6 (Goal 3). Finally, all important results and possible ways to improve 

the method are summarized in Chapter 7. 
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Chapter 2. Hyperspherical coordinates for description of ozone 

vibrations* 

2.1. Coordinate systems for triatomic molecules 

Quantum molecular dynamics in triatomic systems takes special place in the 

fundamental chemical theory and in the chemistry education as well, because it allows 

introducing and studying spectroscopy (three normal vibration modes for low-amplitude 

motion in ABC) and chemical reactions (large-amplitude motion leading to A + BC → 

AB + C), all using the smallest possible number of atoms.48,49 Also, many important gas-

phase molecules are triatomic, which makes this topic directly relevant to the real life 

problems in environmental chemistry,50 atmospheric chemistry24–26,51,52 and 

astrochemistry.53,54 

Any theoretical description of a molecule starts with the choice of suitable 

coordinates to represent the arrangement of atoms in ABC, which gives the molecular 

shape or geometry. Three coordinates are needed in order to describe a shape of nonlinear 

triatomic molecule, which is the number of internal degrees of freedom, 3N − 6, with N 

being the number of atoms. For example, familiar to every chemist are the valence 

coordinates {r1, r2, γ,} which consist of two bond lengths in ABC and the angle between 

the two bonds. Another well-known coordinates are the normal-mode coordinates {ξ1, ξ2, 

ξ3,} which represent the collective motion of all three atoms leading to symmetric 

stretching, asymmetric stretching and bending of ABC. When the motion of atoms in a 

molecule is treated with quantum mechanics the vibrational wave function depends on 

                                                 
* Teplukhin A.; Babikov D., Chem. Phys. Lett., 614, 99 (2014), J. Chem. Educ., 92(2), 305 (2015) 
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these coordinates, ψ(r1, r2, γ), and the vibrational Hamiltonian operator Ĥ  in the 

Schrodinger equation acts on these coordinates, Ĥψ = Eψ. It is important to note, 

however, that neither the valence nor the normal-mode coordinates are employed for 

accurate numerical studies of triatomics, because the simple valence coordinates result in 

the extremely complicated Hamiltonian operator,55 while the normal-mode representation 

is an approximation which breaks down at higher levels of vibrational excitation and/or 

for anharmonic potentials.  

Although a search for the best coordinates still continues,56 several coordinates 

have been identified as convenient and have been used extensively in molecular 

calculations. Namely, the Jacobi coordinates {R, r, Θ} are probably the most popular, 

where r is the bond length of a diatomic fragment of the molecule, say BC, while R is the 

distance from A to the center-of-mass of BC, and Θ is the angle between them (see 

Figure 2.1). The Hamiltonian operator is rather simple in these coordinates and they work 

well in many cases, particularly for description of molecular vibrations in ABC (see 

Figure 2.2) or non-reactive elastic and inelastic scattering of A + BC.57 However, there 

are situations when Jacobi coordinates are not the best choice. For example, if only the A 

+ BC arrangement diatomic basis is used, and the ABC motion is floppy and anharmonic 

with vibrational character very different than that of BC, then the calculation of the ABC 

spectra may converge slowly or not at all. Besides the bound states, Jacobi coordinates 

are also used for description of chemical reactions like A + BC → AB + C58 but in this 

case their intrinsic drawback shows up. It appears that a set of Jacoby coordinates 

introduced for the entrance channel of reaction, A + BC (see Figure 2.3a), becomes 

inappropriate for the exit channel of the reaction, AB + C. Indeed, at large AB + C 
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separation the diatomic fragment AB is not described by any internal coordinate, but 

corresponds to numerically unstable geometry described by a very small value of angle Θ 

→ 0 and large value of r → 2R (see Figure 2.3b). Asa consequence, the convergence of 

calculations could be very poor again. 

This is inconvenient and it would often be beneficial to use some other 

coordinates that threat all the reaction channels on equal footing. Such coordinates were 

developed by Pack and Parker and are known as adiabatically-adjusting principal-axes 

hyperspherical (APH) coordinates.59–61 They adjust smoothly from one arrangement of 

atoms to another arrangement and describe well not only the reagent channel A + BC, but 

also the product channel AB + C, and even the second product channel AC + B (in the 

cases when the second product channel is chemically relevant, see Figure 2.3c). 

Furthermore, the Hamiltonian operator is simple in the APH coordinates.60 

 Advantages of the APH coordinates for triatomic systems are known60 and 

several examples can be drawn from the recent literature where molecular simulations 

successfully employ the APH coordinates. For example, spectroscopy of O3, N3, H3, Ar3, 

Ne3,Ne2H, HeNeH molecules,26,51,62–66 molecular ions N3
+, H3

+, D3
+,HCO+, DCO+, H3

−, 

D2H
−, H2D

−,48,53,54,67 and pseudo-triatomic Cl−CH3−Br,68 have been studied using the 

APH coordinates. The exchange reactions H + O2 ↔ OH + O, O + H2 ↔ OH + H, O + 

O2 ↔ O2 + O, H + H2 ↔ H2 + H, F + H2 ↔ FH + H, D + H2 ↔ DH + H, H + D2 ↔ HD + 

D, and Cl− + CH3Br → ClCH3 + Br− 26,49,50,61,68–72 have also been studied using the APH 

coordinates. Still, one should admit that the APH coordinates are much less popular, 

compared to the simpler but more limited Jacobi coordinates. 
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One reason for this is that the formalism of adiabatic adjustment is 

mathematically involved60 which creates a barrier to understanding, particularly by 

students at the beginning of their computational research projects. In order to simplify 

introduction to the APH coordinates we created an interactive desktop application 

APHDemo that allows seeing a triatomic system on the screen, dragging atoms by mouse 

from one arrangement to another and watching how the APH coordinates adjust 

continuously, for example, from the reagent channel to the product channel, through the 

reaction intermediate. The Jacobi coordinates can also be made visible for comparison, 

which allows understanding better their drawbacks, and emphasizing advantages of the 

APH coordinates. 

The major area of application of this program is, probably, in the educational 

process. We created several animations that illustrate typical examples of vibrational 

dynamics and can be used in the classroom presentation of the APH coordinates. 

However, this tool may also be rather handy to those who plan employing the APH 

coordinates in their research, particularly to graduate to students and postdocs. 

2.2. APH coordinates 

Pack and Parker60 emphasized a link between the simple Jacobi coordinates and the 

APH coordinates, and described transformation from Jacobi to APH. It is convenient to 

introduce vector notation {R, r} in addition to {R, r, Θ}. Here R = |R|, r = |r|, while angle 

Θ can be easily determined from coordinates of vectors R and r. Next step is to introduce 

the mass-scaled Jacobi coordinates {S, s, Θ}, or {S, s} in matrix notation, as follows: 
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 1,    d d  S R s r . (2.1)  
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is a scaling factor, where m is the mass of atom that defines the arrangement (e.g., atom A 

for arrangement A + BC), μ is a three-body reduced mass and M is a total mass: 
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The mass-scaled Jacobi vectors {S, s} do not differ much from the original Jacobi vectors 

{R, r} because for natural triatomic molecules the value of scaling factor is always close 

to one, d ≈ 1. 

The next step is to define a set of new coordinates {Q, q} obtained by rotation of 

{S, s} as follows:  

    
   

   

Q S
T

q s
, (2.4)  

where T is a kinematic rotation matrix that depends on kinematic rotation angle χ, so, T(χ).  

The value of χ is chosen such that vector Q would point along one of the principal axes of 

inertia for ABC, namely, the one with the smallest moment of inertia. Thus, in the reagent 

channel A + BC vector Q would approach vector S, but in the product channels AB + C or 

AC + B vector Q would significantly deviate from the Jacobi vector S. Pack and Parker 

showed analytically60 that such value of χ maximizes the value of Q = |Q| and changes 

adiabatically (smoothly) between the various atom arrangements. 

The last step is to convert a set of three coordinates {Q, q, χ} into a set of three 

hyper-spherical variables {ρ, θ, χ} called APH coordinates, and to establish analytic 
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transformation between Jacobi coordinates {S, s, Θ} and the APH coordinates {ρ, θ, χ}. 

Pack and Parker showed that: 
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(2.5)  

The variable ρ, called hyperradius, represents the overall “size” of the ABC 

system, while two hyperangles θ and χ define “shape” of the ABC. For low-amplitude 

vibrational motion in a triatomic molecule the APH coordinates are similar to the normal-

mode coordinates: ρ describes symmetric stretching, while θ and χ are responsible for the 

bending motion and asymmetric stretching, respectively. However, for large-amplitude 

vibrational motion ρ describes dissociation (e.g., to A + BC), θ describes vibration of the 

diatomic product (e.g., BC), while χ describes permutations of atoms or pseudo-rotation 

(e.g., A–B–C to C–A–B and to B–C–A, see Ref. 48). 

2.3. APHDemo application 

APHDemo is a desktop Windows application developed to demonstrate the 

essence of APH coordinates. It shows how the adjustment of APH coordinates occurs in 

response to the motion of atoms in ABC. The window screenshot is shown in Figure 2.1. 

The original Jacobi vector pair {R, r} for the arrangement A + BC is shown in red. The 

APH vector pair {Q, q} is shown in blue. Solid lines correspond to R and Q, while 

dashed lines correspond to r and q. All vectors lie in the plane of the triatomic molecule. 

The values of APH variables {ρ, θ, χ} are printed in the top-left corner. User can move 

atoms A, B or C with computer mouse and turn on and off the coordinate sets to show 
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(Jacoby or APH, or both) using checkboxes. In addition, a track bar is available to 

animate a pseudo-rotational collective motion of all three atoms. 

 

Figure 2.1. Screenshot of the APHDemo application. Checkboxes in the upper-left corner allow displaying 

Jacobi (red) or APH (blue) vectors, or both simultaneously. The values of hyperspherical variables {ρ, θ, χ} 

are conveniently displayed. User can drag atoms with a mouse. Instantaneous arrangements of atoms are 

automatically labelled as “ABC”, in the case of a molecule or transient species, or “A + BC”, etc., in the 

asymptotic case of chemical reagents/products. 

Dragging atoms allows going through all possible configurations of ABC. Figure 2.2 

illustrates the low-amplitude molecular vibrations, when three interatomic distances are 

all comparable. Three frames of the figure correspond to three possible cases of one atom 

(A, B or C) being slightly further from the other two atoms, for an arbitrary shape of 

ABC. We see that here the Jacobi coordinates (red) are quite appropriate for description 

of all three cases. However, the APH coordinates (blue) have one advantage. Notice that 
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we intentionally chosen the three shapes in Figure 2.2 being congruent. Jacobi 

coordinates do not “see” this equivalence and describe three shapes by somewhat 

different values of R = |R| and r = |r|. In contrast, the APH coordinates “recognize” the 

equivalence and describe all three arrangements by the same values of Q = |Q| and q =  

|q|. This has important applications in spectroscopy, where symmetry is the factor 

determining the allowed state-to-state transitions.48 

Figure 2.3 summarizes important concepts for the large-amplitude motion of 

atoms, when one atom is far from the other two (in the entrance/exit channel of a 

reaction). We see that in the reagent channel A + BC the APH vectors {Q, q} are similar 

to Jacobi vectors {R, r} and either coordinates describe the triatomic system well (see 

Figure 2.3a). Namely, both q and r describe vibration of diatomic reagent (the BC 

distance), while both Q and R describe collision of the two reagents (the A-BC 

separation). However, in the product channels neither of Jacoby vectors describes the 

diatomic product (see Figure 2.3 b and c). Indeed, in the product channels |r| becomes 

very large and describes separation of two products (AB–C or AC–B distances), while R 

→ r/2, so that asymptotically the vector R becomes obsolete. In contrast, the APH 

vectors {Q, q} remain meaningful even in the product channels. From Figure 2.3 we see 

that vector q always remains small and always describes the diatomic fragment, either 

reagent or product, depending on the channel. At the same time, vector Q always remains 

large and plays a role of the universal reaction coordinate. This is a clear and significant 

advantage of the APH coordinates. 
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Figure 2.2. Examples of atom arrangements due 

to low-amplitude vibrational motion in the 

triatomic ABC system and their description 

using Jacobi (red) and APH (blue) vectors. Note 

that three physically different arrangements 

correspond to congruent triangles. Lengths of 

APH vectors remain the same, which emphasizes 

symmetry. Jacobi vectors do not have this 

advantage. 

 

Figure 2.3. Examples of atom arrangements due 

to high-amplitude vibrational motion leading to 

A + BC, AB + C and AC + B reagents/products, 

and their description using Jacobi (red) and APH 

(blue) vectors. Note that in the product channels 

AB + C and AC + B the Jacobi vectors defined 

for the reactant channel A + BC become 

inappropriate. In contrast, the APH coordinates 

always adjust to the instantaneous arrangement 

of atoms. 
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One other capability of the APHDemo is to illustrate pseudo-rotational motion. 

During this process all three atoms in ABC move on circles of the same radius, but with 

phase shifts of 120° with respect to each other. Using the track-bar at the top of the 

APHDemo window (see Figure 2.1), user can initiate the trajectory of such collective 

motion. During pseudorotation the APH vectors {Q, q} simply rotate around the center 

of mass of ABC, which corresponds to the change of hyperangle χ only, with no changes 

of ρ and θ. One can see that it takes two full turns of the atoms in order for the APH 

vectors {Q, q} to return into their original position. This corresponds to the range of 

hyperangle –180°< χ < +180°, which includes both roots of χ, as it was emphasized by 

Parker and Pack.60 This last property has important implications in dynamics around the 

conical intersections and in theoretical treatment of the geometric phase effect.62,73 

2.4. How this application can be used for research and in a 

classroom 

The users of APHDemo are encouraged to try various arrangements of atoms in 

ABC. When the atoms are being moved, the set of blue vectors {Q, q} will 

stretch/compress but also rotate, while the set of red vectors {R, r} will primarily 

stretch/compress with little to no rotation. For some arrangements the APH vectors {Q, 

q} will become quite similar to Jacobi vectors {R, r}, but they will be very different for 

other arrangements, as discussed above. We created several representative animations 

that can be viewed and downloaded from the website of Chemical Physics Letters, where 

this chapter was published.74 Those animations include trajectories for the local and 

normal mode vibration of ABC, for non-reactive scattering of A + BC, for reactive 

process A + BC → AB + C, and for pseudo-rotation in A–B–C. In addition, with 
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APHDemo it becomes easier to understand what shapes correspond to the limiting values 

of the APH hyperangles. For example, the equilateral configuration of ABC corresponds 

to θ = 0°, while linear ABC is described by θ = 90°. Isosceles shapes correspond to χ = 

0°, ±60°, ±120°. All these arrangements can be easily explored using our interactive tool, 

and the corresponding values of ρ, θ and χ can be read from the top-left corner of the 

screen (see Figure 2.1). 

In addition to just visualization, the APHDemo can help in explaining, and 

potentially discovering new reaction mechanisms and pathways, such as roaming. It 

could be rather useful for mode assignment of vibrational states in both Jacobi and APH 

coordinates, as the user could simply drag back-and-forth any atom and observe 

corresponding changes of the coordinates. 

The application was written in C# using Math.NET Numerics library75 to perform 

vector operations. APHDemo requires Microsoft.NET Framework 4.5,76 usually available 

in standard installation. The executable file is also available for download from the 

website of Chemical Physics Letters74 and from my personal website.77 It is sufficient to 

download this file (e.g., to a Desktop of a PC) and run it with double-click of the mouse. 

2.5. Visualization of potential energy surface 

The ansatz of computational chemistry is the Born-Oppenhimer approximation78 

that splits the overall molecular problem onto the electronic motion part and the nuclear 

motion part. The electronic part of the problem is solved first, for fixed positions of the 

nuclei, which provides the potential energy function V that governs the motion of nuclei. 

It is often said that electrons create the potential energy landscape on which for nuclei to 
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move.79 However, comparison of the potential energy function with a landscape is good 

only to a certain extent. When we say “landscape”, this usually means a two-dimensional 

potential energy surface, for example, V(x, y). However, dimensionality of the potential 

energy function in molecules is usually higher than two; thus, the number of internal 

degrees of freedom for an N-atomic nonlinear molecule is 3N − 6. Even for a triatomic 

molecule, for example, H2O or O3, the potential energy function is a function of three 

variables, V(x, y, z), which is a hypersurface, rather than a surface. 

A question of visualization of this hypersurface arises because in our three-

dimensional world, one can plot, see, and comprehend a function of two variables at 

most, V(x, y). One cannot plot a function of three or more variables. It is frustrating to 

realize that we are so limited in our abilities. Visualization of the potential energy 

function in its full dimensionality is impossible even for the smallest polyatomic 

molecules, the triatomics. This creates some barrier to understanding collective atomic 

motion in molecules, such as nonlocal vibrational modes, or trajectories of atoms in 

chemical reactions because all of these processes are driven by the potential energy 

hypersurface. 

Several approaches are used to overcome this natural barrier. We can reduce the 

dimensionality of the potential energy function by freezing some internal degrees of 

freedom. This is equivalent to slicing the hypersurface and viewing one slice at a time. 

For example, in the case of O3 described using valence coordinates,80 the full dimensional 

potential energy function is a function of three variables, V(R1, R2, α), where R1 and R2 

are bond lengths, and α is the bending angle. Freezing or fixing the value of R1 (e.g., 
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equal to the equilibrium bond length in O3) yields a two-dimensional potential energy 

surface 

 
12( , )

eqR RV V R    (2.6)  

that can be easily plotted and used for analysis of some processes, such as homolytic 

bond dissociation in ozone, O3 → O2 + O, or inelastic scattering of oxygen atom by 

oxygen molecule, O2 (j) +O → O2 (j') + O. This works fine, but one should be aware of 

limitations of this approach. For example, such a dimensionally reduced potential energy 

surface would be useless for analysis of the atom exchange process in ozone, which is the 

simplest example of a reactive process: O2 +O → O + O2. Indeed, in this reaction, both 

bond lengths change (e.g., the value of R1 growth from Req to ∞, while the value of R2 

decreases from ∞ to Req), so freezing one of them is inappropriate. 

Another known method of reducing dimensionality of the potential energy 

hypersurface is to relax some degrees of freedom. For example, in the case of ozone, one 

could relax the value of the bending angle α by minimizing energy for each pair of 

chosen values of R1 and R2, which produces a two dimensional potential energy surface:35 

 
1 21 2 ( , )( , ) f R RV V R R   (2.7)  

Such surface can be easily plotted and used to visualize the reactive atom 

exchange process, O2 +O → O + O2, but again, it is limited to the reaction path only, and 

some important information is missing. Namely, the zero-point energy of vibration is 

entirely lost.35 The processes of O-atom permutation and pseudorotation48,81 are also 

impossible to see on such a dimensionally reduced potential energy surface. 

It would be beneficial to see all features of the global potential energy function at 

the same time, which can include deep covalent wells, transition states, shallow van der 
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Waals wells (usual in the channel regions), and the entrance/exit reaction channels 

themselves. It would be nice to have a method that allows visualization of the potential 

energy function in its full dimensionality, without reductions, at least for triatomic 

molecules. Seemingly simple, triatomic molecules still hold many puzzles, and their 

theoretical description is still challenging, particularly from standpoint of quantum 

molecular dynamics. Calculations of precise rotational−vibrational spectra, highly excited 

delocalized states near dissociation threshold, and scattering resonances above the 

threshold are just few examples. On the practical side, triatomic molecules play crucial 

roles in Earth’s atmosphere, environment, and interstellar medium.50,51,53 

In this respect, the isoenergy approach introduced earlier by Babikov82,83 that 

allows visualization of the potential energy function of a triatomic molecule in its full 

dimensionality in 3D space as a volume, not as a surface, provides an alternative method 

of presentation, addressing the above-mentioned concerns. With this approach, the 

potential energy wells look like “chambers”, while the transition state regions look like 

narrow “passages” between them, all in 3D space; reaction channels look like “tunnels”. 

Most importantly, we propose the use of 3D printing capabilities to create handy models 

of such isoenergy objects that can be taken into hands and inspected in detail from any 

perspective. Our own experience with such 3D models shows that they are rather useful 

in teaching and even in research. 

2.6. Isoenergy approach applied to ozone 

Isosurfaces are routinely used to visualize molecular orbitals or electronic 

densities. In those cases, a small, minimal value ρmin of the electron density ρ is chosen, 
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and a surface is built in 3D space (x, y, z) that connects all points in space with ρ = ρmin, 

the isosurface. Points with ρ < ρmin are outside of the isosurface, and this part of space is 

made transparent to the observer. Points with ρ > ρmin are inside of the isosurface, and 

they are invisible to the observer. They can be made visible by plotting another isosurface 

with a larger value of ρmin. 

Our approach to visualizing the potential energy function of a triatomic molecule 

is very similar, but it is inverted in a sense. Namely, a large, maximum value of the 

potential energy Vmax is chosen based on physical considerations. This can be a thermal 

energy of a chemical reaction, collision energy of a trajectory, or energy eigenvalue of a 

quantum state. Then, a 3D potential energy function V(x, y, z) is visualized as follows: all 

points in 3D space with V > Vmax are made transparent to the observer. This part of the 

configuration space is inaccessible to the motion of nuclei in a chemical process we 

consider (at least classically, neglecting the tunneling effects); thus, it is assumed to be 

unimportant (or less important), and that is why it is made transparent. In contrast, all 

points in 3D configuration space with V < Vmax are made opaque because they are 

accessible to the motion of nuclei. The Cartesian variables (x, y, z) in physical 3D-space 

are used to represent some internal vibrational coordinates used for theoretical 

description of a molecule. For example, this may be the valence coordinates (R1, R2, α), 

the normal mode coordinates (ξ1, ξ2, ξ3), or the hyperspherical coordinates (ρ, θ, φ) that 

we prefer for several reasons.24,59,60,74 

By using this method, an observer can see the potential energy function as a 

continuous volume structure in 3D space, as shown in Figure 2.4, where we applied the 

isoenergy approach to the potential energy function of O3 molecule expressed in the 
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simplest valence coordinates, V(R1, R2, α). The bond lengths R1 and R2 of O3 are plotted 

along x and y, while the value of the bending angle α is plotted along z. The ranges of 

coordinates in Figure 2.4 are 1.0 ≤ R ≤ 5.5 a0 and 75° ≤ α ≤ 180°. This covers the deep 

covalent well region seen in the middle of Figure 2.4 as a “lobe”, two transition states 

seen as the “bottlenecks”, and two shallow van der Waals interaction regions – the 

“wings”. If the vibrational energy of O3 is low, the motion of its nuclei is restricted to the 

covalent well inside of the lobe only (the minimum energy point is at R1 = R2 = 2.4 a0 and 

α = 117°). The transition state point, the bottleneck, can be reached by adding more 

vibrational energy to O3 in order to stretch one of its bonds to R = 3.5 a0. Since two bonds 

in O3 are equivalent, one can stretch either R1 or R2, which produces a symmetric 

structure in Figure 2.4 with two bottlenecks. Outside the transition state, when R > 3.5 a0, 

O3 transforms into a van der Waals complex between O and O3. Imagine that one could 

label the terminal atoms in O3 using isotopes, which would produce 17O16O18O. Then, 

two possible van der Waals complexes would be 17O···16O18O and 17O16O···18O, formed 

in the left and right wings in Figure 2.4, respectively. Note also that these wings cover a 

wide range of α, which means that the van der Waals complex is floppy, with large-

amplitude bending motion allowed. In contrast, the lobe is compact along α, which means 

that bending the covalently bound O3 results in significant energy increase (reflected by 

transparent areas below and above the lobe in Figure 2.4) and does not lead to any 

transition state. It is quite amazing that all of these features of the potential energy 

function can be seen in Figure 2.4. 
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Figure 2.4. Isoenergy volume for O3 molecule using valence coordinates. Vmax is chosen at the dissociation 

threshold of O3, which allows seeing the covalent well, the transition states and the van der Waals 

interaction regions. 

It is also instructive to inspect the cut-outs of the volume structure in Figure 2.4. 

One example is shown in Figure 2.5, where the part of potential energy function with α > 

117° is removed. The remaining piece exhibits a slice with a color map that corresponds 

to dimensionally reduced 2D potential energy surface V(R1, R2) with the bending angle 

fixed at α = 117°. Here, one can see a large gradient of potential, reflected by color 

change, with violet showing the minimum energy point of the covalent well. This slice is 

what is usually called the potential energy surface. Clearly, many features of the potential 

energy function discussed in the previous paragraph are missing if only this 2D slice is 

examined.  
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Figure 2.5. Slice through the covalent O3 well of the isoenergy volume structure from Figure 2.4. Gradient 

of potential in the well is reflected by the color change. The minimum energy point is seen. 

The shape of isoenergy volume for the potential energy function of O3 expressed 

in the valence coordinates V(R1, R2, α) is relatively easy to understand (Figures 2.4 and 

2.5) mainly because these coordinates are often used to represent the familiar molecular 

parameters, such as chemical bonds and bending angle. The isoenergy approach becomes 

even more useful in the cases when we have to deal with less intuitive coordinates such 

as hyperspherical coordinates discussed in the next section. 

2.7. Global potential of ozone in the hyperspherical coordinates 

Hyperspherical coordinates (ρ, θ, φ) have a number of advantages over other 

choices.59,60,74 The most important is, perhaps, the simplicity of the rotational–vibrational 

Hamiltonian operator,59,60 but this advanced topic is not covered here. Relevant to 
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visualization of the potential energy function V(ρ, θ, φ) is the ability of the hyperspherical 

coordinates to describe, on equal footing, different arrangements of atoms in a triatomic 

molecule and different dissociation channels, emphasizing molecular symmetry globally, 

through the entire physical range of molecular shapes.74 

For example, one must realize that the images of Figure 2.4 and Figure 2.5 

represent only a small part of the global potential energy function. When the values of 

bond lengths are increased even further, beyond R = 5.5 a0, the dissociation channels of 

ozone 17O16O18O onto 17O + 16O18O and 17O16O + 18O are observed. Furthermore, for the 

large-amplitude vibrational motion, the third dissociation channel, which gives 17O16O + 

18O, is also relevant as well as two ozone isomers (or isotopomers), 16O17O18O and 

16O18O17O, with isotopically substituted central atoms. The global potential energy 

function of O3 describes all of these features (three wells connected to three dissociation 

channels through six transition states), and the question of its visualization is not a trivial 

one. This problem is emphasized here. A more detailed description of hyperspherical 

coordinates can be found elsewhere.24,59,60,74 

Figure 2.6 illustrates the potential energy function of ozone molecule82,84,85 using 

the hyperspherical coordinates, V(ρ, θ, φ),24,59,60,74 and the isoenergy approach introduced 

in the previous section. The coordinates are assigned in a cylindrical style, with 

hyperradius ρ plotted along z and hyperangles θ and φ plotted in the (x, y) plane as shown 

in Figure 2.6. We can see that in the range of small ρ, the potential energy function 

exhibits three lobes that correspond to three possible isomers of O3. At large values of ρ, 

we see three tunnels that describe three possible channels of dissociation to O2 + O. The 

six bottlenecks (transition states) in the intermediate range of ρ interconnect all of these 
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features into a single volume structure in 3D. Thus, the overall structure is rather 

complex, which makes a good case for 3D printing (discussed in the next section). 

Clearly, a plane figure cannot express all aspects of this object. 

 

Figure 2.6. Global view of the isoenergy surface for O3 → O2 + O. Hyperspherical coordinates are used. 

Vmax is chosen at the quantum dissociation threshold of O3, which allows seeing the dissociation channels. 

The range is ρ < 15 a0. 

By analyzing Figure 2.6, it helps to keep in mind that hyperradius ρ reflects the 

overall size of a triatomic system, while hyperangles θ and φ determine its shape. For a 

triatomic molecule, for example, O3, the low-amplitude vibrational motion along ρ, θ, and 
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φ corresponds to three familiar normal modes: symmetric-stretching, bending, and 

asymmetric-stretching, respectively. At the same time, the large-amplitude motion along 

φ leads to isomerization (permutation of O atoms within O3), while the large-amplitude 

motion along ρ leads to dissociation of O3 onto O2 + O. As for numerical values of 

hyperspherical variables, it is useful to remember that θ = 0° corresponds to equilateral 

triangle configurations, and θ = 90° corresponds to collinear geometries; all isosceles 

triangle configurations are described by φ = 0°, 60°, 120°, etc. For example, in Figure 

2.6, the three equivalent minima are at ρ = 4.05 a0, θ = 51.3°, and φ = 60°, 180°, and 

300°. Three dissociation channels lead to ρ → ∞, θ → 90°, and φ → 0°, 120°, and 240°. 

The six bottlenecks (transition states) are at ρ = 5.63 a0, θ = 68.8°, and φ = ±26°, 

120°±26°, and 240°±26°. The reader is encouraged to try our desktop application,74 

written with a goal of facilitating the understanding of connection between the APH 

coordinates and molecular geometry. 

We stress one more time that no degrees of freedom are frozen or relaxed here. 

The surface is available for inspection in its full dimensionality. The only restriction is 

Vmax, but every chemical problem has some characteristic physical energy limit, so this 

cannot be regarded as a disadvantage. Quite opposite, this is an advantage that allows one 

to focus on chemically important parts of the potential energy function. For example, in 

Figures 2.4 - 2.6, the value of Vmax is chosen at quantum dissociation threshold of ozone 

that corresponds to O3 → O2 (v = 0) + O limit. This is equal to vibrational zero-point 

energy of O2, which is set to 787.380 cm-1.86 
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2.8. 3D printing of global potential energy 

With inexpensive 3D prototyping (or additive manufacturing), it is possible to 

create a plastic model of the potential energy function. The 3D printing of a 2D potential 

energy surface was proposed by Lolur and Dawes.87 For O3, they fixed the diatomic bond 

distance R1 and printed a 2D function V(R2,α) represented in a usual way, by a surface. 

We combined our isoenergy approach with 3D printing. 

We wrote a Matlab88 script to generate a stereolithography (STL) file ready to 

feed to a 3D printer. The script itself is rather short, about 20 lines, because there are free 

external functions available that make all the hard work automatic. Input for this script is 

a 1D potential energy data array of real numbers of the length L × M × N. Other inputs 

include the values of L, M, and N; the value of Vmax; and the names of input and output 

files. The script and examples of input and output files are provided as Supporting 

Information on Journal of Chemical Education website. 

When this script is executed, the input array is first transformed by the “reshape” 

function into a 3D grid of dimensions L × M × N. Next, a Matlab subroutine “isosurface” 

creates a triangulated surface by interpolation. After that, the routine “smoothpatch” is 

called to make the isosurface even smoother. Finally, the routine “stlwrite” writes the 

triangulated mesh (see Figure 2.7) to the STL file. All of the third-party functions, the 

stlwrite, smoothpatch, etc., are available on MathWorks website. 
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Figure 2.7. Triangulated mesh representing ozone isoenergy surface (the covalent well and the transition 

state region). 

The resultant plastic model of 3D potential energy function of ozone is shown in 

Figure 2.8. It looks identical to the computer model of Figure 2.6, except for the color. 

Unfortunately, the 3D printing facility at Marquette University had only one color 

available, white. The actual size of the plastic model is 2 × 2 × 4 in. The cost of a model 

of this size was initially estimated at $80; however, since very little time and material 

were actually spent, we were not charged anything. This is because such a model contains 

a lot of empty space and little occupied space due to Vmax. 
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Figure 2.8. Photo of the prototyped potential energy function of ozone on a desktop. Chemically important 

features are subscribed for clarity. 
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2.9. Teaching interatomic interactions and reaction dynamics 

using 3D-printed isoenergy model 

The plastic model of isosurface makes it straightforward to discuss various 

features of a complicated potential energy function (e.g., the one for ozone molecule) 

since all of them can be seen at the same time. For example, in Figure 2.8, one can easily 

discern a compact deep covalent well, a narrow transition state region, and a dissociation 

channel. A wide and shallow van der Waals interaction region is also indicated. 

Furthermore, the clear connection between these features allows easily visualization of 

many molecular processes. For example, one can talk about the ozone formation reaction, 

in which the reactant O + O2 enter through one of the channels, pass through the van der 

Waals region where the intermediate species O ··· O2 are formed,43 and then through the 

transition state, and end up in one of the covalent wells (see Figure 2.8), which 

correspond to formation of stable O3. Or, one can talk about the atom exchange process, 

in which the reagent O + O2 enter through one of the channels, passes through all the 

features discussed above, and exits in the other product channel (leading to A + BC → 

AB + C). Also, in the case of ozone, the plastic model emphasizes permutation symmetry 

of the potential energy function: one can see the presence of three energetically 

equivalent covalent wells, different only by atom permutations (ABC, BCA, and CAB), 

and three dissociation channels (A + BC, B + CA, and C + AB). Even such intricate 

processes as pseudorotational motion are easily represented by the plastic model. During 

pseudorotation in O3, the system moves from one covalent well to the next and the next, 

passing through transition states and the van der Waals regions between them. 
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The instructor can bring such plastic model (or models for several molecules) to 

the class and hand it out to students to take closer look during the discussion of potential 

energy functions, for example, the discussion outlined in the previous paragraph. This 

can be done simultaneously with projection of the 3D computer model of the structure on 

a screen. Even in the research we do on the ozone molecule,35,43,89 we found it very useful 

to have a plastic model on the desktop. It showed to be handy in optimizing a process of 

grid generation for numerical representation of vibrational wave functions and computing 

the action of Hamiltonian operator on such wave functions. 

2.10. Summary 

The APHDemo application has been developed to visualize the process of 

adiabatic-adjustment of the APH coordinates to the shape of a triatomic system during 

molecular vibrations or chemical reaction. It helps to understand physical meaning of the 

APH coordinates without going into complicated math, and emphasizes their advantages 

over Jacobi coordinates. Simply by dragging atoms with a mouse the user can go through 

all possible arrangements of three particles, tracking orientations of the vectors and 

reading values of the adjusting coordinates. This demonstrational application will be very 

helpful for those who decided to use APH coordinates in their research, particularly for 

graduate students and postdocs. We plan implementing this interactive tool at Marquette 

University in the computational chemistry graduate course, a part of curriculum for the 

Physical Chemistry and/or Chemical Physics programs. 

As for future prospects, this application can serve as a foundation for a software 

to visualize trajectories or wave functions in APH coordinates. Such software may help 
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plotting time-independent vibrational wave functions, or visualizing motion of a wave 

packet from time-dependent calculations, or even showing trajectories from classical 

calculations. Addition of these features will make our application even more useful for 

computational research on triatomic molecules, including spectroscopy and dynamics. In 

principle, this application should work on Linux under the free and open source Wine 

software.90 Such Linux version of APHDemo may also be developed in the future. 

Our approach to visualize the potential energy function is quite different from the 

commonly used, which offers additional opportunities in teaching and research. It makes 

use of the computer graphics and 3D prototyping and reaches the purpose of visualizing 

all features of the potential energy function for triatomic molecules in full dimensionality, 

without freezing or relaxing any degrees of freedom. This is achieved by employing the 

isoenergy approach. Here, we considered the ozone molecule, but our approach is general 

and can be used to visualize any potential energy function. Our MATLAB code, available 

through the Supporting Information on Journal of Chemical Education website, can be 

used by students and postdocs to produce a plastic isoenergy model of the potential 

energy function they develop. Application to any triatomic molecule is straightforward, 

and we plan to prototype the potential energy functions of SO2 and S3. 
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Chapter 3. Efficient method for calculation of bound and 

resonance states of ozone* 

3.1. Method background and overview 

In recent years, a significant progress has been made in accurate ab initio 

calculations of global potential energy surfaces for small molecules that span the widest 

range of molecular geometries and energies, going from deep covalent wells (that 

accommodate stable molecular arrangements) toward the asymptotic range where much 

weaker van der Waals (vdW) forces dominate (and lead to formation of the weakly bound 

complexes or clusters) and all the way up to the formation/reaction channels (that 

describe reagents and products), and even above. Examples include surfaces for 

isomerization reactions of small polyatomic molecules,91–93 for molecule-molecule 

interactions,94,95 and very accurate surfaces for several triatomic and tetra-atomic 

molecules.84,92 One example is a new and rather accurate potential energy surface (PES) 

of O3 that has already been used recently to improve our understanding of the O atom 

exchange processes O + O2 → O2 + O,96–99 and of the ozone forming recombination 

reaction100 

 O + O2   ⇔   O3
*  bath gas    O3.  

Quantum mechanical description of molecular dynamics on such global potential 

energy surfaces is a very challenging task, since a broad range of molecular geometries is 

involved that calls for very large grids or basis sets in multiple dimensions, which 

translates into large matrices and very significant (often unaffordable) numerical cost of 

                                                 
* Teplukhin A.; Babikov D., J. Chem. Phys., 145, 114106 (2016) 
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calculations. Relevant computational methodologies have been developed for molecular 

reaction dynamics in small polyatomic systems based on DVR techniques.55,61,101 Those 

methods are able to cover a wide range of molecular geometries from reagents to 

products, but are focused exclusively on construction of a state-to-state transition matrix 

in the asymptotic region, bypassing calculations of the individual quantized states and 

their wave functions through the interaction region. In principle, such states and their 

wave functions could be determined using the FBR methods developed for calculations 

of bound rotational-vibrational states of the molecules,62,102,103 but those methods become 

prohibitively expensive near the dissociation/reaction threshold where the PES “opens 

up” toward the entrance/exit channels. Therefore, a class of molecular dynamics 

problems that requires determination of energies and wave functions of ro-vibrational 

states close to dissociation threshold (and scattering resonances above it) represents a 

significant challenge. 

One example of this sort is the above-mentioned recombination reaction that 

forms ozone. The process starts at energies above the dissociation threshold, where the 

thermal collisions of O and O2 populate scattering resonances O3
*. Those represent highly 

excited ro-vibrational states of O3 and should be characterized by their energies, widths, 

and wave functions that determine the rates of their population, spontaneous decay, and 

quenching (by bath gas collisions) onto the bound states of O3 somewhat below 

dissociation threshold. In order to treat these processes, we devised a method that 

combines some elements typical to the quantum reactive-dynamics calculations, with 

some other elements more typical to the multi-dimensional bound-states calculations. The 
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resultant approach is efficient and fills the gap in computational methodology discussed 

above. 

Namely, for description of vibrational motion in O3 our approach employs the 

adiabatically adjusting principal axis hyper-spherical coordinates60,74 that contain only 

one dissociative degree of freedom (hyperradius ρ) and two bound-like degrees of 

freedom (hyperangles θ and φ). In order to reproduce efficiently the delocalized wave 

functions at energies near dissociation threshold, we combine the sequential 

diagonalization-truncation procedure to construct FBR in θ and φ with a variable-step 

DVR grid along ρ, optimized based on the value of local de Broglie wavelength, that 

adjusts to the shape of the PES. Widths of resonances are obtained by introducing a 

complex absorbing potential along ρ in the asymptotic part of the PES. Symmetry of O3 

states is described by the coordinate φ, and is used to further simplify the calculations. 

As Chapter 5 will show, the method was successfully applied to compute energies 

and widths of relevant scattering resonances O3
* for rotationally excited ozone molecules 

up to 60J  and, based on those data, we derived the recombination rate coefficient for 

ozone formation, as well as its temperature and pressure dependencies. Good comparison 

with the available experimental data was obtained. In current (more methodological) 

chapter all details of our approach are presented, since it is general and can be readily 

applied to several other important triatomic molecules, such as S3,
104,105  SO2,

106 NO2,
107 

and CO2.
108 In order to conduct a rigorous benchmark study, we compute the spectrum of 

vibrational states in O3 up to dissociation threshold using two different potential energy 

surfaces and compare our results against results available in the literature, computed by 

other groups for non-rotating molecule, 0J  . Then, we focus on an energy window of 
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600 cm-1 just below the threshold, since that this part of the vibrational spectrum plays 

the most important role in the recombination process that forms ozone, see Chapter 5. 

Properties of these highly excited and delocalized vibrational states are explored and 

reported in great detail, including analysis of three-dimensional wave functions and their 

assignments. 

3.2. Theory 

3.2.1. Hamiltonian operator in hyperspherical coordinates 

As initially derived by Johnson,109 the total rotational vibrational Hamiltonian 

operator for a triatomic system in hyper-spherical coordinates can be written in the form 

of Ĥ = T̂vib + V̂rot + T̂cor + V̂pot, where the following notations are introduced: 
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Here T̂vib is the kinetic energy operator for vibrational coordinates ρ, θ and φ, 

while V̂pot = Vpot (ρ, θ, φ) stands for the potential energy surface, V̂rot represents 

centrifugal energy due to the overall rotation of the system, T̂cor is the rotation-vibration 

(Coriolis) coupling term. Usual Euler angles α, β and γ are used to describe rotational 

motion of the molecule. The body-fixed reference frame is defined by three principal 

axes of inertia, with axis z chosen according to Pack: it is a symmetry axis of an 



51 

 

associated prolate symmetric-top, which minimizes couplings between different 

components of total angular momentum.60 The overall volume element is d6υ = 1/8 ρ5 

sinθ cosθ sinβ dρ dθ dφ dα dβ dγ. Since the normalized Wigner functions are used for 

expansion of the rotational wave function, ( , , )J

KMD    2(2 1) / 8 ( , , )J

KMJ D      , 

analytic integration over the rotational degrees of freedom leads to the volume element 

d6υ = 1/8 ρ5 sinθ cosθ dρ dθ dφ. 

In this or very similar forms, the hyperspherical coordinates have been employed 

over the years by several groups, due to simplicity of the kinetic energy operator and ro-

vibrational decoupling, and also due to convenience of describing molecular symmetry 

when identical atoms are involved. Most notable contributions were made by Parker, 

Pack and their co-workers,60,61 by Kuppermann110 and coworkers, more recently by 

Kendrick and co-workers,24,62,103 by Kokoouline and Greene,53,63,111 and also by several 

other independent followers.66,112,113 The applications include both the reactive-scattering 

processes60,61,103 and the bound-state calculations.24,62,66,112,113 

In the past, several users made slight modifications to these hyper-spherical 

coordinates, in order to make them more suitable for their particular applications. 

Examples can be found in the work of Johnson,109 Whitnell and Light,114 Parker and 

Pack,60 and Kendrick et al.24,103 Some of those proposed transformations were intended to 

simplify the kinetic energy operator over ρ, others to deal with singularity over θ, or to 

enforce the desired symmetry properties over φ. Our goal was to obtain the simplest 

possible form of the kinetic energy operator with the simplest volume element. We found 

that this can be achieved by the following transformation of the “old” vibrational wave 

function, say  (ρ, θ, φ), to its new form Ψ(ρ, θ, φ), as follows: 
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 5/2 1/21
4( , , ) sin (2 ) ( , , )          . (3.4)  

Then, the Hamiltonian operator acting onto this transformed wave function can be written 

as Ĥ = T̂vib + V̂rot + T̂cor + V̂pot + V̂ext where, instead of Eq. (3.1), new expression is 

obtained for the vibrational kinetic energy operator: 
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and a new potential-like “extra” term is introduced:  
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We see that now the kinetic energy operator has the simplest form, with only three 

second derivatives along each ρ, θ and φ. If the wave function is defined on a 3D-grid of 

points (direct-product DVR), the kinetic energy operator along each coordinate is trivially 

applied by Fourier-transforming the wave function to momentum representation, 

multiplying each point of it by P2/2μ, and Fourier-transforming it back to the coordinate 

representation (see, for example, Ref. 35). The additional potential term Vext of Eq. (3.6)  

is simply added to the potential energy surface Vpot(ρ, θ, φ) and does not require any extra 

effort, since the potential energy operator is diagonal in the DVR representation. 

Furthermore, the volume element is now trivial: d3υ = dρ dθ dφ. 

Interestingly, that while this work was in progress, we learned that we were not 

the first to discover this way of simplifying the hyperspherical Hamiltonian operator. We 

found that this transformation was already discussed by Billing, in his book on the 

approximate quantum classical theory,115 but was not applied to any real system. 



53 

 

3.2.2. Angular momentum decoupling approximation 

In hyperspherical coordinates the coupling between vibrational and rotational 

coordinates (the Coriolis coupling) is described by one cross-term in the Hamiltonian 

operator, T̂cor, Eq. (3.3), which contains both the rotational operator Ĵy and the vibrational 

operator ∂/∂φ. If needed, the action of this term onto wave function Ψ(ρ, θ, φ) can be 

rigorously evaluated.60 Typically, the value of Coriolis coupling is small, but it leads to 

linear growth of the Hamiltonian matrix size for J > 0, and quadratic growth of the 

numerical effort. For this reason, it is practical (and is often justified) to neglect this 

cross-term. Parker and Pack named this simplification the centrifugal-sudden 

approximation.60 It is equivalent to the symmetric-top rotor assumption, also known as K-

conserving approximation, since Hamiltonian operator of the symmetric top rotor does 

not have such cross-term, and since projection K of angular momentum J onto symmetry 

axis of the rotor is conserved, making K a good quantum number. 

Using this symmetric-top model, the Hamiltonian operator takes the simplest 

form Ĥ = T̂vib + V, where all the potential terms are combined: V = Vpot + Vsym + Vext, and 

the approximate centrifugal potential is given by: 

 
2 2 2( 1) ( )symV A J J C A K    . (3.7)  

Here A  and C are rotational constants of a symmetric top, with A  being the approximate 

one, computed as average of two smaller rotational constants, A and B, of an asymmetric 

top: A = (A + B) / 2. Exact instantaneous values of the rotational constants in the hyper-

spherical coordinates, according to Eq. (3.3), are defined as: A-1 = μρ2(1+sinθ), B-1 = 

2μρ2sin2θ  and C-1 = μρ2(1−sin2θ). Note that the centrifugal potential of Eq. (3.7) is 

obtained from the exact expression of Eq. (3.3) by neglecting a piece that corresponds to 
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the asymmetric-top rotor centrifugal potential: Vasym = (Ĵx
2 − Ĵy

2)(A − B) / 2. As it was 

emphasized by Parker and Pack60 this simplification, together with neglect of the Coriolis 

coupling term, constitute one single approximation, since both neglects are required in 

order to decouple the rotational and vibrational motions completely, in the hyper-

spherical coordinates. Also, these rotational constants are those of a so-called fluid rotor, 

because the expression for B constant of rigid rotor does not contain sin2θ.60  

For example, for an ozone molecule in its equilibrium configuration the values of 

rotational constants are Aℏ2 = 0.45 cm-1, Bℏ2 = 0.66 cm-1 and Cℏ2 = 3.56 cm-1, which 

makes it very close to a prolate symmetric-top rotor. For this reason, the K-conserving 

approximation has been used in the past in several studies of ozone spectra and 

dynamics,35,89 and was also adopted in Chapter 5. Within this approximation, calculations 

of vibrational states are carried out independently for different values of K, such that K < 

J, for each J > 0. In our study of recombination kinetics, see Chapter 5, we showed that 

significant contributions to the rate of ozone formation are made by states with moderate 

rotational excitations, in the range 8 ≤ J ≤ 38, where this approximation is still expected 

to work reasonably well. The contribution of states with J > 40 was found to be small. 

In the dissociation limit, when ρ → ∞ and θ → π / 2, the rotational constants A, B, 

and A  vanish, while C-1 → 2μO2r
2sin2Θ, showing dependence on the reduced mass of O2 

and Jacobi coordinates r and Θ. For T-shape configuration Θ = π / 2 and the equilibrium 

distance r = re = 2.282 a0, the value of C approaches the rotational constant of O2, which 

is 1.44 cm-1. 

It should be stressed that in the hyperspherical coordinates, also called 

adiabatically adjusting principal-axis hyper-spherical (APH) coordinates, symmetry axis 
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of the approximate symmetric-top rotor is always the principal-axis of inertia a (pointing 

along vector Q as defined by Parker and Pack60) for any instantaneous molecular 

configuration,27,116 and K is always a projection of J onto this axis, K = Ka. This choice 

minimizes Coriolis coupling116 and makes the symmetric-top rotor approximation most 

accurate.117 Note, however, that this is not automatically the case in other coordinates. 

For example, using Jacobi coordinates with R-embedding,116 K is a projection of J onto 

the Jacobi vector R, and the values of rotational constants A, B, and C are defined relative 

to R. Although R becomes close to the principal-axis of inertia a in the asymptotic range 

(as R → ∞), it should be realized that R deviates from a quite substantially when 

molecular geometry is close to the equilibrium configuration, making Coriolis coupling 

significant. One known way to fix this problem is to use the adiabatic-rotation (AR) 

approximation of Bowman,117 that expresses rotational energy through the principal axis 

of inertia, rather than Jacobi vectors. 

3.2.3. Direct-product basis set 

In quantum mechanics, two most frequently used mathematical representations of 

wave function are the finite basis representation (FBR) and the discrete variable 

representation (DVR).118 In the FBR, wave function for the ith state is expanded over a 

basis set Φn(x), 1 ≤ n ≤ N: 
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In the DVR, in contrast, a wave function is numerically approximated by a set of 

values at the points xn of the grid 
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Despite this difference, DVR can be thought of as a special case of FBR, where 

basis functions fn(x) are localized at the points of the grid 
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Now consider a two-dimensional problem, with Hamiltonian operator Ĥ = T̂x + T̂y 

+V(x,y) and wave function represented as a direct product (of DVR or FBR) basis 

function for each dimension 

 
( ) ( )

1 1

( , ) ( ) ( )
N M

i i

nm n m

n m

x y a x y
 

    . (3.12)  

This representation has S = N × M two-dimensional basis functions and the same number 

of expansion coefficients ( )i

nma . Size of the Hamiltonian matrix is S × S. Structurally, it 

consists of N2 square blocks (x-blocks) labeled by n. Each block contains M × M elements 

(y-elements). 

The advantage of this direct-product approach is simplicity: the same basis set Λm 

(y) for the coordinate y is used through the entire range of the coordinate x. Consequently, 

the same M × M matrix elements of the operator T̂y are replicated over the entire matrix, 

in each x-block (see Figure 3.1, left panel): 

 , , , ,
ˆ ˆ ˆ( ) ( )nm n m m m x nn n n y mm nm n mH nm H n m T T V        

     . (3.13)  
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Figure 3.1. Structure of Hamiltonian matrices constructed using the direct-product basis (left panel) and the 

sequential diagonalization-truncation approach (right panel). All elements of blue blocks are non-zero, 

while white blocks are already diagonal, with non-zero elements shown by the blue stripe. Note that all 

blocks of the first matrix have the same size and are squared, while all blocks of the second matrix are 

different and are smaller, Mn ≤ M, which results in a much smaller matrix size. 

The disadvantage of the direct-product approach is the large size of the basis set. Indeed, 

since exactly the same basis set Λm (y) is going to be used at all (different) values of the 

coordinate x, this basis set must be globally good, which in practice means rather large. A 

similar consideration applies to the basis set Φn(x), to be employed at all values of 

coordinate y. Thus, both N and M are expected to be large numbers, leading, in turn, to a 

large size of the resultant Hamiltonian matrix, which also increases rapidly with the 

addition of new coordinates. Namely, for a three-dimensional problem the size of the 

Hamiltonian matrix constructed using the direct-product FBR would be S = N × M × L, 

with L representing the number of basis functions for coordinate z (also large). 

For example, we tried the direct-product DVR in hyperspherical coordinates ρ, θ 

and φ to compute vibrational states of ozone. We found that for the states localized in the 

main (covalent) well of ozone (not quite up to dissociation limit, just up to the van der 
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Walls plateau, see below), a grid of 64 × 64 × 64 equidistant points is sufficient for 

reasonably accurate results. This corresponds to the direct-product matrix size of almost S 

= 3·105. But, such grid only covers a limited range of the hyperradius, 3.3 ≤ ρ ≤ 6.0 a0. 

Expanding this grid up to ρmax = 15.0 a0 (needed for calculations of all the bound 

states, including delocalized van der Waals states) would require N = 280 points along ρ, 

assuming the same step-size. This would lead to the matrix size of more than S = 106. 

Moreover, it appears that in the asymptotic range of the hyperradius the PES is very tight, 

which requires a much denser grid, compared to the covalent well. For example, we 

found that around ρmax = 15.0 a0 we need around M = 280 points for θ and L = 400 points 

for φ. Since the direct-product grid must be the same everywhere, one should use the 280 

× 280 × 400 grid, with the matrix size on the order of S = 3·107, which is computationally 

unaffordable.  

3.2.4. Sequential diagonalization-truncation 

The problems described above can be largely reduced by avoiding one universal 

basis set, and, instead, using different basis sets in different parts of the configuration 

space. Those could be optimized and made much smaller, locally, in order to reduce the 

size of the overall Hamiltonian matrix. In the literature this idea is called the sequential 

diagonalization truncation technique.119–121 It is readily integrated into the hyperspherical 

coordinates using an efficient combined DVR/FBR approach, as described below. 

Since the vibrational operator T̂vib of the Hamiltonian can be naturally split onto 

two parts, Ĥ = T̂ρ + T̂θφ +V(ρ, θ, φ), where  
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It is possible to formulate and solve, first, a two-dimensional eigenvalue problem for the 

hyperangles θ and φ, at different values of the hyperradius ρ, keeping it fixed. For 

example, at ρ = ρn the two-dimensional Hamiltonian operator is ĥn = T̂θφ + Vn(θ, φ) and 

the corresponding Schrödinger equation is 

Here Vn(θ, φ) = Vn(θ, φ; ρn) represents a two-dimensional slice through θ and φ of the 

potential energy surface at ρ = ρn. Numerical solution of this equation gives a set of two 

dimensional eigenfunctions ( , )n

m    and a spectrum of the corresponding eigenvalues 

n

m , labelled by index m, for each considered ρn. Note that since hyperangles θ and φ are 

“bound-like” degrees of freedom, the corresponding two dimensional slices Vn(θ, φ) of 

the PES are always localized to a relatively small range in the (θ, φ)-space, as illustrated 

by Figure 3.2 (upper frames). Thus, the eigenvalue problem is well defined and is 

relatively easy to solve. The corresponding eigenfunctions ( , )n

m    and eigenvalues n

m  

are always real valued, even at high energies (above dissociation threshold) and at large ρ 

(in the asymptotic region). To illustrate this, we presented in Figure 3.2 five lowest-

energy eigenfunctions ( , )n

m    for three representative values of ρ. 

 ˆ ( , ) ( , )n n n

n m m mh        . (3.15)  
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Figure 3.2. Top row gives three representative two-dimensional slices Vn(θ, φ) of the PES: through the deep 

covalent well, through the transition region, and through the vdW plateau. The ranges of θ and φ are 

indicated in the upper left frame. Under each slice, the corresponding two-dimensional local basis set Λn(θ, 

φ)  is presented (five lower energy functions). Positive and negative lobes of wave functions are shown in 

red and blue, respectively. Their nodal structure reveals excitations of the normal or local vibration modes 

and changes significantly between the slices, following the PES shape. Since potential is symmetric with 

respect to hyperangle φ, the computed wave functions are either symmetric (A1) or anti-symmetric (A2). 

Furthermore, Figure 3.3 shows energy eigenvalues n

m  as a function of slice number n 

along ρ. Each vertical “column” of points represents the energy spectrum of the two-

dimensional Hamiltonian operator ĥn for one slice. The minimum-energy path along ρ is 

also shown in Figure 3.3 (by red line), which reflects the shape of the PES and makes the 

local zero-point energy 0

n  evident. The density of points in a given slice reflects 

properties of potential energy surface Vn(θ, φ)  at ρn. For example, in the slice n = 33 the 

spectrum is sparser than in its vicinity, which corresponds to higher frequency, consistent 
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with tight transition state in this slice. Slice n = 17 passes through the minimum of the 

covalent well, De = 9275 cm-1 relative to the bottom of the dissociation channel, that 

corresponds to classical dissociation limit. Finally, slice n = 64 (last slice in Figure 3.3) 

passes though the dissociation channel of the PES. Here we can see that quantum 

threshold is 794.51 cm-1 above the classical dissociation limit, which corresponds to zero-

point of 16O2 in the state v = 0 and j = 1. Asymptotic form of ( , )n

m   , as ρ → ∞, is 

discussed in Appendix A. 

 

Figure 3.3. Energies εm
n of two-dimensional eigenstates (black points) computed independently for each 

slice through the PES and plotted together as a function of slice number n. Only energies of A1 states are 

shown, energies of A2 states look similar. The minimum energy path for the PES is also shown for 

comparison (red line). Local vibrational zero-point energy is easily identified in each slice, as a distance 

between the lowest energy ε0
n and the minimum energy path. Asymptotically (to the right) the 2D-spectrum 

εm
n turns into the ro-vibrational spectrum of the diatomic fragment O2. Dissociation threshold (green line) 

includes ZPE of O2. 
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The two-dimensional solutions ( , )n

m    will be employed as locally optimal 

basis functions (at the next step, see below). Note that although the eigenstates ( , )n

m    

for a given ρn form an orthonormal set, the functions determined at different slices, say 

( , )n

m   , 1 ≤ m ≤ Mn and ( , )n

m  

 , 1 ≤ m' ≤ Mn' are not mutually orthogonal. In this 

case one can define the overlap matrix60,122,123  

 ,

n n

nm n m m mO d d 


     . (3.16)  

The size of this matrix is S × S, where 
1

N

n

n

S M


  is the total number of two-dimensional 

functions determined and employed for the range of ρ. Structurally, the overlap matrix O 

contains N2 blocks (ρ-blocks). Only the diagonal blocks are squared, Mn × Mn, and, by 

construction, are the identity matrixes. The off-diagonal blocks of the overlap matrix are 

rectangular, with dimensions Mn × Mn'. They contain couplings between different values 

of ρ. 

The second step is to combine the local FBRs in θ and φ, with the DVR in ρ, by 

expressing the overall three-dimensional wave function as: 

 
( ) ( )

1 1

( , , ) ( ) ( , )
nMN

i i n

nm n m

n m

a f     
 

    (3.17)  

Importantly, size Mn of the local basis set ( , )n

m   , 1 ≤ m ≤ Mn, does not have to be the 

same for different values of ρ. Typically, it is minimal at ρ → 0 (just a few functions in 

the repulsive region), is largest for the intermediate values of ρ (around 100 functions in 

the covalent well region), and is again small asymptotically as ρ → ∞ (about a dozen 

functions in the channel region). In this representation, matrix elements of the total 

Hamiltonian operator Ĥ are computed as follows: 
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     (3.18)  

Here (T̂ρ)n,n' is a square matrix, N × N, of the kinetic energy operator in ρ, 

 
2 2

2
ˆ

2
T

 


 


, (3.19)  

in the DVR basis (a grid of N points ρn). Equation (3.18) shows that the overall 

Hamiltonian matrix Hnm,n'm'  is easily constructed from the overlap matrix Onm,n'm'  by 

multiplying each its ρ-block by the corresponding element of the matrix (T̂ρ)n,n', and then 

adding to each diagonal element the corresponding value of two-dimensional energy n

m . 

It is quite interesting that the PES V(ρ, θ, φ) does not show up in the final Eq. (3.18). All 

information about it, as well as the extra potential term Vext and the rotational term Vsym, 

have already been encoded into the two-dimensional eigenvalues n

m  and the overlap 

matrix Onm,n'm'  of two-dimensional eigenfunctions ( , )n

m   . 

The size of the Hamiltonian matrix is the same as that of the overlap matrix: S × 

S, where 
1

N

n

n

S M


 . In practice, this means a significant reduction compared to the 

direct-product DVR in 3D. Local basis set ( , )n

m    at each ρn can be truncated based on 

a physical value of maximum energy in the problem, which gives one convenient 

convergence parameter for the entire problem: n

m  ≤ Ecut. In the ozone example 

considered in Sec. 3.2.3 above, where the covalent well is ~104 cm-1 deep, we found that 

Ecut = 7250 cm-1 above dissociation limit is sufficient to obtain reliable results for all 

bound states below dissociation threshold, and also for scattering resonances at energies 
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up to 1000 cm-1 above dissociation threshold. This seemingly large value of Ecut truncates 

basis sets down to only Mn = 20 functions in the asymptotic range of ρ, and around Mn = 

200 functions in the covalent well region (see Figure 3.3). At small ρ, in the repulsive 

range where all n

m  are above Ecut, we still keep 20 eigenvectors in the basis (10 of each 

symmetry, see below) as it was recommended by Carrington.119–121 

A further increase in speed is obtained using symmetry of the vibrational states, as 

determined by the hyperangle φ. For this, after the two-dimensional eigenfunctions 

( , )n

m    have been computed, they should be analyzed and labeled as symmetric (A1) or 

anti-symmetric (A2) with respect to φ. Since those have no net overlap (due to 

cancellation of the integral), one can split each local basis set onto two separate basis sets 

of given symmetry: A1 and A2. Each is used independently, according to Eqs. (3.16–

3.18), which reduces the size of Hamiltonian matrix even further, roughly by a factor of 

two, and produces three-dimensional solutions of different symmetries through two 

independent calculations. 

This approach (in conjunction with optimized grid DVR for ρ, see Sec. 3.2.5) 

leads to the total basis and matrix size of only S = 7 · 103, for each symmetry. Recall that 

this is instead of the direct-product matrix with the size around 107 (see example in Sec. 

3.2.3 above). Such a significant matrix reduction, by three orders of magnitude, is very 

appealing since the numerical cost of diagonalization algorithms scales as S2 or S3. 

It is also instructive to mention the possibility of an adiabatic approximation, 

where the off-diagonal blocks of the overlap matrix Onm,n'm' are all neglected. This would 

lead, in the three-dimensional problem, to the Hamiltonian matrix that is automatically 

diagonal 
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 , , , , , ,
ˆ( ) n

nm n m m m n n n n m m n n mH T            . (3.20)  

Here, the diagonal elements of the kinetic energy operator in ρ are simply added to the 

values of two-dimensional energies in θ and φ. While useful in some cases, this 

approximation is expected to be rather rough in general. However, it should be 

recognized that a reasonably accurate approximation can be devised by neglecting not all, 

but some blocks of the overlap matrix. For example, those blocks that correspond to the 

values of ρn  and ρn' that are far apart may show negligible overlap anyway, and can be 

safely neglected. 

The reason for efficiency of the sequential diagonalization-truncation approach 

discussed above is that each local basis set ( , )n

m    can be chosen relatively small, 

simply because its functions are perfectly suited to describe behavior of the overall wave-

function near ρn. This is because ( , )n

m    are the local eigenfunctions, i.e., the best-

possible functions, rather than some universal polynomials, or grids. Note, however, that 

this optimization concerns representation of a wave-function along θ and φ only, but not 

yet along ρ. Optimization of the grid f(ρn) along ρ is discussed next. 

3.2.5. Optimized grid DVR 

Grid representation, or DVR, is a good choice for coordinate ρ, because this is a 

dissociative degree of freedom. When energy is high, the spectrum of states is 

continuous. Scattering resonances are important, that dissociate, exhibiting wave 

functions that expand far into the channels of the PES. In this regime, the grid should 

expand to large values of ρ, but it does not have to be equally dense everywhere. It is 

clear physically that the grid should be denser over the deep covalent well, where the 
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wave-function oscillates rapidly. However, in the asymptotic range of large ρ, where the 

dissociation channels are shallow, wave function does not oscillate much (e.g., see Figure 

3.9 below), and the grid does not have to be that dense. 

Using this idea, the density of grid f(ρn)  along ρ can be optimized, locally, using 

the local value of de Broigle wavelength: max min( ) 2 [ ( )]E E      . Here Emax is a 

constant number, one characteristic maximum energy of the problem. We recommend 

Emax ≈ 2kT at room temperature. In contrast, Emin is a variable of ρ, and is a local 

minimum possible energy of the system. In one-dimensional problems (diatomic 

molecules) this is simply the value of the PES, e.g., Emin = V(r).124 In the multi-

dimensional problems one can define the envelope potential for each coordinate, e.g., 

Emin = Venv(r), for example, by computing the minimum energy path along ρ. But this 

method does not take into account local zero-point energy of the system that, in principle, 

can change significantly along the reaction coordinate. We realized that it is the best to 

define minimum energy as the ground state energy of the local two-dimensional 

eigenstates n

m , which reflects the minimum energy path along ρ, but also takes the local 

zero-point energy into account (see Figure 3.3). So, we use Emin(ρ) = ε0(ρ). In practice, it 

is constructed as a spline of the lowest energy values 0

n  determined on a trial grid of 

points ρn (that can be uniform and rather sparse everywhere). 

Using the local de Broglie wavelength λ(ρ), the local step-size for the variable 

grid is defined as35  

 ( ) J         . (3.21)  

In this formulation, sometimes called grid mapping,124,125 the equidistant (working) grid 

ξn with Δξ = 1 is defined along the auxiliary unit-less coordinate ξ. The Jacobian of 
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transformation is J(ρ) = αλ(ρ), where α is a constant compression factor (α < 1 is used to 

make the grid denser than the minimal requirement α = 1). In order to generate the 

optimal grid ρn, the differential equation dρ / dξ = J(ρ) is solved numerically (e.g., by 4th-

order Runge-Kutta method) with boundary condition ρ = ρmin at ξ = 0, to determine the 

values of ρn at the points ξn. As it is often done, we place grid points in the middle of 

intervals, so, ξ1 = 0.5 and ρ1 is slightly larger than ρmin. Figure 3.4 gives example of such 

variable-step grid. One can see that the density of points is much lower in the range of 

shallow van der Waals (vdW) plateau, and in the dissociation channel, compared to the 

region of deep covalent well. Grid density changes smoothly through the range of ρ. In 

the final calculations, we used a denser grid, generated using α = 0.5. 

 

Figure 3.4. Variable-step grid generated for the dissociative coordinate ρ (black points). The grid is dense 

in the covalent well, is sparser in the vdW plateau region, and is even sparser in the asymptotic range. The 

ground state value of local 2D energy ε0(ρ), used to generate this grid, is also shown (red line). The 

complex absorbing potential Vcap(ρ) is shown in the asymptotic region (blue line). 
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In fact, the physical optimized grid is only used for plotting the wave function 

(e.g. see Figure 3.6 below), for all other purposes the working grid ξn. is used. For 

example, applying the kinetic energy operator in ρ is done using the equidistant grid ξn, 

rather than a variable step-size grid ρn. The change of variable is taken into account using 

the Jacobian of transformation J(ξ), not to confuse with total angular momentum 

 

2 1 1ˆ
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J J
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  
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. (3.22)  

In order to keep the operator Hermitian and the matrix symmetric, a new wave function is 

introduced, with its corresponding operator 

 ( ) ( ) ( )J     , (3.23)  
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3.2.6. Calculations of resonance widths 

Widths of scattering resonances, reported in Chapter 5, were computed by 

introducing into the range of large ρ values the complex absorbing potential in the 

analytic form suggested by Balint-Kurti, 

 ( ) expcap

c

W
V iA

 

 
   

 
, (3.25)  

with a set of parameters determined in our earlier paper:35 A = 104 cm-1, = 10.5 a0 and W 

= 6.5 a0. It is important to realize that  Vcap(ρ) depends on the value of hyperradius ρ only, 

and does not change through the two dimensional slice over θ and φ, which means that it 

does not affect two-dimensional solutions ( , )n

m    and the overlap matrix Onm,n'm', 
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besides a constant shift Vcap(ρn) = Vcap
n. So, introduction of the complex potential only 

affects the last step of our method, by changing the Hamiltonian matrix:  

 , , , , , cap
ˆ( ) ( ).n n

nm n m nm n m n n m m n n mH O T V              (3.26)  

This matrix has the same size S as in the real-valued case of Eq. (3.18), but it is non-

Hermitian and exhibits complex eigenvalues E – iΓ/2. Note, however, that the two-

dimensional solutions ( , )n

m    stay real functions in this formalism; complexity comes 

solely from the third dimension of the problem – the dissociative coordinate ρ. 

Distribution of resonance energies E and widths Γ for calculations with 0 < J < 60, K < J, 

and their role in the recombination process that forms O3 will be discussed in detail in 

Chapter 5. 

3.2.7. Notes 

The approach we devised here has several things in common with previous 

studies where the hyperspherical coordinates were employed. For example, it resembles 

the methods of Pack,60,61 Kendrick,24,62,103 and Kokoouline and Greene53,63,111 in what 

concerns the consecutive treatment of, first, the hyperangular degrees of freedom (θ, φ), 

and then, of the hyperradius ρ. However, the standard approach is to use the coupled-

channel (scattering) formalism for the hyperradial coordinate, while we solve the 

eigenvalue problem. Typically, the goal of scattering calculations is to obtain the state-to-

state transition matrix (e.g., for O + O2 collisions), while our approach is better suited for 

calculations of the bound states and scattering resonances in O3, using the complex 

absorbing potential. Traditionally, the CAP is used in conjunction with Jacobi 

coordinates, where a separate CAP has to be placed and tuned in each dissociation 
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channel. In contrast, in the hyperspherical coordinates a single CAP defined along the 

hyperradius ρ takes care of all dissociative parts of the wave function, in all three 

channels. On the other hand, our formalism relies heavily on the idea of sequential 

diagonalization truncation proposed by Bačić and Light,119–121 but this technique is 

normally applied to other types of coordinates (such as Jacobi), not the hyperspherical 

coordinates. Finally, we use the adaptive grid along the hyperradius ρ, and combine the 

DVR along ρ, with the FBR for (θ, φ), which is both practically convenient and 

numerically efficient. 

We would like to note that during the editorial process, when this chapter was 

submitted for publication in Journal of Chemical Physics, it was brought to our attention 

that a very similar approach was recently developed by Kokoouline and co-

workers.67,123,126,127 They also use DVR in the hyperspherical coordinates, and solve the 

complex-eigenvalue problem using the CAP. They use the abbreviation SVD for their 

method, which stands for slow variable discretization (meaning the hyperradius ρ). Many 

components of our method are, indeed, the same. One methodological feature that we 

use, and they do not, is the sequential diagonalization-truncation technique, which makes 

calculations very efficient. 

On the technical side we want to note that matrix diagonalizations were done in 

parallel using ScaLapack.128 The kinetic energy operator is applied using FFT, which 

corresponds to periodic behavior for φ (Neumann boundary conditions), consistent with 

symmetries A1 and A2. For θ and ρ wave function vanishes at the ends of the grid, due to 

high potential energy. Two-dimensional eigenfunctions ( , )n

m    were obtained in two 

steps, using the same sequential diagonalization-truncation approach. Namely, we start 
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with a 1D DVR in φ, which can be very dense, 400 points in the range 2π / 3 ≤ φ ≤ 4π / 3, 

but causes no issues since 1D solutions are computationally cheap. Those are determined 

for each value of θ on the grid (280 points through 0.43 ≤ θ ≤ π / 2), and for each ρ slice 

(86 optimally spaced points in the range 3.3 ≤ ρ ≤ 15.0 a0). Those are truncated using Ecut 

(same value as reported above) retaining between 3 and 30 functions (of one symmetry), 

depending on the values of θ and ρ. These locally optimal and truncated 1D basis sets are 

used to set up the Hamiltonian matrix for 2D problem in θ and φ, diagonalization of 

which gives ( , )n

m   . Since 1D and 2D calculations are (typically) very fast, we use 

simple equidistant grids, but in principle, grid optimization in θ and φ can also be 

implemented, similar to what was done for ρ. Further fine-tuning can be done by 

adjusting the ranges of the grids in θ and φ, and the grid density, individually for different 

slices in ρ. Figure 3.2 clearly shows that the grids in θ and φ do not have to be the same at 

different values of ρ. 

We conducted careful convergence studies making sure that the values of energies 

for scattering resonances in the window 400 cm-1 above dissociation threshold are 

obtained with accuracy better than 1 cm-1 (energies of the bound states are converged 

better than this). To summarize, our convergence parameters, all tested individually, 

include the number of points for DVR in φ, the number of points for DVR in θ, the 

density of optimized grid in ρ determined by Emax and α, the extend of the grid [ρmin, 

ρmax], and the value of energy cutoff Ecut (used for truncation of 1D FBR basis in φ during 

solution of the 2D-problem, and for truncation of 2D FBR basis in hyperangles during 

solution of the 3D-problem). The final values of these parameters were given throughout 

the text above, and will not be repeated again here. Note that this procedure bypasses a 
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common convergence studies of 2D energies n

m , since only the final values of 3D 

energies matter. For scattering resonances, discussed in detail in the next chapter, we also 

checked the effect of absorbing potential (position, width and steepness) on resonance 

lifetimes, making sure that convergence of the recombination rate coefficient, determined 

by these lifetimes, is close to 5%. 

3.3. Results and discussion 

As mentioned above, application of our method to calculations of scattering 

resonances above dissociation threshold for a broad range of rotational excitations (0 < J 

< 60) is reported in the Chapter 5. Here, as a benchmark study of our method and new 

code, we compute the bound vibrational states of 16O16O16O up to dissociation threshold 

for J = 0 and compare our results against results of another recently published paper,129 

where the standard approach (based on Jacobi coordinates) and a well-tested code were 

employed by another group. In the past similar calculations were carried out by several 

independent groups51,52,130 using the older surface of ozone. The focus here is on the 

upper part of the spectrum, within 600 cm-1 below dissociation threshold, because we 

found that these vibrational states (bound in the J = 0 case) become scattering resonances 

when the rotational excitation J > 0  lifts them above the dissociation threshold, where 

these states can be populated from the continuum through O + O2 → O3
*, and can 

contribute to the recombination process, O3
* (+bas gas) → O3, as it will be shown in the 

next chapter. Thus, it is necessary to have all these states accurately computed, analyzed, 

and assigned, if only possible. Dissociation limit is defined as electronic energy of O + 

O2 asymptote on the PES, plus the ro-vibrational energy of O2 in the lowest-energy 
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physically allowed state (v = 0, j = 1), which is 794.51 cm-1 for 16O16O. This number was 

determined by 1D calculations for a slice through the asymptotic range of the PES, using 

a very dense grid of DVR points. 

3.3.1. Lower part of vibrational spectrum in the well 

For completeness, we also report the spectrum of vibrational states at energies 

lower than our “target” window of 600 cm-1 below dissociation threshold. This bound 

spectrum is given in Appendix B (Table B. 1) and includes 209 states, with the ground 

vibrational state at energy −8618.25 cm-1 below dissociation limit. The states are 

rigorously assigned by symmetry, A1 for symmetric and A2 for antisymmetric, and are 

also qualitatively assigned the normal mode quantum numbers (v1, v2, v3) that correspond 

to symmetric stretch (breathing), bending, and asymmetric stretch, respectively. The 

normal mode assignment is done by visual inspection of the vibrational wave functions, 

and often is not entirely certain. One reason for this uncertainty is some local-mode 

character (due to the PES shape) mixed into the usually dominant normal-mode behavior. 

Such states are still assigned the normal mode quantum numbers in Table B. 1, but are 

labelled by “LM.” Several lower energy examples are states (2,0,2), (2,1,2), and (2,0,3). 

At higher energies the local-mode behavior becomes the main reason for uncertainty of 

the normal mode assignments, as one can see from Table B.1. The second reason is 

similarity of the symmetric stretch and asymmetric stretch frequencies, v1 and v3, that 

lead to similar energies of the states (v1, v2, v3) and (v1+1, v2, v3−1). Such states have the 

same total number of quanta, but one quantum of asymmetric stretch is replaced by one 

quantum of symmetric stretch. In Table B.1 these pairs are labelled by “P#” where 
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number indicates the corresponding pair state. Lowest energy example of this sort is the 

pair of states (0,0,4) and (1,0,3), followed by the pair of (0,1,4) and (1,1,3), and then by 

(0,0,5) and (1,0,4). Such pairs are more common at lower energies. 

In order to have a quantitative picture of the vibrational spectrum in this energy 

range, we tried to fit our computed spectrum by the standard Dunham expansion formula, 

that has 10 fitting parameters: three harmonic frequencies (ω1, ω2, ω3), three intra-mode 

anharmonicities (Δ1, Δ2, Δ3), three inter-mode anharmonicities (Δ12, Δ23, Δ31), and the 

well depth D. Results for four fits, using different number of computed states (60, 120, 

and 180 lower energy states) are summarized in Table 3.1. We see that the value of 

symmetric stretch frequency ω1 and its corresponding anharmonicity Δ1 are less sensitive 

to the number of states included (compared to other parameters), the values of ω1 and ω3 

are different only by ~10 cm-1 (but are quite different from 2 ), and that the bending 

mode is the most harmonic (Δ2 ~ 2cm-1). 

Table 3.1. Dunham expansion fitting coefficients (in cm-1) for the vibrational spectrum of ozone 

  
Number of states fitted 

60 120 180 248* 

ω1 1127.5 1126.3 1128.6 1141.6 

ω2 712.2 717.3 723.1 739.2 

ω3 1111.8 1119.1 1134.9 1157.4 

Δ1 3.4 3.2 3.4 4.1 

Δ2 1.7 2.0 2.2 2.9 

Δ3 16.6 18.2 20.5 22.2 

Δ12 8.8 10.3 11.2 13.8 

Δ13 34.6 30.8 30.1 32.2 

Δ23 16.7 18.6 20.6 24.6 

D -10075.9 -10086.3 -10107.9 -10159.7 

Std. Dev. 10.0 18.7 30.8 52.1 

* Including all states below vdW plateau of the PES. 
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Although these fits are reasonable, they are not particularly responsive to all 

properties of the spectra, showing rather large standard deviations (up to ~30 cm-1 in the 

case of 180 fitted states). Deviations of computed energies from the Dunham fit of 248 

states (all the covalent well states, see below) are also given in Table B.1. We see that the 

bending mode states, even the highly excited ones, deviate little from the Dunham 

expansion. Examples are (0,10,0), (0,9,1), (1,9,0), (0,11,0), (0,10,1), and (1,10,0) that are 

within 10 cm-1 of the fit. Note that those are easily assignable states. In contrast, the 

largest deviations from the Dunham fit are observed for states that are hard-to-assign in 

terms of the normal mode quantum numbers (which makes sense, since the Dunham 

expansion assumes normal mode behavior). Thus, the states with the local mode 

character present, labelled “LM” in Table B. 1, often deviate from the Dunham fit by 

more than 100 cm-1. They typically have fewer quanta of bending, but more stretching 

quanta, in particular the asymmetric stretching that asymptotically correlates with the 

local-mode (dissociative) motion. Examples are states (2,0,5), (1,1,6), (1,3,5), (2,1,5), 

(2,0,6), and (2,3,4). 

Importantly, we found much better agreement between our computed energies 

and the energies reported by Ndengué et al.129 Deviations are presented in Table B. 1 and 

we see that they increase from only 10.08 cm  for the ground state at −8618.25 cm-1, to 

about −1 cm-1 for the states at energies near −1000 cm-1, and stay at that level for the 

upper states in Table B. 1, up to energies −600 cm-1. The difference is always negative 

and changes smoothly, which indicates some kind of a systematic, rather than random 

difference, more likely due to methodologies used, rather than the issue of convergence. 

Interestingly, the differences are slightly smaller for those hard to assign states (labeled 
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by P# in Table B. 1), relative to the other states in their vicinity. Overall, taking into 

account the difference of methods, coordinates, basis sets, etc., this level of agreement 

can be characterized as good. 

As for state assignments, Ndengué et al.129 provided assignments for the lowest 

120 states only. Our assignments go much higher in energy, although, as it was discussed 

above, some of them are not entirely certain. But, for the lowest 120 states our 

assignment fully agrees with those of Ndengué et al.129 

We want to mention that we also carried out calculations of vibrational states 

using the older PES for O3, developed by Schinke and co-workers,131 and compared our 

results with their results. They reported 185 bound states and, for the most part, our 

energies and assignments agreed with their results, with mean deviation of only 0.6 cm-1 

through the entire spectrum, except several upper states where the assignment of Schinke 

was uncertain, and some of the states were missing. Note that Schinke carried out a 

detailed comparison of his spectrum against experimental results from the literature. He 

reported mean deviation of only 4 cm-1 between his computed and experimental spectra. 

This gives us even more confidence in our method and new code. 

3.3.2. Upper part of vibrational spectrum in the well 

Overall, we found 288 bound vibrational states for J = 0 ozone on the PES of 

Dawes, out of which 163 are symmetric (A1) and 125 are antisymmetric (A2). This agrees 

well with results of Ref. 129 where 160 symmetric and 125 antisymmetric states were 

reported. Figure 3.5 shows energy of vibrational states (both symmetries) as a function of 

state number in the window 600 cm-1 below dissociation threshold, which gives 
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information about density of states in this important part of the spectrum. We see that the 

density of states is roughly constant in the range of energies from −600 cm-1 to roughly 

−140 cm-1, with average spacing between the states of about 11.7 cm-1.  

 

Figure 3.5. Computed vibrational spectrum of ozone (energy vs. state number) in the window 600 cm-1 

below dissociation threshold. States of symmetry A1 and A2 are indicated by red and blue points, 

respectively. Energy of the lowest vdW state at −139.8 cm-1 is shown by solid line. Slightly above that 

point, near energy of the second vdW state at −103.5 cm-1 the density of states increases significantly, due 

to excitation of the local modes in the vdW plateau. 

In the energy range from −140 cm-1  up to zero (dissociation threshold) the density is also 

constant, with average spacing of about 3.6 cm-1. This pronounced transition occurs due 

to opening of the “shoulder” or “plateau” region of the PES that can accommodate 

additional vdW-type states. This region of the PES is seen on the minimum-energy path 

along ρ in Figure 3.3, but is also reflected by two-dimensional energies n

m  in Figure 3.3, 

and, in particular, by the ground state energy 0

n  in Figure 3.4.  

In this subsection we focus on the vibrational spectrum at energies between −600 

cm-1  and −140 cm-1, that has no vdW states. It contains states numbered 210 to 248, with 
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properties summarized in Table 3.2. As before, assignments of states in terms of the 

normal mode quantum numbers (v1, v2, v3) are given, but only one-third of states in this 

energy range are clearly assignable. The local-mode character is strongly mixed into 

wave functions of the remaining two-thirds of states. For such states, marked by a 

superscript c in Table 3.2, we give tentative assignments based on several factors, such as 

state energy and mode progression, in addition to visual analysis of vibrational wave 

function. The last column of Table 3.2 gives deviations of state energies from the 

Dunham expansion fit of all the covalent well states in the range from the ground 

vibrational state up to 140 cm-1 below dissociation threshold. Again, those states that are 

easily assignable show smaller deviations from the fit, while those that are hard to assign 

show larger deviations from the fit. Overall, based on absolute values of deviations from 

the fit, one can conclude the Dunham formula is not particularly useful in this energy 

range.  

In this energy range the easily assignable states are those that have many quanta 

of bending and/or symmetric stretch, but no (or just a few) quanta of asymmetric stretch. 

This is easy to understand, since the large-amplitude asymmetric stretching motion 

correlates with dissociation of one bond, O3 → O2 + O, that brings system to 

configuration space where the local-mode description of vibrations becomes appropriate. 

This leads to the appearance of the local-mode behavior in the vibrational wave functions 

and makes difficult (or even impossible) the assignment in terms of the normal modes. In 

contrast, neither bending nor symmetric stretching motion correlates with dissociation, 

which keeps even highly excited vibrations localized in the well region, and preserves the 

normal mode behavior. 
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Table 3.2. Vibrational spectrum of ozone from 600 cm-1 below dissociation threshold up to vdW plateau 

# E, cm-1 Sym. (v1,v2,v3)a δb, cm-1 

210 -597.8 A₂ (1,4,5)* 133.9 

211 -589.3 A₁ (5,4,0) -61.4 

212 -566.0 A₂ (2,5,3) 44.7 

213 -565.1 A₁ (0,4,6)* -29.2 

214 -552.9 A₁ (1,8,2)* 101.6 

215 -541.8 A₂ (5,0,3) -15.4 

216 -532.8 A₂ (1,1,7)* -60.1 

217 -508.9 A₂ (0,8,3)* -79.3 

218 -502.3 A₁ (1,0,8)* 123.0 

219 -490.7 A₂ (0,0,9)* -12.6 

220 -480.6 A₁ (0,12,0) -4.2 

221 -478.0 A₁ (7,1,0) 30.6 

222 -469.4 A₁ (3,2,4)* -61.1 

223 -459.7 A₂ (0,3,7)* 61.0 

224 -439.7 A₁ (2,4,4)* 117.9 

225 -430.6 A₂ (5,3,1) 2.5 

226 -429.4 A₁ (2,9,0) -57.2 

227 -415.9 A₂ (1,7,3)* 145.9 

228 -393.6 A₁ (3,5,2)* 24.7 

229 -386.5 A₁ (6,0,2) -0.6 

230 -377.0 A₂ (3,6,1)* -193.9 

231 -361.8 A₁ (2,7,2)* 241.8 

232 -348.1 A₂ (4,2,3)* -26.2 

233 -311.0 A₂ (2,8,1)* 8.2 

234 -309.4 A₁ (4,6,0) -99.0 

235 -301.9 A₁ (2,1,6)* -156.9 

236 -299.6 A₂ (0,11,1) -20.9 

237 -268.7 A₂ (3,4,3)* 100.7 

238 -261.5 A₁ (0,2,8)* 57.2 

239 -249.5 A₁ (1,3,6)* -17.5 

240 -243.2 A₂ (3,1,5)* -69.8 

241 -239.5 A₁ (6,3,0) -10.6 

242 -229.5 A₂ (4,5,1)* 24.5 

243 -220.9 A₂ (7,0,1) 15.7 

244 -202.9 A₂ (2,3,5)* 79.5 

245 -191.0 A₁ (0,10,2) 33.8 

246 -180.1 A₁ (5,2,2)* -26.5 

247 -172.1 A₁ (0,7,4)* -236.1 

248 -156.1 A₁ (4,4,2)* 153.5 

a Assignment using normal-vibration modes. 

b Deviation from the fit by Dunham expansion. 
* Wave function exhibits some local-mode character, the assignment is approximate. 
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Although it is clear that bending does not promote bond breaking, it may not be 

clear why the symmetric stretching motion does not lead to dissociation. This is so 

because stretching of two bonds simultaneously and in phase is not going to break one of 

them, while breaking two at the same time is impossible energetically. 

So, among the easily assignable states in this energy range there are several 

dominantly symmetric stretching states, such as (8,0,0), (7,1,0), (7,0,1), (6,3,0), (6,0,2), 

and (5,0,3), there are several dominantly bending states, such as (0,12,0), (0,11,1), 

(0,10,2), (2,9,0), and (2,5,3), and there are several mixed states such as (5,4,0), (4,6,0), 

and (5,3,1). Figure 3.6 presents three-dimensional views of wave functions for all easily 

assignable states in this energy range. All of them are characterized by a relatively simple 

nodal structure and, although some of them show very significant spatial extent along the 

normal mode coordinate (e.g., very impressive bending progressions), neither of these 

functions extends into the dissociation channels.  

In contrast to this behavior, Figure 3.7 gives examples of wave functions for four 

states that are hard to assign. All of them exhibit very significant excitation of the 

asymmetric stretching mode – five quanta and above. Their wave functions extend 

significantly into the dissociation channels, which is seen in Figure 3.7 at two “wings” of 

the wave function, reaching toward the upper left and right corners. In fact, in the case of 

state (1,0,8) the shape of wave function is dominated by the local, rather than normal 

mode behavior. 
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Figure 3.6. Examples of easily assignable wave functions of ozone in the energy range below the vdW 

plateau. Positive and negative lobes of wave functions are plotted in red and blue, respectively, using the 

isovalue of |Ψ|=0.7. Hyper-spherical system of coordinates is given in the upper left frame. Assignment by 

normal modes (v1, v2, v3) and state number is given in the corners of each frame. Nodal structure of each 

wave function is readily identified, since these states are localized in the covalent well. States in the left 

column have no excitation in φ and thus only one (side) view is shown, while states in the right column 

have several excitation quanta in φ, so, in addition to the side view the second (front) view is presented. 
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Figure 3.7. Examples of hard-to-assign wave functions of ozone in the energy range below the vdW 

plateau. Labels, colors, and positions are the same as in Figure 3.6. Due to significant excitation of 

asymmetric stretch (v3 > 5) wave functions of these states extend significantly towards the dissociative 

channels of the PES, where the nodal structure reflects excitation of the local-mode vibrations (indicated by 

green arrows). Such states can be assigned only approximately, due to significant mixing of the normal and 

local vibration modes, in contrast to Figure 3.6, where the states are localized, simple, and easily 

assignable. 

3.3.3. Vibrational spectrum in the vdW energy range 

In the remaining part of the bound states spectrum, within 140 cm-1 below 

dissociation threshold, we found 40 states, listed in Table 3.3. Among these states only 

three are clearly assignable in terms of the normal mode quantum numbers: (8,0,0), 

(1,10,1), and (1,11,0). The first state is a highly excited symmetric stretch, while the two 

others are highly excited bending states, with little or no asymmetric stretch excitation, 

which explains their simplicity and localization, and is consistent with logics outlined in 

Sec. 3.3.2.  
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Table 3.3. Vibrational spectrum of ozone from energy of the vdW plateau up to dissociation threshold 

# E, cm-1 Sym. pw
a, % (v1,v2,v3)b (vd,vr)c 

249 -139.8 A₂ 29.9  (0,1) 

250 -138.5 A₁ 13.0  (0,0) 

251 -129.9 A₂ 67.7 (5,4,1)*  

252 -124.5 A₁ 82.0 (5,5,0)*  

253 -103.5 A₁ 57.6 (0,2,8)* (1,0) 

254 -102.2 A₂ 15.2  (1,1) 

255 -100.3 A₁ 56.9 (4,1,4)* (2,0) 

256 -96.6 A₂ 97.3 (4,5,1)*  

257 -88.0 A₂ 99.6 (1,10,1)  

258 -85.0 A₁ 90.1 (1,6,4)*  

259 -82.6 A₂ 90.3 (2,0,7)*  

260 -79.9 A₁ 99.8 (8,0,0)  

261 -79.1 A₁ 78.9 (1,11,0)  

262 -78.7 A₁ 23.9  (0,2) 

263 -77.0 A₂ 28.0  (2,1) 

264 -74.6 A₁ 25.4  (3,0) 

265 -66.7 A₂ 10.2  (0,3) 

266 -58.7 A₂ 44.3 (4,3,3)* (3,1) 

267 -57.0 A₁ 34.3 (6,4,0)* (3,0) 

268 -52.1 A₁ 9.2  (1,2) 

269 -50.1 A₂ 46.4 (5,1,3)* (3,1) 

270 -44.0 A₁ 3.1  (0,4) 

271 -42.2 A₂ 19.7  (1,3) 

272 -41.4 A₁ 45.2 (3,3,4)* (4,0) 

273 -34.1 A₁ 81.3 (1,1,8)*  

274 -33.9 A₂ 40.9 (6,2,1)* (4,1) 

275 -29.8 A₂ 78.6 (0,1,9)*  

276 -28.3 A₁ 10.1  (2,2) 

277 -23.5 A₂ 4.3  (0,5) 

278 -23.2 A₁ 36.5 (3,8,0)* (3,2) 

279 -22.2 A₁ 2.2  (1,4) 

280 -18.8 A₂ 12.3  (2,3) 

281 -16.5 A₁ 80.4 (0,8,4)*  

282 -14.0 A₂ 13.2  (4,1) 

283 -8.7 A₁ 19.2  (5,0) 

284 -8.3 A₁ 1.6  (3,2) 

285 -4.4 A₁ 99.3 (3,0,6)*  

286 -2.6 A₂ 10.1  (5,1) 

287 -1.8 A₂ 0.9  (1,5) 

288 -0.4 A₁ 4.1  (0,6) 
a Probability in the covalent well. 
b Assignment using normal-vibration modes. 
c Assignment using vdW-type vibration modes (see text). 
* The assignment is approximate. 
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All other well states in this energy range are assigned approximately. At these 

energies, the shallow vdW plateau becomes accessible to the vibrational motion of 

oxygen atoms in O3. Topologically, this part of configuration space is reached by 

increasing the dissociative coordinate ρ (see Figures 3.3 and 3.4), which requires 

combination of asymmetric stretching and breathing motions of large-amplitudes. The 

usual normal modes cannot be used anymore but, for approximate assignment of the 

spectra, we can introduce two new effective vibration modes for the O···O2 complex, as 

shown in Figure 3.8.  

 

Figure 3.8. Explanation of the dissociative and rocking motion local modes over the vdW plateau of the 

PES in O3. 
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These are dissociative stretching motion along ρ, described by the quantum 

number vd, and “rocking” motion, described by the quantum number vr. Many states 

listed in Table 3.3 show clear progressions of excitations of these two modes, up to vd = 5 

and vr = 5. Note that large-amplitude rocking motion moves the system through T-shaped 

configuration and corresponds to highly delocalized states. The third vibration mode of 

the vdW complex O···O2 is stretching of the diatomic fragment O2, but it remains in its 

ground state due to high excitation energy. So, the last column of Table 3.3 contains 

assignments of the vdW states in terms of (vd, vr). 

However, since the vdW plateau is very shallow with no barrier to the covalent 

well, only a few vibrational states are entirely localized in the vdW range. Majority of 

wave functions in this energy range show non-negligible amplitudes in both the covalent 

well and over the vdW plateau. Figure 3.9 gives examples of wave functions for six states 

within 140 cm-1 below dissociation threshold. Three of them are almost pure vdW states, 

with very small amplitude in the covalent well. Three other states are mixed, showing 

significant amplitude everywhere. Indeed, the majority of states in this energy range are 

like this. To quantify this point we computed, for each state in this part of spectrum, the 

value of probability in the covalent well (ρmin < ρ < ρ‡) and included it in the fourth 

column of Table 3.3, as pw. The value of probability over the vdW plateau (ρ‡ < ρ < ρmax) 

is simply 1− pw. From these data one can see that there are 20 bound states, 10 of each 

symmetry, with probability over the vdW plateau above 66%, but only 6 states with vdW 

probability over 95%. All those are found within 50 cm-1 below dissociation threshold, 

and include from four to six quanta of excitations: (0,4), (0,5), (1,4), (3,2), (1,5), and 

(0,6).  
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Figure 3.9. Wave functions of several pure vdW states localized entirely over the plateau (left column) and 

several mixed states delocalized between the covalent well and the vdW plateau (right column). 

Assignments are given only for the vdW parts of wave functions in terms of the dissociative and rocking 

modes. For pure vdW states the region of covalent well is indicated by dashed line, for clarity. 

Also note that there are two vdW plateaus in the range 2π / 3 ≤ φ ≤ 4π / 3 (see 

Figure 3.9), that correspond to dissociation of each bond in O3, either O···OO or OO···O. 

If the covalent well would not be there, one would expect to see a spectrum of the 

double-well system (somewhat similar to the inversion states in NH3), namely, two sets 

of the rocking states, symmetric and asymmetric (A1 and A2), nearly degenerate at low 

energy and non-degenerate at higher energy. Indeed, the data presented in Table 3.3 

shows some of these features, but they are not particularly clear due to strong mixing 

with states of the deep covalent well. For example, the first two states of the (vd, vr) 

progression are (0,0) and (0,1) of symmetries A1 and A2. They are only 1.3 cm-1 apart, 
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but this difference does not really reflect the splitting, because the state (0,1) appears at 

lower energy compared to (0,0), while the opposite is expected for the pure double-well 

system. The reason for this switch becomes obvious if one looks at the values of pw for 

these (dominantly) vdW states. It appears that both have significant population in the 

covalent well, and more so for the state (0,1), which lowers its energy compared to the 

(0,0) state. As excitation of the rocking mode increases, the splitting increases. It is 12 

cm-1 for states (0,2) and (0,3), and grows to 20.4 cm-1 for states (0,4) and (0,5). Similarly, 

this splitting is 1.3 cm-1 for states (1,0) and (1,1), grows to 9.9 cm-1 for states (1,2) and 

(1,3), and finally to 20.3 cm-1 for states (1,4) and (1,5). Also, the splitting is 9.4 cm-1 for 

states (2,2) and (2,3). These numbers seem to be consistent. 

However, many splittings are off this order. Thus, states (2,0) and (2,1) are split 

by too much, and this is because (2,1) is an almost pure vdW state, while (2,0) is strongly 

mixed with (4,1,4) state in the covalent well. Similarly, states (3,0) and (3,1) are split by a 

lot, and this is again because (3,0) is an almost pure vdW state, while (3,1) is strongly 

mixed with (5,1,3) state in the covalent well. Finally, vdW states (4,0) and (4,1) are split 

by a lot, because both of them are strongly mixed with states in the covalent well, (3,3,4) 

and (6,2,1), respectively. However, states (5,0) and (5,1) are almost pure vdW states, and, 

as expected, are split by only 5 cm-1. 

One other complication is that some vdW states may show up several times in the 

spectrum, due to mixing with several different states of the covalent well. For example, 

we see from Table 3.3 that the vdW state (3,1) is found at −58.7 cm-1 mixed with the 

covalent state (4,3,3), and also at −50.1 cm-1 mixed with the covalent state (5,1,3). 

Similar behavior is found for states (3,0), (3,2), and (4,1). 
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Interestingly, many seemingly complicated features of the spectrum in the vdW 

plateau can be rationalized by analysis of two-dimensional energies n

m  as shown in 

Figure 3.10, separately for symmetries A1 and A2.  

 

Figure 3.10. Energies εm(ρ) of two-dimensional eigenstates in the region of vdW plateau for symmetric 

(upper frame) and anti-symmetric (lower frame) states. Four lower energy curves in each case are labelled 

by the number of rocking-mode quanta, since vr = m in the plateau region. Energies at stationary points of 

each curve are listed in Table 3.4. 
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Note that in the vdW plateau range, and asymptotically, the symmetric solutions 

correspond to m = 0, 2, 4, 6, etc., while asymmetric ones correspond to m = 1, 3, 5, 7, etc. 

Although the PES itself has no barrier between the covalent well and the vdW plateau, 

the εm(ρ) dependencies all show some barrier-like features. In the case of the ground state 

(ε0 for symmetric and ε1 for asymmetric cases) we only see a tiny “reef” submerged 

below the dissociation asymptote, but for all upper states the top of the barrier is well 

above the dissociation limit. These properties are summarized in Table 3.4, and we see 

that in the cases of m = 4 and 5 the barrier is ~ 300 cm-1 above the dissociation limit.  

Table 3.4. Properties of adiabatic 1D potentials for different channels in Figure 3.10 

m εmin
a, cm-1 ε‡ b, cm-1 Δεc, cm-1 

0 -204.91 -175.29d 29.62 

1 -204.89 -175.29d 29.60 

2 -133.2 52.4 185.7 

3 -123.9 52.4 176.4 

4 -98.0 296.6 394.6 

5 -77.8 296.6 374.4 

6 -60.4 565.9 626.3 

7 -39.4 565.9 605.3 

a Energy of the vdW minimum for the channel. 

b Energy of the barrier top for the channel. 

c Height of barrier relative to the vdW minimum. 
d Indicates a submerged reef. 

It is important to understand that the value of m here is equivalent to the number 

of the rocking mode quanta vr = 6, simply because εm is 2D energy, and in this part of 

configuration space one vibrational mode is unexcited (O2 stretch in the O···OO 

complex), so, only one mode remains, which is the rocking motion. Thus, in the vdW 

range we can set m = vr. To emphasize this point, in Figure 3.10 we labelled ε (ρ) 

dependencies using v, rather than m. 
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This, first of all, explains the appearance of the barriers in ε (ρ) dependencies of 

Figure 3.10. Indeed, even if there is no barrier along the minimum energy path on the 

PES, the transition state region is still very tight, and the rocking motion there (roughly 

normal to the dissociation coordinate) requires a lot of energy, but further in the vdW 

range less energy is required, which manifests as a barrier along the one-dimensional

( )
rv    dependence.  

Second, we can understand the spectrum of modes (vd, vr) over the vdW plateau 

using the adiabatic approximation discussed in Sec. 3.2. According to it, the dissociation-

mode states vd could be obtained by solving one-dimensional Schrödinger equation along 

ρ for each potential energy curve ( )
rv  , independently. Examining Figure 3.10 (say 

upper frame, the symmetric case), we see that the ground rocking state curve vr = 0 has 

only a tiny well, separated from the covalent well by a tiny reef. This structure can 

support only one dissociation-mode state localized over the vdW plateau, vd = 0, while all 

the excited states are forced to go over the reef and mix with states of the covalent well. 

However, the excited rocking state curve vr = 2 exhibits a much more pronounced vdW 

well, better separated (by the barrier) from the covalent well. It can support three states of 

the dissociation-mode: vd = 0, 1, and 2, that are localized dominantly over the vdW 

plateau. Similarly, the second excited rocking state curve vr = 4 supports two bound states 

(below dissociation threshold): vd = 0 and 1, while the third excited rocking state curve vr 

= 6  supports one bound state vd = 0. Overall, these considerations predict that the states 

(0,0), (0,2), (1,2), (2,2), (0,4), (1,4), and (0,6) are expected to be localized over the vdW 

plateau, while the states (1,0), (2,0), (3,0) etc. are expected to be delocalized over the 

vdW plateau and the covalent well (the mixed states). This simplified picture is very 
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much consistent with exact results (and their qualitative assignments) presented in Table 

3.3. The asymmetric case (lower frame in Figure 3.10) is analyzed in a similar way. 

To derive some simple but quantitative measure of the vdW spectrum of ozone, 

we fitted some of the states of the two-dimensional progression (vd, vr) to a Dunham 

expansion. We did not include the ground rocking states, vr = 0 or 1, because, when vd = 

0 they require parameters very different from the other states, whereas when vd > 0 they 

mix with covalent well states. Roughly, we can say that for majority of the vdW states  

ωd ≈ ωr ≈ 2 cm-1, with uncertainty within 2 cm-1. However, for fundamental transition of 

the dissociative mode, the frequency is much higher, on the order of  ωd ≈ 35 − 40 cm-1. 

This is clear from Figure 3.10, where we see that the ground state curve is much tighter, 

compared to the excited state curves. 

Finally, it should be noted that analysis of vibrational states in the vdW plateau 

could employ Jacobi coordinates and the corresponding set of quantum numbers, as one 

alternative to the assignment we devised above. In such approach the rotation of a 

diatomic fragment with respect to the third oxygen atom in the O···OO complex (the 

internal or pseudo-rotation), described by the rotational quantum number j, would replace 

the “rocking” mode that we used above. The other two modes would be very similar. 

This way of wave function assignment would be ideal asymptotically, but the potential 

energy map in Figure 3.8 shows clearly that the PES of O3 in the vdW region does not 

correspond to a free rotor (not yet). It has a shape along this delocalized vibration mode, 

and this shape is a double-well. For this reason, several pairs of lower energy vdW states 

are nearly degenerate (small splittings, as discussed above), which cannot be described by 

a rotational-like progression Bj(j+1). However, if we only look at the upper vdW states 
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(excluding vr = 0 or 1, just as in the previous paragraph), rename the vr by j in Table 3.3, 

and try to fit the spectrum by 

 
21 1

d d d d2 2
( , ) ( ) ( ) ( 1)E v j v v B j j      , (3.27)  

we see a reasonable fit, with standard deviation of about 2 cm-1. The values ωd ≈ 25 cm-1 

and B ≈ 2.2 cm-1 are obtained. So, the free-rotor picture can probably be used for upper 

vdW states, while for lower vdW states the picture of rocking motion through the double-

well potential is more appropriate. 

3.4. Summary 

In this chapter the method for calculation of rotational-vibrational states of 

triatomic molecules up to dissociation threshold (bound states) and even above 

(scattering resonances) was presented. The three major components of our approach are 

adiabatically adjusting hyper-spherical coordinates, the sequential diagonalization-

truncation procedure (for the bound-like degrees of freedom), and the variable step-size 

grid (DVR, for the dissociative coordinate) optimized to the shape of the minimum-

energy path on the potential energy surface. Calculations of resonance widths are 

possible by adding, at the last step of calculations, the complex absorbing potential to the 

asymptotic range of the PES. In this way the eigenvalue problem is solved for 3D-

vibrations, without invoking the scattering formalism (such as coupled-channel). This 

approach is numerically efficient and allows rigorous incorporation of molecular 

symmetry. 

New parallel code was written and used to compute energies and wave functions 

of the bound states of ozone, using two different potential energy surfaces: the older 
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surface of Schinke and the newer surface of Dawes. In both cases very good agreement is 

obtained for all states assigned by these other authors in terms of the normal mode 

quantum numbers, which includes 185 lower energy states on the surface of Schinke, and 

120 lower energy states on the surface of Dawes. Thus, we conclude that the theory is 

correct and the code is functional. 

Our focus was on the upper part of vibrational spectrum, within 600 cm-1 below 

dissociation threshold (note that the covalent well of ozone is about 10 000 cm-1 deep). 

Interestingly, we found that progressions of the symmetric-stretching states (up to 8 

quanta), and even more so of the bending states (up to 11 quanta), survive up to 

dissociation threshold and even above it, and are easy to recognize, assign, and fit 

reasonably well by a simple formula, such as Dunham’s expansion. In contrast to this 

behavior, excitations of the asymmetric-stretching overtones tend to explore more remote 

parts of the PES that correlate with dissociation channels. There, wave functions of O3 

are better described by the local vibration modes (rather than normal modes), which 

makes the assignments problematic and accurate fitting of energies impossible. 

Finally, within 140 cm-1 below dissociation threshold, a broad plateau on the PES 

becomes accessible by large amplitude vibrations of a floppy van der Waals type 

complex O···O2. In this energy range the spectrum of ozone can be assigned quantum 

numbers using a two-dimensional progression of the vibration modes: the rocking-motion 

states, and the dissociative-motion states, up to 6 quanta in each, both with very low 

frequency on the order of 20 cm-1. However, fundamental excitations of the ground 

rocking states require higher frequencies, about 35 and 40 cm-1 (depending on state 

symmetry), due to large anharmonicity brought about by the double-well character of the 



94 

 

PES near dissociation. Many of these (van der Waals plateau) states are mixed with the 

normal mode states of the main (covalent) well and, thus, are delocalized over a very 

large part of configuration space. Interestingly, we found that excitation of the rocking-

motion helps to keep van der Waals states localized within the plateau region, by raising 

the effective barrier, even though the PES itself has no barrier between the covalent well 

and the van der Waals plateau. 

Several improvements and further developments of the method are possible. First, 

the rigorous treatment of permutation group S3 in calculations with J > 0 requires 

vibrational states of E-symmetry (doubly degenerate), in addition to symmetries A1 and 

A2 considered here. These states can be easily obtained by expanding the grid for hyper-

angle φ onto its full physical range: 0 ≤ φ ≤ 2π. See Chapter 6 for more details on this 

topic. 

Another improvement could be a better treatment of singularity along the equator 

of the hypersphere, θ = π / 2. Here we just checked and found that since this singularity is 

very narrow, and the DVR points are placed at the middle of the intervals (rather than at 

their borders), the effect of this singularity is minimal: it only affects, by ~ 2cm-1, 

energies of the upper 17 most-delocalized states, which can be mediated by choosing 

carefully the value of θmax (slightly smaller than π / 2). More rigorous and automated 

treatments of singularities are known72 and could be incorporated into our method. 

Lastly, it should be admitted that the present formulation employs the centrifugal-

sudden assumption, and thus is approximate for J > 0 states. More rigorous inclusion of 

the ro-vibrational coupling effect, due to the Coriolis term of Eq. (3.3), is desirable. In the 



95 

 

future one can test the role of Coriolis effect in O3 by including couplings between some 

(e.g., the nearest) K-blocks of the overall Hamiltonian matrix for J > 0, see Chapter 6. 

Understanding the vibrational states of O3 in the window 600 cm-1 below 

dissociation threshold is important because, as it will be shown in Chapter 5 this part of 

the vibrational spectrum plays the most important role in the recombination process that 

forms ozone. Due to rotation of O3 molecules at thermal energies (up to J ~ 40), these 

bound states are lifted by the centrifugal potential to energies above dissociation 

threshold, which makes them scattering resonances O3
* that can receive population from 

continuum through collisions, O + O2 → O3
*, and can contribute to ozone formation. We 

think that a moderate centrifugal lift (say J ~ 20 − 30) causes only a slight change of 

wave functions for many of these states, due to their very significant vibrational content 

and distinct modal structure. Thus, understanding the highly excited vibrational states in 

non-rotating O3 (J = 0) should be helpful in the future for analysis and assignment of 

wave functions of the rotationally excited states (J > 0). 
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Chapter 4. Theoretical treatment of ozone stabilization* 

4.1. Collisional energy transfer 

Collisional energy transfer (CET) plays crucial role during the second step of the 

recombination reaction that forms ozone in Earth’s atmosphere: 

 O + O2 ↔ O3
*, (4.1)  

 O3
* + M → O3 + M*. (4.2)  

Here, M can be any atmospheric molecule (or Ar atom in laboratory experiments16), 

whose role is to remove energy from the metastable O3
* states (excited ro-vibrationally 

above the dissociation threshold) to produce stable ozone molecules, O3. In order to 

provide complete theoretical treatment of ozone formation kinetics one should be able, 

ideally, to compute cross sections for all ro-vibrational state-to-state transitions that take 

place in O3
* due to collisions with M, and incorporate those data into the master equation 

formalism.34,132 While very easy to state, this is practically impossible to do. The density 

of vibrational states near dissociation threshold of ozone is close to one state per 3.6 cm-1, 

and each of those vibrational states is accompanied by a dense spectrum of rotational 

states (rotational constant is ~ 0.5 cm-1). Ozone is a heavy rotor and a broad distribution 

of rotational states (up to J ∼ 40) is populated at room temperature. Thus, the rotational 

transitions between different J-values are impossible to rule out. Rotational energy 

transfer occurs simultaneously with vibrational stabilization and plays a very important 

role. Moreover, the collision-induced dissociation (CID) of O3
* takes place 

simultaneously with its stabilization and should also be described theoretically. 

                                                 
* Teplukhin A.; Ivanov M.; Babikov D., J. Chem. Phys., 139, 124301 (2013) 
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Recently, the group of Babikov implemented a conceptually different method for 

theoretical treatment of the ozone forming reaction – the mixed quantum/classical theory 

(MQCT) for collisional energy transfer and ro-vibrational energy flow.35 This method is 

still approximate, but it overcomes many difficulties encountered earlier by other 

workers. Namely, the scattering of M and the rotational quenching of O3
* are treated 

classically, which allows covering a broad range of rotational excitations, up to J ∼ 40. 

These classical approximations are well justified because no quantum effects are 

expected to occur due to scattering of heavy M, or due to rotation of heavy O3
*. The 

vibrational motion of ozone, however, is treated with time-dependent Schrödinger 

equation, which incorporates zero-point energy and vibrational symmetry. The scattering 

resonances of O3
* are also accessible, including quantization of their energies, accurate 

calculations of their decay rates and CID.44,47 

The MQCT is computationally feasible (in contrast to the full-quantum methods) 

but the high density of vibrational states, the broad range of rotational excitations in 

ozone and the diverse isotopic variability of the process (36 reaction, see Table 1.1) make 

even these calculations highly demanding. For these reasons, the calculations of 

Babikov’s group were carried out within the dimensionally reduced model of ozone,35,46 

where only two bond stretches were treated explicitly, while the bending motion was 

treated adiabatically (relaxed). In order to make such calculations even more 

computationally affordable one should think of some additional simplifications, within 

the framework of MQCT. 

In this chapter the frozen-rotation (FR) approximation for MQCT is formulated 

and tested. Since MQCT is time dependent and involves classical as well as quantum 
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degrees of freedom, the approximation we devise here is very different from the well-

known sudden-rotation approximation used in the time-independent full-quantum 

calculations.133–136 The main purpose of our FR approximation is to “freeze” the rotation 

of O3
* during the M + O3

* scattering event, without cutting off the energy exchange 

between translational, rotational, and vibrational degrees of freedom. Freezing the 

rotation of O3
* gives significant computational advantages (discussed in this chapter), 

with relatively small intervention into the energy exchange process. Interestingly, it 

appears that rotational excitation and/or quenching of the molecule can be described 

without letting the molecule rotate in space during the collision with M. 

The chapter is organized as follows. The MQCT method is briefly reviewed in 

Section 4.2. The formalism of FR approximation is introduced in Section 4.3. Numerical 

results that serve as a test of accuracy of the FR approximation are presented and 

discussed in Section 4.4. Section 4.5 summarizes all the work done. 

4.2. The mixed quantum/classical theory 

The idea of mixed quantum/classical treatment of collisional energy transfer is not 

entirely new.137–141 A good review of methods and their applications was done by 

Billing.115 In our implementation of MQCT35 the vibrational motion of oxygen atoms in 

O3 is treated quantum mechanically, while the rotational motion of O3 and the 

translational (scattering) motion of Ar + O3 are treated classically. All coordinates are 

divided into two groups: those describing quantum part of the system and those 

describing classical part. The former set is internal bond-angle coordinates RQ = (R1, R2, 

θ). The latter set RC = (
3Oq , qAr, α, β, γ) includes the Cartesian coordinates of ozone 

3Oq  
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and quencher qAr in the laboratory-fixed frame and Euler angles (α, β, γ) for orientation 

of O3 molecule in space. 

Quantum description of vibrational motion involves propagation of wave function 

Ψ(RQ, t) using the time-dependent Schrödinger equation: 

 
Q Q

ˆΨ( , ) ( )Ψ( , )i t H t t
t





R R  (4.3)  

 
0 Q C rot Q C

ˆ ˆ( ) ( ; ( )) ( ; ( ))JH t T V t V t  R R R R  (4.4)  

Through the V(RQ; RC(t)) dependence of the PES, the classical trajectory of motion RC(t) 

affects evolution of the quantum part of the system (vibration). The effect of rotational 

motion on vibration is included adiabatically116,117,142–145, by introducing into the 

Hamiltonian of Eq. (4.4) the rotational potential Vrot, which is a smooth function of 

coordinates, computed numerically on a grid of points in RQ using: 

 11
rot Q Q2

( ) ( , ( ) )V R J I R J . (4.5)  

Here I(RQ) is the tensor of inertia on the grid and J(t) is the instantaneous vector of 

angular momentum of the molecule, both expressed in the lab reference frame. Rotational 

potential is a time dependent quantity.  

The rotation itself is treated classically using the fluid-rotor equations of 

motion:35 

 

1 1

  

  

  

 

       
       

         
              

G I τ IG G . (4.6)  

Here I ̃(t) is instantaneous mean tensor of inertia of the fluid rotor, while τ ̃(t) is mean 

torque on the molecule (caused by the quencher), defined as: 
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 1-1

Q Q QΨ( , ) ( ) Ψ( , )t t


I R I R R , (4.7)  

 
Q Q( ) ( )i

i

V    τ R r R , 
(4.8)  

where ri = {xi, yi, zi} is radius vector of ith atom relative to molecular center of mass, ri × 

V  represents the torque of the quencher on ith atom in the molecule, the gradient V is 

computed with respect to the Cartesian position of ith atom. Summation in Eq. (4.8) is 

over three O atoms. Matrix G in Eq. (4.6) was introduced for convenience: 

 0 cos sin sin

0 sin sin cos

1 0 cos

  

  



 
 

  
 
 

G . (4.9)  

Time derivative I  in Eq. (4.6) is computed as I IAI , where matrix A is: 

 
1 1 12Re

d d

dt dt

   
      

 

I
A I I I . (4.10)  

Note that evolution of the vibrational state of the system affects its classical 

rotational motion, through vibrational wave function Ψ(RQ, t) in expressions for the mean 

values of I ̃, τ̃ and A.  

Translational coordinates 
3Oq  and qAr are propagated using classical equations of 

motion: q̇ = p / M  and ṗ = −V ̃, where transcripts are omitted for simplicity, and the 

mean field potential is defined as: 

 
C Q Q C Q( , ) Ψ( , ) ( ; ( )) Ψ( , )V t t V t tR R R R R . (4.11)  

Again, quantum vibrational state of the system Ψ(RQ, t) influences the classical 

trajectory for scattering, through V ̃.  

Overall, the energy is exchanged between translation, rotation and vibration, 

while the total energy is conserved. 
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4.3. Frozen rotor approximation 

Let us start from the formal side of implementing the frozen-rotor approximation. 

Two terms in Eq. (4.10) have very transparent physical meaning. The first term is a rigid-

rotor term, while the second term is a fluid-rotor term. The second term is zero if the 

vibrational wave function Ψ(RQ) is constant over the time. Its effect on rotation becomes 

important only if the vibrational motion occurs and the wave function changes, which 

affects the tensor of inertia. We want to keep this term, because it describes ro-vibrational 

interaction. The first term in Eq. (4.10) is a simple rotation in 3D of the tensor of inertia 

of the rigid body. If the molecule does not rotate, this term is unnecessary. So, in the 

frozen-rotor case Eq. (4.10) simplifies to 

1

Q Q Q2Re ( ) ( ) ( )
d

dt

   A R I R R . (4.12)  

Note that our frozen rotor remains fluid, due to the time derivative in Eq. (4.12). 

Within its original orientation in space, the tensor of inertia is allowed to change over the 

time if dΨ / dt ≠ 0, for example, due to centrifugal effect or due to interaction with 

quencher. 

Furthermore, if the molecule does not rotate, its orientation in space is constant 

and Ġ = 0. So, the last term in Eq. (4.6) vanishes. Now it is convenient to introduce 

  ,    and   . These moieties are related to angular velocity ω through 

 












 
 

  
 
 

ω G . (4.13)  

In these notations, Eq. (6.6) can be rewritten as follows: 
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


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 

 

 
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1 1 d

dt

 

 

 

 

 

 

 

     
     

      
     

     

I
G I τ G . (4.15)  

If the molecule does not rotate in space, we do not have to propagate Eq. (4.14) 

for angles at all, equivalent to saying that 0  , 0   and 0  . Only Eq. (4.15) 

should be propagated. It captures the effect of rotational excitation and/or quenching and 

emphasizes that our frozen-rotor remains fluid, within its original orientation in space. If 

the mean tensor of inertia changes, dI ̃ / dt ≠ 0, its effect onto rotational excitation is 

included.  

The existing computer code35 can be very easily modified to propagate Eqs. (4.12) 

and (4.15), instead of Eqs. (4.6) and (4.10). Note, however, that Eq. (4.15) can be 

conveniently rewritten using Eq. (4.13) as follows: 

 
1 d

dt

  
  

 

I
ω I τ ω . (4.16)  

Rearranging terms, using chain rule and introducing angular momentum J = I ̃ω  

we obtain: 

 d

dt


J
τ . (4.17)  

Indeed, if the molecule is forcedly fixed in space, no equations for rotational 

coordinates are necessary at all. All we have to do is to integrate torque τ ̃(t)  due to 

quencher along the trajectory to determine the change of J (i.e., rotational excitation or 
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quenching). The time dependent value of J(t) goes directly into Eq. (4.5) to give 

evolution of rotational potential Vrot(RQ) along the trajectory RC(t) for inclusion into the 

Hamiltonian of Eq. (4.4). This is almost embarrassingly simple, but makes sense. 

4.4. Results and discussion 

We carried out preliminary calculations using both versions: either propagating 

Eqs. (4.12) and (4.15) or, alternatively, Eq. (4.17) alone. The results are entirely identical, 

however, Eq. (4.17) gives significant computational advantage, since calculations of the 

wave function derivative dΨ / dt (on the grid) in Eq. (4.12) are avoided, as well as 

numerous matrix operations in Eq. (4.15). The computational advantage of the FR 

method is substantial, speedup by a factor of ×3.8. 

4.4.1. Examples of a single trajectory 

Details of setting up the initial conditions for MQCT calculations have already 

been discussed in detail.35 Initial wave function is one of vibrational eigenstates in the 

rotationally excited potential: Ψ(RQ,t0) = Φn
(i) (RQ). Here, index i denotes initial 

rotational excitation (quantized semi-classically), while index n denotes a vibrational 

state in this rotationally excited potential. We always start at a scattering resonance, 

namely, the ro-vibrational state above the dissociation threshold, En
(i) > 0. The vibrational 

spectrum of 16O18O16O in the dimensionally reduced model is relatively sparse. The 

upper part of spectrum, within the energy range ~1000 cm-1 below the dissociation 

threshold, contains only 11 vibrational states (#41 to 51 in Table 4.1 and Table 4.2).  
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Table 4.1. Cross sections (a0
2) for vibrational state-to-state transitions and stabilization of the normal mode 

state (#51) 

      Initial rotational state* 

Final vibrational state 

 J=25, K=5  J=35, K=0  J=35, K=5  J=35, K=12 

 (73.4; 3.5×10-5)  (241.1; 1.1×10-4)  (309.0; 1.9×10-3)  (629.9; 1.5×10-3) 

# Character   AR FR   AR FR   AR FR   AR FR 

51 N  422.898 473.141  417.682 479.024  416.552 473.649  402.366 460.521 

50 L2  0.100 0.085  0.139 0.057  0.120 0.079  0.202 0.376 

49 L1  0.095 0.057  0.091 0.044  0.111 0.058  0.277 0.035 

48 N  3.316 1.130  4.345 1.014  5.407 1.106  9.460 1.313 

47 L2  0.030 0.034  0.046 0.018  0.036 0.032  0.174 0.074 

46 L1  0.028 0.018  0.027 0.018  0.036 0.014  0.118 0.022 

45 N  0.086 0.028  0.133 0.025  0.198 0.029  0.508 0.029 

44 N  0.003 0.002  0.004 0.002  0.007 0.002  0.016 0.003 

43 N  0.002 0.001  0.002 0.001  0.003 0.001  0.011 0.002 

42 L2  0.003 0.000  0.000 0.000  0.000 0.000  0.001 0.002 

41 L1  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000 

Ro-vibrational 
stabilization 

  99.969 47.206   51.375 26.318   45.481 14.620   10.430 3.439 

* Each scattering resonance is characterized by J, K, energy and width (in parenthesis) in the units of wave number 

 

Table 4.2. Cross sections (a0
2) for vibrational state-to-state transitions and stabilization of the local mode 

state (#50) 

      Initial rotational state* 

Final vibrational state 

 J=20, K=9  J=35, K=−5  J=35, K=9  J=45, K=−5 

 (26.1; 3.8×10-6)  (133.6; 8.7×10-3)  (349.7; 2.5×10-6)  (418.6; 2.5×10-1) 

# Character   AR FR   AR FR   AR FR   AR FR 

51 N  0.077 0.083  0.143 0.039  0.911 0.074  0.374 0.012 

50 L2  400.088 434.582  365.551 359.478  360.393 427.081  360.987 244.492 

49 L1  0.668 0.728  1.651 1.808  1.390 0.236  0.576 0.744 

48 N  0.776 2.395  11.430 18.729  2.451 4.340  5.623 3.137 

47 L2  29.544 16.832  41.678 8.661  33.814 15.381  41.652 5.309 

46 L1  0.078 0.211  0.289 0.620  0.902 0.125  0.232 0.257 

45 N  0.639 0.638  1.890 1.049  3.730 0.587  3.098 1.161 

44 N  0.026 0.172  0.029 0.234  0.372 0.068  0.048 0.207 

43 N  0.026 0.028  0.018 0.041  0.360 0.021  0.048 0.022 

42 L2  0.016 0.070  0.017 0.020  0.332 0.077  0.040 0.016 

41 L1  0.005 0.004  0.000 0.014  0.128 0.003  0.015 0.012 

Ro-vibrational 

stabilization 
  127.245 94.858   104.177 52.552   45.906 14.148   48.544 18.438 

* Each scattering resonance is characterized by J, K, energy and width (in parenthesis) in the units of wave number 
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Some of them belong to progression of the normal vibration modes (labeled by N), and 

some to the local-vibration mode progression associated with either channel 1 or 2 

(namely, O···OO or OO···O, labeled L1 and L2). Typical rotational excitations of J ~ 20 

– 30 bring these states up (the centrifugal effect) and converts them into scattering 

resonances trapped behind the centrifugal barrier at energies few hundred wavenumbers 

above the dissociation threshold. These are our initial states. Note that in rotationally 

excited ozone the vibrational motion is rather localized, due to sharp centrifugal barrier. 

We found that in such conditions all vibrational states can be easily assigned (in terms of 

quantum numbers) up to dissociation threshold and even above. This is very different 

from the non-rotating ozone, where the upper 20% of vibrational spectrum exhibit 

irregular behavior due to flattening of the PES near dissociation threshold.131,146–148 

In Figure 4.1 we consider an example trajectory which starts at the scattering 

resonance with J = 35 and K = ‒5, n = 50 and En
(i) =133.6 cm-1 (specifying semi-classical 

initial conditions for rotation we set Kb = Kc and assume that K = Ka is good quantum 

number, for simplicity). This is a local-mode state with 8 quanta of vibration along the 

O+O2 dissociation channel and one quantum of vibration in O2. Collision energy of Ar is 

Ecoll = 217 cm-1 and impact parameter is b = 3.64 a0. Plotted in Figure 4.1 are the values 

of rotational potential Vrot(RQ) at two important points on the PES: the bottom of covalent 

well (Figure 4.1a) and the top of centrifugal barrier in one of the dissociation channels 

(Figure 4.1b). We can see that in the original MQCT method, where the adiabatic-

rotation (AR) is explicitly going on, the centrifugal potential Vrot evolves during the pre-

collisional and post-collisional stages of the process, due to the ro-vibrational interaction 

in the fluid rotor model. In the frozen-rotor version of MQCT the rotational potential 
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Vrot(RQ) is constant over time (at every point of the RQ grid). Note that for description of 

the resonance stabilization, for CET, the focus is not really on the ro-vibrational 

interaction during the pre- and post-collisional stages, but more on the molecule-quencher 

interaction during the short collision event. Figure 4.1 demonstrates that this last effect is 

well described by the FR approximation. 

 

Figure 4.1. Time evolution of rotational potential along one trajectory at the point near a) bottom of 

covalent well on the PES of ozone R1 = R2 = 2.4 a0; b) top of centrifugal barrier R1 = 2.3 a0, R2 = 3.8 a0. 

Red solid line stands for FR-method, black dotted stands for AR-method. Initial (classical) rotational state 

is J = 35, K = ‒5, and the ro-vibrational energy is En
(i) = 133.6 cm-1. See text for further details. 
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In the time-dependent mixed quantum/classical method we do not really have to 

make any assumptions about goodness of the rotational quantum number K, because we 

use classical trajectories for description of rotation, either as fluid-rotor or as rigid-rotor. 

In either case, three components of J evolve during the dynamics. Figure 4.2a shows an 

example of typical trajectory (b = 2.55 a0 and Ecoll = 489 cm-1) for the initial vibrational 

state n = 50 and a quasi-classical initial state J = 35, K = Ka = 12, |Kb| = |Kc| = 23. One 

sees that the value of Ka is approximately conserved on the pre-collisional and post-

collisional stages, in contrast to Kb and Kc that oscillate widely. This picture supports a 

well-known fact – ozone is very close to a symmetric top. Its rotational constants are only 

~10% different. For simplicity, we sample the initial rotational states such that |Kb| = |Kc|, 

so that we can label these quasi-classical initial conditions by J and K only. As rotation 

start (on the pre-collisional stage) the memory of |Kb| = |Kc| is immediately lost, while K = 

Ka remains roughly the same. Figure 4.2b demonstrates that K remains good quantum 

number in the FR-method too. 

One more advantage given by the FR approximation becomes obvious. On the 

post collisional stage the centrifugal potential is constant, so, one can start spectral 

analysis of the final vibrational wave packet Ψ(RQ,tfin) at any moment of time, as soon as 

quencher leaves. This is not so straightforward in the AR version of the method, where 

rotational potential continues evolving due to ongoing rovibrational interaction. This 

continuing ro-vibrational energy exchange causes artificial ro-vibrational transitions at 

the post-collisional stage, which is a known deficiency of the mixed quantum/classical 

treatment.35 In order to cancel its effect we usually use the forward-backward propagation 

technique,45 but it doubles the computational effort. In the FR version of MQCT this 
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problem does not exist, so that the backward propagation is unnecessary, which saves 

computational resources.  

 

Figure 4.2. Time evolution of Ka (red), Kb and Kc (blue and green) along a typical trajectory for initial J = 

35, Ka = 12, |Kb| = |Kc| = 23 and vibrational state n = 50. a) Original AR method; b) developed FR 

approach. One sees that Ka is approximately a good quantum number in both cases. 



109 

 

4.4.2. Energy transfer 

Projection onto vibrational eigenstates of the final rotational potential permits to 

compute energy spectrum of the final wave packet, or the probabilities of state-to-state 

transitions: 

 2
( ) ( )

, ' Q Q( ) Ψ( , )i i

n n n finp t


  R R . (4.18)  

This information, together with magnitudes of the energy transfer ( ) ( )i i

n nE E E


   , can be 

used to bin the data for a batch of trajectories into a 2D-hystogram, like those presented 

in Figure 4.3 (3000 trajectories for the same initial state as Figure 4.1). These plots 

visualize intensity of the excitation/quenching as a function of impact parameter 0 ≤ b ≤ 

15 a0 and the magnitude of energy transfer −1000 ≤ ΔE ≤ +1000 cm-1. Collision energy 

was sampled from thermal distribution at room temperature. Figure 4.3a describes the 

case of explicit adiabatic rotation (AR), while Figure 4.3b corresponds to our frozen-rotor 

approach (FR). Both methods show the elastic scattering peak (ΔE = 0) at large impact 

parameters, and both indicate quenching (ΔE < 0) as well as excitation (ΔE > 0) going on 

at impact parameters less than b ≈ 8 a0. We have to admit that in the FR case the 

excitation is clearly overestimated in the region of ΔE > +500 cm-1, compared to the AR 

case. This is understood as follows: when the rotational motion is frozen, the ability of 

the molecule to dodge the quencher is limited to the translational recoil only, which leads 

to more intense interaction with quencher and larger amount of energy transferred to the 

molecule. This is a negative consequence of FR approximation. 
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Figure 4.3. Intensity of the energy transfer as a function of impact parameter b and the magnitude of energy 

change ΔE for a batch of 3000 trajectories in the a) original AR method; b) developed FR approach. Red is 

for high intensity, blue is for low intensity. Excitation is at positive ΔE, quenching is at negative ΔE. 

Elastic peak is at ΔE = 0 and large impact parameter. Initial ro-vibrational state is the same as in Figure 4.1. 

It should also be mentioned that the total energy in the FR method is not exactly 

conserved. We conducted a careful study of this issue and found that for some trajectories 

the total energy increases as a result of collision, while it decreases for others. Average 
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over the batch of trajectories, with thermal distribution of collision energies at room 

temperature, leads to relatively small overall energy defect. 

The weighted sum over b of the 2D-hystogram in Figure 4.3 produces a 

differential (over ΔE) cross section for energy transfer, plotted in Figure 4.4. Such 

dependence is used in analytic theories of CET149–152 and is sometimes called the energy 

transfer function. Comparison of the AR vs. FR data (filled vs. empty symbols) shows 

that in the regime of moderate energy transfer, −500 ≤ ΔE ≤ +500 cm-1, the agreement 

between two methods is reasonably good. Furthermore, the overall trend of the 

differential cross section is reproduced well by FR-method through eight orders of 

magnitude range of values and in a broad range of ΔE. At large positive ΔE > +500 cm-1 

the FR-method overestimates cross section (as discussed above), while at large negative 

ΔE < +500 cm-1 the FR-method somewhat underestimates the cross section. Note a sharp 

change of the slope at ΔE = −489 cm-1. This amount of energy corresponds to the initial 

rotational excitation of the molecule in this example, so, the point where the energy 

transfer function bends corresponds to transformation from the ro-vibrational quenching 

to purely vibrational quenching. Finally, note a discontinuity of cross section at ΔE = 

−590 cm-1. To the right of this dashed line the normal-mode state n' = 47 (which is ~ 101 

cm-1 below the initial state) participates in the energy transfer, while to the left of this line 

the energy transfer is dominated by the local-mode state (much smaller cross section, see 

below). Interestingly, even these fine features of the energy transfer function are 

reproduced by the FR-method. 
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Figure 4.4. Energy transfer function obtained by the original AR (filled symbols) and the developed FR 

(empty symbols) methods. The long dashed line at ΔE = 0 separates quenching (to the left) from excitation 

(to the right). Purely vibrational quenching is to the left of the short dashed line at ΔE = −489 cm-1. 

Discontinuity at ΔE = −590 cm-1 is due to the vibrational mode character. Note that the FR method 

reproduces all these fine features. Initial ro-vibrational state is the same as in Figures 4.1 and 4.3. 

4.4.3. Vibrational state-to-state transition cross sections 

More detailed insight is provided by comparing cross sections for vibrational 

state-to-state transitions computed as: 

 ( ) ( )max
, ' , '

2
( )i i

n n n n

b
bp b

N


   . (4.19)  

Here, the sum is over N trajectories in a batch and includes all the final (classical) 

rotational states. In this computational experiment we took, as initial states, four different 

rotational states of the normal-mode vibrational state n = 51, and four different rotational 

states of the local-mode vibrational state n = 50. Those are listed in Table 4.1 and Table 

4.2. Total energies En
(i) of these scattering resonances cover a broad range, from roughly 
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25 cm-1 to 630 cm-1 above dissociation threshold. Their widths Γn
(i)  (inversely 

proportional to lifetimes) also cover a broad range of values, 10-6 to 10-1 cm-1. The final 

vibrational states are listed in the first column of Table 4.1 and Table 4.2. 

The largest values in Table 4.1 and Table 4.2 correspond to elastic scattering 

cross sections. They are all reproduced accurately enough for the normal-mode initial 

states (deviations are 11-14%) and somewhat less accurately for the local-mode initial 

states (deviations are 2-17%). Only in one case the deviation is quite large (39%, last 

column of Table 4.2), but this is because this initial state is very close to the barrier top 

(large width of the resonance Γ = 0.25 cm-1). It has short lifetime and, consequently, 

tends to dissociate. Small changes in the energy transfer lead to significant changes in the 

post-collisional behavior.  

It is well known that the elastic scattering cross section, strictly speaking, diverges 

if the scattering motion is treated classically. Sometimes this problem is overcome by an 

appropriate choice of the maximum impact parameter, or by removing, in an ad hoc 

way,43 the elastic scattering peak clearly seen at ΔE = 0 in Figure 4.3(red) and Figure 4.4 

(dashed line). We tried several of these methods and saw very similar results. The elastic 

scattering cross sections given in Table 4.1 and Table 4.2 were obtained by disregarding 

all trajectories with |ΔJ| < 1. This method allows removing selectively all points of the 

elastic scattering peak, without affecting the rest of data. Roughly, it corresponds to 

setting up the maximum impact parameter at ~ 9 a0 (see Figure 4.3).   

As for vibrationally inelastic processes, the largest cross sections are usually 

observed for transitions between states of same character. Normal-mode states tend to 

stabilize to the normal-mode states, while local-mode states tend to stabilize to proper 
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local-mode states. For example, for the initial normal-mode state (n = 51) the largest 

inelastic cross section corresponds to the final state n = 48 (see Table 4.1), which is the 

closest normal-mode state. Similar, for the initial local-mode state (n = 50) the largest 

inelastic cross section corresponds to the final state n = 47 (see Table 4.2), which is the 

closest local-mode state in the same dissociation channel. This qualitative feature is 

reproduced well by the FR method, but the absolute values of cross sections are different 

in the AR and FR cases. For the initial states at lower energies En
(i) < 350 cm-1 the FR 

cross sections are factor of ×2 to ×5 smaller, compared to the AR cross sections. This 

difference increases to ×8 for states at higher energies En
(i) ~ 420 cm-1 and 630 cm-1 

respectively (last columns in Table 4.1 and Table 4.2).  

Other entries in Table 4.1 and Table 4.2 show similar differences of state-to-state 

cross sections obtained from AR and FR methods. Note that for smaller cross sections the 

statistical error is typically larger. In those cases when cross sections are reasonably large 

and statistical error is small (within ~ 25%) the typical difference between AR and FR 

results is ×4. This is similar to performance of the rotationally sudden approximation in 

the time-independent methods, known to produce cross sections that are factor of ×2 to 

×4 smaller, compared to exact results.153,154 

4.4.4. Stabilization cross sections 

For approximate treatment of recombination kinetics at low and moderate 

pressure of M it is not really necessary to compute individual cross sections for all 

vibrational state-to-state transition. It is advantageous to introduce stabilization cross 

section for each scattering resonance:  
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The sum in Eq. (4.21) is over the final vibrational states below dissociation 

threshold, En
(i) < 0. Note that this energy includes the final rotational energy, so, the 

stabilization cross section characterizes the overall ro-vibrational quenching (within 

MQCT, where rotation is treated classically while vibration is treated with quantum 

mechanics). Stabilization cross sections are the most practically important moieties. 

Figure 4.5 shows convergence study of stabilization cross section for state n = 50 (same 

rotational state as before) in both AR and FR calculations. For a batch of 3000 

trajectories the statistical error is rather small, typically close to 5%. Interestingly, Figure 

4.5 demonstrates that with only as few as 100 trajectories one can obtain a reasonable 

estimate of stabilization cross section.  

 

Figure 4.5. Convergence of stabilization cross sections in the original AR (blue) and the developed FR 

methods (red). Statistical errors for each method are given at the bottom of the figure. Initial ro-vibrational 

state is the same as in Figures 4.1, 4.3 and 4.4. 
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Last row in Table 4.1 and Table 4.2 lists the values of stabilization cross sections 

for eight scattering resonances considered here. The values obtained from FR method are 

only a factor of ×2 to ×3 smaller, compared to AR method, in the entire range of 

rotational excitations and for both normal and local vibration mode states. This is very 

encouraging, since such a difference is usually assumed quite acceptable in most kinetics 

models. In Figure 4.6 we plotted the ratio of cross sections  = σstab(AR) / σstab(FR) 

obtained from two methods, as a function of initial (total ro-vibrational) energy of the 

scattering resonance. Although the correlation is not particularly strong, these data 

suggest that a ratio of 2-to-3 is typical for the FR approach in the entire range of energies, 

when it is used to compute the ro-vibrational stabilization cross sections.  

 

Figure 4.6. Ratio of stabilization cross sections computed from the original AR method and the developed 

FR method. The data are presented for eight scattering resonances: four different rotational states of the 

normal mode vibrational state (filled symbols, see Table 4.1) and four different rotational states of the local 

mode vibrational state (empty symbols, see Table 4.2). The fit is by a logarithmic function. 
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4.5. Summary 

In this chapter the frozen-rotor approximation for MQCT was formulated and a 

thorough numerical test was conducted to assess its efficiency and accuracy, in 

comparison to the original version of MQCT where rotation of the molecule in space is 

treated explicitly and adiabatically. The FR treatment of rotation only requires 

propagating a simple Eq. (4.17) with mean torque defined by Eq. (4.8), and computing 

the centrifugal potential function in Eq. (4.5), to add to the quantum Hamiltonian. This 

approach permits to block the artificial and undesirable ro-vibrational transitions at the 

pre- and post-collisional stages of the process. As for computational costs, the FR method 

is 3.8 times faster (for the 2D-model of ozone) because the backward propagation is no 

more needed and because the equations for rotational excitation/quenching become much 

simpler. Computational advantage of the FR approximation is expected to be more 

important in the case of full-dimensional 3D calculations of ozone stabilization, planned 

in the near future. 

Although molecular orientation is fixed in space, the energy exchange between 

rotational, vibrational, and translational degrees of freedom still occurs in the FR method, 

allowing to compute ro-vibrational excitation and quenching. Noteworthy, behavior of 

the energy transfer function through eight orders of magnitude range of values and in a 

broad range of E  is reproduced well by the developed FR-method, including some fine 

features. In the range of moderate −500 ≤ ΔE ≤ +500 cm-1 the FR-method is rather 

accurate. The absolute values of stabilization cross sections for scattering resonances 

trapped behind the centrifugal threshold are a factor 2-to- 3 smaller (compared to the 

explicit-rotation approach). This performance is acceptable and is similar to the well-
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known sudden-rotation approximation in the time-independent inelastic scattering 

methods. 
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Chapter 5. Rate coefficient of ozone recombination reaction* 

5.1. Two mechanisms 

Atmospheric ozone, O3, is formed as a product of recombination reaction of 

oxygen molecules, O2, with oxygen atoms, O, but the mechanism of this process is not 

yet entirely understood. In the past, the energy-transfer mechanism, also known as 

Lindeman mechanism, was assumed almost exclusively,155,156 according to which a 

metastable ozone molecule is formed at the first step of the process, and is stabilized at 

the second step by collision with an atom or a molecule of the bath gas (e.g., Ar, N2): 

 O2 + O → O3
* (5.1)  

 O3
* + M → O3 + M*  (5.2)  

Here the role of M is to quench the metastable intermediate O3
*, producing a stable ozone 

molecule. However, a more recent analysis of experimental data157 indicates that this may 

not be the only and, in fact, not necessarily the dominant mechanism of ozone formation. 

It looks like simultaneously with the energy-transfer mechanism described above, the so-

called chaperon mechanism, also known as radical-complex mechanism, may produce 

ozone via: 

 O + M → OM*  (5.3)  

 O2 + OM* → O3 + M  (5.4)  

Here the roles of M are to (non-covalently) bind the oxygen atom, exchange it with O2 

and, finally, carry away the excess energy, leaving a stable ozone molecule behind. 

Experimentally it is not straightforward to tell the difference between these two 

                                                 
* Teplukhin A.; Babikov D., Phys. Chem. Chem. Phys., 18, 19194 (2016) 
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mechanisms since, under the steady state conditions, each of them leads to the third-order 

kinetics overall, first order in each [O], [O2] and [M]. But, based on the analysis of the 

temperature dependence of the recombination rate coefficient (in a broad range) Troe157 

was able to determine contributions of each mechanism. For example, at room 

temperature and atmospheric pressure, in the air bath, the contribution of energy-transfer 

is close to 40%, while the contribution of chaperon mechanism is close to 60% of the 

total recombination rate. At low temperatures chaperon dominates, while energy-transfer 

dominates at high temperatures.157 

Using the method described in previous chapter the scattering resonances in full-

dimensional model of ozone (including its bending motion) were computed and analyzed 

for a broad range of rotational excitations, up to J = 64, Ka ≤ J. This information, together 

with the analytic formula for collisional energy-transfer and collision-induced 

dissociation derived earlier,158 permitted building a more complete version of the energy-

transfer mechanism of ozone recombination. When complemented by contribution of the 

chaperon mechanism (as suggested by Troe157) our results agree well with experimental 

data, including the absolute value of the recombination rate coefficient, its temperature 

and pressure dependencies. 

In this chapter, the kinetic model of recombination reaction is presented in 

Section 5.2.1, the summary of the method used to compute resonances (Chapter 4) and its 

adaptation to rotationally-excited ozone is given in Section 5.2.2, while stabilization and 

dissociation models are described in Section 5.2.3. Properties of resonances has been 

analyzed separately using histograms and distributions and are discussed in Section 5.3.1. 

The value of absolute rate coefficient of ozone recombination reaction and its 
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temperature and pressure dependencies are covered in Sections 5.3.2, 5.3.3 and 5.3.4, 

respectively. Section 5.3.5 discusses a validity of chaperon contribution to ozone 

recombination process. 

5.2. Theoretical framework 

5.2.1. Reaction mechanism 

Kinetics of the processes (4.1 and 4.2) is described within the micro-canonical 

framework, where different scattering resonances of O3
* are treated as different chemical 

species.24,25,27 For each scattering resonance O3
(i) at energy Ei the processes affecting its 

population [O3
(i)] are considered and the corresponding rate constants are introduced. 

Those are: 

i. Formation of O3
(i) from O2 + O characterized by the second-order rate 

coefficient ki
form: 

 O2 + O → O3
(i) (5.5)  

ii. Spontaneous unimolecular decay of O3
(i) onto O2 + O characterized by the 

first-order rate coefficient ki
dec : 

 O3
(i) → O2 + O (5.6)  

iii. Stabilization of ( )

3O i  by collision with a bath gas atom characterized by the 

second-order rate coefficient ki
stab: 

 O3
(i) + M→ O3 + M* (5.7)  

iv. Collision-induced dissociation O3
(i) onto O2 + O characterized by the 

second-order rate coefficient ki
diss: 

 O3
(i) + M*→ O2 + O + M (5.8)  
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The width Γi of quantum scattering resonance O3
(i), computed as explained in Sec. 

4.2.2, gives us directly the value of its decay rate, ki
dec = Γi. The coefficients ki

form and 

ki
dec for each scattering resonance are related to each other through micro-canonical 

equilibrium constant: ki
form = ½ ki

dec Keq(Ei). Here the factor of ½ reflects the fact that 

while in a symmetric 48O3 there are two equivalent channels for decay of resonances, the 

formation rate coefficient ki
form is per one entrance channel, simply because O hits only 

one side of O2 in a given encounter. The equilibrium constant Keq(Ei) for each scattering 

resonance is computed statistically using known formula,44 and taking into account a 

symmetry number of ½ for the partition function of symmetric reagent 32O2 (in 

denominator), where only odd rotational states are allowed. The values of  ki
stab and ki

diss 

are computed based on the results of the mixed quantum/classical simulations for O3
(i) + 

Ar collision dynamics,158 as explained in Sec. 4.2.3.  

Assuming steady-state conditions for the concentration of each state O3
(i) allows 

deriving analytic expression for the third order recombination rate coefficient of the 

overall recombination reaction: 

 1
eq2 stab

stab diss

( )

( )[M]

i i

i

i i i i

K E
k

k k





  
  (5.9)  

where the sum is over all scattering resonances O3
(i). As explained above, this 

recombination rate coefficient is per one formation channel. 

Several processes, less important than (4.5–4.8), are neglected in our treatment of 

kinetics. Namely, we do not include the possibility of back excitations, O3 + Ar → O3
(i) + 

Ar, assuming that concentration of the formed ozone [O3] is small. We also neglect the 

collision-induced transitions between different scattering resonances, O3
(i) + Ar → O3

(j) + 
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Ar, assuming that their populations are entirely determined by equilibrium with reagents 

O2 + O. These assumptions are reasonable at low and moderate pressures of the bath gas. 

5.2.2. Energies, widths and wave functions of resonances 

A numerical method used to determine the properties of scattering resonances was 

reported in detail in previous section. Here we give only a brief summary. Three 

vibrational degrees of freedom in O3 are described using adiabatically-adjusting 

principal-axis hyperspherical coordinates ρ, θ and φ.74 For low-amplitude vibrations near 

the equilibrium geometry of ozone (ρeq = 4.048 a0) the motion along the hyperradius ρ 

corresponds to the breathing mode in O3. For typical levels of rotational excitation the top 

of the centrifugal barrier occurs near ρ† ≈ 5.4 a0. Wave functions of scattering resonances 

trapped behind the centrifugal barrier are localized mostly in the range ρ < ρ†. In the 

asymptotic (channel) region the motion along ρ describes dissociation of O3 onto O2 + O. 

Complex absorbing potential in the form suggested by Balint-Kurti159 is placed in the 

range 10 < ρ < 15 a0 in order to absorb the tails of resonant wave functions. Hyperangles 

θ and φ describe bending and asymmetric-stretching motions near the equilibrium point. 

The symmetry of the vibrational wave function is determined by reflection through φ = 0. 

For symmetric 48O3 vibrational wave functions are either symmetric (A1) or 

antisymmetric (A2). 

The potential energy surface of Dawes84 was used in our calculations. Compared 

to the older surfaces of ozone,24–26,80,82 this new surface has slightly better dissociation 

energy (compared to the most advanced experimental data), and slightly different 

behavior along the minimum energy path for dissociation (a flat ‘‘shoulder’’, rather than 
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a small submerged ‘‘reef’’), which gives better agreement with experiment for the atom-

exchange process.96–99,101 Other than that, the older and new surfaces are very similar, and 

exhibit very similar densities of states near threshold.129 

We found that it is impossible to come up with a 3D-grid that covers uniformly 

and efficiently the entire configuration space of the problem.160 So, a straightforward 

diagonalization of the Hamiltonian matrix using a 3D-grid was found to be prohibitively 

expensive computationally. In order to make calculations feasible we employed the 

sequential diagonalization-truncation approach of Bačić and Light,118,119 adapted to the 

hyperspherical coordinates. Namely, for each value of ρ on the grid, we determined 

solutions of a two-dimensional problem in θ and φ, and used those as locally optimal 

basis sets for efficient representation of the global 3D wave function (of the given 

symmetry, separately for A1 and A2). The grid along ρ was also optimized to reflect the 

shape of the potential energy surface, using a method based on the local value of de 

Broglie wave length.124,125 We found that this combined FBR/DVR approach is very 

efficient, see previous chapter. Complex eigenvalues E – i Γ/2  and wave functions of the 

reduced matrix were computed using the ScaLAPACK package.128 Instead of the 

scattering approach (coupled-channel, often used in conjunction with hyper-spherical 

coordinates), we solved a 3D-eigenvalue problem, with complex absorbing potential 

introduced in the asymptotic range of the PES. 

Similar to the previous work by Grebenshchikov and Schinke,27 we adopted the 

centrifugal-sudden approximation, known also as symmetric-top rotor approximation, or 

K-conserving approximation (where K is projection of total angular momentum J onto the 

first principal axis of inertia, i.e. K = Ka, for each instantaneous molecular configuration). 
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This is the only approximation used here. It involves neglecting the Coriolis coupling 

term in the Hamiltonian operator, but also neglecting the asymmetric-top term (A − B)/2 

in the rotational potential. As was emphasized by Parker and Pack,60 these two 

simplifications constitute one single approximation, and have to be made simultaneously 

in order to decouple rotational and vibrational degrees of freedom. Thus, our calculations 

were done independently for different values of Ka ≤ J. Vibrational wave functions of 

both symmetries, A1 and A2, were retained, since they would contribute to solutions of 

different parities in the exact fully-coupled approach, except the case of Ka = 0, when 

only A2 solutions were kept for J = 0, only A1 solutions for J = 1, then, again, only A2 

solutions for J = 2, and so on (see for example, ref. 129). Note that states of symmetry E 

are not physically allowed for 16O16O16O, since in this case the wave function must be 

symmetric with respect to permutation of any two oxygen atoms. Thus, E-symmetry 

states were excluded from calculations, by restricting the range of hyperangle φ to one 

well only, 120° ≤ φ ≤ 240°. 

Typically, the Coriolis coupling is non-negligible in the ‘‘floppy’’ molecules 

only. In the ‘‘stiff’’ molecules, such as ozone, neglecting this coupling term is well 

justified and has been done in the past by other authors.27 If needed, the action of this 

term onto wave function can be rigorously evaluated.60,72 In the future we plan testing the 

effect of Coriolis coupling by including it, at least, for the states with small K values 

(e.g., K < 7), while neglecting it for larger K. 
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5.2.3. Stabilization and Dissociation Rates 

Rate coefficients for stabilization ki
stab of scattering resonances O3

(i) are obtained 

from the corresponding cross sections: 

 1/2

stab stab 8
i i

kT
k 

 

 
  

 
 (5.10)  

where μ is O3 + Ar reduced mass, and similar for the ki
stab – rate coefficient for the 

dissociation of O3
(i). In our previous work we generated several sets of data that are used 

here to compute σi
stab(Ei) and σi

diss(Ei).  

First of all, one can use the analytical formula obtained in ref. 158 to represent on 

average a large amount of data obtained for stabilization of various scattering resonances 

in four different isotopomers of ozone. In that case, for a resonance at energy E above 

dissociation threshold, the value of stabilization cross section is given by 
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 (5.11)  

The values of parameters σ0
stab, c, γ and d for this model can be found in Table II 

of Ref. 158. A slightly different fit158 of the same data uses two variables, E and Evib: 
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 (5.12)  

Here Evib is vibrational energy of the resonance, which is total energy E less 

rotational energy, and Av is one more fitting parameter.158 This formula reflects 

observation that the stabilization process is influenced by the balance between vibrational 

and rotational content of the resonance. Namely, stabilization cross sections are larger for 

those states where rotational excitation is larger, because rotational energy is exchanged 
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more readily in a typical O3
(i) + Ar collision. Eqs. (5.11) and (5.12) will be referred to as 

versions a and b of Stabilization Model 1, or SM1a and SM1b. The average dissociation 

cross section of a resonance at energy E is computed using the following formula:20 

 diss
diss diss 0

0 diss

( )
( ) 1 tanh

E E
E 



  
    

  
 (5.13)  

and a set of parameters σ0
diss, E0

diss and γdiss that can be found in Ref. 158. 

Alternatively, one can use results of Ref. 158, where we determined the energy-

transfer functions tran ( )i E   for several individual resonances (ten representative states)  

and fitted each separately by double-exponential analytic model (see Fig. 7 in Ref. 158 

for examples of such energy-transfer functions and Table IV in Ref. 158 for the values of 

fitting parameters). Such energy-transfer functions tran ( )E  , measured in the units of 

a0
2/cm-1, can be analytically integrated through the range (−∞; −E] in order to obtain 

stabilization cross sections, in the units of a0
2, for a resonance at energy E above 

dissociation threshold: 

 
stab tran( ) ( )

E

E E dE 




    (5.14)  

Employing the data for ten different resonances studied in Ref. 158 we introduce some 

range of typical values for stabilization cross section σstab(E), rather than one definite 

number. This approach is further referred to as Stabilization Model 2, or SM2. 

 So, in this work the stabilization cross sections are not computed for each 

individual resonance (e.g., by solving the O3
(i) + Ar collision problem numerically), 

rather they are obtained approximately, by substituting resonance energy E (and Evib for 

SM1b) computed in Sec. 4.2.2, into analytic expressions of Eqs. (5.11-5.13). Note, 
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however, that parameters of Eqs. (5.11-5.13) were determined in the earlier work,158 

based on the mixed quantum/classical modeling of O3
(i) + Ar collisions. 

5.3. Results and discussion 

5.3.1. Properties of resonances 

In this section we analyze the collective properties of resonances in O3
* with 

emphasis on their contribution to the overall process of recombination, rather than the 

properties of individual resonances, simply because hundreds of resonances are involved. 

Thus, the histogram of Figure 5.1a represents contribution of resonances to the 

recombination rate coefficient κ, Eq. (5.9), as a function of resonance energy above the 

dissociation threshold of O3 (which includes ro–vibrational zero-point energy of the O2 

product in the asymptotic/channel range). We see that the maximum of this distribution is 

close to Ei = 100 cm-1. Lower energy resonances (closer to threshold) contribute less. The 

tail of distribution extends up to Ei = 800 cm-1. Similarly, the histogram of Figure 5.1b 

represents the distribution of resonance widths, and we see that major contributions to the 

recombination rate coefficient κ come from resonances characterized by widths in the 

range 10-2 < Γi < 10 cm-1, with maximum of the distribution around Γi = 1 cm-1. 
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Figure 5.1. Contributions of scattering resonances to the recombination rate coefficient κ as a function of 

(a) resonance energy Ei above the dissociation threshold; and (b) resonance widths Γi. 
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Figure 5.2 shows a correlation between energy Ei and width Γi of resonances, 

again, with the focus on those states important for the recombination process. Color in 

Figure 5.2 indicates contribution to the recombination rate coefficient κ. Figure 5.1a and 

b are projections of the data in Figure 5.2 onto horizontal and vertical axes, E and Γ, 

respectively. Distribution of Figure 5.2 is not particularly broad: the most intense part of 

it spans only the 300 cm-1 range of resonance energies and three orders of magnitude 

range of resonance widths.  

 

Figure 5.2. Contributions of scattering resonances to the recombination rate coefficient κ as a function of 

both resonance energy Ei and width Γi. Projections of this 2D distribution onto horizontal and vertical axis 

gives Figure 5.1 a and b, respectively. 
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Figure 5.3 represents contribution of different rotational excitations to the 

recombination process. Color indicates the value of κ (J, Ka) obtained using Eq. (5.9) 

where summation was carried out over the vibrational states only, within each rotational 

state characterized by J and Ka. The distribution in Figure 5.3 indicates that the most 

important contributions to the recombination process come from rotational excitations in 

the range 8 < J < 38 and K < 7, which is close to the range studied by Grebenshchikov 

and Schinke.27 Since many vibrational states are included, the distribution of Figure 5.3 is 

rather shapeless. Two (not particularly well pronounced) maxima barely seen in Figure 

5.3 correspond to the states of symmetries A1 and A2 that exhibit slightly different 

properties. 

 

Figure 5.3. Contributions of scattering resonances to the recombination rate coefficient κ as a function of 

rotational excitation (J, K). Step size ΔJ = ΔK = 2 was used in the range 12 ≤ J ≤ 36 and K ≤ 4; it was 

doubled in the range J ≤ 44 and K ≤ 16 and doubled again in the range J ≤ 64 and K ≤ 32. Contributions of 

all other rotational excitations were linearly interpolated between the computed points. 
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Note that low rotational excitations, say J < 5, make only a negligible contribution to the 

process. This means that any prediction or analysis based on calculations for J = 0 only 

(non-rotating O3) is likely to be inaccurate, or may even be qualitatively wrong. 

Importantly, calculations with J > 45 are not really needed. 

Vibrational content of resonances in O3
* can be analyzed by determining the state 

number of the resonance within progression of vibrational states computed for given 

values of J and Ka, and by matching energy of the corresponding state in the spectrum of 

non-rotating ozone. This can be thought of as the vibrational energy of the resonance. 

The distribution of state numbers is given separately for symmetries A1 and A2 in two 

frames of Figure 5.4. We see that most significant contributions to the recombination 

process come from the state number 120-to-155 of symmetry A1, and the state number 

90-to-115 of symmetry A2. Note that a nonrotating ozone molecule has 163 states of 

symmetry A1, and 125 states of symmetry A2 (using the PES of Dawes84). This means 

that upper vibrational states, closest to the dissociation threshold, are more important for 

the recombination process. In Figure 5.5 we gave a distribution of energies of these 

states, relative to the dissociation threshold, for both symmetries combined. This 

histogram shows that dominant contributions to recombination come from vibrational 

states in the range 600 cm-1 below the dissociation threshold. Such states contain 10 to 13 

quanta of vibrational excitation distributed between three modes. Typical examples 

include 6 to 8 quanta of bending and/or asymmetric stretching, and 4 to 5 quanta of 

symmetric stretching. Some states have only two modes excited (e.g., 11 quanta of θ and 

1 quanta of φ), or even a single mode (e.g., 12 quanta of bending). Properties of these 
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vibrational states, including a detailed analysis of their wave functions, were reported in 

previous section. 

 

Figure 5.4. Contributions of scattering resonances to the recombination rate coefficient κ as a function of 

the state number in a progression of (a) symmetric and (b) anti-symmetric vibrational states. Only 

resonances localized in the well are included. 
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Figure 5.5. Contributions of scattering resonances to the recombination rate coefficient κ as a function of 

vibrational energy. Only resonances localized in the well are included. Both symmetries are combined. 

Further insight comes from analyzing where these resonances are (in terms of 

their energy) relative to the top of the centrifugal barrier. The effective barrier E† along 

the dissociative coordinate ρ can be defined for given J and Ka as maximum value of the 

ground vibrational state in the two-dimensional eigenvalue problem solved for non-

dissociative coordinates θ and φ. Since the PES of ozone has no activation barrier for O2 

+ O → O3, the value of E† remains negative at lower levels of rotational excitation, 

forming a submerged “reef” rather than a barrier. At higher levels of rotational excitation 

E† shows up above the dissociation threshold. (The borderline cases E† = 0 are found at J 

= 25, Ka = 0, or J = 20, Ka = 6, or J = 12, Ka = 8, etc. Exact position of this border is 

sensitive to the shape of the PES.84) Thus, Figure 5.6 gives correlation between the 

resonance lifetime Γi and the offset of resonance energy from this effective barrier top: 
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δEi = Ei − E†. Color indicates contribution to the recombination rate coefficient κ. We see 

that some contribution, around 9%, comes from resonances at energies within 50 cm-1 

below the barrier top. These can be populated by tunneling only and, consequently, 

exhibit narrower widths, on the order of Γi ≈ 10-2 cm-1. Resonances at energies within 150 

cm-1 above the barrier top make the largest contribution to recombination. They are 

broader, 10-2 < Γi < 10 cm-1, and can be populated by redistribution of vibrational energy 

within the three modes of O3
*, rather than tunneling.  

 

Figure 5.6. Contributions of scattering resonances to the recombination rate coefficient κ as a function of 

resonance energy relative to the top of centrifugal barrier (δEi in the text) and the resonance width Γi. 
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Finally, Figure 5.7 presents correlation between δEi and the probability of finding 

the system behind the centrifugal barrier, over the well region. This moiety, called here 

the well probability and denoted by pw, is obtained by integrating the square modulus of 

wave function through the range 0 ≤ ρ ≤ ρ†.  

 

Figure 5.7. Contributions of scattering resonances to the recombination rate coefficient κ as a function of 

resonance energy relative to the top of centrifugal barrier (δEi) and the probability of the corresponding 

wave function over the well region.  The boundary between resonances localized in the well and 

delocalized resonances is depicted with a dashed line at pw = 0.7. 
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In Figure 5.7 we see that for typical resonances at energies slightly below the top 

of the centrifugal barrier or somewhat above it, this probability exceeds pw = 0.7. 

However, many higher energy resonances are more delocalized. Their contribution to the 

recombination process is not negligible, around 30%. A schematic in Figure 5.8 is used to 

demonstrate this concept. It shows examples of wave functions for three resonances: one 

sitting deep and behind the centrifugal barrier, one near the top of the barrier, and one 

significantly above the top of the barrier. 

 

Figure 5.8. Three types of resonances observed in our calculations: narrow resonance trapped behind the 

centrifugal barrier (E = 51.1 cm-1, Γ = 3.6×10-4 cm-1), typical resonance slightly near the barrier top (E = 

130.0 cm-1, Γ = 0.16 cm-1), and a highly delocalized state above the barrier (E = 202 cm-1, Γ = 15.5 cm-1). 

The barrier top is at 115.7 cm-1, rotational excitation is J = 32, K = 0. 
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The data presented in Figures 5.1-5.7 can be summarized and interpreted in the 

following way: scattering resonances that participate in the recombination process 

represent upper bound states of non-rotating ozone (600 cm-1 below dissociation 

threshold) that are ‘‘lifted’’ by rotational excitation to energies above the dissociation 

threshold (around 100 cm-1), where these states can be populated from O + O2. Most 

important contributions to the recombination process come from resonances at energies 

just slightly below or somewhat above the top of the centrifugal barrier −50 < δEi < 150 

cm-1) and at moderate levels of rotational excitation (8 < J < 38). Widths of such 

resonances are not too small (10-2 < Γi < 10 cm-1), and their wave functions are localized 

dominantly over the covalent well, behind the centrifugal barrier (pw > 0.7). 

Indeed, on the lower energy side, resonances that sit too deep and behind the 

centrifugal barrier exhibit too narrow widths Γi < 10-2 cm-1, and contribute very little to 

recombination, according to Eq. (5.9). On the higher energy side, the resonances at 

energies too far above the centrifugal barrier, although may be rather broad (even 

exceeding Γ ≈ 10 cm-1), they exhibit smaller stabilization cross sections because they are 

delocalized over the large range of ρ, which reduces the probability of their stabilization 

into the covalent well (pw < 0.7). Moreover, at lower levels of rotational excitation (J < 

25) the top of the effective centrifugal barrier is still submerged below the dissociation 

limit (E† < 0) which, again, makes resonances too delocalized. Finally, at higher levels of 

rotational excitation J > 40 the Boltzmann factor shuts off the recombination process. So, 

it appears that only at moderate levels of rotational excitation and only at energies near 

the top of the centrifugal barrier the resonances of O3 are efficiently populated by O + O2 
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collisions and are efficiently stabilized by Ar collisions. Widths of such resonances are 

neither too narrow nor too broad, as one can see from Figures 5.1b, 5.2 and 5.6. 

5.3.2. Absolute value of recombination rate coefficient 

The main (future, not immediate) goal of our efforts is to understand the 

anomalous isotope effect of ozone formation observed by Mauersberger group and 

reported in a series of papers (see, for example Refs. 15 and 16, review articles Refs. 131 

and 132 and references therein). Majority of those studies were carried out at room 

temperature T = 296 K and the pressure P = 200 Torr, in the Ar bath gas, which translates 

into [M] = 6.53 × 1018 cm-3. At these conditions the total rate coefficient for ozone 

recombination is κTOT = 42 × 10-35 cm6/s.13 According to analysis of Troe157 the 

contribution of energy-transfer mechanism should be around κET = 23 × 10-35 cm6/s  

(close to 55% of the total rate). This is the value we are trying to reproduce by 

calculations.  

The only other work, where the absolute value of the recombination rate 

coefficient obtained from quantum mechanics was reported, is the paper of Charlo and 

Clary.40 Their calculations gave κ = 13 × 10-35 cm6/s, although it is not entirely clear 

whether this value was taken directly from the dimensionally-reduced model, where the 

bending states are missing, or, it already includes a correction to account for the missing 

states (which would be a reasonable thing to do). Also, within a model based on classical 

trajectory simulations Schinke and Fleurat-Lessard32 were able to reproduce the overall 

experimental value of κTOT but empirically, by adjustment of stabilization efficiency 

(coefficient Δ = 350 cm-1 in their theory). To the best of our knowledge, these are the 
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only two theoretical predictions of the recombination rate coefficient available in the 

literature. In all other papers on ozone the workers either were interested in the ratio of 

the recombination rates for different isotopomers, or looked at other processes, such as 

atom exchange or ro-vibrational energy transfer (so, did not report the absolute value of 

recombination arte coefficient). 

In our case the less certain component of recombination theory is the stabilization 

step, or, more precisely, the values of σi
stab. Several models developed in our previous 

work (as explained in Section 5.2.3) are tested here by comparison vs. the experimental 

value of κET. The results of these tests are presented in Table 5.1. 

Table 5.1. Recombination rate constant κ (10
-35

 cm
6
/s) for the energy transfer mechanism 

Model Localized resonances
*
 All resonances

**
 

SM1a 13.4 19.1 

SM1b 9.4 12.2 

SM2 5.6 − 16.1 8.3 − 22.7 

SM2' 8.1 − 19.4 11.6 – 27.0 

Experiment   23 

*
 Includes states with fraction in the well more than 70% 

**
 Includes all states where contribution of delocalized states is multiplied by fraction 

We see that all stabilization models give the recombination rate coefficient   of 

correct order of magnitude. Namely, the first column in Table 5.1 shows that the values 

of κ obtained using SM1a and SM1b models fall between the minimum and maximum 

limits predicted by SM2. This makes sense, since SM1a and SM1b were constructed to 

represent stabilization cross sections on average, while SM2 represents the possible 

range. As for comparison with experiment we see that our predicted rate coefficients are 

somewhat smaller. Even the upper limit given by the SM2 model, κ ≈ 16.1 × 10-35 cm6/s, 
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is only 70% of the experimental value of κET (although it is very close to the result of 

Clary40). 

Trying to find the missing piece we noticed that the lowest energy scattering 

resonances O3
(i) do not contribute to recombination. Qualitatively, they sit so deep and 

behind the centrifugal threshold that they can’t be populated in a typical O2 + O collision, 

just because heavy particles cannot tunnel through wide barriers (see Figure 5.8). 

Quantitatively, in the limit Γi << (ki
stab + ki

diss)[M] the contribution of each resonance, 

according to Eq. (5.9), simplifies to the following expression: κi ≈ ½ Γi Keq(Ei)/[M]. This 

shows clearly that resonances with negligible widths Γi make negligible contributions to 

recombination. Thus, they should be considered as bound states, rather than scattering 

resonances. Removing these states from the list of resonances does not reduce the value 

of the recombination rate coefficient much, but this modification ‘‘lifts’’ the bound state 

threshold, leading to more efficient stabilization of the remaining (higher energy) 

scattering resonances, since now the required energy-transfer ΔE is effectively reduced 

for them. We found that (at this pressure) the resonances with widths below Γi ≈ 10-2 cm-1 

can be considered as effectively bound states. This adjustment, which represents an 

improved version of SM2, called SM2ʹ hereafter, permits increasing the maximum limit 

of the recombination rate coefficient to κ ≈ 19.4 × 10-35 cm6/s (bottom of the first column 

in Table 5.1), which is about 84% of the experimental value of κET ≈ 23 × 10-35 cm6/s, 

and is still not quite sufficient. 

Searching for the still missing piece we realized that we took into consideration, 

so far, only resonances that are localized mostly over the covalent well, inside the 

centrifugal barrier, rather than outside (see Figure 5.8). As we showed in Section 5.3.1 
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above, for typical resonances at energies slightly below the top of the centrifugal barrier 

or slightly above it, the value of well probability pw exceeds 0.7 or so. Consequently, the 

results given in the first column of Table 5.1 were obtained including only localized 

resonances, with pw > 0.7. However, many higher energy resonances are more 

delocalized, characterized by pw < 0.7. Although energies and lifetimes of these states are 

available from our calculations, it appears that including them into consideration of 

recombination kinetics is not straightforward, because our stabilization models (SM1 and 

SM2) were set up for the localized states only.44,158 From ref. 43 we know that transitions 

from the outside of the centrifugal barrier into the states localized in the well are very 

weak. So, using SM1 and SM2 for delocalized states would be incorrect and would, 

certainly, overestimate the value of the recombination coefficient κ (we checked this by 

calculations). 

It makes sense, however, to use SM1 and SM2 for only a portion of the 

delocalized resonance, namely, for that piece of it that sits inside of the centrifugal 

barrier. This is equivalent to multiplying stabilization cross section by the well 

probability p. So, for the localized states (characterized by pw > 0.7) we use SM1 and 

SM2 straight, whereas for delocalized states (pw < 0.7) we reduce the value of 

stabilization cross section proportionally to the well probability p. Recombination rate 

coefficients computed in this way, with delocalized states included, are given in the 

second column of Table 5.1. They are somewhat higher than those in the first column of 

Table 5.1. Predictions of SM1a and SM1b are still somewhat below the experimental 

value of κET, but the upper limit of the SM2 model with delocalized states included is 

now κET ≈ 22.7 × 10-35 cm6/s, which almost reaches the experimental value of κET ≈ 23 × 
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10-35 cm6/s. Finally, the upper limit of SM2ʹ is now κET ≈ 27.0 × 10-35 cm6/s, which is 

above the experimental value of κET. So, in this final form of our theory, the experimental 

value of κET is within the ranges predicted by the SM2ʹ model. 

The following conclusion can be drawn from the data presented in Table 5.1. In 

order to reproduce the experimental rate coefficient for ozone recombination we had to 

take delocalized resonances into consideration. It is also important to treat the low-energy 

resonances as bound states, but this is not sufficient by itself. Only when those two 

effects are both included, the experimental value of the recombination rate coefficient is 

recovered by the SM2ʹ model of stabilization. In what follows we will use this approach 

as the working model, but, for comparison, we will also present results obtained using the 

simplest SM1a model (with delocalized states included), which gives the rate coefficient 

just 17% below the experimental value of κET. Note that in Figures 5.1-5.3, 5.6 and 5.7 

were generated using SM1a with delocalized states included. Figures 5.4 and 5.5 were 

generated using SM1a without delocalized states (since it is harder to make connection 

between the highly excited delocalized scattering resonances and the bound states of a 

non-rotating ozone molecule). 

5.3.3. Pressure dependence 

Pressure dependence of the third-order rate coefficient for ozone formation is 

known to be weak. So, it is usual to plot, as a function of pressure, the product κ × [M], 

which represents the second-order rate coefficient for recombination of O2 with O. Its 

pressure dependence is expected to be roughly linear. Figure 5.9 presents experimental 

data from Ref. 161 and 162 in a broad range of pressure values, for three representative 
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temperatures. We focus on frame b of this figure, since that temperature, T = 300 K, is 

very close to the temperature in experiments of the Mauersberger group. For 

completeness, the value of the recombination rate coefficient given by Mauersberger and 

co-workers13 is also shown in Figure 5.9b, at low pressure P = 200 Torr. 

Our predictions of κET × [M], computed using the SM1a and SM2ʹ models of 

stabilization, are shown on these figures too (yellow line and green range). As expected, 

the results of the SM1a model are within the range of the SM2ʹ model, and show the 

same pressure dependence. The dependence starts roughly linear, but it falls off at higher 

pressure. This behavior is typical to the energy-transfer (Lindeman) mechanism of 

recombination. It is explained by competition between two terms in the denominator of 

Eq. (5.9), namely, between the spontaneous decay of scattering resonances and their 

collision-induced stabilization. At high pressure one can neglect Γi in the denominator of 

Eq. (5.9), which leads to κi × [M]≈ ½ Γi Keq(Ei) for each resonance. This means that the 

value of κET × [M] stops increasing with pressure, it decreases, just as shown in Figure 

5.9. Such behavior was also observed by Marcus and co-workers in their model of ozone 

formation,23 and by Pack et al.132 in their studies of the Ne + Ne + H → Ne2 + H 

recombination process.  
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Figure 5.9. Pressure dependence of the second-order recombination rate coefficient κ × [M] for three 

temperatures: (a) 213 K, (b) 300 K and (c) 373 K. Yellow line with green range corresponds to the energy 

transfer mechanism alone, while blue line with red range represents the total rate coefficient, with chaperon 

contribution added. Black symbols depict experimental data: circles (Ref. 161), star (Ref. 13) and squares 

(Ref. 162). 
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Note, however, that the experimental data in Figure 5.9 hardly show any decrease. 

As discussed above, the analysis of Troe157 indicates that in the experiment the 

recombination process involves both the energy-transfer and the radical-complex 

(chaperon) mechanisms. Therefore, in order to compare with experiment, we added to 

our κ × [M], predicted here by calculations, the contribution of radical-complex κRC × 

[M], determined by Troe157 from the analysis of experimental data. The total rate is 

shown by blue line with red range in Figure 5.9, and we see that it is in good agreement 

with experiment, both in terms of the absolute value and pressure dependence, in a broad 

range. 

Moreover, our calculations show similarly good agreement with experimental 

data for pressure dependence at slightly elevated and slightly reduced temperatures: T = 

373 K and T = 213 K, respectively. This is illustrated by Figure 5.9a and c. The fall off is 

more pronounced at lower temperature, and is barely visible at higher temperature. In 

either case, the total of energy-transfer and radical-complex contributions agree well with 

the experiment in a broad range of pressure values, and for all three values of 

temperature. 

5.3.4. Temperature dependence 

Initially, we did not plan to study temperature dependence of the recombination 

rate coefficient. For this, strictly speaking, one has to compute temperature dependence 

of stabilization cross sections, but we did not really do that. Our previous mixed 

quantum/classical calculations of energy-transfer44,47,158 were carried out at room 

temperature only. However, reasonable agreement with experiment in all three frames of 



147 

 

Figure 5.9, that cover the temperature range 213 ≤ T ≤ 373 K, indicates that we can try to 

explore the temperature dependence, at least in a narrow range of couple hundred degrees 

Kelvin. Furthermore, quantum calculations of temperature dependence of stabilization 

rate coefficients by Charlo and Clary39 showed that those depend only weakly on 

temperature, even in a much broader temperature range. Similar conclusions were drawn 

by Ivanov and Schinke,163,164 based on classical trajectory simulations. 

So, we decided to check what temperature dependence is predicted by our 

calculations. Figure 5.10 shows experimental data available for the third-order 

recombination rate coefficient through a broad range of temperatures, as summarized by 

Troe.157 Our predictions, obtained using SM1a and SM2ʹ models for stabilization, are 

also shown in Figure 5.10. Yellow line with green range is used for κ (T) based on the 

energy-transfer mechanism alone, while blue line with red range is used for the total of 

our κ (T)  plus the κRC (T)  contribution, as reported by Troe.157 We see that temperature 

dependence of the total recombination rate is in very good agreement with experiments. 

The temperature dependence of the κET (T) alone is not available from the experiment, 

but it can be estimated (extrapolated) from the high-temperature data, where the 

contribution of the radical-complex mechanism is expected to vanish. This extrapolation 

is shown by black line in Figure 5.10. We see that our prediction of temperature 

dependence for the energy-transfer mechanism alone is also in reasonable agreement with 

experimental information. Better agreement is hard to achieve, due to the nature of 

extrapolation, but also due to a significant spread of experimental data in the high 

temperature range, as one can see in Figure 5.10. 
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Figure 5.10. Temperature dependence of the recombination rate coefficient κ at P = 0.1 bar. Yellow line 

with green range corresponds to the energy transfer mechanism alone, while blue line with red range 

represents the total rate coefficient, with chaperon contribution added. The original figure, containing 

combined experimental data, was taken from the paper by Troe, Ref. 157. The long black line is an 

experiment-based estimation of ET rate coefficient. 
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It is usual to fit experimental or theoretical data for temperature dependencies by 

T -n functions. We also did this, using different models for the stabilization process. Our 

results are summarized in Table 5.2, together with other theoretical predictions from the 

literature, and available experimental data. The first column of Table 5.2 gives the values 

of n for the energy-transfer mechanism alone. Predictions of SM1a and SM2ʹ models are 

slightly below the experimental value of n = 1.5, while prediction of SM1b is slightly 

above it. A larger deviation from the experimental value of n was observed in the work of 

Grebenshchikov and Shinke27 where n = 2.1 was reported, which is close to the 

temperature dependence of the total recombination rate coefficient. Charlo and Clary40 

had negative temperature dependence, n = − 0.64, due to the artifact of the older potential 

energy surface. Schinke and Fleurat-Lessard32 obtained n = 1.5, but only after empirical 

adjustment of the damping coefficient in their classical (trajectory based) approach. 

Table 5.2. Temperature dependence T
 -n

 of the recombination rate constant 

 ET mechanism  ET + RC mechanisms 

Model 
Localized 

resonances
*
 

All resonances
**

  
Localized 

resonances
*
 

All resonances
**

 

SM1a 0.96 1.09  2.16 2.10 

SM1b 1.55 1.72  2.66 2.65 

SM2 1.00 − 1.37 1.12 − 1.49  2.16 − 2.69 2.09 − 2.62 

SM2' 0.86 − 1.15 0.98 − 1.28  2.01 − 2.48 1.95 − 2.42 

Experiment  1.5   2.22 (2.7) 

Ref. 27  2.1    

Ref. 32  1.5    

Ref. 40  −0.64    
*
 Includes states with fraction in the well more than 70% 

**
 Includes all states where contribution of delocalized states is multiplied by fraction 

The second column in Table 5.2 reports the values of n obtained for temperature 

dependence of the total recombination rate coefficient which, again, includes our 

computed contribution of the energy-transfer mechanism, plus the contribution κRC (T) of 
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the radical-complex mechanism as reported by Troe.157 The experimental value of n = 2.2  

is in the ranges predicted by SM2 and SM2ʹ. The prediction of SM1a is somewhat lower 

than the experimental value, while prediction of SM1b is somewhat above it. The 

experimental value of n = 2.7 reported in the earlier work165 is closer to the prediction of 

SM1b and the upper limit of SM2. 

5.3.5. Discussion 

Comparison of our results vs. experimental data is very good. We should admit, 

however, that the less certain component of our theory, the stabilization step, is still 

described approximately, by a simple analytic energy transfer model (several variations 

of which have been tested above). Alternatively, one may wish to use accurately 

computed stabilization and dissociation cross sections for each individual resonance, 

which could be regarded as the exact approach to the problem. In fact, we did such 

calculations in our earlier work, but only for the dimensionally-reduced model of an 

ozone molecule (with bending states omitted) and within the framework of the mixed 

quantum/classical theory. Similar quantum/classical calculations for stabilization of 

individual ro–vibrational states within the full-dimensional description of the ozone 

molecule would be extremely demanding, while the full-quantum scattering calculations 

would be computationally unaffordable. So, for now, we decided to explore what can be 

learned using those simpler models for the stabilization step. 

Although in this work we tested several models of the energy transfer, note that 

we did not tune any parameters in these models (e.g., trying to reproduce experimental 

data). Instead, we explored all possible sources of contributions to the recombination 
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process. But, in principle, someone may want to ask a question: could it be that slight 

variation of model parameters would permit reproducing the total experimental rate 

coefficient by the energy-transfer mechanism alone, without any involvement of the 

chaperon mechanism? Well, in order to reach the value of κTOT ≈ 42 × 10-35 cm6/s within 

the current approach and using SM1a (with delocalized states included) we would have 

to increase the value of stab

0  in Eq. (5.11) by a factor of 2.5, and, it would be problematic 

to find a justification for this. In fact, our stabilization cross sections are already rather 

large. Comparisons can be made with the thermal stabilization rate coefficient reported 

by Clary,39 4.92 × 10-11 cm3/s, and with the energy transfer function reported by Schinke 

(see Fig. 2 in Ref. 164). We checked and found that the corresponding numbers in our 

calculations are larger than those of Clary by a factor of three, and, larger by a factor of 

four than those of Schinke. So, we would be very hesitant to ‘‘tune’’ stabilization cross 

section without any justification, just in order to fit the experimental value of κTOT . 

Inclusion of delocalized resonances, and treating narrow resonances as bound states, 

permitted us to reach the level of experimental κET, but not the level of experimental κTOT. 

We conclude that within the energy-transfer mechanism, we cannot find any other 

possible source of additional contribution to recombination. 

Moreover, we checked and found that a straightforward increase of σ0
stab by a 

factor of 2.5 does not resolve all problems, because it leads to incorrect pressure and 

temperature dependencies. We tried this, and it appears that the resultant pressure 

dependence would exhibit a pronounced fall-off in the high pressure regime, which 

contradicts with experiments. Quantitatively, at pressure P = 103 bar the rate coefficient 
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would be 3.1 times smaller than the experimental value. The temperature dependence 

would also be way too weak, with n = 1.06. 

Furthermore, recall that as we explained above, in the high pressure limit Eq. 

(5.9) simplifies, giving κi × [M] ≈ ½ Γi Keq(Ei) which is independent of ki
stab at all! So, it 

does not matter which stabilization model is used, and how accurate it is. If the 

resonances (number of states, their energies and lifetimes) are computed using accurate 

treatment of O3, then this information alone sets up the high-pressure limit of the 

recombination rate, and there is no need to consider the Ar + O3 collision process. Since 

here the treatment of resonances in O3 is rather accurate, but the high-pressure rate 

coefficient is still 3.1 times smaller than the experiment, it means that there must be some 

additional contribution to recombination, other than the energy transfer mechanism. From 

our point of view this is the strongest argument in support of the chaperon mechanism. 

So, it appears that in order to reproduce experimental data one must involve the 

chaperon mechanism, as we did here, using the fitting parameters of Troe. 

5.4. Summary 

This chapter has covered rigorous calculations and a detailed analysis of 

scattering resonances in ozone, for a broad range of rotational excitations. We adopted a 

recently developed accurate potential energy surface,84 and developed an efficient 

method for calculations of ro–vibrational energies, wave functions and resonance 

lifetimes (using hyper-spherical coordinates, the sequential diagonalization/truncation 

approach, grid optimization and complex absorbing potential, see previous chapter). The 

distribution of resonance energies and lifetimes was discussed, as well as their rotational 
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and vibrational content, and even other interesting features, such as positions of 

resonances with respect to the centrifugal barrier (both energetically and in terms of the 

probability distribution). Correlations between many of these properties were visualized 

with emphasis on the contribution of resonances into the recombination process. 

This accurate information was augmented by the energy-transfer models derived 

earlier for stabilization and dissociation of scattering resonances,44,158 in order to predict 

the absolute value of the recombination rate coefficient and determine its pressure and 

temperature dependencies. Our results offer strong support for the work of Troe,157 who 

argued that the energy transfer mechanism of recombination, the Lindeman mechanism, 

is just one of two mechanisms forming ozone. The recombination rate coefficient that we 

obtained for the energy-transfer mechanism at room temperature in Ar bath gas (using the 

simplest stabilization model SM1a) is about 45% of the total rate coefficient measured in 

the experiment. An alternative version of the stabilization model, SM2ʹ, gives the range 

of values 30–63%. These match nicely with the conclusion of Troe, who derived that it 

should be close to 55%. Furthermore, both experimentally determined pressure 

dependence of the rate coefficient (in a broad range) and its temperature dependence (in 

the narrower range) are reproduced well, if we add to our data the contribution of the 

chaperon mechanism, as derived by Troe. 

In our calculations, we found that it is important to include broader delocalized 

resonances at higher energies into consideration, since their contribution is not negligible. 

In the future, a model for the stabilization of such resonances, more accurate than the one 

adopted here, is desirable. It was also important to treat the low-energy narrow 

resonances (trapped deep and behind the centrifugal barrier) as bound states, which 
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increases stabilization rates for the most important resonances at energies near the top of 

the barrier. In the future, one could try to implement solution of the master equation, in 

order to have these effects included automatically and more rigorously. 

The accurate description of the energy-transfer mechanism of ozone formation is 

important for understanding anomalous enrichments of various isotopomers of ozone 

(there are 36 isotopically distinct variants of this reaction, see Table 1.1). Our next step is 

to repeat, for several isotope substitutions, all the calculations reported in this chapter, 

hoping that the isotope effects will emerge in calculations, which would help understand 

its origin. 
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Chapter 6. Application to isotope problem in ozone 

To study isotope effects in ozone, the method, described in Chapter 3, must be 

modified. The modifications include the transition from DVR to FBR in hyperangle φ 

and the extension of configuration space to include two other covalent wells of ozone on 

global PES. Then, selection rules are derived for wave functions that span configuration 

space over three wells on the PES. Two choices of axes orientation and preliminary 

results for two isotope effects are presented and discussed. Primarily, we consider singly 

and doubly substituted ozone isotopologues, 686 (50O3) and 868 (52O3). By convention, 

labels 6, 7 and 8 stand for oxygen isotopes 16O, 17O and 18O, correspondingly. The 

isotopologue 686 includes three covalent wells, 686, 668 and 866. The covalent well 686 

represents one isotopomer, while the wells 668 and 866 represent another isotopomer. At 

the same time, the isotopologue has three channels for dissociation, one with 

homonuclear oxygen molecule, 16O16O, and two with heteronuclear oxygen, 16O18O. The 

same classification is applied to isotopologue 868. It has one covalent well, or 

isotopomer, that stands out, 868 and two covalent equivalent wells 688 and 886, that 

represent another isotopomer. Three dissociation channels are 16O + 18O18O, 18O + 16O18O 

and 18O16O + 18O, in the last two the same heteronuclear O2 is formed. In this way, when 

we refer to isotopologues, we imply the calculation with all three covalent wells, 0 ≤ φ ≤ 

2π, but when we consider only one covalent well, we call it isotopomer or molecule. 

Finally, the last section of this chapter explains how the couplings between rotation and 

vibration, due to (i) Coriolis term and (ii) the asymmetric part of the rotational potential, 

may be incorporated into calculations in future. 
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6.1. Advantage of basis set representation for rigorous 

treatment of symmetry 

In the previous chapters, the grid representation, or DVR, was used to describe 

motion along each degree of freedom. However, for rigorous treatment of symmetry, 

basis set representation, or FBR, can be more favorable, than grid representation. In this 

section we will focus on advantages of FBR and apply it to hyperangle φ, because it is the 

only vibrational coordinate which is responsible for symmetry in ozone. 

First of all, there are at least two ways to handle symmetry in the calculation of 

the rovibrational spectrum of ozone. One way is to construct a two-dimensional basis set

( , )n

m   , split it by symmetry and then solve three-dimensional problem separately for 

each symmetry, as was shown in Chapter 3. But even better is to separate symmetries on 

earlier stage, right after one-dimensional eigenvectors are computed. This can be easily 

achieved by implementing FBR for hyperangle φ. Instead of the grid, a finite expansion 

with trigonometric basis, f ~ cos(φ) or sin(φ), can be utilized. Then, the basis of cosine 

functions will give exactly symmetric states (and only these), while the basis of sine 

functions will give the remaining exactly asymmetric states. This is a significant 

advantage of symmetry-adapted FBR. 

Second, as follows from previous discussion, FBR allows to split Hamiltonian 

matrix into two independent matrix blocks, one for symmetric states and another for 

asymmetric states. In general, the eigenvalue decomposition of two twice-smaller 

matrices is numerically cheaper, than that of one total matrix: 2N2 vs. 4N2 for quadratic 

scaling, or 2N3 vs. 8N3 for cubic scaling (factor of 2 to 4). 



157 

 

Third, when configuration space is expanded, for example, to include two other 

covalent wells of ozone, as explained in the next section, the number of grid points in 

DVR must be tripled to cover added areas, 0 ≤ φ ≤ 2π/3 and 4π/3 ≤ φ ≤ 2π, while there is 

no change in number of basis functions in FBR, because the existing basis function are 

simply continued to fill in the extended range. 

In our calculations, we implemented a symmetry-adapted FBR for hyperangle φ. 

When all three covalent wells are included, then 0 ≤ φ ≤ 2π and the basis is 
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When only one central well is included, then 2π/3 ≤ φ ≤ 4π/3, the frequency in the 

equations above must be tripled and 0 ( ) 3 / 2symf   . In FBR, the matrix elements of 

the kinetic energy operator K̂ are calculated analytically and the matrix itself is diagonal. 

For the basis of sine function: 
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For the basis of cosine functions (where 0

symf  function is constant): 
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The matrix of potential energy operator V̂ is defined in a similar fashion: 

 ( , ) ( ) ( , , ) ( )i j i jV f V f d          (6.5)  

When an equidistant grid for φ is still used, these matrix elements of potential energy 

operator V̂ can be estimated numerically: 

 ( , ) ( ) ( , , ) ( )i j i k k j k

k

V f V f           (6.6)  

Here Δφ is a grid step size, while k is a grid point number. Therefore, in terms of matrix 

structures, FBR contrasts with DVR. In FBR approach, the kinetic energy operator is 

diagonal, while potential energy operator is not. In contrast, in DVR the potential energy 

operator is diagonal, while kinetic energy operator is not diagonal. The construction of 

Hamiltonian matrices for one-dimensional problems is always very fast, does not matter 

which representation is used. 

6.2. Inclusion of all three equilibrium configurations of 

isotopically substituted ozone 

In Chapters 2-5, we computed bound and resonance states of unsubstituted 

isotopologue 48O3 over one covalent well, i.e. the hyperangle φ was confined in [2π/3, 

4π/3]. In this isotopologue all three covalent wells are equivalent. However, as soon as 

one of oxygen atoms 16O is replaced with another isotope, for example 18O, then one 

covalent well becomes different from the other two. Obviously, the potential energy 

surface does not depend on oxygen masses, but Hamiltonian and APH coordinates are 

mass-dependent. In Hamiltonian operator, the masses of three atoms enter through one 

three-body reduced mass μ Eq. (2.3), while APH coordinates include mass coefficients d, 

Eq. (2.2). Figure 6.1 demonstrates this change with respect to unsubstituted ozone, 666. 
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For unsubstituted ozone, the potential energy surface in the range 2π/3 ≤ φ ≤ 4π/3 is 

identical to those in the ranges 0 ≤ φ ≤ 2π/3 and 4π/3 ≤ φ ≤ 2π. For substituted ozone, the 

shape of PES is slightly changed: for singly substituted ozone all features of PES (well, 

transition states and dissociation channels) change their sizes a little and move away from 

φ = π towards the edges of the plot, for double substituted ozone, features also change 

size, but move closer to the middle. The symmetry of the system being degraded: number 

of symmetry planes is reduced from three in 48O3 to only one in 50O3 and 52O3. 

 

Figure 6.1. Structure of the PES in APH coordinates for singly (top panel) and doubly (bottom panel) 

substituted ozone. Three slices are merged together on each panel: through the deep covalent well, through 

the transition region, and through the vdW plateau, similar to the top panel of Figure 3.2. Structure of PES 

for unsubstituted ozone 48O3 is shown with grayed areas and exhibits a threefold symmetry with symmetry 

planes at φ = π/3, π and 5π/3. When at least one oxygen is substituted, all features change their sizes and are 

shifted a little, resulting only in one remaining symmetry plane at φ = π. Label “6” stands for 16O, while “8” 

for 18O. 

The two-dimensional wave functions ( , )n

m   , used as a basis in Sequential 

Diagonalization Truncation, follow the PES changes in a similar way when two other 

covalent wells are added. For unsubstituted ozone, they consist of three identical replica 
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of one-well wave functions from Figure 3.2 over the extended range of φ. For substituted 

ozone, the central covalent well is no more degenerate with left and right wells, which 

results in ( , )n

m    functions of two types: functions localized in two central well and 

functions localized in both side wells simultaneously, as shown in Figure 6.2.  The 

functions form two groups, which may be called the functions of single well and the 

functions of double well. They are exactly symmetric, because were computed with 

cosine FBR. Asymmetric functions, computed with sine FBR, are shown in Figure 6.3 

and are distributed between the wells in a way similar to the symmetric case. Since all 

states are normalized, but are localized in different number of wells (one or two), the 

intensity of single well states in these figures is higher, than that of the double well states. 

 

Figure 6.2. First ten symmetric 2D wave functions Λ(θ, φ) in a full range of hyperangle φ for singly 

substituted ozone 50O3. The slice is made though covalent region. Wave functions are listed in ascending 

order of state energy, shown in top-left corner of each panel. The states form two groups, one includes 

states of the single (central) well, or molecule 686, while another includes states of the double (side) well, 

or molecules 866 and 668. 
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Figure 6.3. First ten asymmetric 2D wave functions Λ(θ, φ) in a full range of hyperangle φ for singly 

substituted ozone 50O3, similar to Figure 6.2. 

In fact, these single and double well wave function ( , )n

m    can be approximated 

using one-well solutions for molecules 686 (2π/3 ≤ φ ≤ 4π/3)  and 668 (0 ≤ φ ≤ 2π/3). 

Then, the single well functions are the states of molecule 686, while the double well 

states are the positive and negative linear combinations of the two states of the molecule 

668. The positive linear combinations end up in the group of symmetric functions, and 

the negative linear combinations appear in the group of asymmetric states. The single 

well states appear in both groups, depending on evenness or oddness of the number of 

quanta along hyperangle φ. But, such approach would be approximate and may not work 

for some highly-excited states, where the wave functions can show delocalization over all 

three wells. 
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It is also worth mentioning, that the solution for unsubstituted ozone, 48O3, can be 

obtained in two ways. One way is to use FBR, Eqs. (6.1) and (6.2), with tripled 

frequency, which will give ( , )n

m    with a three-fold symmetry, the wave functions will 

be equivalently distributed between all three wells. In contrast, one can use FBR without 

frequency tripling, i.e. exactly the same FBR used for substituted ozone. In this approach, 

two-dimensional states of 48O3 will look the same as in Figures 6.2 and 6.3, but 

corresponding single well and two double well states will be nearly degenerate, the lower 

is the state the higher is degeneracy. 

The extension of configuration space along φ also means addition of many other 

features of PES, besides three covalent wells. Total, there are three covalent wells, six 

transition states, six van-der-Walls wells and three dissociation channels. In all these 

chemically important regions of the PES, the two-dimensional basis ( , )n

m    behave 

symmetrically similar, as was discussed for covalent wells. For example, in case of singly 

and doubly substituted isotopologues, for large hyperradius ρ two dissociation channels 

are identical, but different from the third one. The computed functions ( , )n

m    reflect 

equivalence of two channels, as is seen in Figures 6.4 and 6.5. 

Again, symmetric states are either the positive linear combinations of states in 

two identical channels (double channel states, similar to double well states above) or the 

states in the different channel with even number of quanta. Similarly, asymmetric states 

are either the negative combinations or the states in the different channel with odd 

number of quanta. Since for isotopologue 686 the dissociation threshold associated with 

the single channel, where 32O2 is formed, is larger, then in double channel, where 34O2 is 

formed, the states in single channels appear higher in energy (as seen in Figure 6.4, four 
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states of double channel precede the ground state of the single channel). Note, that this is 

opposite for doubly substituted isotopologue 868 (not shown here): the heavy 36O2 is 

formed in the single channel, so two-dimensional states of the single channel will precede 

the states in 34O2 channels. 

 

Figure 6.4. First ten symmetric 2D wave functions Λ(θ, φ) in a full range of hyperangle φ for singly 

substituted ozone 50O3. The slice is made though dissociation channels. Wave functions are listed in 

ascending order of state energy, shown in bottom-left corner of each panel. Quantum number j is a number 

of rotational quanta in O2, for single channel states of 16O16O (js) and double channel states of 16O18O (jd).  

 

Figure 6.5. First ten asymmetric 2D wave functions Λ(θ, φ) in a full range of hyperangle φ for singly 

substituted ozone 50O3, similar to Figure 6.4. 
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6.3. Symmetry of rotational and vibrational wave functions in 

ozone 

In this section, the symmetry of allowed rotational and vibrational wave functions 

is discussed in more detail than in Chapter 3. These rules define the vibrational wave 

functions, or metastable resonance states, to be included into the recombination kinetics 

formalism to determine the rate coefficient, Eq. (5.8). We will show, how the selection 

rules could be derived for two orientations of the z axis, see Figure 6.6. According to the 

first choice, the z axis, which total angular momentum is projected on, lies in the 

molecule plane. According to the second choice, the z axis is perpendicular to the 

molecule plane. Also it will be shown how selection rules can be applied to isotopologues 

50O3 and 52O3 that include all the covalent wells, 0 ≤ φ ≤ 2π. These isotopologues are 

described using C2v point group, because it is the molecular symmetry group of the ozone 

molecules 686 and 868, similar to the water molecule. For consistency, we will also 

briefly explain how everything is simplified for the isotopologues with no symmetry, 

such as 678, that obey Cs symmetry group. The unsubstituted isotopologue, 666, could 

also be considered using C2v, or using a group with more symmetry constrains, D3h. 

 

Figure 6.6. Two choices of the body-fixed coordinate systems: a) the z axis lies in the molecule plane, b) 

the z axis is perpendicular to the molecule plane. 
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6.3.1. Symmetry of ozone in C2v group 

Similar to water molecule, ozone, in its equilibrium configuration, can be 

described with C2v symmetry group, see character Table 6.1. It has one two-fold 

symmetry axis (C2b) and two reflection plans (σab and σbc).  

Table 6.1. Character table of C2v point group. 

 E C2b σab σbc 

A1 1 1 1 1 

A2 1 1 -1 -1 

B1 1 -1 1 -1 

B2 1 -1 -1 1 
The b axis is the symmetry axis of the molecule. 

The c axis is perpendicular to the molecule plane. 

The a is perpendicular to both b and c. 

The total wave function of the molecule can be expressed as a product of the 

nuclear spin, electronic, rotational and vibrational components: 

 s el rot vib      (6.7)  

The same is true for the symmetry of the wave functions: 

 s el rot vib       (6.8)  

Since isotopes 16O and 18O are bosons, then the total wave function Ψ must be symmetric 

under exchange of any two oxygens, Γ = A1 A2. The isotopes 16O and 18O are spineless, 

so the nuclear spin wave function is symmetric: Γs = A1. The ground electronic state of 

ozone is also symmetric, so Γel = A1. For ozone molecule, the symmetry of vibrational 

wave functions is the same as for water molecule, Γvib = 2A1 B1. The vibrational states 

in Figures 6.2 and 6.4 have A1 symmetry, the states in Figures 6.3 and 6.5 have B1 
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symmetry. Consequently, the symmetry of the rotational states could be either A1 or A2, 

see multiplication Table 6.2. 

Table 6.2. Multiplication table for C2v point group. 

 A1 A2 B1 B2 

A1 A1 A2 B1 B2 

A2 A2 A1 B2 B1 

B1 B1 B2 A1 A2 

B2 B2 B1 A2 A1 

In our approach, we compute the vibrational states for each rotational state (J, K) 

individually. To satisfy selection rules, some of computed vibrational states must be 

excluded. So, further we will derive how the symmetry of rotational states depends on 

particular J and K, and will see which vibrational states must be kept to result in the total 

wave function of correct symmetry. Here, according to Bunker and Jensen,166 the 

transformation of rotational states is convenient to treat using equivalent rotations R, 

which basically represent how the body-fixed molecular axis are rotated under the 

operations of molecular symmetry group. The equivalent rotation are listed in Table 6.3 

for two conventions of axes orientation, shown in Figure 6.6. 

Table 6.3. Equivalent rotations for two axis orientations in ozone 

 E C2b σab σbc 

 E (12) E* (12)* 

z in plane R0 Rx
π Ry

π Rz
π 

z ⊥ plane R0 Ry
π Rz

π Rx
π 

See text for details. 

The rotations in Table 6.3 are of two types: a rotation through angle δ = π about z axis, 

Rz
δ, and rotations Rα

π about the axis, which is perpendicular to z and forms the angle α 

with the x axis. Both δ and α are measured in a right-handed sense about the z axis. Then, 
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Rx
π = R0

π  and Ry
π = Rπ/2

π. The corresponding operations of the complete nuclear 

permutation inversion (CNPI) group are given in a second header row for reference.166 

Those are identity operation E, permutation of identical nuclei (12), the inversion of 

spatial coordinates of all nuclei and electrons E* and the product of E* with (12). 

The rotational states are eigenstates of the symmetric top rotor, | J, k, m⟩, 

proportional to pure Winger functions DKM
J(α, β, γ). Under two operations Rz

δ and Rα
π 

discussed above, | J, k, m⟩ transforms to either | J, k, m⟩ or either | J, −k, m⟩:166 

 , , , ,ik

zR J k m e J k m  , (6.9)  

 
2, , ( 1) , ,J ikR J k m e J k m 



   . (6.10)  

Under symmetry operations from Table 6.3 the transformations are 

 , , ( 1) , ,J

xR J k m J k m    , (6.11)  

 , , ( 1) , ,J k

yR J k m J k m    . (6.12)  

 , , ( 1) , ,k

zR J k m J k m    (6.13)  

Two rotational states φ1 = | J, K, M⟩ and φ2 = | J, −K, M⟩, where K = |k|, comprise 

a two-dimensional reducible representation. The transformation matrices of 

representation Γrot generated by φ1 and φ2, written as a column vector, are as follows: 

 

0
1 0 0 ( 1)

( ) ( )
0 1 ( 1) 0

0 ( 1) ( 1) 0
( ) ( )

( 1) 0 0 ( 1)

J

x J

J K K

y zJ K K

M R M R

M R M R



 




  
    

   

    
    

    

 (6.14)  

Table 6.4 summaries the characters of reducible representation Γrot generated by φ1 and 

φ2 for two choices of axes orientation. 
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Table 6.4. Characters of the reducible representation Γrot. 

 E (12) E* (12)* 

z in plane 2 0 0 2(-1)K  

z ⊥ plane 2 0 2(-1)K 0 
See text for details. 

Quite often it is much more convenient to treat φ1 and φ2 together as a positive or 

negative linear combinations. With such combinations the two-dimensional 

representation Γrot can be reduces down to two irreducible representations. There are 

several ways to define these combinations. The simple normalized sum and difference of 

φ1 and φ2 was used by Bunker and Jensen166 and is considered in Appendix C. 

Alternatively, one can add the factor (−1)J + K before function φ2, as did Pack and Parker 

in their paper.60 Here, we will follow the definition by Pack and Parker, at least because 

the derived selection rules (see further) do not depend on J at all. Therefore, we introduce 

the following linear combinations: 

 φ± = (| J, K, M⟩ ± (−1) J + K | J, −K, M⟩) / (2 · (1 + δK0)) 
1/2, (6.15)  

The Kronecker delta in denominator is used to have a proper normalization for the case 

of K = 0, so that φ0 = φ+ = | J, 0, M⟩. Written as a column vector, functions φ± generate 

the diagonal transformation matrices:  

 

0

1

1 0 ( 1) 0
( ) ( )

0 1 0 ( 1)

1 0 ( 1) 0
( ) ( )

0 1 0 ( 1)

K

x K

K

y z K

M R M R

M R M R



 







  
    

   

  
    

    

 (6.16)  

Obviously, the character of Γrot is the same as in Table 6.4, as any other linear 

combinations of functions φ1 and φ2, but now each of them can be treated separately and 

assigned a one-dimensional irreducible representations from Table 6.1. In total, there are 
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2J + 1 rotational wave functions: J positive combinations (φ+), J negative combinations 

(φ−) and one function for K = 0 on its own (φ0). 

The symmetry of rotational wave functions depends on K and on the coordinate 

system, i.e. the orientation of coordinate axes. The characters and symmetries of the 

rotational wave functions for the z axis chosen to lie in the plane of the molecule are 

summarized in Tables 6.5 and 6.6. In this tables, label “e” stands for the even values of 

rotational quantum number K, whereas label “o” for the odd values. 

Table 6.5. Characters and symmetries of the positive combination φ+ and φ0 of the 

symmetric top wave functions in C2v for the z axis lying in the molecule plane. 

K 
E (12) E* (12)* 

Γ 
R0 Rx

π  Ry
π Rz

π 

e 1 1 1 1 A1 

o 1 -1 1 -1 B1 

 

Table 6.6. Characters and symmetries of the negative combination φ− of the 

symmetric top wave functions in C2v for the z axis lying in the molecule plane. 

K 
E (12) E* (12)* 

Γ 
R0 Rx

π Ry
π Rz

π 

e 1 -1 -1 1 B2 

o 1 1 -1 -1 A2 

Another choice of coordinates system, where the z axis is perpendicular to the 

molecule plane, differs in the rearrangement of the rotational operators Rx
π, Ry

π and Rz
π, 

and, consequently, in character and symmetries, see Tables 6.7 and 6.8. 

Table 6.7. Characters and symmetries of the positive combination φ+ and φ0 of the 

symmetric top wave functions in C2v for the z axis perpendicular to the molecule plane. 

K 
E (12) E* (12)* 

Γ 
R0 Ry

π Rz
π Rx

π 

e 1 1 1 1 A1 

o 1 1 -1 -1 A2 
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Table 6.8. Characters and symmetries of the negative combination φ− of the symmetric 

top wave functions in C2v for the z axis perpendicular to the molecule plane. 

K 
E (12) E* (12)* 

Γ 
R0 Ry

π Rz
π Rx

π  

e 1 -1 1 -1 B1 

o 1 -1 -1 1 B2 

Once the symmetries of the rotational wave functions are known, one can 

determine the symmetry of the matching vibrational wave functions, so that symmetry 

constrain imposed on the total wave function by boson statistics is satisfied. The Tables 

6.9 and 6.10 show the resultant selection rules. For example, for the calculation with z 

axis lying in plane and odd K, the positive combination of the rotational wave functions 

φ+ (columns with “+” in the table header) has symmetry B1 and must be paired with the 

vibrational state of symmetry B1 to obtain the allowed symmetry A1 of the rovibrational 

wave function (which also coincides with the symmetry of the total wave functions). 

Table 6.9. Selection rules in C2v for the z axis lying in the molecule plane. 

K 
Γrot Γvib Γrv 

+ − + − + − 

e A1 B2 A1 B1 A1 A2 

o B1 A2 B1 A1 A1 A2 

 

Table 6.10. Selection rules in C2v for the z axis perpendicular to the molecule plane. 

K 
Γrot Γvib Γrv 

+ − + − + − 

e A1 B1 A1 B1 A1 A1 

o A2 B2 A1 B1 A2 A2 

This information in these tables may be visualized in a more convenient way, if one plots 

the vibrational symmetry as a function of the total angular momentum J, modulus of the 

projection K and parity p = +/−, see Tables 6.11 and 6.12. In fact, there is no dependence 
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on J, but we keep referring to it, because we do calculations for given pair (J, K), rather 

than solely for K. 

Table 6.11. Symmetry of the allowed vibrational states as a function of 

total angular momentum J, projection K and parity p of the rotational 

state. The z axis is in the molecule plane. 

Kp \ J 0 1 2 3 4 5 

3+    B1 B1 B1 

2+   A1 A1 A1 A1 

1+  B1 B1 B1 B1 B1 

0+ A1 A1 A1 A1 A1 A1 

1−  A1 A1 A1 A1 A1 

2−   B1 B1 B1 B1 

3−    A1 A1 A1 

Table 6.12. Symmetry of the allowed vibrational states as a function of 

total angular momentum J, projection K and parity p of the rotational 

state. The z axis is perpendicular to the molecule plane. 

Kp \ J 0 1 2 3 4 5 

3+    A1 A1 A1 

2+   A1 A1 A1 A1 

1+  A1 A1 A1 A1 A1 

0+ A1 A1 A1 A1 A1 A1 

1−  B1 B1 B1 B1 B1 

2−   B1 B1 B1 B1 

3−    B1 B1 B1 

From these vibrational symmetry patterns it becomes obvious, that the vibrational 

states of both symmetries, A1 and B1, must be retained for a given pair of (J, K). Since 

there is no need to do a separate calculations for each value of parity p, it can be dropped. 

The only exception is K = 0. For that case, the states of A1 symmetry must be retained, 

whereas B1 states must be excluded. Also, the derived selection rules are applied to both 

types of calculations: including only one covalent well, or including all three covalent 

wells. In both cases, the vibrational states obey A1 or B1 symmetry, they are ether 

symmetric or asymmetric with respect to φ = π. The discussion in this section is true for 
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the isotopomers which contain two different isotopes at maximum. When all three atoms 

are identical, for example molecules 666 or 888, then the same selection rules could be 

applied. Alternatively, such isotopologues could be considered in the symmetry group of 

higher order, for example D3h. When all three atoms are different, than symmetry group 

of lower order, Cs, must be used. 

6.3.2. Symmetry of ozone in Cs group 

The isotopomer 16O17O18O contains three different isotopes and therefore should 

be described with Cs point group, which is the subgroup of C2v, see character Table 6.13 

and multiplication Table 6.14. 

Table 6.13. Character table of Cs point group. 

 E σh 

A' 1 1 

A'' 1 -1 

 

Table 6.14. Multiplication table for Cs point group. 

 A' A'' 

A' A' A'' 

A'' A'' A' 

The symmetries of the wave functions are Γ = A' A'', Γvib = A', Γs = A', Γel = A' 

and Γrot = A' A''. Basically, the total wave function has no symmetry constrains and 

only the rotational part determines its symmetry. When the z axis lies in the molecule 

plane, then the positive combination φ+ and φ0 transform as A', whereas φ- obeys A''. The 

symmetry of rotational wave functions does not depend on rotational quantum numbers J 

and K and depends only on parity p = +/−. 
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For the z axis, perpendicular to the molecule plane, the symmetries of the 

rotational states depend on K and can be summarized in only one Table 6.15. 

Table 6.15. Characters and symmetries of both positive and negative combinations 

φ± of the symmetric top wave functions in Cs for the z axis perpendicular to the 

molecule plane. K = 0 is also included. 

K 
E E* 

Γ 
R0 Rz

π 

e 1 1 A' 

o 1 -1 A'' 

The fact that vibrational wave functions exhibit no symmetry, simply means that all 

computed vibrational states for a given pair of (J, K) and parity p must be retained. 

6.4. Isotope effects 

6.4.1. Numerical estimation of isotope effects in three well calculations 

To study isotope effects in ozone, the rate coefficients for four versions of 

recombination reactions may be introduced: 

 6 + 66 k  666 (6.17)  

 6 + 86 symk
  686 (6.18)  

 6 + 68 Ak
  668 (6.19)  

 66 + 8 Bk
  668 (6.20)  

The rate coefficients could be computed with slightly different versions of Eq. (5.9): 

 
stab

stab diss

( )
(or )

( )[M]

A

i eq i

sym i

i i i i

K E
k k k

k k




  
  (6.21)  
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stab

stab diss

( )

( )[M]

B B

i eq i

B i

i i i i

K E
k k

k k




  
  (6.23)  

The denominators are the same, but numerators are different. The numerator for the 

symmetric ozone contains the full resonance width Γi, while two other equations include 

only corresponding portion of the resonance width, Γi
A or Γi

B, representing the partial 

decay rate constant, Γi = Γi
A + Γi

B.  

In these equations, there are three hidden sources of factor of two, which we 

carefully discuss further. First of all, in the case of identical channels A and B, the widths 

Γi
A or Γi

B are equal, Γi
A = Γi

B = Γi / 2. This is one factor of two. 

Next, we should mention that the sums in Eqs. (6.20) − (6.22) are over different 

types of states. As follows from Section 6.2, in the singly substituted ozone the two 

covalent wells 668 are equivalent and 686 is different. This is seen from PES slices, 

Figure 6.1, and also was observed in computed two-dimensional basis functions, Figures 

6.2 and 6.3. The three-dimensional resonance states of ozone are not an exception and 

also form two groups of states: the resonances localized in the single well 686 and the 

resonances localized in the double well 668, see Figure 6.7.The single well states 686 

contribute to the recombination rate coefficient ksym, while the double well states 668 

contribute to both kA and kB. Typically, the double well states decay into both channels, 

however, there are cases when double well state decays in only one channel, A or B, as 

shown on Figure 6.7.  

The number of states contributing to recombination for typical rotational 

excitation J = 24 K = 2 is plotted in Figure 6.8. The figure clearly demonstrates an 
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expected statistical fact: the number of states in asymmetric molecule is twice larger than 

in symmetric molecule. In practice, the factor is not exactly two and may depend on 

isotopomer and rotational excitation. This is second factor of two in our equations. 

 

Figure 6.7. Two types of three-well resonance states in 50O3 isotopologue: single well state (top panel) and 

double well state decaying into channel A, where O2 is heteronuclear (middle panel), or into channel B, 

where O2 is homonuclear (bottom panel). 
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Figure 6.8. Number of states as a function of state energy for singly (red) and doubly (blue) substituted 

isotopologues, 50O3 and 52O3. Number of states in symmetric molecules 686 and 868, or single well states, 

is shown with dashed lines, number of states in asymmetric molecules 668 and 688, or double well states, is 

shown with solid lines. Rotational excitation is J = 24 K = 2.  

Then, the equilibrium constants in Eqs. (6.21) − (6.23) Keq are also different. The 

oxygen in channel A is heteronuclear, 16O18O, while in channel B it is heteronuclear, 

16O16O. Because the rotational partition function of O2 appears in the denominator of Keq, 

the equilibrium constant for channels B is twice larger, then for channel A: 

 2B A

eq eqK K  (6.24)  

This is the third and last factor of two. 

Based on these three factors of two, found in equations, the rate coefficients k, 

ksym, kA and kB could be related. First, when ksym is compared with kA, the factor of two 

derived from partial widths is compensated by the factor in number of states, so ksym ≈ kA. 

For rate constants k and kB the factor of two due to the symmetry of reacting O2 starts 
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playing, making them twice larger then ksym and kA. All this can be summarized in the 

following relation: 

 k ≈ 2ksym ≈ 2kA ≈ kB (6.25)  

If there were no isotope effects in ozone, than this relation would be exact (the 

approximately equal signs would be replaced with the exactly equal signs). To compare 

the rate coefficients, it is convenient to introduce another set of rate coefficients with the 

factors of two being dropped 

 

ϰsym = 2ksym;   ϰA = 2kA;   ϰB = kB 

ϰ ≈ ϰsym ≈ ϰA ≈ ϰB 

(6.26)  

so that we see that, the rate coefficients ϰsym, ϰA  and ϰB are “normalized”, with ϰ as a 

reference. To study the ∆ZPE-effect, these coefficients ϰ can be plotted in the same 

fashion as in Figure 1.5 and the ratio R = ϰA / ϰB can be introduced. To quantify the η-

effect, the average rate coefficient for asymmetric ozone must be defined: 

 ϰasym = (ϰA + ϰB) / 2 (6.27)  

The value of η is simply the ratio between ϰasym and ϰsym: 

 η = ϰasym / ϰsym (6.28)  

Recall that, the experimentally observed deviation is 1.2. 

To obtain an insight on isotope effects, the rate coefficients ϰsym, ϰA and ϰB were 

computed only for a limited number of typical rotational excitations. In total 13 rotational 

states were chosen based on the rotational distribution, see Figure 6.9. Both isotope 

effects were analyzed on this small subset of rotational states, so the results discussed 

below are preliminary. 
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Figure 6.9. Typical rotational excitations (black squares) to study isotope effects on. 

6.4.2. Results 

To study isotope effects and compare them with available experimental data, the 

rate coefficients ϰsym, ϰA and ϰB must be computed, normalized using some reference and 

plotted as a function of ∆ZPE. In the experiment the recombination rate coefficient for 

unsubstituted ozone k is usually chosen as a reference. Here we try to obtain some insight 

from a limited set of calculations that include 686 and 868, but no 666. So further we will 

use the average ksym of 686 and 868 molecules as a reference, since they were available 

right away from our calculation. 

The computed rate coefficients ϰsym, ϰA and ϰB are listed in Table 6.16, separately 

for each rotational excitation and for both isotopomers 50O3 and 52O3. 
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Table 6.16. Recombination rate coefficients of two isotopomers 50O3 and 52O3 for typical rotational 

excitations (J, K). 

(J, K) 
Isotopomer 50O3 (686) Isotopomer 52O3 (868) 

ϰB ϰsym ϰA ϰA ϰsym ϰB 

(8, 2) 0.53 0.64 1.20 0.67 0.59 0.68 

(8, 4) 0.52 0.82 1.11 0.48 0.77 0.70 

(16, 2) 0.65 1.35 2.41 1.15 1.04 1.98 

(16, 4) 0.61 1.49 2.72 1.02 0.94 1.83 

(16, 8) 0.68 0.99 2.29 0.77 0.98 1.34 

(24, 2) 1.54 1.83 1.61 1.37 1.25 1.72 

(24, 4) 1.55 1.72 1.62 1.16 1.10 1.60 

(24, 8) 0.80 1.27 1.27 0.93 0.94 1.35 

(32, 2) 1.23 1.40 1.41 1.29 1.12 1.45 

(32, 4) 1.10 1.18 1.19 1.03 1.00 1.60 

(32, 8) 0.66 0.69 0.93 0.83 0.78 0.89 

(40, 2) 0.64 0.51 0.63 0.55 0.61 0.62 

(40, 4) 0.57 0.45 1.13 0.49 0.54 0.58 

Average 0.85 1.10 1.50 0.90 0.90 1.26 

Experiment16 0.92 1.01 1.43 0.92 1.04 1.50 

Renormalized 0.87 0.95 1.35 0.87 0.98 1.42 

The experimental values, renormalized using the average of ksym for 686 and 868 as reference instead of 

666, are given in the last row. The channels A and B are swapped for 52O3, because homonuclear and 

heteronuclear O2 are exchanged in channels. 

The rate coefficients for different rotational excitations (J, K) may differ significantly. 

This is due to the quantum character of the process: occasional appearance of just one 

resonance can significantly affect the rate coefficient ϰ. Nevertheless, the overall pattern 

stands out: on average, the rate coefficient for channel A (heteronuclear reagent O2) 

dominates the rate coefficient for channel B (homonuclear reagent O2), while the rate 

coefficient for ϰsym is close to ϰB. This is ΔZPE-effect. 

A good agreement with experiment is demonstrated on Figure 6.10. Though not in 

the value, but at least in correct direction, the modeled isotope effects agree with 

experiment quite well, even for the small subset of the rotational states (J, K) included. 

The ∆ZPE-effect, the slope of dashed green line, is somewhat overestimated for 50O3, the 
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ratio R = ϰA / ϰB is 1.55 in the experiment vs. 1.94 in the theory. In contrast, it is 

underestimated for 52O3, 1.63 in the experiment vs. 1.38 in the theory. The situation is 

opposite for η-effect. For isotopologue 50O3, the theory, η = 1.09, underestimates 

experiment, η = 1.17. For isotopologue 52O3, the theory, η = 1.18, overtimes experiment a 

little, η = 1.16.  

 

Figure 6.10. Relative rate coefficients as a function of ∆ZPE for two isotopologues 50O3 (greed data) and 
52O3 (red data). The experimental data is plotted with solid lines and circles, the computed data is plotted 

with dashed lines and triangles. The ∆ZPE-effect (positive slope of the lines) and the η-effect (lowering of 

the points at ∆ZPE = 0), are in correct direction, the theory agrees with the experiment. 

The procedure for numerical estimation of isotopic effects can be formulated 

using the ranges of hyperangle φ, see Figure 6.11. Basically, the ΔZPE-effect is the 

difference in the rate coefficient of formation of asymmetric molecule 668 from two 

different channels: from channel A, defined by ranges π/3 ≤ φ ≤ 2π/3 and 4π/3 ≤ φ ≤ 5π/3 

(top left diagram), and from channel B, defined by −π/3 ≤ φ ≤ π/3 (top right diagram). 
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The η-effect shows the difference in the formation of asymmetric molecule 668, defined 

by −2π/3 ≤ φ ≤ 2π/3 (bottom left diagram) vs. that of symmetric molecule 686, defined by 

2π/3 ≤ φ ≤ 4π/3 (bottom right panel). The circular diagram will be explained in detail in 

Section 6.4.4. 

 

Figure 6.11. Ranges of hyperangle φ (transparent blue sectors) that are used for determination of isotope 

effects, ΔZPE (top panel) and η-effect (bottom panel). The origin of hyperangle is at the center of channel 

B. See text for details. 

6.4.3. Effect of the resonance widths 

What causes these effects? There are at least two possible sources, and the widths 

Γ of resonance states are one of them. To analyze ΔZPE-effect, widths ΓA and ΓB of 

double well states of asymmetric molecule 668 could be plotted as a function of state 

energy E above dissociation threshold, see Figure 6.12. However, as seen in the figure, it 

does not demonstrate any significant difference in width ΓA and ΓB. An alternative option 
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is to compute the average values of width ΓA and ΓB. For singly substituted ozone with 

typical J = 24 and K = 2, we found < ΓA> = 1.51 cm-1 and < ΓB> = 1.40 cm-1. Therefore, 

isotopomer 668 has a higher tendency to be formed from channel A, rather than B, which 

is consistent with observed ΔZPE-effect. 

  

Figure 6.12. Resonance widths ΓA (blue points) and ΓB (red points) as a function of state energy E above 

dissociation threshold. Only double well states of asymmetric molecule 668 are plotted. Rotational 

excitation is J = 24 K = 2. 

For all 13 rotational excitations, we can perform a simple test, which could give 

us a better insight on the origin of the anomalous isotope effects. The trick is to assign the 

same resonance width Γ to all resonances, contributing to the recombination. When we 

assigned the same total Γ = 1 cm-1, which is the average width as seen from the 

distribution of resonance widths in Figure 5.1b, and partial widths ΓA = ΓB = 0.5 cm-1, 

both effects almost disappeared. The ∆ZPE-effect dropped from R = 1.94 to R = 0.90 for 

isotopologue 50O3, and it dropped from 1.38 to 0.93 for isotopologue 52O3. The same 
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behavior was observed for η-effect, it decreased from η = 1.09 to η = 1.05 for 

isotopologue 50O3, and from 1.18 to 1.00 for isotopologue 52O3. This numerical 

experiment demonstrates that the possible origin of the ∆ZPE-effect are the widths, or 

lifetimes, or scattering resonances in ozone. This simply reflects the fact that the 

contributing resonances tend to form (and decay) from the lower channel, making the 

associated recombination rate coefficient large for that channel. For η-effect, the role of 

width appears to be the same, however, the effect itself is small, while uncertainty in the 

relative rate coefficients is still high, due to the small number of the rotational states 

included. 

6.4.4. Effect of the number of states 

Another source of isotope effects could be the number of the resonance states in 

single well and double well. Based on statistical approach, if the molecules (covalent 

wells) 668 and 686 are computed separately, then due to selection rules all vibrational 

states are allowed in 668 (Cs) and roughly only half is allowed in 686 (C2v). For three-

well calculation, this is also true: per one single well state there are two double well 

states, see Figure 6.8 earlier. However, for highly excited states, which resonance states 

of ozone are, this factor is not exact and ultimately is determined by the PES. The higher 

is the energy, the less localized the states are, similar to what was already discussed on 

delocalized states in Section 5.3.1. 

To get a better insight on the density of states, the probabilities of all states were 

summed together, but separately in different parts of PES for a typical rotational 

excitation (J = 24 K = 2) and plotted on the circular diagram shown in Figure 6.13. 
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Figure 6.13. Probability distribution of resonance states as a function hyperangle φ for singly substituted 

ozone 50O3 and J = 24 K = 2. Covalent wells are labeled with 686, 668 and 866 (red smoothed triangles), 

channels are labeled with letters A and B (blue curves). The van-der-Waals regions are located between 

wells and channels, total six of them. Van-der-Waals states associated with channel A (green trapezes) do 

not mix with those in channel B (yellow trapezes). 

The resonances are not only localized in the covalent wells, but also delocalized in the 

van-der-Waals regions and also have some tails. We found that fraction in van-der-Waals 

wells are pretty much the same as in covalent wells. Also, the total probability in the well 

and two adjoining van-der-Waals wells is the same, does not matter which covalent well 

with its van-der-Waals wells is considered. However, the probability can be distributed 

differently between the covalent well and adjoining van-der-Waals wells. The molecule 

686 has 13.6 in covalent region and 12.9 in adjoining van-der-Waals regions, while this is 

opposite for another molecule, 11.7 in covalent and 13.4 and 14.2 in van-der-Waals well. 

In this way, the factor of two in the number of states is still valid for these “extended 

areas”, and is not valid anymore for purely covalent states, for which it is 2 · 11.7 / 13.6 = 

1.72. Interestingly, that particularly for that rotational state, the number of states in the 

singly substituted ozone plays against resonance width Γ, resulting in a wrong direction 
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of the η-effect, η = 0.86 (less than one). But, in total, when more rotational states are 

taken, the effect becomes large then one. The similar diagram for doubly substituted 

ozone 868 is shown in Figure 6.14. The number of resonance states is almost the factor of 

two, 2 · 15.0 / 15.2 = 1.97. 

 

Figure 6.14. Probability distribution of resonance states as a function hyperangle φ for singly substituted 

ozone 52O3 and J = 24 K = 2. The labels are the same as in Figure 6.13. 

The results reported are preliminary, because they were obtained for a small 

number of rotational states (J, K): only 13 states, meanwhile 95 states were computed in 

one-well calculation, reported in Chapter 5. The contribution of the chaperon mechanism, 

which does not exhibit isotope effects,167 is not taken into account yet, and is expected to 

reduce the strength of both effects. Also, the stabilization model deserves an extensive 

review, because in our calculations there are resonances, that have comparable 

probabilities in both covalent and van-der-Waals regions, while the stabilization models 

were developed primarily for the resonances localized above covalent well only. We tried 

two ad-hoc ways to include van-der-Waals states using the same stabilization model used 
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for the states in covalent well and found that the isotope effects change, but not much, at 

least they were always found to be in the right direction. But again, the stabilization 

model was built solely for the resonances localized in covalent well and more advanced 

model is needed. 

6.5. Rotation-vibration couplings 

The method for calculation of resonances and bound states in ozone, proposed in 

Chapter 3, describes rotation using symmetric top approximation. Both asymmetric and 

Coriolis terms are neglected, which makes it possible to decouple calculations with 

different projections of angular momentum K (different J are automatically decoupled). 

In other worlds, rotation is incorporated separately: for each particular rotational 

excitation (J, K) the vibrational spectrum is computed independently, see section 3.2.2. 

However, if sufficient computational resources are available, then one can include 

couplings between different K values, what is known as coupled channel or close 

coupling (CC) approach. Pack and Parker derived matrix elements of CC Hamiltonian for 

the prolate symmetric top with the z axis (projection axis of total angular momentum) 

lying in the triatomic plane.60 

In this section, derivation of matrix elements for CC Hamiltonian is reviewed and 

is applied to other cases, such as the z axis perpendicular to molecule plane, but also to 

oblate symmetric top. Thus, we present the matrix structure resulted from four possible 

combinations of axis orientations and rotor type together, and discuss with advantages 

and disadvantages of some cases over others. Similar discussion could be found in the 
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work by Kendrick et al.72 This theory has not been yet implemented in the code, so it 

should be considered as a possible improvement of the method in future. 

In this section, the total rovibrational wave function is expanded in terms of the 

vibrational functions ( , , )   , see Eq. (3.17), and modified rotational Wigner 

functions of given parity ˆ ( , , ) :Jp

KMD     

 ( ) ( )

, ,

ˆ( ) ( , ) ( , , )i i n Jp

JMp JKnm n JKm KM

K n m

a f D        , (6.29)  

The modified rotational functions ˆ ( , , )Jp

KMD     are normalized sum and difference of 

usual Wigner functions ( , , )J

KMD     and are the same φ± functions in Section 6.3.1:60 

1/2

2

0

2 1ˆ ( , , ) ( , , ) ( 1) ( , , )
16 (1 )

Jp J J K p J

KM KM KM

K

J
D D D        

 

 



 
       

 (6.30)  

Next, we will discuss two possible ways of axes orientation, the matrix elements and 

matrix structure for prolate and oblate symmetric tops and will present conclusions on 

application of the rovibrational correction to ozone. 

6.5.1. Axes labeling 

There are we found two ways of the axes orientation in literature.  Table 6.17 

shows correspondence between body-fixed (BF) components of the total angular 

momentum J and rotational constants of “fluid” rotor A, B and C. The labeling of angular 

momentum components for the z axis placed in plane follows the convention by Pack and 

Parker,60 while for z, perpendicular to the plane, Johnson’s way of labeling is given (also 

adopted by Kendrick).72,109 
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Table 6.17. Correspondence between components of the total angular momentum 

J and rotational constants A, B and C of the fluid rotor in APH coordinates. 

z in plane 

Pack & Parker 

z ⊥ plane 

Johnson 
Rotational constant 

Jx Jy 
1 2

(1 sin )A  

   

Jy Jz 
1 2 2

2 sinB  

  

Jz Jx 
1 2

(1 sin )C  

   

The expressions for angular momentum operator and Coriolis term depend on the axes 

labeling as well. For z in plane: 

 2 2 2ˆ ˆ ˆ ˆ
rot x y zV AJ BJ CJ   , (6.31)  

 
ˆ ˆ4 coscor yT B i J



 
  

 
. (6.32)  

For z ⊥ plane: 

 2 2 2ˆ ˆ ˆ ˆ
rot y z xV AJ BJ CJ   , (6.33)  

 
ˆ ˆ4 coscor zT B i J



 
  

 
. (6.34)  

In that follows, we will demonstrate that for the case of prolate symmetric top, the choice 

of z in plane appears to be a favorable, due to straightforward matrix structure and 

smaller off-diagonal blocks. Next, we will show that for the oblate symmetric top, the 

choice of z perpendicular to the molecule plane is more preferred. 
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6.5.2. Prolate symmetric top 

In equilibrium configuration ozone is very close to a prolate-top rotor, see the 

rotational constants in Section 3.2.2. As ozone dissociates, the associated rotor becomes 

even more prolate. Thus, prolate symmetric top is a very reasonable approximation for 

ozone molecule. Then, two rotational constants are close to each other, i.e. A ~ B, and 

both are much smaller than the third one, Ã = (A + B) / 2 < C. The moments of inertia 

satisfy the following relation (see small pictograms in Figure 6.15): 

 
x y zI I I   (z in plane) (6.35)  

 
y z xI I I  (z ⊥ plane)  (6.36)  

Once two rotational constants are replaced by their average, the rotational 

operator V̂rot could be rewritten as a sum of two terms, symmetric V̂sym and asymmetric 

V̂asym. For z in plane: 

  2 2ˆ ˆ ˆ( )sym zV A J C A J   , (6.37)  

 2 2ˆ ˆ ˆ( )
2

asym x y

A B
V J J


  . (6.38)  

For z ⊥ plane: 

 2 2ˆ ˆ ˆ( )sym xV A J C A J   , (6.39)  

 2 2ˆ ˆ ˆ( )
2

asym y z

A B
V J J


  . (6.40)  

These two operators and Coriolis operator T̂cor could be integrated with 

rovibrational functions in Eq. (6.29) on both sides to obtain matrix elements of 

rovibrational Hamiltonian, ( ) ( )...i i

JMp JMp


  . The vibrational contribution factors out, and 
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one can focus solely on rotational component. In what follows, the vibrational factor is 

omitted in all equations for convenience. Instead of common label K we will use letter Λ 

for the projection of total angular momentum J onto the z axis lying in molecule plane 

(following notation by Pack and Parker60), and Ω for projection onto the z axis 

perpendicular to the plane (following Kendrick’s notation72). 

For z lying in the plane of the molecule, we obtain the following expressions for 

the matrix elements of rotational and Coriolis terms (vibrational factor is omitted): 

 

 2 2

,( 1) ( )symV A J J C A   
       , (6.41)  

 2

2

Jp

asym

A B
V U 


 , (6.42)  

 2

,4 cos Jp

corT B W


 





, (6.43)  

and for z ⊥ plane: 

 2
2 2

, ,

( 1)
( 1) ( )

2 2

Jp

sym

UJ J
V A J J C A  

    

  
     

 
, (6.44)  

 2
2 2

,

( 1)

2 2 2

Jp

asym

UA B J J
V  

 

    
    

  
. (6.45)  

 2

,4 coscorT B  


 


 


 (6.46)  

where we introduced the following matrices (same for Λ and Ω, for brevity denoted here 

by general quantum number K) 
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, 2

, 2 ,2

1
( ( , ) ( , 1)

2

( , ) ( , 1) ( 1) ( , ) ( , 1) )

Jp

KK K K

J K p

K K K K

U J K J K

J K J K J K J K

  

     

   

 

      

 

    

 (6.47)  

 
, 1 , 1 ,1

1
( ( , ) ( , ) ( 1) ( , ) )

2

Jp J K p

KK K K K K K KW J K J K J K      

             (6.48)  

Here Ĵx  and Ĵy were represented via operators Ĵ+  and Ĵ- 

 ˆ ˆ( ) / 2, ( ) / (2 )x yJ J J J J J i       . (6.49)  

with eigenvalues depending on J and K as follows: 

 2

1
ˆ ( , )J J

KM K MJ D J K D    (6.50)  

  
1/2

( , ) ( 1)( )J K J K J K    . (6.51)  

In Eqs. (6.41)-(6.49) the Kronecker delta δK',K means that corresponding term will 

appear only in the diagonal block of rovibrational Hamiltonian. In similar fashion, δK',K±1 

in expression for Jp

KKW   causes first sub-diagonal block to be nonzero. Finally, Jp

KKU   

appears on second sub-diagonal of the Hamiltonian matrix, and also contributes to the 

block K = K' = 1. As a consequence, symmetric, asymmetric and Coriolis terms 

contribute to the different blocks of the Hamiltonian matrix and the way it happens 

depends heavily on axis choice, is it lying in molecule plane or is perpendicular to it. 

Figure 6.15 demonstrates Hamiltonian matrix structure depending on the axes 

orientation for prolate symmetric top. The advantage of z lying in the plane (panel a) is 

seen right away: the symmetric term contributes solely to diagonal, Coriolis term solely 

to first sub-diagonals, while asymmetric term to second sub-diagonals, with exception of 

K = K' = 1 block on diagonal. Such matrix structure provides the most straightforward 

way to decouple different values of Λ: after neglecting both Coriolis and asymmetric 
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terms (both at the same time, as was mentioned by Pack and Parker60) the matrix is 

decomposed into J + 1 independent blocks (J for parity p = −1) which could be 

diagonalized independently. This is exactly what we implemented in our method, 

presented in Chapter 3: the vibrational spectrum was computed separately for each pair of 

(J, K) with rotational potential added in adiabatic way in the form of Eq. (6.41). 

 

Figure 6.15. Matrix structure of rovibrational Hamiltonian for prolate symmetric top: a) the z axis lying in 

molecule plane, b) the z axis is perpendicular to the plane. “S” stands for the contribution of symmetric 

rotational term, “A” stands for the contribution of asymmetric rotational term, while “C” stands for Coriolis 

contribution. Good quantum numbers Λ and Ω, which are projections of total angular momentum, label 

matrix blocks. 

The values on second sub-diagonal are much smaller for z in plane, compared to 

the case of z perpendicular to the plane, because (A − B) / 2 ·Up < (C − A) / 2 ·Up due to A 

~ B < C for prolate symmetric top. Thus, neglecting second sub-diagonal causes less error 

for z in plane.  When we look at the right panel of Figure 6.15, where the z axis is 

perpendicular to the molecule plane, we will see that symmetric and asymmetric 

contributions are mixed, and their separation is not as trivial as on the left panel of the 

figure. One can see this disadvantage right in Eqs. (6.44) and (6.45): both rotational terms 
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contain δΩ',Ω  and JpU 
 which result in mixed contributions into both diagonal and second 

sub-diagonal blocks. One advantage is that the Coriolis term contributes to the diagonal 

blocks, which means that when all Ω are decoupled, it can be included exactly. 

6.5.3. Oblate symmetric top 

When two rotational constant are nearly equal, i.e. A ~ C and both are larger than 

third rotational constant, Ã = (A + C) / 2 > B then oblate symmetric top approximation 

can be applied. Example is a triatomic molecule with equilateral equilibrium 

configuration, such as H3
+, and three-body dissociation of it (breathing motion). In terms 

of moments of inertia 

 
x z yI I I   (z in plane) (6.52)  

 
x y zI I I  (z ⊥ plane)  (6.53)  

Again, the rotational operator could be split into two terms, symmetric V̂sym and 

asymmetric V̂asym. For z in plane: 

 2 2ˆ ˆ ˆ( )sym yV A J B A J   , (6.54)  

 2 2ˆ ˆ ˆ( )
2

asym z x

C A
V J J


  . (6.55)  

For z ⊥ plane: 

 2 2ˆ ˆ ˆ( )sym zV A J B A J   , (6.56)  

 2 2ˆ ˆ ˆ( )
2

asym x y

C A
V J J


  . (6.57)  
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Integration of these operators and Coriolis term with rovibrational functions in the form 

of Eq. (6.29) gives the following matrix elements. For z in plane (vibrational factor is 

omitted): 

 2
2 2

, ,

( 1)
( 1) ( )

2 2

Jp

sym

UJ J
V A J J B A  

    

  
     

 
, (6.58)  

 2
2 2

,

( 1)

2 2 2

Jp

asym

UC A J J
V  

 

    
     

  
, (6.59)  

 24 cos Jp

corT B W








, (6.60)  

For z ⊥ plane: 

 2 2

,( 1) ( )symV A J J B A   
       , (6.61)  

 2

2

Jp

asym

C A
V U 


 , (6.62)  

 2

,4 coscorT B  


 


 


, (6.63)  

Figure 6.16 shows the structure of Hamiltonian matrix for the case of oblate 

symmetric top. The situation is completely opposite to prolate symmetric top: now z ⊥ 

plane results in simple matrix structure, where decoupling can be easily achieved by 

symmetric top approximation (neglecting the off-diagonal blocks), and, importantly, 

there is no need to neglect Coriolis coupling. It does not interfere with block structure of 

the matrix, since appears in the diagonal blocks only. Another advantage of z, 

perpendicular to molecule plane, is that for molecules, which equilibrium configuration is 

equilateral, for example H3
+, θ = 0 and A = C, so they are automatically symmetric tops 

and all off-diagonal blocks are zero. For such molecules symmetric top approximation 
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coincides with exact solution. If equilibrium configuration is not equilateral, the z axis ⊥ 

plane is still a good choice: it allows to incorporate Coriolis term exactly, even when all 

Ω are decoupled. The case of the z axis lying in the plane causes mixing of symmetric 

and asymmetric terms and keeping only diagonal block is not a valid symmetric top 

approximation anymore. 

 

Figure 6.16. Matrix structure of rovibrational Hamiltonian for oblate symmetric top. The meaning of the 

labels is the same as in Figure 6.15. 

6.5.4. Matrix elements and matrix structure 

In previous sections, matrix elements for rotational motion were derived with 

vibrational contribution omitted for transparency. In this section, the complete 

expressions for matrix elements and complete matrix structure are given, with vibration 

included. The complete ro-vibrational Hamiltonian operator Ĥ is split into four 

components: 
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 ˆ ˆ ˆ ˆ ˆ
a asym corH T H T T    , (6.64)  

 ˆ ˆ ˆ
a sym ext potH T T V V    , (6.65)  

 ˆ ( , ) ( , )n n n

a JKm JKm JKmH         (6.66)  

The first operator is kinetic energy operator for hyperradius T̂ρ, the second is an operator 

for two-dimensional angular part Ĥa, and the last two are asymmetric T̂asym and Coriolis 

T̂cor terms. The contributions to matrix elements from these four terms, in the case of the z 

axis in the molecular plane (K = Λ), are as follows: 

 , , ,
ˆ ˆ( ) ( )JK

Knm K n m KK nm n m n nT O T        , (6.67)  

 ,
ˆ( ) n

a Knm K n m KK nn mm JKmH          , (6.68)  

 
2

,
ˆ( )

2

Jp n nn n
asym Knm K n m KK nn JKm JK m

A B
T U       


   , (6.69)  

 
2

,
ˆ( ) 4 cosJp n n

cor Knm K n m KK nn JKm n JK mT W B 


      


  


. (6.70)  

Here, matrix O is an overlap matrix between two-dimensional eigenvectors n

JKm

computed for given J and K, n

JKm are two-dimensional energies, matrices U and W are 

given by Eqs. (6.47) and (6.48), whereas rotational constants An and Bn are computed at 

fixed hyperradius ρn. 

One can see that indices K and n are independent, therefore there are at least two 

ways to construct Hamiltonian matrix, depending on the order of these indices, see Figure 

6.17. One way is to have K as an outer index and n as an inner index. Then, large blocks 

in the matrix are labeled with index K, while small blocks within given large block are 

labeled with n. Rows and columns of a small block are labeled with m. Another way to 

design the matrix is to use index n for large blocks and K for small blocks. Obviously, 
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both ways result in the same matrix size, however, the first case is more preferable, 

because it provides a straightforward way for truncation at some particular K = Kmax. In 

addition, the large blocks on diagonal are the same matrices that were constructed and 

used in the uncoupled approach, Chapter 5, so transition to coupled treatment should be 

easier in this case. Also, all non-zero large blocks are located on diagonal and on first two 

sub-diagonals, whereas in case with n as an outer index none of large blocks vanish. One 

can take advantage of such specific matrix structure when solving efficiently for 

eigenvalues and eigenvectors. Similar analysis can be applied to the z axis perpendicular 

to the molecular plane. 

 

Figure 6.17. Ro-vibration matrix structure where outer index is a) projection K of total angular momentum 

or b) hyperradius slice number n. Colored blocks represent contributions from: kinetic energy operator Tρ 

(red), asymmetric rotational term T̂asym(green) and Coriolis term T̂cor(blue). Kinetic energy operator Tρ and 

eigenvalues of two-dimensional angular Hamiltonian Ĥa contribute to diagonal (magenta line). 

6.5.5. Notes on application to ozone 

As was mention earlier, the equilibrium configuration of ozone is quite close to 

the prolate symmetric top. Consequently, to include rotational-vibrational coupling in the 

Hamiltonian, one can orient the z axis in any of two ways discussed in Section 6.5.1 and 
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construct matrix similar to those in Figure 6.15. In principle, any of four ways discussed 

in previous sections 6.5.2 and 6.5.3 should work if one does not apply approximations. 

However, when solution of such huge matrix is not affordable (which is the case), one 

can solve it approximately, neglecting off-diagonal blocks in Hamiltonian. This will give 

a smaller error when z is in plane, because then small symmetric term is located solely in 

diagonal blocks and is not mixed with asymmetric term, as in z ⊥ plane. Then, eigenvalue 

decomposition could done separately for each diagonal block. 

The exact calculations (including all terms) still may be affordable if two 

following properties are employed. First of all, if one looks at the matrix structure in 

Figure 6.15b, one can notice, that even blocks are coupled only with even blocks, while 

odd with odd, which is also clear from Eqs. (6.44), (6.45) and (6.47). This means that 

when z ⊥ plane, then the matrix can be reorganized into two matrices of twice smaller 

size, one for even values of Ω and another for odd, reducing computational effort in 

eigenvalue decomposition. 

Secondly, for ozone the number of contributing Λ is not large. As was reported in 

Section 5.3.1, the most contribution to the recombination comes from Λ < 7, while J < 

38. One can expect, that for the case of z ⊥ plane calculations also will require small 

values of Ω (and separately odd and even values). Taking into account both these facts, 

incorporation of nonadiabatic couplings might be feasible.  
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Chapter 7. Conclusion and further research directions 

The aim of this dissertation was to develop an accurate model of ozone 

recombination reaction (O2 + O → O3) and to study anomalous isotope effects in ozone. 

The modeling of ozone recombination included three steps: calculation of scattering 

resonances in ozone (energies and lifetimes), the calculation of their stabilization rate 

coefficients (energy transfer) and combination of those two in the kinetic model for 

recombination. All steps required the development of new theories and numerically 

efficient codes. 

The largest and most sophisticated part of this work was the calculation of 

scattering resonances, particular their energies and lifetimes. It was necessary to 

understand and employ a special kind of internal vibrational coordinate system, APH 

coordinates (Chapter 2) and application of several techniques and approximations to 

make such calculation affordable: optimal grid, sequential diagonalization-truncation, 

complex absorbing potential (Chapter 3) and angular momentum decoupling (Chapter 6). 

The approach, tested on J = 0, allowed to get a detailed information about the upper 

bound vibrational states close to dissociation threshold, that become scattering 

resonances for J > 0. 

The stabilization model within MQCT was reviewed and a numerically efficient 

frozen-rotor approximation was developed (Chapter 4). This approximation eliminated 

the artificial transitions (present in the earlier version of MQCT) at the pre- and post- 

collisional stages, and allowed to reduce the computational cost of scattering calculations 

by the factor of four. The resultant cross sections are within a factor of 2 to 3 of the 

accurate values, which may be acceptable for some applications. 
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Incorporation of lifetimes and energies of scattering resonances into the kinetics 

allowed to compute the rate coefficients for recombination through the energy-transfer 

mechanism (Chapter 5). The absolute value of the rate coefficient, together with its 

temperature and pressure dependences, appeared to be in very good agreement with the 

experiment. Interestingly, the total recombination rate coefficient was reproduced after 

the experimentally-estimated contribution of chaperon mechanism was added. Prior to 

this work, there were only two papers where the rate coefficient was predicted 

theoretically for the ozone forming reaction, but it was obtained using simpler models. 

Then, the method was extended to include three covalent wells, since the 

treatment of isotopically substituted ozone isotopologues, for example 50O3 and 52O3, 

within only one covalent well will be less accurate and not entirely correct. The three-

fold symmetry of unsubstituted isotopologue, 48O3, is lost in single and double substituted 

isotopologues. The isotope effects were then studied on a subset of the rotational states 

and were found to be in the right direction and of the right order of magnitude (Chapter 

6). The detailed analysis demonstrated confidently that the resonance width represent the 

origin of ∆ZPE-effect in ozone. The same is true for a weaker η-effect, but one has to 

keep in mind that it is more sensitive to the accuracy of calculations than ∆ZPE-effect, 

due to smaller magnitude, 20% (η-effect) vs. 60% (∆ZPE-effect). 

Building upon this work, we can now undertake the massive calculations, where 

all rotational expiation will be included. Nevertheless, there are several improvements to 

this methodology. The symmetric top approximation could appear to be not sufficiently 

accurate, because the magnitude of the asymmetric rotational term, which was excluded, 

may affect computed isotope effects. The stabilization also could be improved. It is now 
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obvious, that highly excited rovibrational states, delocalized over the van-der-Waals 

region, also has to be include in the stabilization study.  

In addition, there is a singularity in the Hamiltonian operator for K = 0. So far it 

affected computed rovibrational spectra slightly, but it would be better to apply some 

technique to avoid at all. Also, Delves coordinate system may be used for description of 

the wave function in the asymptotic regions, where ρ → ∞. This is an improvement, 

which may reduce basis sizes and increase accuracy within the same numerical effort. 

Overall, the methodology, developed and presented in this dissertation, is 

universal and could be applied, as a whole or its various components, to many other 

molecules or processes, where resonances-based mechanism of reaction is possible. For 

example, to sulfur chemistry, where isotope effects are also observed. But, the method is 

not restricted to three vibrational degrees of freedom. The underling APH coordinate 

system is based on Jacobi coordinates, which can be defined for any number of atoms, 

whereas the sequential diagonalization-truncation is expected to shine with a full power 

on the systems with larger number of degrees of freedom. Taking into account the growth 

of computer performance, application of this methodology to such recombination 

reactions as S2 + S2 → S4 and S4 + S4 → S8 may be affordable in the future. 
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Vibrational Energies of Ozone up to the Dissociation Threshold: Dynamics 

Calculations on an Accurate Potential Energy Surface. J. Chem. Phys. 2002, 116 

(22), 9749. 

(132)  T Pack, R.; Walker, R. B.; Kendrick, B. K. Three-Body Collision Contributions to 

Recombination and Collision-Induced Dissociation. II. Kinetics. J. Chem. Phys. 

1998, 109 (16), 6714. 

(133)  Pack, R. T. Space-Fixed vs Body-Fixed Axes in Atom-Diatomic Molecule 

Scattering. Sudden Approximations. J. Chem. Phys. 1974, 60 (2), 633. 

(134)  Tsien, T. P. Rotationally Inelastic Molecular Scattering. Computational Tests of 

Some Simple Solutions of the Strong Coupling Problem. J. Chem. Phys. 1973, 59 

(10), 5373. 

(135)  Tsien, T. P.; Pack, R. T. Rotational Excitation in Molecular Collisions. Corrections 

to a Strong Coupling Approximation. Chem. Phys. Lett. 1970, 6 (5), 400–402. 

(136)  Tsien, T. P.; Pack, R. . Rotational Excitation in Molecular Collisions. A Many-

State Test of the Strong Coupling Approximation. Chem. Phys. Lett. 1971, 8 (6), 

579–581. 

(137)  Sizun, M.; Aguillon, F.; Sidis, V.; Zenevich, V.; Billing, G. D.; Marković, N. 

Theoretical Investigation of the Ar+(J) + H2 → ArH+ + H Reaction: Semiclassical 

Coupled Wavepacket Treatment. Chem. Phys. 1996, 209 (2), 327–353. 

(138)  Aguillon, F.; Sidis, V.; Gauyacq, J. P. Coupled Wave Packets Study of the 

Dynamics of Dissociative Ion–molecule Charge Exchange. J. Chem. Phys. 1991, 

95 (2), 1020–1032. 

(139)  Billing, G. D. The Semiclassical Treatment of Molecular Roto/vibrational Energy 

Transfer. Comput. Phys. Reports 1984, 1 (5), 239–296. 

(140)  Whittier, G. S.; Light, J. C. Quantum/classical Time-Dependent Self-Consistent 

Field Treatment of Ar+HCO Inelastic and Dissociative Scattering. J. Chem. Phys. 

1999, 110 (9), 4280. 

(141)  Babikov, D.; Aguillon, F.; Sizun, M.; Sidis, V. Fragmentation of Na 2 ؉ Dimer 

Ions in Kilo-Electron-Volt Collisions with He: A Coupled Wave-Packet Study 1. 

1999, 59 (1), 330–341. 

(142)  Qi, J.; Bowman, J. M. The Effect of Rotation on Resonances: Application to HCO. 

J. Chem. Phys. 1996, 105 (22), 9884. 



213 

 

(143)  Qi, J.; Bowman, J. M. Approximations Based on the Adiabatic Treatment of 

Rotation for Resonances. J. Chem. Phys. 1997, 107 (23), 9960. 

(144)  Carter, S.; Bowman, J. M. The Adiabatic Rotation Approximation for 

Rovibrational Energies of Many-Mode Systems: Description and Tests of the 

Method. J. Chem. Phys. 1998, 108 (11), 4397. 

(145)  Skokov, S.; Bowman, J. M. Variation of the Resonance Width of HOCl(6νOH) 

with Total Angular Momentum: Comparison between Ab Initio Theory and 

Experiment. J. Chem. Phys. 1999, 110 (20), 9789–9792. 

(146)  Prosmiti, R.; Farantos, S. C. A Periodic Orbit Approach to the Spectroscopy and 

Dynamics of SO2: C1B2->X1A1. Mol. Phys. 1994, 82 (6), 1213–1232. 

(147)  Farantos, S. C.; Lin, S. Y.; Guo, H. A Regular Isomerization Path among Chaotic 

Vibrational States of CH2(a˜1A1). Chem. Phys. Lett. 2004, 399 (1), 260–265. 

(148)  Farantos, S. C.; Qu, Z. W.; Zhu, H.; Schinke, R. Reaction Paths and Elementary 

Bifurcations Tracks: The Diabatic 1 B 2-State of Ozone. Int. J. Bifurc. Chaos 

2006, 16 (7), 1913–1928. 

(149)  Lendvay, G.; Schatz, G. C. Choice of Gas Kinetic Rate Coefficients in the 

Vibrational Relaxation of Highly Excited Polyatomic Molecules. 1992, 96 (7), 

3752–3756. 

(150)  Lendvay, G.; Schatz, G. C. Comparison of Master Equation and Trajectory 

Simulation of the Relaxation of an Ensemble of Highly Vibrationally Excited 

Molecules. J. Phys. Chem. 1994, 98 (26), 6530–6536. 

(151)  Oref, I.; Tardy, D. C. Energy Transfer in Highly Excited Large Polyatomic 

Molecules. Chem. Rev. 1990, 90 (8), 1407–1445. 

(152)  Quack, M.; Troe, J. Unimolecular Reactions and Energy Transfer of Highly 

Excited Molecules. In Gas Kinetics and Energy Transfer : Volume 2; Ashmore, P. 

G., Donovan, R. J., Eds.; Royal Society of Chemistry, 1977; pp 175–238. 

(153)  Banks, A. J.; Clary, D. C.; Werner, H. ‐J. Vibrational Relaxation of N 2 by 

Collision with He Atoms. J. Chem. Phys. 1986, 84 (7), 3788–3797. 

(154)  Billing, G. D.; Clary, D. C. Comparison of Semiclassical and Quantum-

Mechanical Cross Sections and Rate Constants for CO2(0110) + M → CO2(000O) 

+ M (M = He, Ne). Chem. Phys. Lett. 1982, 90 (1), 27–30. 

(155)  Mauersberger, K.; Krankowsky, D.; Janssen, C.; Schinke, R. Assessment of the 

Ozone Isotope Effect. Adv. Atom. Mol. Opt. Phys. 2005, 50, 1–54. 

(156)  Schinke, R.; Grebenshchikov, S. Y.; Ivanov, M. V.; Fleurat-Lessard, P. Dynamical 

Studies of the Ozone Isotope Effect: A Status Report. Annu. Rev. Phys. Chem. 



214 

 

2006, 57 (1), 625–661. 

(157)  Luther, K.; Oum, K.; Troe, J. The Role of the Radical-Complex Mechanism in the 

Ozone Recombination/dissociation Reaction. Phys. Chem. Chem. Phys. 2005, 7 

(14), 2764–2770. 

(158)  Ivanov, M. V.; Babikov, D. On Stabilization of Scattering Resonances in 

Recombination Reaction That Forms Ozone. J. Chem. Phys. 2016, 144 (15), 

154301. 

(159)  Balint-Kurti, G. G.; Vibók, Á. Complex Absorbing Potentials in Time Dependent 

Quantum Dynamics. In Numerical Grid Methods and Their Application to 

Schrödinger’s Equation; Cerjan, C., Ed.; Springer Netherlands: Dordrecht, 1993; 

pp 195–205. 

(160)  Teplukhin, A.; Babikov, D. Visualization of Potential Energy Function Using an 

Isoenergy Approach and 3D Prototyping. J. Chem. Educ. 2015, 92 (2), 305–309. 

(161)  Hippler, H.; Rahn, R.; Troe, J. Temperature and Pressure Dependence of Ozone 

Formation Rates in the Range 1–1000 Bar and 90–370 K. J. Chem. Phys. 1990, 93 

(9), 6560. 

(162)  Lin, C. L.; Leu, M. T. Temperature and Third-Body Dependence of the Rate 

Constant for the Reaction O + O2 + M ? O3 + M. Int. J. Chem. Kinet. 1982, 14 (4), 

417–434. 

(163)  Ivanov, M. V.; Grebenshchikov, S. Y.; Schinke, R. Intra- and Intermolecular 

Energy Transfer in Highly Excited Ozone Complexes. J. Chem. Phys. 2004, 120 

(21), 10015–10024. 

(164)  Ivanov, M. V.; Schinke, R. Temperature Dependent Energy Transfer in Ar–O[sub 

3] Collisions. J. Chem. Phys. 2005, 122 (23), 234318. 

(165)  Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J. A.; Troe, J. 

Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: 

Supplement IV. IUPAC Subcommittee on Gas Kinetic Data Evaluation for 

Atmospheric Chemistry. J. Phys. Chem. Ref. Data 1992, 21 (6), 1125. 

(166)  Bunker, P. R.; Jensen, P. The Fundamentals of Molecular Symmetry; CRC Press: 

Bristol, UK, 2004. 

(167)  Ivanov, M. V.; Schinke, R. Recombination of Ozone via the Chaperon 

Mechanism. J. Chem. Phys. 2006, 124 (10), 104303. 

 

  



215 

 

APPENDIX A 

Here we show that asymptotically, as ρ → ∞, solution of two-dimensional 

Schrödinger equation with Hamiltonian operator ĥn acting on wave function Λ(r, Θ) can 

be obtained analytically. To recap, the operator ĥ = T̂θφ + Vext + Vsym + Vpot  has four 

components (omitting index n):  

and the potential energy surface Vpot = Vpot (ρ, θ, φ). To find the asymptotic form of the 

operator, it is convenient to transform all four components from the APH coordinates (ρ, 

θ, φ) to massed-scaled Jacobi coordinates (S, s, Θ) and then consider a limit S → ∞. We 

start with the following transformation:60  

The first component T̂θφ transforms as follows: 

2 2 2

2 2 2 2

2

2 2

2 2 2

4 1ˆ ;
2 sin

1 1 4ˆ ;
2 4 sin 2

( 1) ( ) ;

ext

sym

T

V

V A J J C A K


    

  

  
    

  

 
    

 

   

 (A1)  

 

 

 

1/2

1/2

1/2
2 2

1 sin cos ,
2

1 sin cos ,
2

sin sin
cos .

1 sin cos

S

s


 


 

 

 

 

 

 


 
(A2)  



216 

 

The second component V̂ext transforms as follows: 

In the limit S → ∞, many terms in these two components vanish and their sum 

approaches the following expression, that depends on s and Θ only: 

A similar expression was reported by Billing.115 Now we transform to non-scaled Jacobi 

coordinates that include interatomic distance r (instead of s) and the reduced mass of O2 

(instead that of O3), 
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To simplify this part of the operator ĥ, we transform the initial wave function Λ(r, Θ) to a 

new wave function Λ(̃r, Θ), 

This transformation eliminates all terms except the two second derivatives 

Finally, we assume asymptotic form of rotational potential 
2

2 2 2 2

O/ (2 sin )symV K r  , 

as discussed in Sec. 3.2.2, and asymptotic form of potential energy surface, which is 

simply a potential energy of O2 fragment, i.e. Vpot → VO2 (r), 

Now, we approximate the wave function as ( , ) ( ) ( )r R r A      and note that the action 

of angular operator (in parenthesis) could be expressed using its eigenvalues j (j + 1) and 

associated Legendre polynomials ( ) ( )K

jA P   , namely, 

This reduces the initial two-dimensional Schrödinger equation to a set of one-

dimensional Schrödinger equations ,( ) ( )j j j

v v j vh R r R r  for vibrational coordinate r and 

for different values of the angular momentum quantum number j of the diatomic 
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For a given value of the vibrational quantum number v (for example v = 0) energies εv,j  

constitute a non-degenerate rotational spectrum j (j + 1) of a rigid rotor, that starts with a 

quantum number j = K. If one neglects the effects of potential anharmonicity and 

centrifugal distortion, then energies εv,j could be estimated as 

In this expression, ω and r0 are vibrational frequency and equilibrium interatomic 

distance of oxygen molecule, respectively. Indeed, this solution is consistent with density 

of points in the right most slice in Figure 3.3. Two vibrational levels v = 0 and v = 1 are 

easily recognizable, and the spacing between rotational levels in 0v   is increasing with 

energy. The ground state v = 0, j = 0 located at ε0,0 = 791.63 cm-1  above asymptotic limit 

of the potential energy surface, is forbidden by symmetry. So, the first allowed state is v 

= 0, j = 1 with energy ε0,1 = 794.51 cm-1. 
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APPENDIX B 

Table B. 1. Vibrational spectrum of ozone 48O3 up to 600 cm-1 below dissociation threshold 

# E, cm-1 Sym. #Syma (v1,v2,v3) Noteb δc, cm-1 ΔEd, cm-1 

1 -8618.25 A₁ 1 (0,0,0)  -2.40 -0.08 

2 -7923.18 A₁ 2 (0,1,0)  -1.46 -0.18 

3 -7569.60 A₂ 1 (0,0,1)  1.92 -0.23 

4 -7521.46 A₁ 3 (1,0,0)  -0.15 -0.23 

5 -7230.82 A₁ 4 (0,2,0)  -1.29 -0.28 

6 -6890.52 A₂ 2 (0,1,1)  2.18 -0.32 

7 -6834.13 A₁ 5 (1,1,0)  -0.24 -0.33 

8 -6549.27 A₁ 6 (0,0,2)  1.42 -0.36 

9 -6541.49 A₁ 7 (0,3,0)  -1.55 -0.37 

10 -6506.83 A₂ 3 (1,0,1)  3.56 -0.37 

11 -6430.20 A₁ 8 (2,0,0)  0.89 -0.39 

12 -6214.55 A₂ 4 (0,2,1)  2.07 -0.41 

13 -6149.65 A₁ 9 (1,2,0)  -0.95 -0.43 

14 -5885.30 A₁ 10 (0,1,2)  0.10 -0.45 

15 -5855.75 A₁ 11 (0,4,0)  -1.71 -0.46 

16 -5836.96 A₂ 5 (1,1,1)  4.26 -0.46 

17 -5751.04 A₁ 12 (2,1,0)  0.21 -0.48 

18 -5557.57 A₂ 6 (0,0,3)  -3.62 -0.48 

19 -5542.40 A₂ 7 (0,3,1)  2.30 -0.50 

20 -5528.25 A₁ 13 (1,0,2)  10.17 -0.49 

21 -5468.12 A₁ 14 (1,3,0)  -2.19 -0.51 

22 -5433.76 A₂ 8 (2,0,1)  -11.84 -0.51 

23 -5349.68 A₁ 15 (3,0,0)  5.95 -0.53 

24 -5225.41 A₁ 16 (0,2,2)  -0.60 -0.53 

25 -5174.28 A₁ 17 (0,5,0)  -1.07 -0.55 

26 -5170.85 A₂ 9 (1,2,1)  5.24 -0.54 

27 -5074.75 A₁ 18 (2,2,0)  -1.08 -0.57 

28 -4908.90 A₂ 10 (0,1,3)  -6.31 -0.57 

29 -4875.99 A₁ 19 (1,1,2)  11.80 -0.57 

30 -4873.84 A₂ 11 (0,4,1)  2.65 -0.59 

31 -4790.36 A₁ 20 (1,4,0)  -3.13 -0.61 

32 -4775.04 A₂ 12 (2,1,1)  -8.75 -0.60 

33 -4678.13 A₁ 21 (3,1,0)  4.12 -0.62 

34 -4598.61 A₁ 22 (0,0,4) P35 -9.07 -0.60 

35 -4583.73 A₂ 13 (1,0,3) P34 17.68 -0.60 

36 -4570.07 A₁ 23 (0,3,2)  -0.23 -0.62 

37 -4508.97 A₂ 14 (1,3,1)  6.98 -0.63 

38 -4496.45 A₁ 24 (0,6,0)  -0.27 -0.64 

39 -4469.09 A₁ 25 (2,0,2) LM -25.95 -0.63 

40 -4401.64 A₁ 26 (2,3,0)  -2.66 -0.65 

41 -4375.86 A₂ 15 (3,0,1)  -18.79 -0.66 

42 -4277.88 A₁ 27 (4,0,0)  13.00 -0.69 

43 -4264.88 A₂ 16 (0,2,3)  -7.82 -0.65 
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44 -4228.64 A₁ 28 (1,2,2)  14.87 -0.65 

45 -4209.21 A₂ 17 (0,5,1)  3.46 -0.67 

46 -4120.24 A₂ 18 (2,2,1)  -5.23 -0.68 

47 -4116.87 A₁ 29 (1,5,0)  -3.28 -0.69 

48 -4010.16 A₁ 30 (3,2,0)  2.38 -0.70 

49 -3965.61 A₁ 31 (0,1,4) P50 -12.76 -0.68 

50 -3949.50 A₂ 19 (1,1,3) P49 20.67 -0.67 

51 -3918.49 A₁ 32 (0,4,2)  0.42 -0.70 

52 -3852.21 A₂ 20 (1,4,1)  10.36 -0.70 

53 -3830.14 A₁ 33 (2,1,2) LM -19.76 -0.71 

54 -3821.21 A₁ 34 (0,7,0)  -0.36 -0.73 

55 -3732.58 A₁ 35 (2,4,0)  -3.66 -0.72 

56 -3727.72 A₂ 21 (3,1,1)  -13.89 -0.73 

57 -3680.49 A₂ 22 (0,0,5) P58 -6.85 -0.70 

58 -3675.52 A₁ 36 (1,0,4) P57 28.34 -0.70 

59 -3625.47 A₂ 23 (0,3,3)  -8.19 -0.73 

60 -3614.01 A₁ 37 (4,1,0)  10.09 -0.77 

61 -3586.52 A₁ 38 (1,3,2)  20.94 -0.72 

62 -3548.30 A₂ 24 (0,6,1)  3.35 -0.75 

63 -3523.80 A₂ 25 (2,0,3) LM -29.79 -0.74 

64 -3471.15 A₂ 26 (2,3,1)  1.52 -0.74 

65 -3447.29 A₁ 39 (1,6,0)  -6.68 -0.76 

66 -3443.95 A₁ 40 (3,0,2)  -8.73 -0.76 

67 -3349.09 A₁ 41 (3,3,0)  -5.81 -0.76 

68 -3335.08 A₁ 42 (0,2,4) P70 -31.18 -0.76 

69 -3323.82 A₂ 27 (4,0,1)  -9.16 -0.79 

70 -3320.65 A₂ 28 (1,2,3) P68 28.82 -0.74 

71 -3270.97 A₁ 43 (0,5,2)  -5.60 -0.77 

72 -3215.19 A₁ 44 (5,0,0)  20.68 -0.82 

73 -3201.13 A₂ 29 (1,5,1)  12.79 -0.76 

74 -3197.22 A₁ 45 (2,2,2) LM -1.40 -0.77 

75 -3148.10 A₁ 46 (0,8,0)  2.64 -0.82 

76 -3090.39 A₂ 30 (3,2,1)  3.74 -0.77 

77 -3069.13 A₁ 47 (2,5,0)  -12.20 -0.78 

78 -3060.03 A₁ 48 (1,1,4) P79 38.73 -0.76 

79 -3059.91 A₂ 31 (0,1,5) P78 -33.07 -0.78 

80 -2990.37 A₂ 32 (0,4,3)  -21.06 -0.80 

81 -2954.79 A₁ 49 (4,2,0)  -1.10 -0.82 

82 -2949.95 A₁ 50 (1,4,2)  24.00 -0.78 

83 -2904.08 A₂ 33 (2,1,3) LM -26.77 -0.81 

84 -2890.71 A₂ 34 (0,7,1)  2.27 -0.83 

85 -2829.61 A₂ 35 (2,4,1)  7.92 -0.79 

86 -2828.58 A₁ 51 (0,0,6) P87 5.65 -0.79 

87 -2807.88 A₂ 36 (1,0,5) P86 53.87 -0.77 

88 -2798.69 A₁ 52 (3,1,2) LM -22.93 -0.81 

89 -2782.10 A₁ 53 (1,7,0)  -7.05 -0.82 

90 -2720.34 A₁ 54 (0,3,4) P91 -29.17 -0.80 

91 -2697.42 A₂ 37 (1,3,3) P90 30.65 -0.79 

92 -2684.64 A₂ 38 (4,1,1)  -8.98 -0.85 

93 -2682.77 A₁ 55 (3,4,0)  -15.89 -0.83 
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94 -2627.33 A₁ 56 (0,6,2)  -7.31 -0.84 

95 -2597.25 A₁ 57 (2,0,4) LM -69.05 -0.85 

96 -2571.88 A₁ 58 (2,3,2) LM 6.61 -0.82 

97 -2558.83 A₁ 59 (5,1,0)  11.98 -0.88 

98 -2556.00 A₂ 39 (1,6,1)  17.90 -0.82 

99 -2542.67 A₂ 40 (3,0,3)  -17.15 -0.85 

100 -2477.24 A₁ 60 (0,9,0)  -1.10 -0.89 

101 -2475.96 A₂ 41 (0,2,5) P102 -14.86 -0.79 

102 -2450.71 A₁ 61 (1,2,4) P101 39.87 -0.81 

103 -2430.52 A₂ 42 (3,3,1)  -14.46 -0.84 

104 -2413.63 A₁ 62 (4,0,2)  -20.94 -0.89 

105 -2412.55 A₁ 63 (2,6,0)  -10.24 -0.84 

106 -2359.82 A₂ 43 (0,5,3)  -24.26 -0.85 

107 -2318.96 A₁ 64 (1,5,2)  28.67 -0.83 

108 -2299.92 A₁ 65 (4,3,0)  -6.01 -0.86 

109 -2293.98 A₂ 44 (2,2,3) LM -18.10 -0.85 

110 -2280.88 A₂ 45 (5,0,1)  -9.66 -0.92 

111 -2236.49 A₂ 46 (0,8,1)  0.59 -0.89 

112 -2236.39 A₁ 66 (0,1,6) P113 1.03 -0.81 

113 -2210.92 A₂ 47 (1,1,5) P112 52.79 -0.83 

114 -2198.28 A₂ 48 (2,5,1)  20.55 -0.83 

115 -2178.08 A₁ 67 (3,2,2) LM -16.47 -0.87 

116 -2161.28 A₁ 68 (6,0,0)  33.53 -0.94 

117 -2121.62 A₁ 69 (1,8,0)  -6.68 -0.89 

118 -2105.97 A₁ 70 (0,4,4) P119 -30.79 -0.84 

119 -2079.32 A₂ 49 (1,4,3) P118 33.61 -0.84 

120 -2055.15 A₂ 50 (4,2,1)  -3.09 -0.88 

121 -2031.14 A₁ 71 (3,5,0)  -21.61 -0.88 

122 -2013.12 A₁ 72 (2,1,4) LM -42.45 -0.84 

123 -1997.64 A₂ 51 (0,0,7) P125 -18.33 -0.81 

124 -1986.86 A₁ 73 (0,7,2)  -15.82 -0.90 

125 -1968.17 A₁ 74 (1,0,6) P123 49.51 -0.87 

126 -1954.94 A₁ 75 (2,4,2) LM 19.38 -0.87 

127 -1924.37 A₂ 52 (3,1,3)  -10.48 -0.89 

128 -1918.29 A₂ 53 (1,7,1)  24.65 -0.87 

129 -1908.98 A₁ 76 (5,2,0)  -2.24 -0.91 

130 -1880.63 A₂ 54 (0,3,5) P131 -36.23 -0.83 

131 -1847.52 A₁ 77 (1,3,4) P130 34.55 -0.84 

132 -1808.97 A₁ 78 (0,10,0)  -0.14 -0.96 

133 -1800.92 A₂ 55 (3,4,1)  -7.34 -0.89 

134 -1799.72 A₁ 79 (4,1,2)  -1.98 -0.92 

135 -1768.38 A₁ 80 (2,7,0)  -3.80 -0.89 

136 -1733.97 A₂ 56 (0,6,3)  -40.42 -0.90 

137 -1705.37 A₂ 57 (2,0,5) LM -103.57 -0.89 

138 -1697.27 A₂ 58 (2,3,3) LM 0.59 -0.88 

139 -1689.66 A₁ 81 (1,6,2) LM 25.72 -0.90 

140 -1673.53 A₁ 82 (3,0,4) LM -13.27 -0.89 

141 -1666.68 A₁ 83 (0,2,6) P144 -18.32 -0.88 

142 -1650.53 A₂ 59 (5,1,1)  -5.63 -0.94 

143 -1644.85 A₁ 84 (4,4,0)  -23.70 -0.89 



222 

 

144 -1617.17 A₂ 60 (1,2,5) P141 37.47 -0.87 

145 -1586.29 A₂ 61 (0,9,1)  -2.28 -0.95 

146 -1581.52 A₂ 62 (2,6,1) LM 40.45 -0.88 

147 -1559.19 A₁ 85 (3,3,2)  -8.78 -0.90 

148 -1524.99 A₂ 63 (4,0,3) LM -27.26 -0.96 

149 -1513.54 A₁ 86 (6,1,0)  15.34 -0.96 

150 -1502.21 A₁ 87 (0,5,4) LM -48.08 -0.87 

151 -1466.87 A₁ 88 (1,9,0)  -4.67 -0.95 

152 -1466.14 A₂ 64 (1,5,3) LM 27.72 -0.89 

153 -1452.39 A₁ 89 (1,1,6) P154 101.75 -0.85 

154 -1449.04 A₂ 65 (0,1,7) P153 -8.30 -0.86 

155 -1428.33 A₂ 66 (4,3,1)  1.48 -0.88 

156 -1397.57 A₁ 90 (5,0,2)  -7.72 -0.98 

157 -1394.13 A₁ 91 (3,6,0) LM -11.66 -0.94 

158 -1368.99 A₁ 92 (2,2,4) LM -93.01 -0.93 

159 -1348.52 A₁ 93 (0,8,2)  -23.71 -0.96 

160 -1344.93 A₁ 94 (2,5,2) LM 30.79 -0.92 

161 -1316.07 A₂ 67 (3,2,3) LM -15.81 -0.90 

162 -1299.96 A₂ 68 (0,4,5) LM -30.42 -0.86 

163 -1290.28 A₂ 69 (1,8,1)  36.49 -0.92 

164 -1266.80 A₁ 95 (5,3,0)  -6.52 -0.94 

165 -1251.29 A₁ 96 (1,4,4) LM 34.18 -0.88 

166 -1246.79 A₂ 70 (6,0,1)  0.88 -1.01 

167 -1224.76 A₂ 71 (1,0,7) P168 99.00 -0.83 

168 -1224.10 A₁ 97 (0,0,8) P167 -9.78 -0.84 

169 -1193.84 A₁ 98 (4,2,2) LM 4.50 -0.93 

170 -1179.77 A₂ 72 (3,5,1)  2.32 -0.94 

171 -1146.17 A₁ 99 (1,7,2) LM 105.95 -0.92 

172 -1143.42 A₁ 100 (0,11,0)  -7.38 -1.03 

173 -1129.51 A₂ 73 (1,3,5) LM 129.53 -0.87 

174 -1116.46 A₁ 101 (7,0,0)  42.34 -1.04 

175 -1113.83 A₂ 74 (0,7,3) LM -46.24 -0.93 

176 -1107.19 A₁ 102 (0,3,6) LM -7.49 -0.84 

177 -1106.55 A₂ 75 (2,1,5) LM -124.96 -0.93 

178 -1068.65 A₁ 103 (3,1,4) LM -31.33 -0.95 

179 -1056.68 A₁ 104 (2,8,0)  -66.26 -0.97 

180 -1033.67 A₂ 76 (5,2,1)  -0.73 -0.95 

181 -1026.65 A₂ 77 (2,4,3) LM -83.67 -0.91 

182 -1019.52 A₁ 105 (4,5,0)  -18.23 -0.95 

183 -985.55 A₂ 78 (1,6,3) LM 124.55 -0.89 

184 -944.14 A₁ 106 (3,4,2) LM -24.66 -0.94 

185 -939.94 A₂ 79 (0,10,1)  -11.16 -1.01 

186 -936.68 A₂ 80 (4,1,3) LM -16.76 -0.94 

187 -918.07 A₁ 107 (0,6,4) LM -70.42 -0.84 

188 -909.42 A₁ 108 (1,2,6) LM 101.77 -0.88 

189 -903.14 A₂ 81 (0,2,7) LM -25.53 -0.85 

190 -877.26 A₁ 109 (6,2,0)  7.78 -0.97 

191 -863.39 A₂ 82 (2,7,1) LM -59.99 -0.90 

192 -858.97 A₁ 110 (2,0,6) LM -138.48 -0.94 

193 -838.09 A₂ 83 (3,0,5) LM -24.31 -0.93 
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194 -829.30 A₂ 84 (4,4,1) LM 13.71 -0.95 

195 -821.26 A₁ 111 (1,10,0)  4.11 -1.01 

196 -793.01 A₁ 112 (1,5,4) LM 131.07 -0.93 

197 -785.13 A₁ 113 (5,1,2)  -11.31 -0.97 

198 -777.13 A₁ 114 (2,3,4) LM -114.97 -0.94 

199 -747.23 A₂ 85 (0,5,5) LM -43.65 -0.83 

200 -741.20 A₁ 115 (3,7,0)  -32.74 -0.93 

201 -720.74 A₂ 86 (2,2,5) LM 45.82 -0.87 

202 -711.61 A₁ 116 (0,9,2)  -57.50 -1.02 

203 -698.86 A₁ 117 (0,1,8) LM -16.57 -0.87 

204 -688.93 A₂ 87 (3,3,3) LM -60.20 -0.92 

205 -676.31 A₂ 88 (1,9,1)  42.60 -0.94 

206 -665.22 A₁ 118 (2,6,2) LM -56.60 -0.92 

207 -647.71 A₁ 119 (4,0,4) LM -67.94 -0.99 

208 -646.10 A₁ 120 (4,3,2) LM 51.63 -0.98 

209 -634.22 A₂ 89 (6,1,1)   6.47 -0.96 

a State number within one symmetry; 

b Wave function is disturbed by local modes (LM), or paired with state #n (Pn); 

c Deviation from the Dunham expansion fit of 248 states (see Table I of the main text); 

d Deviation from result of Ref. 129 
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APPENDIX C 

In this appendix, selection rules for ozone are derived for a different linear 

combinations of φ1 = | J, K, M⟩ and φ2 = | J, −K, M⟩, namely 

φ̃± = (| J, K, M⟩ ± | J, −K, M⟩) / (2 · (1 + δK0)) 
1/2. 

In contrast to φ± used in Section 6.3.1, the linear combinations φ̃± do not have the factor 

(−1) J + K before φ2. This form of rotational wave functions was used by Bunker and 

Jensen.166 In C2v symmetry group, functions φ ̃± generate the following diagonal 

transformation matrices:  

 

0

1

1

1 0 ( 1) 0
( ) ( )

0 1 0 ( 1)

( 1) 0 ( 1) 0
( ) ( )

0 ( 1) 0 ( 1)

J

x J

J K K

y zJ K K

M R M R

M R M R



 





 

  
    

   

    
    

    

  

Again, two choices of the z axis orientation could be considered. The characters 

and symmetries of the rotational wave functions φ ̃± and φ ̃0 for the z axis, chosen to lie in 

the plane of the molecule, are given in Tables C. 1−C. 3. In this tables, label “e” stands 

for the even values of rotational quantum number, J or K, whereas label “o” for the odd 

values. 

Table C. 1. Characters and symmetries of the positive combination φ ̃+ of the 

symmetric top wave functions in C2v for the z axis lying in the molecule plane. 

J K 
E (12) E* (12)* 

Γ 
R0 Rx

π  Ry
π Rz

π 

e e 1 1 1 1 A1 

e o 1 1 -1 -1 A2 

o e 1 -1 -1 1 B2 

o o 1 -1 1 -1 B1 
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Table C. 2. Characters and symmetries of the negative combination φ ̃− of the 

symmetric top wave functions in C2v for the z axis lying in the molecule plane. 

J K 
E (12) E* (12)* 

Γ 
R0 Rx

π Ry
π Rz

π 

e e 1 -1 -1 1 B2 

e o 1 -1 1 -1 B1 

o e 1 1 1 1 A1 

o o 1 1 -1 -1 A2 

 

 

Table C. 3. Characters and symmetries of the symmetric top wave function φ ̃0 (K 

= 0) in C2v for the z axis lying in the molecule plane. 

J 
E (12) E* (12)* 

Γ 
R0 Rx

π Ry
π Rz

π 

e 1 1 1 1 A1 

o 1 -1 -1 1 B2 

For another choice of coordinates system, where the z axis is perpendicular to the 

molecule plane, the characters and symmetries are listed in Tables C. 4−C. 6. 

Table C. 4. Characters and symmetries of the positive combination φ ̃+ of the symmetric 

top wave functions in C2v for the z axis perpendicular to the molecule plane. 

J K 
E (12) E* (12)* 

Γ 
R0 Ry

π Rz
π Rx

π 

e e 1 1 1 1 A1 

e o 1 -1 -1 1 B2 

o e 1 -1 1 -1 B1 

o o 1 1 -1 -1 A2 

 

Table C. 5. Characters and symmetries of the negative combination φ ̃− of the symmetric 

top wave functions in C2v for the z axis perpendicular to the molecule plane. 

J K 
E (12) E* (12)* 

Γ 
R0 Ry

π Rz
π Rx

π  

e e 1 -1 1 -1 B1 

e o 1 1 -1 -1 A2 

o e 1 1 1 1 A1 

o o 1 -1 -1 1 B2 

 



226 

 

 

Table C. 6. Characters and symmetries of the symmetric top wave function φ ̃0 (K = 0) in 

C2v for the z axis lying in the molecule plane. 

J 
E (12) E* (12)* 

Γ 
R0 Ry

π Rz
π Rx

π 

e 1 1 1 1 A1 

o 1 -1 1 -1 B1 

With known symmetries of the rotational wave functions, the allowed symmetry 

of vibrational wave functions can be determined. The symmetry of the total rovibrational 

wave function should be either A1 or A2. The matching between rotational and vibrational 

wave functions is given in Tables C. 7 and C. 8.  

Table C. 7. Selection rules in C2v for the z axis lying in the molecule plane. 

K J 
Γrot Γvib Γrv 

+ − + − + − 

0 
e A1  A1  A1  

o B2  B1  A2  

odd 
e A2 B1 A1 B1 A2 A1 

o B1 A2 B1 A1 A1 A2 

even 
e A1 B2 A1 B1 A1 A2 

o B2 A1 B1 A1 A2 A1 

 

Table C. 8. Selection rules in C2v for the z axis perpendicular to the molecule plane. 

K J 
Γrot Γvib Γrv 

+ − + − + − 

0 
e A1  A1  A1  

o B1  B1  A1  

odd 
e B2 A2 B1 A1 A2 A2 

o A2 B2 A1 B1 A2 A2 

even 
e A1 B1 A1 B1 A1 A1 

o B1 A1 B1 A1 A1 A1 

Finally, the allowed vibrational symmetries are plotted as a function of the total angular 

momentum J, modulus of the projection K and parity p = +/−, see Tables C. 9 and C. 10. 
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Table C. 9. Symmetry of the allowed vibrational states as a function of total 

angular momentum J, projection K and parity p of the rotational state. The z axis 

is in the molecule plane. 

Kp \ J 0 1 2 3 4 5 

3+    B1 A1 B1 

2+   A1 B1 A1 B1 

1+  B1 A1 B1 A1 B1 

0+ A1 B1 A1 B1 A1 B1 

1−  A1 B1 A1 B1 A1 

2−   B1 A1 B1 A1 

3−    A1 B1 A1 

 

Table C. 10. Symmetry of the allowed vibrational states as a function of total 

angular momentum J, projection K and parity p of the rotational state. The z axis 

is perpendicular to the molecule plane. 

Kp \ J 0 1 2 3 4 5 

3+    A1 B1 A1 

2+   A1 B1 A1 B1 

1+  A1 B1 A1 B1 A1 

0+ A1 B1 A1 B1 A1 B1 

1−  B1 A1 B1 A1 B1 

2−   B1 A1 B1 A1 

3−    B1 A1 B1 

For asymmetric molecule, Cs symmetry group must be used. Within this group, 

the total wave function has no symmetry constrains and only the rotational part 

determines its symmetry. Tables C. 11−C. 13 contain the symmetries of the rotational 

states for the z axis in the molecule plane. 

Table C. 11. Characters and symmetries of the positive combination φ ̃+ of the 

symmetric top wave functions in Cs for the z axis lying in the molecule plane. 

J K 
E E* 

Γ 
R0 Ry

π 

e e 1 1 A' 

e o 1 -1 A'' 

o e 1 -1 A'' 

o o 1 1 A' 
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Table C. 12. Characters and symmetries of the negative combination φ ̃− of the 

symmetric top wave functions in Cs for the z axis lying in the molecule plane. 

J K 
E E* 

Γ 
R0 Ry

π 

e e 1 -1 A'' 

e o 1 1 A' 

o e 1 1 A' 

o o 1 -1 A'' 

 

Table C. 13. Characters and symmetries of the symmetric top wave function φ ̃0 (K 

= 0) in Cs for the z axis lying in the molecule plane. 

J 
E E* 

Γ 
R0 Ry

π 

e 1 1 A' 

o 1 -1 A'' 

For the z axis, perpendicular to the molecule plane, the symmetries of the rotational states 

do not depend on J and can be summarized in only one Table C. 14. 

Table C. 14. Characters and symmetries of both positive and negative 

combinations φ ̃± of the symmetric top wave functions in Cs for the z axis 

perpendicular to the molecule plane. K = 0 is also included. 

K 
E E* 

Γ 
R0 Rz

π 

e 1 1 A' 

o 1 -1 A'' 

Again, as was mentioned in Section 6.3.2, the fact that vibrational wave functions exhibit 

no symmetry, simply means that all computed vibrational states for a given pair of (J, K) 

and parity p must be retained. The selection rules, derived in this appendix, depend on 

total angular momentum J, whereas those obtained in Section 6.3 do not and therefore are 

more preferable. 
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