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ABSTRACT 

RUTHENIUM-CATALYZED DEHYDROGENATIVE AND DEHYDRATIVE 

C-H COUPLING REACTIONS OF ARENES WITH ALCOHOLS  

AND CARBONYL COMPOUNDS 

 

 

Hanbin Lee, B.Sc., M.Sc. 

Marquette University, 2017 

Despite their outstanding achievements, the requirement of preformed functional 

groups and wasteful byproduct formation are inherent disadvantages associated with the 

transition metal catalyzed cross-coupling methods. Inspired by the needs for green and 

sustainable chemistry, transition metal catalyzed dehydrogenative and dehydrative 

coupling methods have been recognized as environmentally sustainable and atom 

economical synthetic routes for the new C-C bond formation. The catalytic activation of 

C-H and C-O bonds allows the formation of coupling products from ubiquitous 

hydrocarbon substrates by releasing hydrogen or water byproduct. However, these novel 

protocols require relatively harsh conditions due to their low reactivity of C-H and C-O 

bonds, and difficulty in controlling regioselectivity. The development of new catalytic C-

H bond activation methods is highly desirable for the selective C-C formation reactions. 

The cationic ruthenium-hydride complex was found to be a highly effective catalyst 

for the dehydrogenative and dehydrative C-H coupling reactions of simple arenes with 

alcohols and carbonyl compounds. The dehydrogenative coupling reaction of phenols with 

aldehydes formed the 2-acylphenols without using any metal oxidant or forming wasteful 

byproducts. The mechanistic studies suggested that the aldehyde substrate was served as 

both the coupling partner and hydrogen acceptor. The coupling method was successfully 

extended to the synthesis of 2H-chromene derivatives by using α,β-unsaturated aldehydes. 

The cationic ruthenium-hydride complex was found to exhibit uniquely high activity for 

the coupling reaction of phenols with ketones to form synthetically useful 2-vinylphenols. 

The coupling of phenols with linear ketones led to a highly (Z)-selective formation of 

trisubstituted olefins. We also developed the catalytic synthesis of biologically important 

indole and quinoline derivatives from the coupling reaction of arylamines with diols. A 

broad range of substrates was demonstrated to afford the regioselective N-heteroannulated 

products. The deuterium labeling study and control experiments were performed to discern 

the mechanistic pathway. 
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CHAPTER 1 

Introduction 

Hydrocarbons are ubiquitous constituents present in organic and petroleum 

products. It is very important to develop efficient processes for the transformation of 

inexpensive hydrocarbons to more valuable products such as pharmaceuticals, natural 

products, and polymers. Since carbon-hydrogen (C-H) and carbon-carbon (C-C) bonds are 

the most fundamental linkage for these substances, the development of catalytic methods 

for efficient and selective C-H bond activation and C-C bond formation reactions remains 

one of the most critical challenges in organic chemistry.  

To overcome shortcomings of classical C-C coupling methods such as Grignard 

and Friedel-Crafts reactions, transition metal catalyzed cross-coupling reactions have 

emerged as highly effective methods for C-C bond formation. Since Heck’s pioneering 

work on the palladium-catalyzed cross coupling of aryl halides and olefins in late 1960s, 

extensive research has been directed to the development of transition metal catalyzed cross-

coupling reactions.1 Many types of transition metal catalyzed C-C coupling methods 

(Kumada, Suzuki−Miyaura, Negishi, Stille, and Hiyama) have led to indispensable tools 

for chemical synthesis.2 However, in spite of outstanding achievements on these catalytic 

C-C bond formation methods, these processes commonly require prefunctionalized starting 

materials and a stoichiometric amount of base.3 The requirement of preformed functional 

groups is an inherent disadvantage because the substrate availability is often limited or 

multiple functionalization steps are needed to synthesize these starting materials. Moreover, 
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the formation of stoichiometric amount of undesirable salt byproduct is inevitable from the 

use of base (Scheme 1.1). 

 

Scheme 1.1 Transition metal catalyzed cross-coupling reactions 

In this regards, the development of catalytic methods which can lead to the direct 

formation of C-C bonds through the selective cleavage of unreactive C-H bonds would be 

highly desirable. Thus, the transition metal catalyzed C-H activation methods have 

attracted much interest in synthetic chemistry.4 In particular, dehydrogenative and 

dehydrative C-C cross-coupling methods via C-H activation have been found to be highly 

atom economical ways that do not form any harmful byproducts. This chapter will mainly 

discuss the recent developments on the synthetic and mechanistic aspects of transition 

metal mediated C-C bond formation methods via C-H bond activation. 

1.1 Catalytic Dehydrogenative Cross-Coupling Methods via C-H Activation 

Considerable efforts have been devoted to the development of catalytic C-C bond 

formation methods via unfunctionalized C-H bond activation, which are inspired by the 

needs for green and sustainable chemistry.5 The cross-dehydrogenative-coupling (CDC) of 

two C-H bonds is not only advantageous in terms of eliminating byproduct formation but 
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also from the viewpoint of reducing the reaction steps. Both starting hydrocarbon substrates 

do not need to be prefunctionalized, which reduces costly chemical steps and the wasteful 

byproducts (Scheme 1.2). 

 

Scheme 1.2 Transition metal catalyzed oxidative cross-coupling reactions via C-H 

activation 

Although CDC method can be a powerful tool for the selective formation of new 

C-C bonds, certain obstacles still remain to be resolved. First, the generation of C-C bonds 

with loss of hydrogen gas might not be thermodynamically favored under normal reaction 

conditions. Thus, the reaction may require an external driving force such as a hydrogen 

acceptor and/or elevated temperature. Second, the selective activation of two different C-

H bonds is required on the starting materials. In case of benzene derivatives, the difference 

in reactivity between the C-H bonds is generally less ascertained. The use of directing 

groups is commonly employed to improve both regioselectivity and reactivity, because the 

C-H bond near the directing group would promote the access to metal catalysts.6 Despite 

such challenges, various oxidative C-C bond formation methods have been achieved by 

using CDC strategy including alkenylations7, arylations, alkylations8, and acylation 

reactions. 

1.1.1 Dehydrogenative Heck-Type Cross-Coupling Reactions 

Olefins are fundamental building blocks for a variety of important reactions in 

organic synthesis. In a pioneering study, Fujiwara reported a Mizoroki-Heck-type reaction 
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of Pd-catalyzed oxidative cross-coupling between aryl C-H bonds and olefins to generate 

arylalkenes.9 The proposed mechanism as shown in Scheme 1.3 involves arene-C-H bond 

activation and transmetalation by Pd(II) complex 1 to generate arylpalladium intermediate 

2, which undergoes carbopalladation of olefin (3) to form new C-C bond of akylpalladium 

complex 4. The β-H elimination yields styrenyl product 5 and Pd(II)-hydride species 6. 

The subsequent reductive elimination gives Pd(0) species 7, and reoxidation of Pd(0) to 

Pd(II) 1 completes the catalytic cycle.10 There are two major problems for this reaction. 

First, the reaction requires a large excess of arene substrate. Second, poor regioselectivity 

was observed for monosubstituted benzene substrates. 

 

Scheme 1.3 Oxidative Heck-type alkenylation via C-H activation 

To address this regioselectivity problem, de Vries and van Leeuwen adopted 

chelate assisted regioselective oxidative cross-coupling between anilides (8) and olefins (9) 

under mild conditions (eq 1.1).11  
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The Pd(II) catalyst was found to be most effective for the coupling reaction, 

whereas other metal complexes such as Ru3(CO)12, [RuCl2(p-cymene)]2, PtCl2, and 

Ni(OAc)2 showed no activity. The reaction was found to exhibit a large electronic 

dependence as measured from the competitive experiments of a series of para-substituted 

anilides (ρ+ =  2.2). A large deuterium isotope effect was measured on the ortho-C-H bond 

of anilides, indicating the C-H activation is the slow step (kH/kD = 3). The authors proposed 

a mechanism involving the electrophilic cyclopalladation of anilides 8 as the rate-limitng 

step to generate palladacycle 11. Then, carbopalladation of olefin 9 generates ortho-

akylpalladium complex 12, which undergoes β-H elimination to yield the ortho-

alkenylation product 10. Stoichiometric amount of benzoquinone (BQ) was found to be the 

optimal oxidant. p-Toluenesulfonic acid (TsOH) also showed beneficial effect for 

improving the product yields. 
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Scheme 1.4 Proposed mechanism of the Pd-catalyzed oxidative ortho-alkenylation of 

anilides 

 

In 2001, Milstein and co-workers reported the oxidative olefination of arenes 

catalyzed by ruthenium complexes (eq 1.2).12 A number of ruthenium complexes such as 

RuCl3·3H2O, [Ru(CO)3Cl2]2, [(η6-C6H6)RuCl2]2, Ru(NO)Cl3·5H2O, and 

Ru(CF3COCH2COCF3)3 showed similar catalytic activity. The authors found that O2 can 

be directly used as the oxidant, but olefins can also serve as the oxidant in the absence of 

O2 to yield a 1:1 ratio of alkenylation and the alkylation products. The Hammett type of 

competitive experiment indicated that electron-donating substituents on the arene react 

faster than electron-deficient arenes (ρ+ = -1.16). The authors proposed a possible 

mechanism as shown in Scheme 1.5. First, C-H activation of 13 forms an arylruthenium 
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intermediate 16. The insertion of olefin 14 into metal-aryl bond forms alkylruthenium 

complex 17, which undergoes β-H elimination to yield the product 15 and ruthenium-

hydride species 18. Regeneration of electrophilic ruthenium species 19 by oxidation with 

O2 completes the catalytic cycle. The product yield increases under CO atmosphere (6.1 

atm) by stabilizing the electrophilic ruthenium species. In support of this, ruthenium-

carbonyl peaks (2054 and 1983 cm-1) are observed by IR spectroscopy in the reaction 

mixture. 

 

Scheme 1.5 Proposed mechanism for Ru-catalyzed oxidative arene-alkene olefination 

The selective activation of sp3-C-H bonds of simple alkanes has proven to be much 

more challenging because it is both kinetically and thermodynamically less favored than 

sp2-C-H bonds. However, sp3-C-H bonds with neighboring α-heteroatom could be 

selectively activated by late transition metal complexes.13  
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Previously, our research group developed a highly regioselective dehydrogenative 

coupling reaction between cyclic amines and alkenes by using the Ru-H catalyst 

(PCy3)2(CO)RuHCl (23) (eq 1.3).14 The reaction occurred without any additives, and H2 is 

the only byproduct consumed by excess alkene starting material. A normal deuterium 

isotope effect was observed from the coupling reaction of C4H8N-H and C4H8N-D (kH/kD 

= 1.9), whereas no significant carbon isotope effect was measured. The authors were able 

to isolate an anionic ruthenium-amido complex as a sodium salt. The X-ray 

crystallographic analysis (Figure 1.1) supports that the isolated complex is an active species 

for the reaction. The proposed mechanism starts with coordination of 20 to ruthenium 

complex 23, followed by α-C-H activation and olefin insertion to form the alkylruthenium 

intermediate 24 (Scheme 1.6). The subsequent β-H elimination liberates an equivalent of 

alkane, which was detected by NMR in the reaction mixture. Another α-C-H activation of 

cyclic imine forms α-ruthenated imine complex 25. Insertion of second olefin 21 followed 

by reductive elimination gives the product 22 with the regenerated Ru catalyst. 

 



9 
 

 

Figure 1.1 ORTEP diagram of anionic Ru-amido-hydride complex 

 

Scheme 1.6 Proposed mechanism for Ru-catalyzed oxidative α-alkenylation of cyclic 

amines 
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In 2010, our group also reported a chelate-assisted oxidative coupling reaction of 

arylamides and unactivated alkenes by using the well-defined cationic ruthenium-hydride 

complex [(C6H6)(CO)(PCy3)RuH]+BF4
- (26) (eq 1.4).15 Compared to other oxidative Heck-

type C-H alkenylations, the coupling reaction is environmentally beneficial because it does 

not employ any hazardous external metal oxidants or additives.  

 

The reaction between C6D5CONEt2 and cyclopentene showed an extensive ortho-

H/D exchange pattern (55% D) on both products at 50 % conversion. A rapid and reversible 

ortho-C-H bond activation of the amide substrate was also observed (eq 1.5). The carbon 

isotope effect revealed a pronounced 13C ratio on the ortho-carbon 

(13C(recovered)/13C(virgin) = 1.023), when recovered amide at 80% conversion and virgin 

sample are compared. These results suggest that C-C bond formation step is the rate-

limiting step. 

 

 A stable Ru-H complex 31 was isolated from the reaction of cyclopentene and 

naphthylamide-coordinated complex 32, which is prepared from the reaction of 

tetranuclear ruthenium complex [RuH(CO)(PCy3)]4(O)(OH)2, N,N-dimethyl-2-
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naphthamide, and HBF4·OEt2 (eq 1.6).16 The cationic ruthenium complex 31 showed the 

same activity as the catalyst 26 for the coupling reaction between naphthylamide and 

cyclopentene. 

 

The proposed mechanism involves an initial arene exchange from 26 to form 

arylamide-coordianted cationic ruthenium-hydride species 33. The subsequent chelate-

directed ortho-C-H activation and dehydrogenation steps generate the ortho-metalated 

species 34. The vinyl C-H activation of alkenes, followed by aryl-to-vinyl reductive 

elimination steps produce cationic ruthenium hydride complex 35. Liberation of the 

product 29 and coordination of another arylamide completes the catalytic cycle. 

 

Scheme 1.7 Proposed mechanism of oxidative cross-coupling reaction of benzamide and 

cyclopentane  
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1.1.2 Catalytic Dehydrogenative Biaryl C-C Bond Formation Reactions 

Biaryls are common structural motifs in pharmaceutical products, liquid crystals, 

and chiral ligands. Although the synthesis of biaryls has its roots in the pioneering work of 

Ullmann and Goldberg over a century ago,17 the development of broadly applicable Pd-

catalyzed aryl-aryl bond formation methods (Kumada, Suzuki, Negishi, Stille, Hiyama) 

still require aryl halides and appropriate organometallic reagents. Recently, direct C-H 

oxidative coupling of two unfunctionalized arenes has emerged as a promising synthetic 

strategy for the formation of biaryl products.18 

 

In 2006, Lu and co-workers published oxidative cross-coupling of naphthalene with 

various arenes (eq 1.7).19 The biaryl formation reaction was achieved with a palladium(II) 

catalyst, K2S2O8, and CF3COOH (TFA), which is the same catalytic system used for the 

carboxylation of arenes.20 The authors found that the ratio between homo-coupling and 

unsymmetrical biaryl products from the reaction of benzene and anisole can be controlled 

by changing the relative concentration of TFA (eq 1.8).  
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 A stoichiometric amount of K2S2O8 was used as the terminal oxidant. Various 

unsymmetrical biaryls were produced from the oxidative cross-coupling of naphthalene 

and benzene derivatives at room temperature. However, a large excess of arene substrates 

(5-100 equivalents) was required in order to avoid the homo-coupling products. 

 

Scheme 1.8 Proposed mechanism of Pd-catalyzed oxidative cross-coupling of naphthalene 

with arenes 

 The authors proposed a plausible mechanism as shown in Scheme 1.8. The initial 

C-H activation occurs with a highly concentrated arene 37 to give arylpalladium complex 

41, then the preferential attack of the electron-rich arene 40 takes place in the mixture. A 

lower amount of TFA leads to the less electrophilicity of Pd(II) complexes. 
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Fagnou and co-workers reported a palladium catalyzed C3-arylation of N-

acetylindoles with simple arenes by using Cu(OAc)2 as the oxidant (eq 1.9).21 Optimal 

catalytic reactivity was discovered with palladium trifluoroacetate [Pd(TFA)2] complex, 3-

nitropyridine, cesium pivalate, and pivalic acid as the solvent. Addition of pyridine 

presumably acts to stabilize the palladium(0), thereby preventing the formation of 

palladium black precipitates before reoxidation. The authors believed that a complete 

inversion of catalyst selectivity occurred in a single catalytic cycle by using two different 

arenes as starting materials, because no homo-coupling products are detected in the crude 

reaction mixture. They hypothesized that two potential arene palladation pathways could 

be involved in the mechanism for the formation of unsymmetrical biaryl products (Scheme 

1.9). 

 

Scheme 1.9. Two possible metalation pathways. (a) The electrophilic aromatic metalation 

pathway, and (b) concerted proton transfer metallation pathway 

Fagnou group also showed that changing the oxidant from Cu(OAc)2 to AgOAc 

results in regioselective C2 arylation of indoles (eq 1.9).22 Although the rationale of the 
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C2/C3 regioselectivity has not been settled, they explained that the formation of mixed Pd-

Cu clusters may promote pronounced C3 selectivity. 

 

 More recently, Dong and co-workers reported O-carbamate directed ortho-

selective oxidative arylation by using palladium catalyst.23 Sodium persulfate (Na2S2O8) 

was found to be an optimal oxidant, whereas Cu(OAc)2 and AgOAc were ineffective. The 

authors observed that either products 44 and 45 can be selectively produced by controlling 

the relative concentration of the oxidant (eq 1.10). Also, ortho- or meta-substituted O-

phenylcarbamates readily underwent to form the monoarylation products. The addition of 

TFA was found to be critical for achieving highly efficient oxidative cross-coupling 

reactions. The authors proposed that TFA enhances the electrophilic metalation of the 

palladium catalyst center toward arene substrates.24  
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Scheme 1.10 Proposed mechanism for Pd-catalyzed oxidative ortho-arylation 

 The authors proposed a possible mechanism is proposed as shown in Scheme 1.10. 

Carbamate-assisted cyclopalladation of 42 forms the arylpalladium 46. The subsequent C-

H bond activation of electron-deficient arene 43 by electrophilic metalation, followed by 

reductive elimination to yield the product 44 (or 45 for the second cycle) and Pd(0) 47. The 

reoxidation of Pd(0) 47 with Na2S2O8 forms active Pd(II) species 48. In order to support 

the first C-H bond activation by cyclopallation,25 Pd complex 49 was prepared by treatment 

of m-tolyl dimethylcarbamate with Pd(OAc)2 in the presence of TFA (eq 1.11). The Pd 

complex 49 was characterized by NMR spectrocscopy and X-ray crystallography (Figure 

1.2). The treatment of obtained dimeric Pd complex 49 with benzene produced ortho-

phenylated O-phenylcarbamate in excellent yield. The molecular structure of 49 suggests 

the formation of palladacycle intermediate 46. 
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Figure 1.2 ORTEP plot of dimeric Pd complex 49 

 

Scheme 1.11 Cyclo-dehydrogenative arylation of 1,2,3-triazoles 

Heterocyclic products have been synthesized by applying intramolecular 

dehydrogenative C-C bond formation protocol. Ackermann and co-workers reported 

intramolecular arylation of 1,2,3-triazoles via two different sp2 C-H bond activation by 

using Pd(OAc)2 catalyst (Scheme 1.11).26 The heteroannulated triazoles could be formed 
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by intramolecular C-C bond formation with 6:1 toluene/pivalic acid solvent system in air, 

but there was no distinct advantage on using moleculer oxygen as the oxidant. The addition 

of the stoichiometric amount of Cu(OAc)2 was found to be the most optimal among a 

variety of screened terminal oxidants. The authors were able to expand the scope of this 

method to synthesize π-conjugated heteroannulated phenanthrenes. 

Recently, Xu and co-workers reported Pd(OAc)2 catalyzed intramolecular 

heterocyclization of 4-aniline substituted coumarins, quinolinones, and pyrones (Scheme 

1.12).27 A wide range of indole-fused polyheterocycles such as indolo[3,2-c]coumarins, 

indolo[3,2-c]quinolinones, and indolo[3,2-c]pyrones can be produced by atom economical 

dehydrogenative C-C bond connection. The authors devised base-free reaction conditions 

by changing catalyst loading and the oxidant. Since replacing AgOAc (method B) with air 

(method A) is environmentally beneficial, method A was employed for the 

heterocyclization of 4-arylamino coumarines with a longer reaction time (> 24 h). These 

methods readily afforded biologically valuble polyheterocycle compounds in good to 

excellent yields while avoiding prefunctionalization or N-protection of substrates.   

 

Scheme 1.12 Dehydrogenative polyheterocyclization 4-aniline substituted coumarins, 

quinolinones, and pyrones 
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1.1.3 Catalytic Oxidative Coupling of Aldehydes via C-H Bond Activation 

 Transition metal catalyzed direct carbonylation via C-H bond activation is an 

attractive synthetic method in organic chemistry. In a pioneering study, Murai and co-

workers developed Ru3(CO)12 catalyzed acylation of imidazoles with CO and olefins.28 In 

2013, Beller and co-workers reported [RuCl2(cod)]n catalyzed C-C coupling of 2-

phenylpyridine with CO and aryl halides to form benzophenones.29 In both cases, the 

authors applied high pressure of CO gas (20-40 atm) to proceed their reactions. Recently, 

the acylation of arenes via direct aldehydic C-H bond activation has been developed, but 

most of the applications are limited to aromatic aldehydes.30 For example, Cheng and co-

workers reported palladium-catalyzed ortho-selective C-H acylation of arenes with 

aldehydes (eq 1.12).31 The reaction was carried out with 10 mol % of Pd(OAc)2 as the 

catalyst, 1:2 mol ratio of 2-phenylpyridine derivatives and aryl aldehydes in dry xylene at 

120 °C using air as the optimal oxidant. The authors found a high degree of functional 

group tolerance on both starting meterials. The electronic effect was not observed on 2-

arylpyridines for both electron-donating and electron-withdrawing substituents. However, 

the reaction efficiency was sensitive to the electronic nature on aryl aldehyde substituents. 

Electron-withdrawing groups on the phenyl ring of benzaldehyde gave higher yields than 

benzaldehydes with electron-donating groups. 
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 The proposed mechanism involves a chelate-directed C-H activation of 2-

phenylpyridine to form a cyclopalladated complex 54. To support this initial step, the 

authors were able to isolate and characterize the palladacycle complex 54, which showed 

the same catalytic activity as Pd(OAc)2 catalyst 53. Insertion of C=O bond of aldehyde into 

C-Pd bond gives palladium complex 55, and the consequent β-H elimination forms the 

product 52 and Pd(0) species 56. The Pd(0) species is reoxidized by air to regenerate the 

Pd(II) catalyst 53. 

 

Scheme 1.13 Proposed mechanism for Pd-catalyzed oxidative ortho-acylation of 2-

phenylpyridines with aryl aldehydes 
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Scheme 1.14 Pd-catalyzed cross-coupling of aryl ketone O-methyl oximes with aldehydes 

In 2010, Yu and co-workers reported Pd-catalyzed ortho-acylation of aryl-

substituted oximes with aldehydes (Scheme 1.14).32 The reaction was carried out with 5 

mol % of Pd(OAc)2, 0.5 equivalent of acetic acid (HOAc), and 2 equivalents of tert-butyl 

hydroperoxide (TBHP) in toluene at 100 °C for 2 h. The oxime was found to be an effective 

directing group for the ortho-acylation reaction. Moreover, the treatment of ortho-acylated 

product 57 with HCl/dioxane provided oxime deprotected 1,4-diketone product 58 (eq 

1.13).  

 

tert-Butyl hydroperoxide (TBHP) was found to be an optimal oxidant. The authors 

proposed a radical pathway involving hydrogen abstraction from the aldehyde, because 

dramatic decrease in reaction yields was observed in the presence of a radical scavenger 

such as ascorbic acid. Also, the reaction did not produce the product in the absence of 

TBHP. 
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Scheme 1.15 Proposed mechanism for Pd-catalyzed ortho-acylation of aryl oxime with 

aldehydes 

A proposed mechanism involving radical pathway is shown in Scheme 1.15. The 

reaction is initiated by chelate-assisted ortho-selecetive cyclopalladation on the substrate 

59 by Pd(OAc)2 catalyst. The palladacycle intermediate 60 reacts with acyl radical 61 to 

produce putative Pd(III) or Pd(IV) complex 62. The acyl radical is generated in situ by 

hydrogen abstraction of aldehyde be using TBHP. The Pd complex intermediate 62 

undergoes reductive elimination to form the active catalyst 53. 

 

Recently, Li and co-workers demonstrated Cu-catalyzed intramolecuar oxidative 

acylation of formyl-N-arylformamides (63) to produce indoline-2,3-diones (64) using O2 
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as the terminal oxidant (eq 1.14).33 A 10 mol % of CuCl2 with 1 atm of O2 offered the 

optimal reaction condition at 100 °C for 4 h. Substrates with a variety of functional 

substituents on aromatic ring were tolerated under the reaction conditions. The electron 

density of the substituents at the para position was found to affect the reaction. The desired 

products were obtained when the electron-donating or weak electron-withdrawing group is 

attached to the aromatic ring. 

 

Scheme 1.16 Proposed mechanism for Cu-catalyzed intramolecular acylation of formyl-

N-arylformamides 

The authors proposed a possible mechanism as shown in Scheme 1.16. First, C-H 

bond activation of aldehyde generates copper(II) complex intermediate 65 by releasing 

HCl. Subsequent arene C-H activation produces Cu(III) intermediate 66. The intermediate 

then undergoes reductive elimination to yield heterocyclic product 64 and Cu(I) species 67. 

The formation of intermediate 65 and 66 was supported by the detection of C=O peak from 

FTIR spectroscopy. Based on the kinetic isotope effect study (kH/kD (monodeuterated 
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aldehyde) = 2.4), the authors suggested that the aldehyde C-H bond activation is the rate-

liming step. 

1.2 Catalytic Dehydrative Cross-Coupling Reactions via C-H and C-O Bond 

Activation 

 From the viewpoint of green and sustainable chemistry, atom economical C-C bond 

formation methods have emerged as an attractive strategy in terms of minimizing reagents 

and corresponding waste products. Transition metal catalyzed cross-dehydrogenative 

coupling (CDC) method has become one of the most active area in research, which renders 

the formation of C-C bond from two different C-H bond activations, with H2 as the only 

byproduct. Despite the significant advances in eco-friendly chemistry, many oxidative C-

C formation methods still require stoichiometric oxidants or hydrogen acceptors. One of 

the ideal scenarios would be to employ catalytic cross-dehydrative coupling via C-H and 

C-OH bond activations. The attractive features of this method are the direct use of 

inexpensive and broadly available alcohols as coupling partner, and water is the only 

byproduct (Scheme 1.17). Although the transition metal catalyzed cross-dehydratve 

coupling reaction has been recognized as environmentally and economically impeccable 

strategy in recent years, this novel protocol has been rarely explored in synthetic 

chemistry.34  

 

Scheme 1.17 Transition metal catalyzed cross-dehydrative coupling reactions 
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1.2.1 Catalytic Dehydrative Reaction of Allylic Alcohols 

The palladium catalyzed allylation of carbon nucleophiles with allylic compounds 

(Tsuji-Trost reaction) is an important synthetic method in organic chemistry.35 However, 

very few articles have been reported on using allylic alcohols in Tsuji-Trost reaction 

because the alcohol hydroxy group has very poor leaving ability.36 Ozawa and co-workers 

reported allylation of anilines with allyl alcohols by using the π-allyl palladium complexes 

bearing diphosphinidenecyclobutene ligands (DPCB-Y).37 Mechanistic studies revealed 

that the C-O bond cleavage is the rate-determining step in these reactions. Li and co-

workers have developed a palladium catalyzed direct dehydrative coupling of terminal 

alkynes with allylic alcohols.38 A series of 1,4-enyne derivatives could be obtained from 

the reaction of (triisopropylsilyl)acetylene with Morita-Baylis-Hillman (MBH) alcohols in 

the presence of Pd(PPh3)4, N,P-ligand L1, and Ti(OiPr)4 (Scheme 1.18a). For the reaction 

between cinnamyl alcohol and arylacetylenes, catalytic amount of diisopropylethylamine 

(DIPEA) was employed to activate the alkynyl C-H bond (Scheme 1.18b). The authors 

proposed a plausible mechanism for this reaction as shown in Scheme 1.19. The initial 

activation of allylic alcohol by Ti(OiPr)4 generates allylic titanate 67, which reacts with 

Pd(0)/L1 species to give π-allylpalladium intermediate 68. The subsequent deprotonation 

of terminal alkyne by assistant of L1 and base forms an intermediate 69 and water. The 

reductive elimination of 69 furnishes the 1,4-enyne product and regenerates the palladium 

catalyst for the next catalytic cycle. 
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Scheme 1.18 Pd-catalyzed dehydrative coupling of allyl alcohols with alkynes 

 

Scheme 1.19 Proposed mechanism for the dehydrative coupling of terminal alkynes with 

allylic alcohols 

Reek and co-workers reported palladium catalyzed dehydrative cross-coupling 

reaction between allylic alcohols and styrenes without using any stoichiometric additives.39 

The cationic palladium(II) complex 70 was identified as an effective catalyst to form π-
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allyl palladium species (Figure 1.3), while other neutral palladium(II) or palladium(0) 

complexes failed to show any activities. The treatment of cinnamyl alcohol with styrene 

derivatives in the presence of 3 mol % Pd complex 70 in dioxane at 120 °C formed the 

corresponding linear 1,4-diene products (Scheme 1.20a). In case of the coupling reaction 

between methyl substituted aliphatic allyl alcohols and styrene derivatives, two 

regioisomers were formed depending on the allyl alcohol substrates (Scheme 1.20b). The 

authors explained that these two products were generated by the isomerization of π-allyl 

palladium intermediate involving β-hydride elimination. 

 

Figure 1.3 Cationic palladium(II) complex 70 

 

Scheme 1.20 Pd-catalyzed dehydrative coupling of allyl alcohols with styrenes 
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Although the Pd-catalyzed C-O activation of allyl alcohol via formation of π-

allylpalladium species has been shown to be an efficient method, the catalytic cross-

dehydrative C-H allylation reactions can also be achieved by different transition metals 

such as cobalt and ruthenium. In these cases, the C-O activation occurs through β-hydroxy 

elimination rather than the formation of π-allylmetal species. 

 

Scheme 1.21 Co-cataylzed dehydrative C-H ortho-allylation of arenes 

Very recently, Yoshino and Matsunaga reported cobalt catalyzed C-H allylation of 

6-arylpurins and aryl amides with allyl alcohols.40 The reaction of purinyl arenes or 

benzamides with allyl alcohols catalyzed by Cp*Co(CO)I2, silver salt and base afforded 

ortho-allylated arenes in good yields at a moderate temperature (Scheme 1.21). During the 
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solvent screening, the authors found that fluorinated alcohols, 2,2,2-trifluoroethanol (TFE) 

and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), are the most effective solvents for this 

catalytic system. A broad range of benzamides and N9-substituted purinyl derivatives 

(including fully acetylated 6-phenylpurine riboside) afforded the allylation product for this 

method.  

 

Scheme 1.22 Proposed mechanism for the dehydrative C-H allylation of 6-arylpurines 

A plausible mechanism for the allylation of 6-arylpurine 71 is shown in Scheme 

1.22. The active cationic cobalt species would be generated from Cp*Co(CO)I2, AgOTf, 

and AgOAc. Coodination of 71 followed by acetate-assisted sp2-C-H activation gives 5-

membered metallacycle complex 73. Subsequent alkene insertion of allyl alcohol forms 7-

membered metallacycle intermediate 74. At this stage, β-hydroxy elimination is favored 

over the competing β-hydride elimination to release the desired allylation product 72 with 
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cationic cobalt hydroxo complex. The authors also observed a trace amount of aldehyde 

byproduct 75, which was resulted from β-hydride elimination process. 

Kapur and co-workers reported ruthenium catalyzed dehydrative C-H allylation of 

indoles with allyl alcohols.41 Coupling reaction of N-pyridinyl indoles with allyl alcohols 

in the presence of [RuCl2(p-cymene)]2, Cu(OAc)2, and AgSbF6 afforded C2-arylated 

indoles. In this protocol, pyridine served as a directing group for the regioselective C-H 

activation of indoles. The authors also demonstrated the removal of the pyridinyl directing 

group of the coupling products by simple reaction with MeOTf followed by base solution 

treatment. The proposed mechanism similarly follows Yoshino and Matsunaga’s cobalt 

catalyzed allylation process.40 Pyridine directed C-H activation of indole generates C2-

metallated indole intermediate. Alkene insertion of allyl alcohol followed by β-hydroxy 

elimination gives the product. 

 

Scheme 1.23 Ru-catalyzed dehydrative C-H allylation of indoles 
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1.2.2 Catalytic Dehydrative Coupling Reaction of Aliphatic Alcohols 

Catalytic dehydrative C-C coupling reactions involving C-O bond cleavage of 

unactivated aliphatic alcohols are very difficult to achieve because it is thermodynamically 

less favorable than alkoxylation or dehydrogenation of alcohols (C-O bond dissociation 

energy = 85 to 91 kcal∙mol-1).42 Recently, a number of ruthenium complexes have been 

successfully employed for the selective activation of challenging sp3 C-O bond activation 

of alcohols. 

In 2011, our group reported ruthenium catalyzed dehydrative C-H alkylation of 

alkenes with alcohols.43 The coupling reaction employed 0.5 mol % cationic Ru-H complex 

[(C6H6)(PCy3)(CO)RuH]+BF4
- (26) at 75-110 °C without using any additives. The catalytic 

method tolerated a broad range of alcohol and alkene (including cycloalkenes, indene, N-

methylindole, 2,3-dihydrobenzofuran, and styrene derivatives) substrates with high 

product yields. The catalytic method was successfully applied to several biologically active 

alkenes to demonstrate high regioselectivity and functional group tolerance. 

 

Scheme 1.24 Ru-catalyzed dehydratve alkylation of alkenes with alcohols 

The preliminary mechanistic studies were inconsistent with the Friedel-Crafts-type 

electrophilic substitution reactions. For example, an opposite trend in reactivity of alcohols 

(1° > 2° > 3°) was observed from the initial rate comparison study of the alkylation reaction 

of primary, secondary, and tertiary alcohols. A plausible mechanism is proposed in Scheme 
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1.25. A cationic Ru-alkenyl species 76 is generated by the initial alkene insertion, vinylic 

C-H activation, and alkane elimination sequence. Coordination of an alcohol to the 

ruthenium center followed by oxidative addition of the C-O bond would give cationic 

Ru(IV)-alkenyl-alkyl species, which liberates the alkene alkylation product to form the 

coupling product and forms Ru-hydroxo intermediate 77 by reductive elimination. Another 

vinylic C-H activation and subsequent water elimination regenerates the Ru-alkenyl 

species 76. 

 

Scheme 1.25 A plausible mechanism for the dehydrative C-H alkylation of alkenes 

The well-defined cationic ruthenium hydride complex 

[(C6H6)(PCy3)(CO)RuH]+BF4
- complex (26) has been found to exhibit exceptional 

catalytic activity for C-O bond activation of alcohols. Our group also developed the 

ruthenium catalyzed dehydrative C-H alkylation and alkenylation of phenols with alcohols 

without using any expensive or toxic metal oxides.44 The initial reaction of 3-

methoxyphenol with cyclohexanol in the presence of 1 mol % 26 and a catalytic amount 

(10 mol %) of cyclopentene in toluene at 100 °C resulted in the formation of highly 

regioselective ortho-cyclohexylphenol product along with a trace mount of ortho-

cyclohexenylphenol product. Notably, synthetically more useful ortho-alkenylated phenols 
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can also be obtained as the major product in this catalytic protocol by simply adding excess 

(3.0 equivalents) amount of cyclopentene. A series of benzofuran derivatives was formed 

when 1,2-diol was used as the coupling partner (Scheme 1.26b). The catalytic method was 

successfully extended to bioactive phenol and alcohol substrates such as cholesterol, 

estrone, coumarine derivatives to produce the corresponding ortho-alkylated phenol or 

benzofuran compounds in good to excellent yields (67-91 %). 

 

Scheme 1.26 Ru-catalyzed dehydrative synthesis of ortho-alkylated phenols and 

benzofurans 

The possible mechanistic pathway of the dehydrative ortho-alkylation of phenols 

involves the initial formation of cationic ortho-ruthenated phenol species by ortho-C-H 

activation of phenol. Subsequent C-O bond oxidative addition of alcohol followed by 
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reductive elimination of product to form the Ru-hydroxo species, which then reacts another 

phenol and releases water. The deuterium labeling experiment, Hammett plot, and kinetic 

isotope effect studies were conducted, and these results supported the proposed mechanism. 

1.2.3 Dehydrative Arene C-H Coupling Reactions 

 

Scheme 1.27 Ru/L2-catalyzed dehydrative biarylation of arenes with phenols 

In 2008, Ackermann and co-workers have developed the ruthenium catalyzed 

cross-dehydrative biarylation reactions by using inexpensive phenols as the starting 

materials.45 As shown in Scheme 1.27, chelate-assisted C-H arylation of ortho-oxazolyl 

and pyrazolyl arenes with a variety of substituted phenols was achieved in the presence of 

[RuCl2(p-cymene)]2, ligand L2, K2CO3, and 4-toluenesulfonyl chloride (p-TsCl). In this 

study, the air-stable ligand precursor, heteroatom-substituted secondary phosphine oxide 

(HASPO, L2), was shown to be more efficient than simple tertiary phosphine ligands. To 

explain high catalytic efficacy of HASPO, the authors proposed base-assisted 
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cyclometalation-deprotonation model in the C-H bond activation transition state (scheme 

1.28a).5(f) The catalytic system was successful with a wide range of phenol substrates 

bearing ether, ester, alkyl, and fluorides.  

 

Scheme 1.28 Proposed transition states for the ortho-arene arylations 

 

Scheme 1.29 Ru-catalyzed dehydrative biarylation of arenes with phenols 

Ackermann’s group later modified this dehydrative ortho-arene arylation by 

employing the well-defined Ru(O2CMes)2(p-cymene) catalyst without using any external 

ligands (Scheme 1.29).46 They have found that ruthenium(II) carboxylates are powerful 
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catalysts for the direct C-H arylation reaction,5(f),47 which could successfully replace the in 

situ generated ruthenium complexes derived from HASPO ligand (Scheme 1.28b). Notably, 

this catalytic system could also be performed in water at a lower reaction temperature.  

 In conclusion, transition metal-catalyzed dehydrogenative and dehydrative 

coupling reactions have received considerable interest in recent years. A number of 

catalytic methods have greatly advanced synthetic strategies for the economically and 

environmentally sustainable formation of the C-C coupling products. Although the direct 

activation of C-H and C-O bond allows a broad range of available substrates without 

preforming reactive functional groups, these methods often require relatively harsh 

conditions and a stoichiometric amount of additives. Thus, the development of efficient 

catalytic methods with high regioselectivity remains a long term challenge to subjugate. In 

this context, our research group have developed a number of dehydrogenative and 

dehydrative C-H coupling reaction by using well-defined cationic ruthenium-hydride 

catalyst 26. The recent synthetic and mechanistic studies of dehydrogenative and 

dehydrative coupling reactions will be presented in the following chapters. 
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CHAPTER 2 

Ruthenium Catalyzed Dehydrogenative ortho-Acylation of Phenols with Aldehydes 

via C-H Activation 

2.1 Backgrounds 

2.1.1 Traditional Acylation Methods 

 

Aryl ketones are common structural motifs present in biologically active 

compounds and pharmaceutical agents. Traditionally, Friedel-Crafts acylation method has 

been commonly used for installing acyl groups to aromatic rings by using strong Lewis 

acid catalysts (AlCl3, FeCl3).
48 The general reaction conditions of the Friedel-Crafts 

acylation facilitates the coupling of arene with acyl chloride in the presence of Lewis acid 

to give an acylated arene product along with a hydrochloric acid byproduct (eq 2.1). The 

reaction mechanism involves the initial formation of the acyl cation by the Lewis acid-

mediated halide dissociation. The acyl cation can be stabilized by its acylium ion resonance 

structure, thus other acylium sources such as acid anhydrides can also be used for this 

reaction. The nucleophilic attack of π-electrons on the benzene to the electrophilic acyl 

cation forms the cyclohexadienyl cation intermediate by breaking aromaticity. The 

subsequent dehydrogenation by tetrachloroaluminate provides acylated product and HCl. 
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Scheme 2.1 Reaction mechanism of the Friedel-Crafts acylation 

Hoesch and Houben have reported the formation of 2-acylphenols from the reaction 

of phenols with nitriles by using ZnCl2 catalyst and HCl (Scheme 2.2).49 This is similar to 

Friedel-Crafts acylation reaction, and the ketimine can be isolated as an intermediate 

product via nucleophilic attack on the nitrile electrophile by π-electrons of phenols. The 

ketimine is subsequently hydrolyzed by aqueous workup to afford 2-acylphenols.  

 

Scheme 2.2 The reaction pathway of the Houben-Hoesch reaction 

 Despite of its convenient process to produce acylated arenes, these Friedel-Crafts 

type of coupling methods possess a number of drawbacks and limitations. The reaction is 

problematic in controlling product regioselectivity and often results in multiple addition of 

electrophiles. Also, the reaction works only with benzene or activated arenes for the 

formation of dearomatized intermediate. Furthermore, employing toxic acyl halide or 

nitrile starting materials yields the corresponding wasteful byproducts.  
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2.1.2 Transition Metal-Catalyzed Acylation Methods  

Much research has been devoted to the development of transition metal catalyzed 

carbonyl functionalization of arenes via C-H bond activation. In particular, Pd-catalyzed 

arene carbonylation methods have greatly advanced synthetic potency for forming acyl-

substituted arene compounds.50 Recently, Newman and Houk reported Suzuki-Miyaura 

coupling of aryl esters with arylboronic acids (eq 2.2).51 The NHC-based Pd catalyst 

enabled the formation of acylated products via C(aryl)-O activation. However, these 

catalytic methods typically require prefunctionalized starting materials, which lead to the 

formation of wasteful byproducts.  

 

From the viewpoint of step efficient and environmentally compatible synthesis, 

catalytic C-H oxidative coupling reaction of unactivated arenes with aldehydes is a 

promising method for the synthesis of aryl ketones. Li and co-workers reported Cu-

catalyzed intramolecular arene-to-aldehyde coupling reaction to from indoline-2,3-

diones.33 Cheng31 and Yu32 reported intermolecular C-H oxidative arene-aldehyde 

coupling reactions. These coupling methods are facilitated by directing groups for the 

regioselective C-H activation of arenes. In 2012, Wang and co-workers reported Cu-

catalyzed ortho-acylation of a simple directing group phenol with aldehydes,52 but the 

scope of aldehyde substrates is limited to aromatic aldehydes.  
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2.2 Results and Discussion 

Recently, our research group developed the synthesis of a well-defined cationic 

ruthenium-hydride complex [(ɳ6-C6H6)(PCy3)(CO)RuH]+BF4
- (26). The complex 26 was 

found to be a highly effective catalyst precursor for a number of dehydrogenative and 

dehydrative C-C bond formation reactions. The cationic ruthenium-hydride complex was 

synthesized in three steps from ruthenium-hydride complex (PCy3)2(CO)RuHCl (23) as 

described in Scheme 2.3.15,53 Treatment of 23 with KOH in 2-propanol at 90 ºC formed the 

dinuclear Ru complex 78, which was isolated in 85% yield after recrystallization in hexane. 

The tetranuclear Ru complex {[(PCy3)(CO)RuH]4(μ-O)(μ-OH)2} (79) was obtained in 

80% yield as brown-red solid from the reaction of 78 with wet acetone at 100 ºC. 

Subsequent treatment of 79 with one equivalent of HBF4·OEt2 in benzene at room 

temperature cleanly afforded the cationic ruthenium-hydride complex 26, which was 

isolated as an ivory solid in 90% yield. 

The molecular structure of the cationic ruthenium-hydride complex was elucidated 

by NMR spectroscopy and X-ray crystallography (Figure 2.1). In 1H NMR, the metal-

hydride signal was observed at δ -10.39 (d, JPH = 25.9 Hz) in CD2Cl2, and a single 

phosphine signal was detected by 31P NMR at δ 72.9 ppm. The X-ray crystallography 

showed a three legged piano-stool geometry, which is capped by a ɳ6-benzene moiety. 
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Scheme 2.3 Synthesis of cationic ruthenium-hydride complex 26 

 

Figure 2.1 Molecular geometry of cationic ruthenium-hydride complex 26 

We found that the cationic ruthenium-hydride complex 26 is a highly effective 

catalyst for a number of dehydrogenative and dehydrative coupling reactions involving C-

H and C-O bond activation. By using the cationic ruthenium-hydride complex 26, we 

achieved the chelate-assisted oxidative coupling reaction of arylamides and with 

unactivated alkenes,15 the coupling reaction of α,β-unsaturated carbonyl compounds with 

alkenes,54 the coupling reaction of aryl ketones with cyclic alkenes,53 selective catalytic 

alkylation of alkenes with alcohols,43 and the C-H alkylation and alkenylation of phenols 

with alcohols44 (Scheme 2.4). 
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Scheme 2.4 Dehydrogenative and dehydrative coupling reactions mediated by Ru catalyst 

We next explored its catalytic activity for the dehydrogenative coupling reaction of 

phenols and aldehydes. Initially, we found that [(ɳ6-C6H6)(PCy3)(CO)RuH]+BF4
- (26) 

catalyzes the reaction of 3-methoxyphenol with benzaldehyde in the presence of catalytic 

amount (10 mol %) of cyclopentene in chlorobenzene at 120 ºC to form a 1:1 mixture of 

2-benzyl-3-methoxyphenol (80a) and 2-hydroxy-4-methoxybenzophenone (81a), but with 

only ca. 20 % of the combined yield (eq 2.3).  
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 The ortho-alkylated phenol 80a was formed apparently from the elimination of an 

equivalent of water molecule. Two catalytic ortho-phenol C-H activation pathways can be 

proposed to explain the formation of the alkylated product 80a. Our group has 

demonstrated a broad scope of the dehydrative alkylation of phenols with alcohols as 

indicated above (Scheme 2.4).44 One possible path involves the reduction of benzaldehyde 

to benzyl alcohol, followed by the dehydrative benzylation of phenol with newly generated 

alcohol. Second, we recently observed the hydrogenolysis of ketones or aldehydes by using 

cationic ruthenium-hydride complex 26 and phenol ligands with H2.
55 The reaction is more 

environmentally friendly than the conventional Clemmensen reduction or Wolff-Kishner 

reduction methods. For this deoxygenation method, a catalytic amount of phenol was found 

to be an effective additive to promote the reaction. Similarly, the hydrogenolysis of ketone 

to alkane pathway might be feasible for the acylated product 81a in the catalytic system. 

However, the hydrogen source was unclear in this case because both pathways require the 

same equivalent of H2 to lose a water molecule. We performed the following experiments 

in order to discern the formation of 80a (eq 2.4 and 2.5).  

 

 The treatment of benzaldehyde (0.5 mmol) with an excess amount of cyclopentene 

(5 equiv) in the presence of cationic ruthenium-hydride complex 26 (5 mol%) did not form 
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benzyl alcohol (eq 2.4). Also, the treatment of the acylated product 81a (0.5 mmol) did not 

produce its deoxygenated product 80a under the same reaction condition (eq 2.5). These 

results indicate that cyclopentene is not the hydrogen source. We believe that two products 

80a and 81a were formed simultaneously in this case because a 1:1 ratio between two 

products was observed, and that the alkylation product 80a was resulted from the coupling 

with the alcohol formed from the hydrogenation of aldehyde. 

The ortho-acylated phenol product 81a was obtained (11 % GC-MS yield) (eq. 2.3) 

from the dehydrogenative direct C-H acylation of aldehydes. Rather than consuming acyl 

halide and generating a stoichiometric amount of wastes, this catalytic method directly 

combines simple phenols and aldehydes to form the acylated product. Due to its synthetic 

importance for the oxidative C-C formation reactions via double C-H activation of two 

starting materials, we devoted much efforts to optimize the reactivity and selectivity pattern 

of acylated phenol product 81a. First, the amount of cyclopentene was increased up to 10 

equivalents from 3 equivalents, but there was no significant improvement on either 

reactivity or selectivity. Also, other alkenes such as cyclohexene, 1,4-cyclohexadiene, and 

3,3-methyl-1-butene were found to be ineffective.  

 

Instead, high selectivity for the ortho-acylation product was observed from the 

addition of an inorganic base K2CO3 (eq 2.6). With the addition of catalytic amount of 

K2CO3 (30 mol%), only the acylated product 81a was obtained in a moderate yield (39 % 
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GC-MS yield). Although K2CO3 has a poor solubility in chlorobenzene, the addition of 

water did not improve the efficiency of the reaction. Since the catalytic dehydrogenative 

C-H acylation reaction of phenols with aliphatic aldehydes has not been reported, we 

further investigated the reaction scope of phenols with aliphatic aldehydes. 

2.3 Optimization Studies 

2.3.1 Additive Effect 

The additive effect was found to be critical for increasing the reactivity and 

selectivity of the catalytic C-H acylation reaction. A variety of inorganic bases was 

screened for the reaction of 3-methoxyphenol (0.5 mmol) and benzaldehyde (1.0 mmol) in 

the presence of the cationic ruthenium-hydride complex 26 in chlorobenzene at 110 ºC for 

12 h (Table 2.1). The product yield was determined by GC-MS. 

We found that inorganic bases K2CO3, Cs2CO3, and KOH exhibit similar effect in 

promoting the selective formation of ortho-acylated phenol product 81a, whereas other 

inorganic bases and triethylamine were ineffective. We have chosen K2CO3 as an 

appropriate additive over KOH due to a slightly increased yield. Also, K2CO3 was chosen 

rather than Cs2CO3 for this catalytic reaction due to its cost. The relative additive 

concentration effect was surveyed by changing the amount of base in the reaction mixture 

(entries 1, 10-12). About 30 mol % of K2CO3 was found to be optimal, as no significant 

increase in yield was observed when the additive loading was increased above 30 mol % 

(entry 12). Significantly less than a stochiomeric amount of base needed for the reaction 

suggests that the base takes role of activating the ruthenium catalyst. 
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Table 2.1 Additive effect on the reaction of 3-methoxyphenol and benzaldehydea 

 

entry additive loading (mol%) 81ab (%) 

1 K2CO3 30 39 

2 Cs2CO3 30 38 

3 Na2CO3 30 < 3 

4 KHCO3 30 0 

5 NaHCO3 30 0 

6 NaOMe 30 0 

7 NaOAc 30 0 

8 KOH 30 33 

9 NEt3 30 0 

10 K2CO3 10 16 

11 K2CO3 20 31 

12 K2CO3 50 38 

a Reaction conditions: 3-methoxyphenol (0.5 mmol), benzaldehyde (1.0 mmol), 

26 (5 mol %), additive (10-50 mol %), chlorobenzene (2 mL), 110 °C, 12 h. b The 

product yield of 81a was determined by GC-MS using hexamethylbenzene as an 

internal standard. 
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2.3.2 Solvent and Temperature Effects 

Table 2.2 Solvent and temperature effects for the reaction of 3-methoxyphenol and 

benzaldehydea 

 

entry solvent temperature (⁰C) 81ab (%) 

1 toluene 110 29 

2 chlorobenzene 110 39 

3 1,4-dioxane 110 0 

4 water 110 0 

5 chlorobenzene 90 12 

6 chlorobenzene 100 28 

7 chlorobenzene 125 43 

a Reaction conditions: 3-methoxyphenol (0.5 mmol), benzaldehyde (1.0 mmol), 26 

(5 mol %), K2CO3 (30 mol %), solvent (2 mL), 90-125 °C, 12 h. b The product yield 

of 81a was determined by GC-MS using hexamethylbenzene as an internal standard. 

 

The choice of solvent was surveyed as shown in Table 2.2. The use of 

chlorobenzene gave the best yield among the screened solvents (entries 1-4). Dioxane and 

water did not form any products, presumably because oxygen-containing solvent could 

coordinate to the Ru center to inhibit the coordination of benzaldehyde. The effect of 

temperature was investigated by running reactions at different temperatures using 

chlorobenzene as the solvent (entries 2, 5-7). The reaction of 3-methoxyphenol with 

benzaldehyde effectively occurred at above 100 ⁰C, and 110 ⁰C was found to be the most 

optimal temperature for the coupling reaction. 
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2.3.3 Catalyst Survey 

Table 2.3 Catalyst and additive survey for the reaction of 3-methoxyphenol and 

benzaldehydea 

 

entry 
catalyst 

additiveb yield 81a 

(%)c 

   1 26 --- trace 

   2 26 K2CO3 34 

   3  26 PPh3   0 

   4 26 K2CO3, PPh3 47 

   5 RuCl3·3H2O K2CO3   0 

   6 RuCl3·3H2O K2CO3, PPh3 21 

   7 [RuH(CO)(PCy3)]4(O)(OH)2 K2CO3, PPh3 40 

   8 RuCl2(PPh3)3 K2CO3 28 

   9 [(p-cymene)RuCl2]2 K2CO3   0 

  10 Ru3(CO)12 K2CO3   0 

  11 --- K2CO3   0 

  12 --- PPh3   0 

a Reaction conditions: 3-methoxyphenol (0.5 mmol), benzaldehyde (1.0 mmol), 

additive (20-30 mol %), chlorobenzene (2 mL), catalyst (5 mol % Ru), 110 °C, 12 h. b 

Amount of additives: PPh3 (20 mol %), K2CO3 (30 mol %). c The product yield of 81a 

was determined by 1H NMR using hexamethylbenzene as an internal standard. 

 

Initially, we used the reaction of 3-methoxyphenol (0.5 mmol) with benzaldehyde 

(1.0 mmol) to screen the activity of ruthenium catalysts (Table 2.3). The product yields 

were analyzed by GC-MS at 110 ºC after 12 h. The cationic ruthenium-hydride complex 

26 exhibits the best catalytic activity for the C-C coupling reaction with additives. In the 
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absence of any additives, the cationic Ru complex 26 gave only a trace amount of product 

(entry 1). The inorganic base K2CO3 was found to be critical for obtaining acylated phenol 

product 81a selectively. The data for the other ruthenium complexes without K2CO3 are 

not included in the table due to the absence of any catalytic activity for this transformation. 

Moreover, we subsequently observed that the addition of 20 mol % of PPh3 further 

promoted the reactivity of the catalytic system (entries 4, 6). No product was formed either 

K2CO3 or PPh3 were used in the absence of ruthenium complexes (entries 11, 12). On the 

basis of these screening of ruthenium catalysts and additives, the cationic ruthenium 

complex 26, K2CO3, and PPh3 were found to be the most effective catalytic system for the 

dehydrogenative acylation of phenols with aldehydes (entry 4). 
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2.4 Reaction Scope 

2.4.1 Dehydrogenative ortho-Acylation of Phenols with Aldehydes 

Table 2.4 Dehydrogenative acylation of phenols with aldehydesa 
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Table 2.4 Dehydrogenative acylation of phenols with aldehydesa (continued) 

 

a Reaction conditions: phenol (0.5 mmol), aldehyde (1.0 mmol), 26 (5 mol %), PPh3 (20 

mol %), K2CO3 (30 mol %), chlorobenzene (2 mL), 110 °C. b Isolated yields. 

We found that the cationic ruthenium-hydride complex 26 is a highly effective 

catalyst for the direct dehydrogenative coupling of phenols and aldehydes to afford ortho-

acylated phenol products. As mentioned in the previous section, the addition of catalytic 

amount of K2CO3 (30 mol %) and PPh3 (20 mol %) was found to be critical for the selective 

formation of ortho-acylated phenols over the ortho-alkylated phenol products. We 

explored the reaction scope with various phenols and aldehydes by using the optimized 

conditions (Table 2.4). The electron-rich 3-methoxyphenol, 3,5-dimethoxyphenol, and 1- 

and 2-naphthol were found to be suitable substrates for the ortho-acylation reactions. 

However, relatively electron-deficient phenols such as a phenol or 3-chlorophenol gave 
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undesired benzyl benzoates as the major product resulted from Tishchenko-type reaction 

of benzaldehydes (eq 2.7).56 

 

 We first examined the substituent effect of aromatic aldehydes such as ortho- and 

para-substituted benzaldehydes. These benzaldehydes readily reacted with 3-

methoxyphenol to produce 2-hydroxy-4-methoxybenzophenone products 81a-81d. 

Among para-substituted benzaldehydes, 4-fluorobenzaldehyde showed higher product 

yield than simple benzaldehyde and 4-methylbenzaldehyde (entries 1-3). The results 

indicate that the benzaldehydes with electron-withdrawing group promote the coupling 

reaction. We observed that the reaction of 3-methoxyphenol and electron-rich 4-

methoxybenzaldehyde gave less than 10% yield as analyzed by GC-MS. Notably, sterically 

hindered 3,5-dimethoxyphenol was found to be a better substrate than 3-methoxyphenol in 

forming the ortho-acylphenol products. A similar substituent dependence trend was also 

observed from the reactions of 3,5-dimethoxyphenol with para-substituted benzaldehydes 

(entries 10-14). The coupling of phenols with linear or branched aliphatic aldehydes also 

gave the corresponding ortho-acylphenol products (entries 5-9, 15-18). 

 Aliphatic aldehydes are generally not suitable for the catalytic C-C coupling 

reactions because they can be easily converted to homo-aldol products. We have not found 

any reports on the catalytic dehydrogenative ortho-acylation of phenols with aliphatic 

aldehydes. We successfully demonstrated that the reaction of phenols with aliphatic 

aldehydes proceeds to form ortho-acylated phenols without forming aldol byproducts. 
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Among the screened aliphatic aldehydes, 2-phenylpropionaldehyde as a coupling partner 

showed the highest product yields. Steric environment on the α-carbon adjacent to 

aldehyde group was found to be less important because no significant difference in 

reactivity was observed between linear and branched aldehydes by comparing the product 

yields. Both 1-naphthol and 2-naphthol also readily reacted with aliphatic and aryl-

substituted aldehydes to give 2-acylated (81s-81x) and 1-acylated (81y-81z) products 

respectively (entries 19-26). Although the crude mixture typically contained a negligible 

amount of alkylation product along with unidentified oligomeric side products (5-10 % 

combined), analytically pure ortho-acylphenol products were isolated by silica gel column 

chromatography.  

2.4.2 Formation of Flavene Derivatives for the Dehydrative Coupling of Phenols 

with α,β-Unsaturated Aldehydes 

Flavonoids are a large family of polyphenolic compounds with a wide range of its 

biological activities such as antioxidant, cancer prevention, and antibacterial agents.57 

Flavonoids can be classified as flavanones, flavenes, flavones, and anthocyanidins 

according to their chemical structures (Figure 2.2). 

 

Figure 2.2 Common structures of flavonoids 
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Table 2.5 Formation of flavene derivatives from the dehydrative coupling reaction of 

phenols with α,β-unsaturated aldehydesa 
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Table 2.5 Formation of flavene derivatives from the dehydrative coupling reaction of 

phenols with α,β-unsaturated aldehydesa (continued) 

 

a Reaction conditions: phenol (0.5 mmol), aldehyde (1.0 mmol), 26 (5 mol %), PPh3 (20 

mol %), chlorobenzene (2 mL), 110 °C. b Isolated yields. 

 To extend the synthetic utility of the catalytic method, we explored the coupling 

reaction of phenol substrates with α,β-unsaturated aldehydes (Table 2.5). We initially 

investigated the cationic ruthenium-hydride complex 26 catalyzed coupling reaction of 3-

methoxyphenol with trans-2-hexenal, which gave a mixture of heterocyclic annulated 

compounds 2,3-dihydrochromone 82a and 2H-chromene 83a (eq 2.8). In the course of 

additive screening, we have found that the same reaction in the presence of 20 mol % of 

PPh3 formed only the 2H-chromene-type product 83a selectively (entry 1). Since 2H-

Chromene is known to be a core structure of naturally occurring flavene compounds, we 

next aimed to expand the substrate scope of the formation of flavene derivatives. The 

reaction was carried out with 0.5 mmol of phenols, 1.0 mmol of α,β-unsaturated aldehydes, 
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5 mol% of cationic ruthenium-hydride complex 26, and 20 mol % of PPh3 in the absence 

of base additive. The addition of K2CO3 reliably produced the acylated phenols. For 

example, the coupling reaction of 3,5-dimethoxyphenol with α-methylcinnamaldehyde in 

the presence of 26, PPh3, and K2CO3 gave the ortho-acylphenol product 81aa in 82 % yield 

without forming any byproduct (eq 2.9). 

 

 

 The coupling reaction of 3-methoxyphenol with α-substituted cinnamaldehydes 

smoothly occurred to give the 3-substituted flavene derivatives (entries 2-4).  The reaction 

of 3-methoxyphenol with β-phenylcinnamaldehyde resulted in selective formation 2,2-

diphenyl-2H-chromene compound 83e, which indicates that the intramolecular 

heterocyclization of phenol and alkene was not inhibited by sterically demanding phenyl 

groups (entry 5). The coupling with 1-cyclohexene-1-carboaldehyde also gave polycyclic 

2H-chromene product 83f (entry 6). Higher product yields were obtained from the reaction 

of 3,5-dimethoxyphenol substrate with disubstituted enals (entries 7-13). Other electron-

rich phenol derivatives, including 1-naphthol and 9-phenanthrol, afforded the 

corresponding polycyclic enol ether products 83n-83t (entries 14-20). The formation of 
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flavene derivatives 83 can be rationalized by ortho-C-H acylation followed by conjugate 

addition and dehydrative annulation, and water is the only byproduct in this reaction. 

 The structure of 2-acylphenols 81 and 2H-chromenes 83 was completely 

established by NMR analysis. In the acylated phenol products, characteristic phenolic OH 

signal was shown at δ 12-14 ppm in 1H NMR, due to the hydrogen bond with adjacent 

carbonyl group. We also confirmed the molecular structure of the products 81v and 83t by 

X-ray crystallography (Figure 2.3 and 2.4). 

 

Figure 2.3 Molecular structure of 81v 

 

Figure 2.4 Molecular structure of 83t 
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2.4.3 Dehydrogenative ortho-Acylation of Estrone with Aldehydes 

 We further demonstrated the synthetic utility of ortho-acylation by using bioactive 

phenol substrates with aliphatic- and aryl-substituted aldehydes (Scheme 2.5). The 

treatment of estrone with 4-chlorobenzaldehyde and cyclohexanecarboxaldehyde in the 

presence of 26, PPh3, and K2CO3 at 150 °C gave 1:2 coupling products 84a and 84b, 

respectively. In this case, both arene C-H acylation and aldol condensation-type couplings 

occurred on the estrone substrate. Our efforts on the formation of C-H acylated 1:1 

coupling product was unsuccessful. Instead, a small amount of aldol condensation-type 

coupling product were detected as the byproduct, which indicates that the aldol formation 

is faster than the C-H acylation for these substrates. The molecular structure of 84a and 

84b were established by NMR spectroscopy, and (E)-enone configuration was confirmed 

by X-ray crystallography (84b) (Figure 2.5). 

 

Scheme 2.5 Oxidative C-H acylation and aldol condensation of estrone with aldehydes 
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Figure 2.5 Molecular structure of 84b 

2.5 Mechanistic Studies 

2.5.1 Deuterium Labeling Study 

 

We conducted the deuterium labeling experiment to obtain mechanistic insights on 

the acylation reaction. To probe the possible hydrogen-deuterium exchange pattern, we 

performed the reaction of 3,5-dimethoxyphenol (0.5 mmol) with PhCDO (> 95 % D, 1.0 

mmol) in the presence of 26 (5 mol %), PPh3 (20 mol %), and K2CO3 (30 mol %) in 

chlorobenzene (2 mL) at 110 °C for 12 h (eq 2.10). After the reaction (86 % conversion by 

GC-MS), analytically pure product 81j and unreacted phenol substrate were isolated by a 

simple column chromatography on silica gel. The deuterium content of these was 

determined by NMR and GC-MS spectroscopic methods. The 1H, and 2H NMR showed 

that 83% deuterium was incorporated to the α-CH2 of benzyl alcohol byproduct while no 
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H/D exchange was observed on the either recovered phenol or acylphenol product (Figure 

2.6). This result suggests that the aldehyde coupling partner also serves as an internal 

oxidant via hydrogenation to the corresponding alcohol. Thus, the oxidative C-H acylation 

reaction could be achieved in the absence of any external oxidants. 

 

 

Figure 2.6 1H and 2H NMR spectra of benzyl alcohol byproduct isolated from the reaction 

of 3,5-dimethoxyphenol with benzaldehyde--d1 

2.5.2 Deuterium Isotope Effect Study 
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To discern the rate-determining step of the catalytic reaction, we measured the 

deuterium isotope effect of aldehyde by comparing the initial reaction rate of 3,5-

dimethoxyphenol with PhCHO and PhCDO at 110 °C (eq 2.11). The kobs value of for each 

substrate was obtained as kobs = 1.80 × 10-3 min-1 (PhCHO) and kobs = 5.43 × 10-4 min-1 

(PhCDO) from the pseudo-first order plot of the formation of 81j, which led a normal 

deuterium isotope effect of kH/kD = 3.3 ± 0.3 (Figure 2.7). A relatively high kH/kD value 

indicates that the cleavage of aldehydic C-H bond is the rate-determining step of the 

coupling reaction. 

 

Figure 2.7 Deuterium isotope effect study for the reaction of 3,5-dimethoxyphenol with 

benzaldehyde and benzaldehyde-α-d1 

 

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

-l
n

[(
p

h
e
n

o
l)

t/
(p

h
e
n

o
l)

0
]

time (min)

H

kH/kD =  3.31 



62 
 

2.5.3 Hammett Study 

 

 To probe the electronic influence on the aldehyde substrate, a Hammett plot is 

constructed from the reaction of 3,5-dimethoxyphenol with a series of para-substituted 

benzaldehydes p-X-C6H4CHO (X = Me, H, F, Cl, CF3) (eq 2.12). A positive ρ value of 

+0.69 ± 0.05 was obtained from a linear correlation of the relative rate vs. Hammett σp 

constant (Figure 2.8). This result indicates that the negative charge is built-up in the 

transition state, which is stabilized by electron-withdrawing inductive effect on the 

aldehyde. Thus, the aldehyde C-H activation can be promoted by electron withdrawing 

substituents in forming Ru-acyl species. Similar Hammett ρ values have been observed in 

the catalytic coupling reactions of benzaldehydes and related arenes.58  

 

Figure 2.8 Hammett plot from the reaction of 3,5-dimethoxyphenol with p-X-C6H4CHO 

(X = Me, H, F, Cl, CF3) 
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2.5.4 Proposed Mechanism 

Although detail of the reaction mechanism remains unclear at the present time, we 

present a mechanistic hypothesis for the formation of ortho-acylated phenols on the basis 

of mechanistic experimental results. A plausible mechanism is compiled as shown in 

Scheme 2.6. 

 

Scheme 2.6 Proposed mechanism for the dehydrogenative ortho-acylation of phenols with 

aldehydes 
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Initially, the cationic ruthenium hydride complex 26 would be transformed to an 

active neutral Ru-arene species 85 via a base-assisted deprotonation and the benzene ligand 

exchange with the phenol substrate. In support of this notion, we previously reported a 

facile arene exchange reaction of 26 at room temperature.15,55 The C-H activation of the 

first equivalent of aldehyde generates Ru-acyl intermediate 86. Both Hammett study and 

the normal kinetic isotope effect (kH/kD 3.3 ± 0.3) indicate that the aldehyde C-H activation 

is the rate-limiting step. The subsequent carbonyl insertion of the second aldehyde into Ru-

H bond forms alkoxy Ru-acyl species 87. The alkoxy-assisted ortho-C-H activation of 

phenol substrate and the liberation of benzyl alcohol would give the ortho-metallated 

phenol species 88, which is followed by reductive elimination of the coupling product 73 

and the regeneration of 85. The electron-rich phenols were found to be suitable for the 

ortho-C-H activation because we observed the formation of Tishchenko-type byproduct 

89 with relative electron-deficient phenol substrates. We rationalized the formation of 89 

from the reductive coupling of Ru-acyl with alkoxy via the intermediate 87. 
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2.6 Conclusions 

We have successfully developed an ortho-selective C-H acylation method for 

simple phenol substrates. The cationic Ru-H catalyst exhibits a uniquely high catalytic 

activity for the dehydrogenative coupling reaction of phenols with aldehydes without using 

any external oxidants. Deuterium labeling study showed that the aldehyde substrate served 

as both the coupling partner and hydrogen acceptor. The reaction tolerates electron 

withdrawing and donating group substituted aryl aldehydes as well as aliphatic aldehydes 

without forming aldol byproducts. The coupling method can be extended to the step-

efficient synthesis of bioactive flavene derivatives by using α,β-unsaturated aldehydes. A 

portion of this work was published in European Journal of Organic Chemistry 2015, 2015, 

1899-1904. DOI: 10.1002/ejoc.201403518 
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CHAPTER 3 

Synthesis of Alkenylated Phenols from Ruthenium-Catalyzed Dehydrative C-H 

Coupling of Phenols with Ketones 

3.1 Backgrounds 

3.1.1 Synthetic Application of 2-Vinylphenols 

2-Vinylphenol compounds comprise versatile synthetic intermediates in forming 

various pharmaceutically active compounds (Table 3.1).59-70 A number of catalytic 

reactions including asymmetric hydrogenation,59 dehydrogenative intramolecular 

cyclization,60 hydroalkoxylation,61 and hydroacylation62 have been explored for using 2-

vinylphenol as the starting material. Iwasawa reported Pd-catalyzed direct synthesis of 

coumarin derivatives under atmospheric pressure of CO2.
63 Recently, a number of coupling 

reactions have been shown to provide biologically active heterocycles through 

cycloaddition of alkynes with 2-vinylphenols.65-69 Yao reported Pd-catalyzed asymmetric 

cascade annulation between 2-alkynylbenzaldehydes and 2-vinylphenols, which led to the 

formation of naturally occurring tetrahydronaphthalene derivatives.65 Analogous alkyne 

coupling reactions have been successfully developed for the formation of structurally 

diverse oxygen-containing heterocycles, such as tetrahydrocyclobuta[b]benzofuran,66 

benzoxepin,67 spirocyclic enons,68 and 3,4-dihydro-2H-2,4-methanochromans.69 Besides, 

Cheng’s group reported Co-catalyzed synthesis of alkene-substituted 2H-chromenes from 
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2-vinylphenols with allenes.70 The authors proposed a reaction mechanism via a vinylic C-

H activation and [5+1] annulation with the allene acting as a one-carbon source. 

Table 3.1 Synthetic applications of 2-vinylphenols 

 

3.1.2 Traditional Carbonyl Olefination Methods 

Traditionally, 2-vinylphenol starting materials have been prepared by using 

carbonyl olefination methods from 2-acylphenols compounds.59-70 The Wittig reaction has 

been used as the standard tool for the synthesis of olefin natural products.71 The reaction 

of carbonyl compounds with a phosphonium ylide produced alkene products with 

concomitant formation of phosphine oxide byproduct. The reaction mechanism involves 
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the formation of oxaphosphetane intermediate 90 by nucleophilic addition of ylide to the 

carbonyl carbon (Scheme 3.1). The subsequent decomposition of the intermediate led to 

the formation of alkene and phosphine oxide by breaking C-P and C-O bonds. The 

stereoselectivity of the olefin products is influenced by many factors including the type of 

phosphorus and carbonyl starting materials, solvent, and reaction conditions. In general, 

(Z)-selectivity (typically ~9:1) can be expected when nonstabilized ylide reacts to 

aldehydes because TSZ is believed to be kinetically favored over TSE. Much effort has 

been devoted to controlling the stereoselectivity of alkene products.72  

 

 

Scheme 3.1 Mechanism for the Wittig olefination reaction 

The Peterson olefination has been found to be a highly effective method for the 

stereoselective formation of alkenes from the reaction of α-silylcarbanions with carbonyl 

compounds (Scheme 3.2).73 The nucleophilic addition of a silylcarbanion to a carbonyl 

substrate generates a set of diasteromers of β-hydroxysilane intermediate 91, where the 

diastereoselectivity can be modulated by the choice of starting materials and reaction 

conditions. The β-hydroxysilane intermediate can be isolated or can be prepared in 
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different pathways including reduction of α-silyl ketones and nucleophilic opening of silyl 

epoxides. Decomposition of β-hydroxysilane 91 leads to the olefin and silanol products 

under acidic or basic conditions. Notably, the acid and base treatments of β-hydroxysilane 

proceed different eliminations to give the opposite stereoselectivity for alkenes (Scheme 

3.2b). 

 

Scheme 3.2 The reaction pathways for the Peterson olefination 

 

Scheme 3.3 The olefnation of carbonyl compounds by using the Tebbe’s reagent 

The Tebbe’s reagent also allows efficient synthesis of olefins from various types of 

carbonyl compounds including aldehydes, ketones, esters, and amides (Scheme 3.3).74 The 
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treatment of the Tebbe’s reagent with a mild Lewis base generates the active titanium 

carbene 92 with Al2Cl2(CH3)4. The in situ formed titanium carbene 92 reacts with carbonyl 

compounds to yield the olefin product and Cp2TiO. Even though these methods have been 

widely used for the alkene synthesis, these methods commonly employ stoichiometric 

amount of reagents, thus the formation of copious amount of wasteful byproducts remains 

as an inherent drawback. 

3.2 Catalytic Reactions for the Formation of 2-Vinylphenols 

A number of catalytic methods have been developed for the formation of bioactive 

compounds using 2-vinylphenols as the starting material.59-70 However, in most cases, 2-

vinylphenols are still prepared from the traditional stoichiometric carbonyl olefination 

methods. To solve the problems associated with the wasteful byproducts, the development 

of environmentally sustainable green catalytic methods for the synthesis of 2-vinylphenols 

has attracted considerable attentions in synthetic and catalysis communities. 

 

Scheme 3.4 Rh-catalyzed coupling reaction of N-phenoxyacetamides with N-

tosylhydrazones 

In recent years, considerable efforts have been devoted to the development of new 

catalytic approaches involving arene-C-H activation for the formation of 2-vinylphenols. 

Wang and co-workers reported Rh-catalyzed C-H ortho-alkenylation of N-
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phenoxyacetamides with N-tosylhydrazones (Scheme 3.4).75 The coupling reaction of N-

phenoxyacetamides with N-tosylhydrazones in the presence of a rhodium catalyst, LiOtBu, 

and NaOAc afforded ortho-alkenylated phenol derivatives. In this protocol, the authors 

proposed that the ortho-alkenylated phenoxyacetamide intermediate would be transformed 

into ortho-alkenylated phenol product via a Rh-mediated N-O bond activation, and the 

subsequent protonation by acetic acid. The authored showed that the catalytic method could 

be extended for the coupling reaction of N-phenoxyacetamides with diazoesters. Similarly, 

Cheng and co-workers reported Rh-catalyzed 2-vinylphenol synthesis via Stille-type C-H 

vinylation of N-phenoxyacetamides with vinylstannanes.76 Despite the recent advances in 

forming 2-vinylphenols, these catalytic coupling methods still require a stoichiometric 

amount of base and prefunctionalized starting materials. Therefore, additional synthetic 

steps are needed for the preparation of active functional groups which would eventually be 

transformed into the corresponding wasteful byproducts. 

 

 

 Catalytic olefination of simple ketones has been rarely achieved in part due to their 

tendency for undergoing kinetically more favorable hydrogenation or aldol-type 

condensation reactions. Our research group previously discovered intermolecular 

dehydrative coupling reaction of arylketones with alkenes by using the ruthenium-hydride 

catalyst 26. The coupling reaction of acetophenone with 1-hexene in the presence of in situ 
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formed cationic ruthenium-hydride complex gave a 2:3 mixture of the indene derivative 93 

and the ortho-C-H insertion product 94 (eq 3.1).77 Similarly, the coupling reaction of 

acetophenone with cyclopentene in the presence of 5 mol % 26 and HBF4∙OEt2 produced 

nearly 1:1 ratio of double bond isomers of the olefination products 95 and 96 (eq 3.2).53 

The common features of these reactions are the carbonyl insertion after the requisite C-H 

activation, and subsequent dehydration of alkoxy-Ru species in forming the alkene 

products. 

 

 Our group also reported dehydrative C-H alkylation and alkenylation of phenols 

with alcohols (Scheme 1.26).44 The treatment of 3-methoxyphenol with cycloalkanol in the 

presence of 26 and excess cyclopentene (3 equiv) yielded ortho-cycloalkenylphenol 

products 97a-97c and water (eq 3.3). Inspired by these environmentally friendly 

dehydrative alkenylation methods, we explored the analogous coupling reaction of phenols 

with simple ketones. We initially discovered that the treatment of 3,5-dimethoxyphenol 

with cyclohexanone in the presence of cationic ruthenium-hydride complex 26 in 1,2-

dichloroethane led to the formation of ortho-alkenylated phenol product 98a (eq 3.4). 

 

The salient features of the catalytic method are that synthetically valuable 2-

vinylphenols are formed from readily available phenol and ketone substrates. In particular, 
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the reaction does not require any stoichiometric amount of additives or activating reagents, 

and water is the only byproduct. To the best of our knowledge, the catalytic synthesis of 2-

vinylphenols from the coupling reaction of phenols with ketones has not been achieved 

before. 

3.3 Optimization Studies 

3.3.1 Solvent Screening  

Table 3.2 Solvent screening for the coupling reaction of 3,5-dimethoxyphenol with 

cyclohexanonea 

 

entry solvent yieldb (%) 

1 1,2-dichloroethane 92 

2 chlorobenzene 72 

3 toluene 90 

4 benzene 87 

5 n-hexane 55 

6 1,4-dioxane 24 

7 tert-amyl alcohol < 3 
a Reaction conditions: 26 (3 mol %), phenol (0.5 mmol), cyclohexanone (1.5 mmol), 

solvent (2 mL), 125 °C, 16 h. b The product yield of 98a was determined by 1H NMR using 

methylsulfonylmethane as an internal standard. 

We first screened a number of different solvents to attain optimized reaction 

conditions for the coupling reaction of phenols with ketones (Table 3.2). The reaction 
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progress of 3,5-dimethoxyphenol (0.5 mmol) with cyclohexanone (1.5 mmol) in the 

presence of ruthenium-hydride catalyst 26 (3 mol %) in different solvents was analyzed by 

GC-MS and 1H NMR using methylsulfonylmethane as an internal standard. The use of 1,2-

dichloroethane showed the highest product yield (entry 1), while other non-polar aprotic 

solvents were found to be acceptable solvents for this coupling method (entries 1-5). A 

poor solubility of the catalyst and phenol substrate in n-hexane resulted a relatively low 

activity among the selected non-polar solvents (entry 5). 1,4-Dioxane was not a suitable 

solvent, which might inhibit the coordination of ketone to the ruthenium center (entry 6). 

The use of a polar protic solvent, tert-amyl alcohol yielded a trace amount of product (entry 

7). 

3.3.2 Catalyst Screening 

We next surveyed the activity of commonly available ruthenium catalysts for the 

reaction of 3,5-dimethoxyphenol with cyclohexanone in 1,2-dichloroethane (Table 3.3). 

Among the screened ruthenium catalysts, cationic ruthenium-hydride complex 26 

exhibited the highest activity in forming the coupling product 98a (entry 1). The 

tetranuclear ruthenium-hydride complex 79 also showed a moderate activity while other 

ruthenium complexes did not proceed the reaction efficiently. The in situ generated cationic 

ruthenium-hydride 26 from the treatment of 79 with HBF4∙OEt2 gave the undesired 2H-

chromene derivative 99 as the major product (entry 3) (eq 3.5), Wu and co-workers 

reported similar acid-catalyzed synthesis of chromenes from ketones and phenols.78 The 

acid-catalyzed 2H-chromene formation was also observed when only HBF4∙OEt2 was 

employed as the catalyst (entry 12). Additive effects of phosphine ligands (PPh3, PCy3) 
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and base (K2CO3) were also investigated, but none of the tested additives was found to be 

effective in improving the product yields. 

Table 3.3 Catalyst screening for the coupling reaction of 3,5-dimethoxyphenol with 

cyclohexanonea 

 

entry catalyst yieldb (%) 

1 [(C6H6)(PCy3)(CO)RuH]BF4 (26) 91 

2 [(PCy3)(CO)RuH]4(μ-O)(μ-OH)2 (79) 52 

3 79 / HBF4∙OEt2 < 3 

4 [RuCl2(p-cymene)]2 14 

5 [Ru(COD)Cl2]n < 3 

6 [(PCy3)(CH3CN)(CO)RuH]BF4 < 3 

7 RuCl2(PPh3)3 11 

8 RuHCl(CO)(PCy3)2 < 3 

9 RuH2(CO)(PPh3)3 18 

10 RuCl3∙3H2O 6 

11 Ru3(CO)12 15 

12 HBF4∙OEt2 < 3 

a Reaction conditions: catalyst (3 mol % Ru equivalents), phenol (0.5 mmol), 

cyclohexanone (1.5 mmol), 1,2-dichloroethane (2 mL), 125 °C, 16 h. b The product yield 

of 98a was determined by 1H NMR using methylsulfonylmethane as an internal standard. 
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3.4 Reaction Scope and Applications 

3.4.1 Scope of Dehydrative C-H Alkenylation of Phenols with Ketones 

The substrate scope of the phenol ortho-alkenylation reaction was explored by using the 

optimized conditions (Table 3.4). The electron-releasing group substituted phenols and 1-

naphthol were found to be suitable substrates for the coupling reaction. Phenols with 

electron-withdrawing group including simple phenol, 3-fluorophenol, 3-chlorophenol, and 

3-nitrophenol did not form the desired coupling product with ketones. The coupling 

reaction of catechol with phenols gave the undesired 1,3-benzodioxole derivatives in 

excellent yields (< 90 %) (eq 3.6), wherein several synthetic approaches have already been 

reported.79  

 

 The coupling reaction of 3,5-dimethoxyphenol with cycloalkanones cleanly formed 

cycloalkenylated phenol products 98a-98c (entries 1-3). The coupling reaction of 3,5-

dimethoxyphenol with 2-Indanone and 2-tetralone led to the formation of 

benzocycloalkenylated phenol products 98d and 98f, respectively (entries 4, 5). 3-

Methoxyphenol and 1-naphthol also reacted with cycloalkanones to form 2-vinylphenol 

products (entries 6-8). 
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Table 3.4 Dehydrative C-H alkenylation of phenols with ketonesa 
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Table 3.4 Dehydrative C-H alkenylation of phenols with ketonesa (continued) 

 

a Reaction conditions: phenol (0.5 mmol), ketone (1.0 mmol), 26 (3 mol %), 1,2-

dichloroethane (2 mL), 125 °C. b Isolated yields. c 1.5 mmol ketone substrate used. 

In a similar fashion, we next examined the substrate scope of linear ketones. 

Acetophenone and 4’-chloroacetophenone readily reacted with 3,5-dimethoxphenol to give 

2-vinylphenol products 98i and 98j, respectively (entries 9, 10). The coupling reaction of 

3,5-dimethoxyphenol with a series of 2-substituted acetophenones afforded trisubstituted 

alkene products 98k-98m (entries 11-13). To our surprise, the stereochemistry of the 

trisubstituted alkene products was determined to be (Z)-alkenes by nuclear Overhauser 

effect spectroscopy (NOESY) analysis. To support this, we were able to obtain the X-ray 



79 
 

crystal structure for 98k (Figure 3.1). The X-ray structure of 98k showed a (Z)-

configuration, where the phenolic group is rotated out of conjugation (dihedral angle 69.8º).  

 

Figure 3.1 Molecular structure of 98k 

Propiophenones with both electron-withdrawing and -donating group also afforded 

trisubstituted (Z)-alkenes exclusively from the coupling reaction with 3,5-

dimethoxyphenols (entries 14-17). For these benzoyl-type substrates, a highly (Z)-selective 

formation of ortho-alkenylated phenol products were observed. However, the 

stereoselectivity of the coupling products from alkyl substituted ketone substrates were 

found to depend on the substituents. The treatment of 3,5-dimethoxyphenol with 4-phenyl-

2-butanone gave a 4:1 mixture of Z/E-stereoisomers 98s, while the reaction with 2-

butanone gave less selective 1.4:1 mixture of 98u (entries 19 and 21). These results suggest 

that the stereoselectivity of the coupling product would be influenced by steric 

environments around the carbonyl group of the ketone substrate. 3,4,5-Trimethoxyphenol 

also reacted with propiophenone to form (Z)-alkenylphenol product 98v (entry 22). In case 



80 
 

of 3-methoxy-5-methylphenol, two regioisomers 98w and 98x were obtained from the 

reaction with propiophenone (entry 23). The analogous treatment of 1-naphthol with 

propiophenones led to the (Z)-selective formation of 2-alkenylated-1-naphthol products 

(entries 24, 25).  

3.4.2 Synthetic Applications for the Catalytic Method for the Coupling of Phenols 

with Ketones 

Table 3.5 Dehydrative coupling of 3,5-dimethoxyphenol with biologically active ketonesa 

 

a Reaction conditions: 3,5-dimethoxyphenol (0.5 mmol), ketone (1.0 mmol), 26 (3 mol %), 

1,2-dichloroethane (2 mL). Isolated yields in parenthesis. 

To further illustrate synthetic versatility of the catalytic coupling method, we next 

surveyed the coupling reaction of biologically active ketone substrates with 3,5-
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dimethoxyphenol (Table 3.5). The dehydrative coupling reaction of 3,5-dimethoxyphenol 

with 4-hydroxycoumarin yielded 4-arylated coumarin product 98aa. The reaction of 3,5-

dimethoxyphenol with (+)-nootkatone led to the alkenylated coupling product 98ab, and 

the structure of 98ab was completely established by two-dimensional NMR spectroscopy 

(HMQC and HMBC). An anti-inflammatory drug nabumetone also readily reacted with 

3,5-dimethoxyphenol to afford a 5:1 mixture of alkenylated phenol products 98ac. 

Analogous treatment of 3,5-dimethoxyphenol with (+)-4-cholesten-3-one and 

adrenosterone gave the corresponding coupling products 98ad and 98ae, respectively. 

In an effort to extend the substrate scope, we next explored the coupling reaction 

with α,β-unsaturated ketones. The treatment of 3,5-methoxyphenol with 4-phenyl-3-buten-

2-one led to the formation of 4H-chromene product 100, which is likely resulted from the 

Michael addition followed by dehydrative annulation.80 In case of 2-cyclohexenone as a 

coupling partner, a bicyclic hemiketal compound 101 was obtained, and the molecular 

structure of 101 was also confirmed by X-ray crystallography (Figure 3.2). Bicyclic ketone 

2-norbornanone also smoothly reacted with 3,5-dimethoxyphenol to give 

dihydrobenzofuran product 102. The coupling reaction of 3,5-dimethoxyphenol with 2,5-

hexanedione yielded bicyclic ketal compound 103 under the standard conditions. The 

analytically pure coupling products 98-103 were isolated by simple column 

chromatography, and their molecular structure was completely established by NMR 

spectroscopy. 
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Figure 3.2 Molecular structure of 101 

3.5 Mechanistic Studies 

3.5.1 Deuterium Labeling Study 

 

 We conducted the deuterium labeling experiment to probe the possible H/D 

exchange pattern on the coupling product. The treatment of 3,5-dimethoxyphenol (0.5 

mmol) with 2,2,6,6-deuterated cyclohexanone (93% D, 1.5 mmol) in the presence of 26 (3 

mol %) in 1,2-dichloroethane (2 mL) was heated at 125 °C for 16 h (eq 3.8). The 

analytically pure product 98a-d was isolated by silica gel column chromatography, and was 

analyzed by 1H and 2H NMR spectroscopic methods. The 1H and 2H NMR spectra of 
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isolated 2-cyclohexenylphenol showed a selective H/D exchange on ortho (44% D) and 

para (50% D) positions on phenol as well as C2 (72% D) and C6 (78% D) of cyclohexenyl 

group (Figure 3.3). The observed H/D exchange pattern suggests that both reversible C-H 

activation on phenol and tautomerization of ketone are mediated by the Ru catalyst during 

the course of the coupling product formation. 

 

Figure 3.3 1H and 2H NMR spectra of the product 98a-d isolated from the reaction of 3,5-

methoxyphenol with cyclohexanone-2,2,6,6-d4 

3.5.2 Deuterium Isotope Effect Study 
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To discern the rate-determining step of the catalytic reaction, we performed the 

deuterium isotope effect on the α-C-H bond of cyclohexanone by comparing the initial 

reaction rate of 3,5-dimethoxyphenol with cyclohexanone and 2,2,6,6-deuterated 

cyclohexanone (93% D) at 125 °C in separate reaction tubes (eq 3.8). The kobs value of for 

each substrate was obtained as kobs = 1.86 × 10-3 min-1 (cyclohexanone) and kobs = 1.75 × 

10-3 min-1 (cyclohexanone-d4) from the pseudo-first order plot of the formation of 98a, 

which led a normal kinetic isotope effect of kH/kD = 1.07 ± 0.05 (Figure 3.4). The 

experimentally determined kinetic isotope effect value indicates that there is no significant 

initial reaction rate difference between two reactions in forming alkenylated product. 

These results indicate that the cleavage of α-C-H bond of ketone substrate is not likely the 

rate-determining step of the coupling reaction. 

 

Figure 3.4 The pseudo-first order plots for the reaction of 3,5-dimethoxyphenol with 

cyclohexanone and cyclohexanone-2,2,6,6-d4 
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3.5.3 Proposed mechanism 

 

Scheme 3.5 Mechanistic rationale for the C-H alkenylation of phenols 

Although details for the C-H alkenylation of phenols still remains unclear at this 

stage, a plausible reaction mechanism is compiled in Scheme 3.5. We propose that the 

ortho-ruthenated phenol species 104 is initially generated from the dehydrogenative ortho-

C-H activation of the phenol substrate by cationic ruthenium-hydride catalyst 26. The 

observed H/D exchange pattern suggested that the rapid and reversible C-H activation 

occurs adjacent to the phenol directing groups. The ketone substrate would coordinate to 

the electrophilic ruthenium center, and the subsequent carbonyl insertion into the Ru-

phenyl bond generates 6-membered ruthenacyclic intermediate 105. The syn-elimination 

of 105 would form the ruthenium-hydroxo species and liberate the ortho-alkenylated 
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phenol product. Dehydrative C-H activation of another phenol substrate would regenerate 

ortho-metalated Ru species 104 for the next catalytic cycle. 

The (Z)-selective formation of the alkene products 98 can be rationalized by the 

geometrically preferred formation of the intermediate 105Z over 105E due to the steric 

hindrance between R group and ruthenium center (Scheme 3.6). We observed that the (Z)-

selectivity of the products increases with respect to the steric bulkiness of R group on the 

ketone substrate (Table 3.3, entries 15-18). 

 

Scheme 3.6 Mechanistic rationale for the (Z)-selective formation of 2-alkynylphenols 
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3.6 Conclusions 

We have successfully developed a highly regio- and stereoselective dehydrative 

ortho-alkenylation method of phenols with ketones. The well-defined ruthenium-hydride 

catalyst 26 exhibits high activity and a broad substrate scope in promoting the coupling 

reaction to give (Z)-selective olefinated products. The catalytic method employs readily 

available phenols and ketone substrates to produce synthetically useful 2-vinylphenols 

without using any additives or activating reagents. The mechanistic rationale has been 

presented for the (Z)-selective formation of coupling product. Efforts to investigate the 

detailed mechanistic pathway are currently underway. 
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CHAPTER 4 

Catalytic Synthesis of Substituted Indoles and Quinolines from the Dehydrative C-

H Coupling of Arylamines with 1,2- and 1,3-Diols 

4.1 Introduction 

 Indole and quinoline derivatives are common structural motifs present in many 

bioactive natural products and pharmaceutical compounds. The synthesis of these 

biologically important nitrogen-containing heterocyclic compounds has been studied with 

a large number of different synthetic methods over the decades.81,82 Since, Fischer 

pioneered the synthesis of indole products from arylhydrazines with ketones/aldehydes 

under acidic conditions (eq 4.1), various modifications on the classical Fischer indole 

synthesis have been applied including transition metal-based catalytic methods.83  

 

 

 Larock’s indole synthesis is another effective heteroannulation protocol which 

mediates the coupling of ortho-haloaniline with alkynes by using palladium catalysis (eq 

4.2).84 However, these catalytic methods generally require prefunctionalized starting 

materials such as hydrazines and ortho-haloanilines. Also, the consumption or substitution 
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of these reactive functional group leads to the inevitable formation of corresponding 

byproducts.  

 Recently, a number of oxidative catalytic C-H coupling methods have been 

developed as viable synthetic methods for indole and related nitrogen heterocyclic 

compounds. These catalytic methods alleviate inherent problems associated with the 

classical methods such as requiring prefuctionalized substrates and wasteful byproduct 

formation.85,86 Very recently, the analogous C-H coupling reactions have been achieved by 

using earth-abundant Co and Ni catalysts.87 Notably, a number of oxidative C-H cross-

coupling methods have been successfully used to promote the intramolecular annulation of 

N-arylimines and enamines.88 Yoshikai and co-workers reported Pd-catalyzed aerobic 

oxidative cyclization N-arylimines (eq 4.3).89 This process allowed an atom-economical 

assembly of indole derivatives from readily available anilines and ketones. 

 

 From both environmental and economic points of view, catalytic C-H annulation 

of simple anilines with diols would be an attractive method to afford N-heterocyclic 

compounds because such method would generate water as the only byproduct. The 

pioneering work on this protocol was first reported by Watanabe with RuCl3∙nH2O/PBu3 

system.90 Shim later demonstrated RuCl3∙nH2O/SnCl2∙2H2O system for indole and 

quinoline synthesis from anilines with ethylene glycols or trialkanolammonium salts.91 

Using the IrCl3/BINAP catalyst system, Ishii achieved a highily regioselective coupling of 

naphthylamines with 1,2- and 1,3-diols to give indole and quinoline products.92 Recently, 

Madsen described 2,3-disubtituted indole and quinoline synthesis from anilines with diols 



90 
 

in the presence of RuCl3 catalyst.93 However, the synthetic utility of these C-H dehydrative 

coupling methods has been limited because of the requirement of an excess amount of 

arylamine substrate, difficulty in controlling regioselectivity as well as the lack of 

functional group tolerance, and relatively harsh reaction conditions (> 170 °C). 

4.2 Results and Discussion 

 From both environmental and economical points of view, alcohols are highly 

attractive substrates because they can be readily obtained from natural sources. However, 

they have been rarely employed for the catalytic C-H coupling reactions because C-O bond 

cleavage of alcohol is energetically less favored than alkoxylation or dehydrogenation 

reactions. Our research group recently has shown that the cationic ruthenium-hydride 

complex 26 is a highly active catalyst for the C-O bond activation reactions, as 

demonstrated in the C-H alkylation of alkenes with alcohols (Scheme 1.24)43 and C-H 

alkylation and alkenylation of phenols with alcohols (Scheme 1.26).44 More recently, we 

also reported unsymmetrical etherification of two different alcohols (Scheme 4.1a)94 and 

reductive coupling of aldehydes and ketones with alcohols in aqueous solution (Scheme 

4.1b).95 A common feature of these catalytic methods involves the formation of ruthenium-

hydroxo species as the key intermediate for the C-O bond activation. Late metal-hydroxo 

and -phenoxo complexes have been found to mediate a number of C-O cleavage 

reactions.96  
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Scheme 4.1 Ruthenium-hydride catalyzed syntheses of unsymmetrical ethers 

 Glycols and polyols are organic compounds containing more than two hydroxyl 

groups, which can be easily obtained from the oxidation of alkenes or the dehydration of 

natural carbohydrates. In the catalytic dehydrative C-O bond activation reactions, they can 

also be used as the substrates having multiple activation sites. Our group has been able to 

devise the coupling reaction of phenols with vicinal 1,2-diols to form benzofuran 

derivatives (eq 4.4).44  

 

 The success in the heterocyclic annulation of phenols led us to explore the synthesis 

of nitrogen-containing heterocyclic compounds. Our studies began with the exploration of 

coupling reactions of arylamines with 1,2-diols. Initially, we have chosen the coupling 

reaction of 1-naphthylamine with 1,2-cyclooctanediol to produce indole product under the 

previously reported conditions. The reaction was performed in the presence of the 

ruthenium catalyst 26 (3 mol %) and cyclopentene (3 equiv.) in chlorobenzene at 120 °C. 
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However, under these conditions, the desired indole 106r was obtained only 10 % isolated 

yield along with α-ketoamine 107r as the major product (35 %) (eq 4.5). The undesired α-

ketoamine was formed apparently from the dehydrative N-alkylation of 1-naphthol with 

the dehydrogenation of alcohol, which was favored over the dehydrative C-H annulation. 

In an effort to improve the catalytic efficacy, we were pleased to find that the coupling 

reaction in the presence of the catalytic amount of HBF4∙OEt2 (7 mol %) additive in 1,4-

dioxane afforded 62 % of the polycyclic indole 106r as the major product and 15 % of 

byproduct 107r (eq 4.6). These results indicate that the addition of HBF4∙OEt2 promotes 

the activity of the Ru catalyst 26 for the both ortho-C-H activation of arylamine and C-O 

bond activation of alcohols. Our previous study showed that the 26/HBF4∙OEt2 system 

effectively catalyzed the coupling reaction of anilines with ethylenes to produce N-

ethylanilines and 2-methylquinolines (eq 4.7).97  
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 Our catalytic method efficiently forms the indole derivatives from the coupling 

reaction of readily available anilines with 1,2-diols. The catalytic method does not require 

any stoichiometric amount of base and does not generate any toxic byproducts. For these 

reasons, we have decided to further investigate both synthetic utility and the mechanism of 

the catalytic method.  

4.3 Catalyst Screening and Optimization Studies 

To attain the optimized conditions, we next screened both Ru catalysts and additives for 

the coupling reaction of aniline with 1-phenyl-1,2-ethanediol (Table 4.1). The treatment of 

aniline (0.5 mmol) with 1-phenyl-1,2-ethandiol (0.75 mol) in the presence of a ruthenium 

catalyst (3 mol %) and cyclopentene (1.5 mmol) dioxane was heated at 110 °C for 14 h. 

The conversion of the indole product 106c was analyzed by both GC-MS and NMR 

methods. We found that the addition of catalytic amount of HBF4·OEt2 has led to the 

dramatic improvement of the product yield. The cationic Ru-H complex, either in isolated 

form of the complex 26 or in situ generated from a tetranuclear Ru complex 79 exhibited 

uniquely high catalytic activity with HBF4∙OEt2 (entries 3, 8). No reaction occurred when 

only HBF4∙OEt2 was employed without Ru complex (entry 22). Among the screened 

ruthenium complexes and additives, tetranuclear ruthenium hydride complex 

{[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (79) with HBF4∙OEt2 was found to be the 

most effective catalyst for the selective formation of 2-phenylindole product 106a (entry 

3), and 1,4-dioxane was found to be the most suitable solvent for the coupling reaction 

(entries 3-6). 
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Table 4.1 Catalyst and additive screening for the coupling reaction of aniline with 1-

phenyl-1,2-ethanediola 

 

entry catalyst additive solvent 
yield 

(%)b 

1 [RuH(CO)(PCy3)]4(O)(OH)2 (79) --- 1,4-dioxane    0 

2 [RuH(CO)(PCy3)]4(O)(OH)2 (79) NH4PF6 1,4-dioxane  18 

3 [RuH(CO)(PCy3)]4(O)(OH)2 (79) HBF4·Et2O 1,4-dioxane  96 

4 [RuH(CO)(PCy3)]4(O)(OH)2 (79) HBF4·Et2O chlorobenzene  46 

5 [RuH(CO)(PCy3)]4(O)(OH)2 (79) HBF4·Et2O toluene  42 

6 [RuH(CO)(PCy3)]4(O)(OH)2 (79) HBF4·Et2O dichloroethane  17 

7 [RuH(C6H6)(CO)(PCy3)]
+BF4

- --- 1,4-dioxane  19 

8 [RuH(C6H6)(CO)(PCy3)]
+BF4

- HBF4·Et2O 1,4-dioxane  83 

9 [RuH(CO)(CH3CN)2(PCy3)2]
+BF4

- --- 1,4-dioxane    0 

10 RuHCl(CO)(PCy3)2 --- 1,4-dioxane    0  

11 RuHCl(CO)(PCy3)2 HBF4·Et2O 1,4-dioxane  23 

12 RuCl2(PPh3)3 --- 1,4-dioxane < 3  

13 RuCl2(PPh3)3 HBF4·Et2O 1,4-dioxane  42 

14 RuCl3·3H2O --- 1,4-dioxane    0 

15 [Ru(COD)Cl2]2 HBF4·Et2O 1,4-dioxane < 3 

16 [RuCl2(p-cymene)]2 --- 1,4-dioxane    0 

17 [RuCl2(p-cymene)]2 HBF4·Et2O 1,4-dioxane    0 

18 Ru3(CO)12 --- 1,4-dioxane    0 

19 Ru3(CO)12 NH4PF6 1,4-dioxane    0 

20 RuH2(CO)(PPh3)3 --- 1,4-dioxane    0  

21 PCy3 HBF4·Et2O 1,4-dioxane    0 

22 --- HBF4·Et2O 1,4-dioxane    0 
 a Reaction conditions: catalyst (3 mol % Ru equivalents), additive (7 mol %), aniline (0.5 

mmol), 1-phenyl-1,2-ethanediol (0.75 mmol), cyclopentene (1.5 mmol), 1,4-dioxane (2 

mL), 110 °C, 14 h. b The product yield of 106a was determined by 1H NMR using 

hexamethylbenzene as an internal standard. 
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4.4 Reaction Scope and Applications 

4.4.1 Scope of Dehydrative C-H Coupling Reaction of Arylamines with 1,2-Diols 

Table 4.2 Dehydrative coupling of arylamines with 1,2-diolsa 
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Table 4.2 Dehydrative coupling of arylamines with 1,2-diolsa (continued) 

 

a Reaction conditions: amine (1.0 mmol), 1,2-diol (1.5 mmol), 79 (0.75 mol %), HBF4∙OEt2 

(7 mol %), cyclopentene (3.0 mmol), 1,4-dioxane (3 mL), 14-16 h. b Isolated yields. c 1H 

NMR yield. 

 With these optimized reaction conditions in hand, we explored the substrate scope 

of the coupling reaction of anilines with 1,2-diol substrates (Table 4.2). Both aliphatic and 

aryl-substituted primary-secondary diols readily reacted with aniline to give regioselective 

2-substituted indole products 106a-106c (entries 1-3). A secondary diol 2,3-butanediol 

afforded 2,3-disubstituted indole product 106d (entry 4), but with a lower yield than 

primary-secondary diols. 1,2-Cyclohexenediol also successfully gave the coupling product 

106e, and no difference in reactivity was observed between cis- and trans-cyclohexanediol. 

For the coupling of 3-methoxyanilines, 6-methoxyindoles 106f-106j were obtained 

regioselectively along with a negligible amount of 4-methoxyindole products by forming 
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a new C-C bond at para to the methoxy group. A series of 1,2-cycloalkanediols effectively 

proceeded to form tricyclic indoles 106h-106j (entries 8-10). The coupling of electron-rich 

3,4,5-trimethoxyaniline with 1,2-diols also gave the indole products 106k and 106l (entries 

11, 12). We found that a range of polycyclic indole derivatives can be obtained from the 

coupling reaction of 1-naphthylamine with 1,2-diols (entries 13-18). Both primary-

secondary and secondary-secondary 1,2-diols afforded the corresponding 2-substituted and 

2,3-disubstituted 1H-benzo[g]indoles 106m-106p in moderate to good yields (entries 13-

16). The coupling reaction of 1-naphthylamine with 1,2-indandiol and 1,2-cyclooctanediol 

gave polycyclic indole products 106q and 106r, respectively (entries 17, 18). Among the 

tested 1,2-diols, 1-phenyl-1,2-ethanediol was found to be the most efficient diol substrate 

to give 2-substituted indoles for this coupling reaction. The catalytic method achieves the 

regioselective synthesis of indole derivatives from the direct coupling between arylamines 

and 1,2-diols without forming any harmful byproducts. 

 We next surveyed the scope of substituted anilines with 1-phenyl-1,2-diols (Table 

4.3). Mono- and disubstituted anilines readily reacted with the diol substrate to form the 2-

phenylindole products in good to excellent yields. Both electron-withdrawing and -

donating groups were found to be compatible, but we observed the relatively electron-

deficient 3-substituted aniline (106u) generally gave lower yield than the ones with 

electron-releasing group (106g, 106s, 106t). The reaction also tolerates sterically 

demanding ortho-substituted anilines (106v, 106w) and 4-aminoindan (106z) in the 

formation of corresponding indole products. The coupling reaction of 3,4-

(methylenedioxy)aniline with diol afforded the heterocyclic indole product 106aa in 80 % 

yield. 
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Table 4.3 Dehydrative coupling of anilines with 1-phenyl-1,2-ethanediola 

 

a Reaction conditions: aniline (1.0 mmol), 1-phenyl-1,2-ethanediol (1.5 mmol), 79 (0.75 

mol %), HBF4∙OEt2 (7 mol %), cyclopentene (3.0 mmol), 1,4-dioxane (3 mL), 14-16 h. 

Isolated yields in parenthesis. b Combined yield of two regioisomers. 
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4.4.2 Scope of Dehydrative C-H Coupling Reaction of Arylamines with 1,3-Diols 

Table 4.4 Dehydrative coupling of arylamines with 1,3-diolsa 

 

a Reaction conditions: amine (1.0 mmol), 1,3-diol (1.5 mmol), 79 (0.75 mol %), HBF4∙OEt2 

(7 mol %), cyclopentene (3.0 mmol), 1,4-dioxane (3 mL), 130-150 °C, 14 h. Isolated yields 

in parenthesis. 
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 We have been able to extend the synthetic utility to the C-H annulation of anilines 

with 1,3-diols to produce quinoline derivatives (Table 4.4). The coupling reaction of 

anilines with 1,3-diols readily afforded quinoline product 108 by using the same catalytic 

system. However, these reactions required higher temperature (130-150 °C) for the optimal 

conversion and selectivity in forming the quinoline products. In most cases, significant 

amount of N-alkylated aniline 109 was obtained as the byproduct. We reasoned that the 

byproduct 109 was formed by the dehydrative hydrogenolysis of the other hydroxyl group 

over the requisite ortho-C-H coupling and annulation process. Anilines bearing electron-

withdrawing and -donating group readily reacted with 1,3-propanediols to give the 

substituted quinoline derivatives (108a-108d) with N-alkylated anilines (109a-109d). In 

contrast to the anilines with electron-donating group, electron-deficient 3- and 4-

chloroanilines gave N-alkylated anilines as the major product. Electron-donating group di-

substituted anilines smoothly reacted with 2-phenyl-1,3-propanediols to form quinolines 

as the major product (108e-108g). We found that the coupling reaction of 3,5-

dimethoxyaniline with 2-substituted 1,3-propanediol gave quinoline product 108h and 108i 

selectively among the screened reactions, as only a trace amount of N-alkylated aniline 

byproduct was detected from the GC-MS analysis of the crude mixture. However, the 

coupling of 3,5-dimethoxyaniline with secondary 1,3-diol 2,4-pentanediol led to nearly 1:1 

mixture of the quinoline product 108j and N-alkylated aniline 109j. The analogous 

treatment of 1-naphthylamine with 1,3-diols formed the corresponding polycyclic 

quinoline derivatives 108k-108n. Both quinoline and N-alkylaniline products 108 and 109 

were readily separated by silica gel column chromatography and were analyzed by 1H and 

13C NMR spectroscopy. 
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4.4.3 Ru-Catalyzed C-C Bond Activation Reactions of 1,3-Diols 

 

 To examine the coupling reaction of arylamines with 2,2-disubstituted-1,3-diols by 

using 26, we initially tested the coupling of 3-methoxyphenol with 2,2-dimethyl-1,3-

propanediol in chlorobenzene at 130 °C (eq 4.8). To our surprise, the C-C cleavage product 

N-isobutylaniline 110a was obtained along with tetrahydroquinoline derivative 111. This 

unexpected formation of 110a was apparently resulted from the dehydrative N-alkylation 

and the cleavage of C-C bond adjacent to the hydroxyl group. To the best of our knowledge, 

catalytic methods for the selective activation of unstrained sp3-sp3 C–C bond are very rare 

and difficult, because the C–C bond activation of unstrained saturated hydrocarbons is both 

kinetically and thermodynamically less favored than that of the C–H bonds.98 
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Table 4.5 Ruthenium catalyzed C-C bond activation reaction of 1,3-diolsa 

 

a Reaction conditions: amine (0.5 mmol), 1,3-diol (1.0 mmol), 26 (5 mol %), chlorobenzene 

(2 mL), 130 °C. b Cs2CO3 (20 mol %) was added. 

 We next explored several other coupling reactions to investigate the pattern of this 

C-C bond activation method (Table 3.5). The coupling of 3-methoxyaniline with 1,3-

butanediol yielded a mixture of the products N-ethylaniline 110b, N-butylaniline 112, and 

quinoline 113 (entry 2). Again, the coupling product 110b was formed from the 

regioselective C-C bond cleavage next to the secondary alcohol. The formation of 

quinoline product 113 can be explained from the competitive dehydrative ortho-C-H 

alkylation and annulation of two equivalents 1,3-diols. We also observed a similar C-C 

cleavage pattern from the coupling reaction of 3-methoxybenzylamine with 2,2-dimethyl-

1,3-propanediol. In this case, a 2:1 mixture of N-isobutylbenzylamine 110c and tetrahydro-
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1,3-oxazine 114 was formed (entry 3). The exact reaction pathways is still not clear at this 

stage, but we presumed that the byproduct formaldehyde, might have coupled with 

benzylamine and diol in forming tetrahydro-1,3-oxazine 114. The product selectivity 

control is generally difficult in this coupling reaction, often gave a complex mixture of 

N,N-disubstituted products at a higher temperature. Interestingly, the addition of catalytic 

amount of base completely switched the product formation of the C-C bond cleavage 

reaction. The coupling reaction of anilines with 2,2-dimethyl-1,3-propanediol in the 

presence of 26 (5 mol %) and Cs2CO3 (20 mol %) in chlorobenzene at 130 °C led to the 

selective formation of N-methylanilines 110d-110f (entries 4-6).  

4.4.4 Ru-Catalyzed ortho-C-H Alkylation of Arylamines with 1,4-Diols 

 During the course of extending this methodology to 1,4-diol substrates, we 

observed an interesting product formation. The reaction of 1-naphthylamine with 2,5-

hexanediol in the presence of 26 (5 mol %), cyclopentene (3 equivalents) in chlorobenzene 

at 110 °C afforded a 1:1 diasteromeric mixture of ortho-alkylated arylamine products 115a 

along with pyrrole 116a (Scheme 4.2). Each diastereomer of 115a was cleanly separated 

by column chromatography and analyzed by both GC-MS and NMR spectroscopy. For the 

formation of 115a, we suspected that a 2,5-dimethyltetrahydrofuran intermediate might 

have been formed initially via intramolecular dehydration, which subsequently reacted 

with 1-naphthylamine to give the ortho-alkylated product. To discern this hypothesis, we 

next performed the coupling of 1-naphthylamine with 2,5-dimethyltetrahydrofuran under 

the same reaction conditions, and the resulting product mixture was similar to the reaction 

between 1-naphtylamine and 2,5-diol (Scheme 4.2).  
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Scheme 4.2 The coupling reaction of 1-naphthylamine with 1,4-diols 

 The coupling method can accommodate a variety of electron-rich anilines such as 

3-methoxyaniline, 3-isopropylaniline, 3-phenoxyaniline, and 4-ethylaniline. However, the 

scope of 1,4-diol substrates is limited to 2,5-hexanediol or 1,4-pentanediol thus far. The 

coupling reaction with 1,4-diphenyl-1,4-butanediol gave only intramolecular cyclization 

product 2,5-diphenyltetrahydrofuran with the recovered aniline starting material, while 

other primary-primary diols 1,4-butanediol and 1,5-pentanediol gave only corresponding 

N-heterocycles under the catalytic system. 
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4.5 Mechanistic Study for the Ru Catalyzed Coupling of Aniline with 1,2-Diols 

4.5.1 Deuterium Labeling Study 

 

 To probe the possible H/D exchange pattern on the coupling product, we examined 

the reaction of a deuterium-labeled aniline with a 1,2-diol. A mixture of deuterium-labeled 

aniline-2,3,4,5,6-d5 (0.5 mmol) with 1-phenyl-1,2-ethanediol (0.75 mmol) in the presence 

of 79 (0.75 mol %), HBF4∙OEt2 (7 mol %), cyclopentene (3 equivalents) in 1,4-dioxane 

was heated at 110 °C for 14 hours (eq 4.9). The isolated 2-phenylindole product 106a-d 

showed a selective deuterium incorporation to both ortho (42% D) and para (54% D) arene 

positions as measured by 1H and 2H NMR analysis. The observed extensive H/D exchange 

pattern suggests a rapid and reversible ortho- and para-C-H bond activations by the Ru 

catalyst. Our group previously observed a similar H/D exchange pattern on the para-arene 

position from the coupling reaction of arylamines with terminal alkynes from using the 

same Ru catalytic system.99  
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Figure 4.1 1H and 2H NMR spectra of the product 106a-d isolated from the reaction of 

aniline-2,3,4,5,6-d5 with 1-phenyl-1,2-ethanediol 

4.5.2 Control Experiments 

 We conducted a series of control experiments to distinguish the possible 

mechanistic pathways. Since the deuterium labeling study showed the selective H/D 

exchange on ortho- and para-positions of the aniline substrate, this result indicates the 

aniline substrate possesses two different potential sites for the C-H activation. However, 

para-alkylated aniline had not been detected under the catalytic conditions, which led us 

to hypothesize that the coupling reaction might be proceeded by the initial generation of 

C-N bond with the subsequent intramolecular ortho-C-H activation. 
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 To test this hypothesis, we first employed an aliphatic alcohol under the similar 

reaction conditions. The coupling reaction of aniline with n-butanol selectively formed N-

butylaniline in 70 % yield (eq 4.10). In this case, N-alkylation product was formed 

preferentially over the ortho-alkylated aniline product. This result is in sharp contrast to 

the previously reported coupling reaction of phenol with alcohols, where the ortho-

alkylation product was exclusively formed.44 In a separate experiment, the coupling 

reaction of N,N-dimethylaniline with 4-methoxybenzyl alcohol afforded both ortho- and 

para-alkylated N,N-dimethylanilines (eq 4.11). These experimental results support a 

reaction sequence involving the initial C-N bond followed by intramolecular ortho-C-H 

annulation. 
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 We discovered that the reaction of 3-methoxyaniline with benzoin provides 

corresponding indole product 106ab in 82 % yield under the standard conditions. For this 

reaction, no difference in product yield was made even in the absence of hydrogen acceptor 

(cyclopentene) (eq 4.12). To explain the observed regioselectivity of the indole product, 

we hypothesized that the 1,2-diol substrate could undergo dehydrogenation to form a α-

hydroxyketone intermediate prior to the dehydrative C-N bond formation. In support of 

this initial formation of α-hydroxyketone and the regioselectivity of the indole product, 2-

hydroxyacetophenone was cleanly formed when 1-phenyl-1,2-ethanediol was treated with 

79 and cyclopentene (24 % conversion in 3 hours) (eq 4.13). The similar chemoselective 

oxidation of the secondary alcohols over the primary alcohols was reported by using 

transition metal catalysts.100   

4.5.3 Proposed Mechanism 

 On the basis of these results, we present a possible mechanism for the dehydrative 

coupling reaction of aniline with 1,2-diol (Scheme 4.3). We propose that the 

dehydrogenation of diol would initially generate α-hydroxyketone, which could react with 

aniline to give α-hydroxyimine 111 by releasing water. We believe that the chemoselective 

oxidation of the secondary alcohol at this stage is the key step for the regioselective 

formation of the 2-substituted indole products. The subsequent chelate-assisted ortho-C-H 

activation would form ortho-ruthenated imine species 118, in a similar fashion to the 

dehydrative C-H insertion reaction of phenols.44 The intramolecular C-O bond activation 

of alcohol followed by reductive elimination would liberate the indole product 106 and 

generate cationic Ru-hydroxo species 119. In support of this proposal, we recently showed 
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that Ru-hydroxo complexes are a key intermediate species in ketone hydrogenolysis 

reaction.55 In addition, the formation of N-alkylated product 108 can be explained by a 

competitive hydrogenolysis pathway especially in case of for the coupling of an electron-

deficient aniline with 1,3-diols. 

 

 

Scheme 4.3 Plausible mechanistic pathway for the dehydrative coupling of aniline with 

1,2-diol 
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4.6 Conclusions 

 We have successfully developed an effective catalytic protocol for the coupling of 

inexpensive and readily available arylamines and diols substrates to produce biologically 

important indole and quinoline derivatives. A wide range of substrates has been 

demonstrated to form the regioselective N-heteroannulated products without forming any 

toxic byproducts. The tetrameric Ru-hydride 79 with HBF4∙OEt2 was found to be an 

effective catalyst precursor, which exhibits uniquely high catalytic activity for the 

dehydrative coupling reaction of arylamines with diols. We have performed the deuterium 

labeling study and control experiments, which support our proposed mechanism for the 

regioselective formation of indoles. A part of this work was published in Organometallcs 

2016, 35, 1973-1977. DOI: 10.1021/acs.organomet.6b00273 
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CHAPTER 5 

Experimental Section 

5.1 General Information 

All operations were carried out in a nitrogen-filled glove box or by using standard 

high vacuum and Schlenk techniques unless otherwise noted. Solvents were freshly 

distilled over appropriate drying reagents. Benzene, toluene, and n-hexane were distilled 

from purple solutions of sodium and benzophenone, and dichloromethane was dried over 

calcium hydride prior to use. All organic substrates were received from commercial sources 

and were used without further purification. Column chromatography was performed on 

Dynamic Absorbents silica gel 60A (32-63 μm particle size), and thin layer 

chromatography was performed on Agela glass back TLC plates pre-coated with silica gel 

MF254. The 1H, 2H, 13C, 19F and 31P NMR spectra were recorded on a Varian 300 or 400 

MHz FT-NMR spectrometer, and the data are reported in parts per million (ppm) relative 

to TMS, with the residual solvent peak as an internal reference. Multiplicities are reported 

as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling 

constant(s) in Hz. Mass spectra were recorded from Agilent 6850 GC-MS spectrometer 

with a HP-5 (5% phenylmethylpolysiloxane) column (30 m, 0.32 mm, 0.25 μm). High 

resolution mass spectra (HRMS) were obtained at the Mass Spectrometry/ICP Lab, 

Department of Chemistry and Biochemistry, University of Wisconsin Milwaukee, 

Milwaukee, WI and the Center of Mass Spectrometry, Washington University, St. Louis, 

MO. Elemental analyses were performed at the Midwest Microlab, Indianapolis, IN. 
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5.2 Synthesis of Ruthenium Catalysts 

5.2.1 Synthesis of [(PCy3)2(CO)RuH]4(µ4-O)(µ3-OH)(µ2-OH) (79) 

The tetranuclear Ru-hydride complex 79 was synthesized in two steps from the 5-

coordinated Ru-hydride complex (PCy3)2(CO)RuHCl (23) (Scheme 2.3). In a glovebox, a 

25 mL Schlenk tube equipped with a magnetic stirring bar and Teflon stopcock was 

charged with (PCy3)2(CO)RuHCl (2) (726 mg, 1.0 mmol), KOH (6.5 mmol), and 2-

propanol (5 mL). The reaction tube was brought out of the box and was stirred in an oil 

bath at 90 °C for 8 h. The solvent was removed under high vacuum, and the residue was 

washed with 2-propanol and benzene to obtain the dinulear Ru complex 78.  

In the glove box, the obtained Ru complex 78 (500 mg, 0.46 mmol) and acetone (5 

mL) were added to a 25 mL Schlenk tube equipped with a magnetic stirring bar and Teflon 

stopcock. The reaction tube was brought out of the glovebox and stirred in an oil bath at 

100 °C for 4 h. After the tube was cooled to room temperature, the resulting red solid was 

filtered, washed with cold acetone (5 mL, 3 times), and recrystallized in dichloromethane 

to obtain product 79 in 90 % yield. Spectroscopic data for 78: 1H NMR (300 MHz, CD2Cl2) 

δ 2.25-1.15 (m, PCy3), -2.50 and -2.60 (s, µ-OH), -14.56 (d, JPH = 19.2 Hz, Ru-H), -15.02 

(d, JPH = 18.0 Hz, Ru-H), -15.28 (d, JPH = 34.8 Hz, Ru-H), -18.64 (dt, JPH = 13.2, 4.8 Hz, 

Ru-H-Ru); 31P{1H} NMR (CDCl3, 121.6 MHz) δ 82.13 (s, PCy3), 79.01 (d, JPP = 14.0 Hz 

(PCy3)), 71.96 (s, (PCy3)), 68.89 (d, JPP = 14.0 Hz, (PCy3)); IR (CH2Cl2) νOH = 2926, 2849 

cm-1, νCO = 1925, 1912, 1894, 1868 cm-1. Anal. Calcd for 79 C76H138O7P4-Ru4: C 53.95; H 

8.22. Found: C 55.03; H 8.14. 
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5.2.2 Synthesis of [(η6-C6H6)(PCy3)(CO)RuH]+BF4
- (26) 

The cationic Ru-hydride 26 was synthesized from the tetranuclear Ru-H complex 

79 (Scheme 2.3). Under N2 atmosphere (glove box), the complex 79 (400 mg, 0.24 mmol) 

was dissolved in benzene (15 mL) in a 25 mL Schlenk tube equipped with a Teflon screw-

cap stopcock and a magnetic stirring. Then HBF4·OEt2 (128 μL, 0.96 mmol) was added to 

the tube via syringe under N2 stream. The color of the solution was changed from brown-

red to pale yellow immediately. After stirring for 1 h at room temperature, the solvent was 

removed under vacuum, and the residue was crashed by adding hexanes (20 mL). Filtering 

the resulting solid through a fritted funnel and recrystallization from CH2Cl2/hexanes 

yielded the product as a pale yellow powder (524 mg, 95% yield). Single crystals of 26 

suitable for X-ray crystallography were obtained from a slow evaporation of benzene and 

hexanes solution. Spectroscopic data for 26: 1H NMR (CD2Cl2, 400 MHz) δ 6.53 (s, C6H6), 

2.0-1.2 (m, PCy3), -10.39 (d, JPH = 25.9 Hz, Ru-H); 13C{1H} NMR (CD2Cl2, 100 MHz), δ 

196.4 (d, JCP = 19.3 Hz, CO), 100.0 (C6H6), 38.4, 38.2, 30.2, 29.9, 27.4, 27.3 and 26.2 

(PCy3); 
31P{1H} NMR (CD2Cl2, 162 MHz) δ 72.9 (PCy3); IR (KBr) νCO = 1991 cm-1; 

Anal. Calcd for 26 C25H40BF4OPRu: C, 52.18; H, 7.01. Found: C, 51.73; H, 6.91. 
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5.3 Experimental Procedures and Data for the Chapter 2 

5.3.1 General Procedures for the Coupling Reaction of Phenol with Aldehydes 

General Procedure for the C-H Acylation of Phenol with Aldehyde. In a glove 

box, a phenol (0.5 mmol), an aldehyde (1.0 mmol), K2CO3 (30 mol %), PPh3 (20 mol %) 

and complex 26 (14 mg, 5 mol %) were dissolved in chlorobenzene (2 mL) in a 25 mL 

Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube was 

brought out of the glove box, and was stirred in an oil bath set at 70-110 °C for 8-16 h. The 

reaction tube was taken out of the oil bath, and was cooled to room temperature. After the 

tube was open to air, the solution was filtered through a short silica gel column by eluting 

with CH2Cl2 (10 mL), and the filtrate was analyzed by GC-MS. Analytically pure product 

was isolated by a simple column chromatography on silica gel (280-400 mesh, 

hexanes/EtOAc). The product was completely characterized by NMR and GC-MS 

spectroscopic methods.  

General Procedure for the C-H Acylation of Phenol with α,β-Unsaturated 

Aldehyde. In a glove box, a phenol (0.5 mmol), an α,β-unsaturated aldehyde (1.0 mmol), 

K2CO3 (30 mol %), PPh3 (20 mol %) and complex 26 (14 mg, 5 mol %) were dissolved in 

chlorobenzene (2 mL) in a 25 mL Schlenk tube equipped with a Teflon stopcock and a 

magnetic stirring bar. The tube was brought out of the glove box, and was stirred in an oil 

bath set at 110-130 °C for 12-24 h. The reaction tube was taken out of the oil bath, and was 

cooled to room temperature. After the tube was open to air, the solution was filtered 

through a short silica gel column by eluting with CH2Cl2 (10 mL), and the filtrate was 

analyzed by GC-MS. Analytically pure product was isolated by a simple column 
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chromatography on silica gel (280-400 mesh, hexanes/EtOAc). The product was 

completely characterized by NMR and GC-MS spectroscopic methods. 

5.3.2 General Procedures for the Mechanistic Studies 

Deuterium Labeling Study. In a glove box, 3,5-dimethoxyphenol (0.77 g, 5.0 

mmol), benzaldehyde--d1 (>95 % D, 1.0 mmol), K2CO3 (30 mol %), PPh3 (20 mol %) 

and complex 26 (5 mol %) were dissolved in chlorobenzene (2 mL) in a 25 mL Schlenk 

tubes equipped with a Teflon screw cap stopcock. The tube were brought out of the box, 

and immersed in an oil bath preset at 110 °C for 12 h. The reaction tube was taken out of 

the oil bath, and was cooled to room temperature. After the tube was open to air, the 

solution was filtered through a short silica gel column by eluting with CH2Cl2 (10 mL), 

and the filtrate was analyzed by GC-MS. Analytically pure products and unreacted phenol 

substrate were isolated by a simple column chromatography on silica gel (280-400 mesh, 

hexanes/EtOAc = 100:1 to 1:1), then were completely characterized by 1H, 2H NMR and 

GC-MS spectroscopic methods. 

Deuterium Isotope Effect Study. In a glove box, 3,5-methoxyphenol (0.5 mmol), 

benzaldehyde--d1 (1.0 mmol), K2CO3 (30 mol %), PPh3 (20 mol %) and complex 26 were 

dissolved in chlorobenzene (2 mL) in five separate 25 mL Schlenk tubes equipped with a 

Teflon screw cap stopcock. The tubes were brought out of the box, and immersed in an oil 

bath preset at 110 °C. The reaction rate was measured by monitoring the appearance of the 

product signals on 1H NMR, which were normalized against the internal standard 

hexamethylbenzene in 20 min intervals for 100 min of the reaction time. The experiment 
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was repeated by using benzaldehyde. The kobs was determined from a first-order plot of -

ln[(3,5-methoxyphenol)t/(3,5-methoxyphenol)0] vs time. 

Hammett Study. In a glove box, 3,5-dimethoxyphenol (0.5 mmol), p-X-C6H4CHO 

(1.0 mmol), K2CO3 (30 mol %), PPh3 (20 mol %) and complex 26 were dissolved in 

chlorobenzene (2.0 mL) in five separate 25 mL Schlenk tubes equipped with a Teflon 

screw cap stopcock. The tubes were brought out of the box, and immersed in an oil bath 

preset at 110 °C. The reaction rate was measured by monitoring the appearance of the 

product signals on 1H NMR, which were normalized against the internal standard 

hexamethylbenzene peak in 20 min intervals for 100 min of the reaction time. The kobs was 

determined from a first-order plot of -ln[(3,5-dimethoxyphenol)t/(3,5-dimethoxyphenol)0] 

vs time. The Hammett plot of log(kX/kH) vs σp is shown in Figure 2.9. 

5.3.3 X-Ray Crystallographic Determination of 81v, 83t, and 84b 

For 81v: Colorless single crystals of 81v were grown in CH2Cl2 at room 

temperature. A suitable crystal with the dimension of 0.28  0.14  0.11 mm3 was selected 

and mounted on an Oxford SuperNova diffractometer equipped with dual microfocus 

Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A total of 15224 

reflection data were collected by using MoKα (λ = 0.71073) radiation while the crystal 

sample was cooled at 100.05 K during the data collection. Using Olex2, the molecular 

structure was solved with the ShelXS structure solution program by using Direct Methods, 

and the data was refined with the XL refinement package using Least Squares minimization. 

The molecular structure of 81v is shown in Figure 2.4. 
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For 83t: Colorless single crystals of 83t were grown in CH2Cl2 at room temperature. 

A suitable crystal with the dimension of 0.42  0.35  0.18 mm3 was selected and mounted 

on an Oxford SuperNova diffractometer equipped with dual microfocus Cu/Mo X-ray 

sources, X-ray mirror optics, and Atlas CCD area detector. A total of 18380 reflection data 

were collected by using CuKα (λ = 1.54184) radiation while the crystal sample was cooled 

at 100.00 K during the data collection. Using Olex2, the molecular structure was solved 

with the ShelXS structure solution program by using Direct Methods, and the data was 

refined with the XL refinement package using Least Squares minimization. The molecular 

structure of 83t is shown in Figure 2.5. 

 For 84b: Colorless single crystals of 84b were grown in CH2Cl2/Hexane at room 

temperature. A suitable crystal with the dimension of 0.18  0.14  0.02 mm3 was selected 

and mounted on an Oxford SuperNova diffractometer equipped with dual microfocus 

Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A total of 11892 

reflection data were collected by using CuKα (λ = 1.54184) radiation while the crystal 

sample was cooled at 99.8 K during the data collection. Using Olex2, the molecular 

structure was solved with the ShelXS structure solution program by using Direct Methods, 

and the data was refined with the XL refinement package using Least Squares minimization. 

The molecular structure of 84b is shown in Figure 2.6. 
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5.3.4 Characterization Data of the Products 

Data for 81a: 1H NMR (400 MHz, CDCl3) δ 12.70 (s, 1H), 7.65-

7.62 (m, 2H), 7.59-7.54 (m, 1H), 7.52-7.47 (m, 3H), 7.50 (d, J = 

9.0, 1H), 6.52 (d, J = 2.5 Hz, 1H), 6.41 (dd, J = 9.0, 2.5 Hz, 1H), 

3.86 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 200.0, 166.3, 166.2, 138.2, 135.2, 

131.4, 128.8, 128.3, 113.1, 107.4, 101.0, 55.6 ppm; GC-MS m/z = 228 (M+); Anal. Calcd 

for C14H12O3: C, 73.67; H, 5.30. Found: C, 73.56; H, 5.25. 

Data for 81b: 1H NMR (400 MHz, CDCl3) δ 12.73 (s, 1H), 7.55 

(d, J = 8.1 Hz, 2H), 7.53 (d, J = 8.9 Hz, 1H), 7.29 (d, J = 8.1 

Hz, 2H), 6.52 (d, J = 2.5 Hz, 1H), 6.41 (dd, J = 8.9, 2.5 Hz, 1H), 

3.86 (s, 3H), 2.44 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 199.8, 166.2, 166.0, 

142.1, 135.5, 135.2, 129.1, 128.9, 113.2, 107.2, 101.0, 55.6, 21.5 ppm; GC-MS m/z = 242 

(M+); Anal. Calcd for C15H14O3: C, 74.36; H, 5.82. Found: C, 74.29; H, 5.94. 

Data for 81c: 1H NMR (400 MHz, CDCl3) δ 12.58 (s, 1H), 

7.69-7.64 (m, 2H), 7.47 (d, J = 9.0 Hz, 1H), 7.20-7.14 (m, 2H), 

6.52 (d, J = 2.5 Hz, 1H), 6.42 (dd, J = 9.0, 2.5 Hz, 1H), 3.86 (s, 

3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 198.4, 166.3, 166.2, 164.7 (d, JCF = 252.7 

Hz), 134.9, 134.4 (d, JCF = 3.4 Hz), 131.4 (d, JCF = 9.0 Hz), 115.5 (d, JCF = 21.7 Hz), 112.9, 

107.5, 101.1, 55.6 ppm; Anal. Calcd for C14H11FO3: C, 68.29; H, 4.50. Found: C, 68.23; 

H, 4.47. 

Data for 81d: 1H NMR (400 MHz, CDCl3) δ 12.45 (s, 1H), 7.64 

(dd, J = 7.9, 1.2 Hz, 1H), 7.41 (td, J = 7.4, 1.2 Hz, 1H), 7.34 (td, 

J = 7.9, 1.8 Hz, 1H), 7.30 (dd, J = 7.4, 1.8 Hz, 1H), 7.10 (d, J = 
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9.0 Hz, 1H), 6.50 (d, J = 2.5 Hz, 1H), 6.36 (dd, J = 9.0, 2.5 Hz, 1H), 3.84 (s, 3H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 199.0, 166.8, 166.1, 139.5, 135.1, 133.0, 131.0, 128.4, 

127.2, 119.1, 113.2, 108.0, 100.8, 55.6 ppm; GC-MS m/z = 306 (M+); +); Anal. Calcd for 

C14H11BrO3: C, 54.75; H, 3.61. Found: C, 54.68; H, 3.70. 

Data for 81e: 1H NMR (400 MHz, CDCl3) δ 12.83 (s, 1H), 7.64 (d, 

J = 10.5 Hz, 1H), 6.42 (dd, J = 10.5, 2.5 Hz, 1H), 6.40 (d, J = 2.5 Hz, 

1H), 3.81 (s, 3H), 2.93 (q, J = 7.3 Hz, 2H), 1.21 (t, J = 7.3 Hz, 3H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 205.3, 165.7, 165.1, 131.3, 113.2, 107.4, 100.8, 

55.4, 31.0, 8.4 ppm; GC-MS m/z = 180 (M+); Anal. Calcd for C10H12O3: C, 66.65; H, 6.71. 

Found: C, 66.57; H, 6.68. 

Data for 81f: 1H NMR (400 MHz, CDCl3) δ 12.91 (s, 1H), 7.66 

(d, J = 9.2 Hz, 1H), 6.44 (dd, J = 9.2, 2.5 Hz, 1H), 6.42 (d, J = 2.5 

Hz, 1H), 3.84 (s, 3H), 2.88 (t, J = 7.4 Hz, 2H), 1.76 (sextet, J = 

7.4 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 205.0, 

165.9, 165.4, 131.6, 113.5, 107.5, 100.9, 55.5, 39.8, 18.2, 13.9 ppm; GC-MS m/z = 194 

(M+); Anal. Calcd for C11H14O3: C, 68.02; H, 7.27. Found: C, 67.81; H, 7.19. 

Data for 81g: 1H NMR (400 MHz, CDCl3) δ 12.99 (s, 1H), 7.63 

(d, J = 9.3 Hz, 1H), 6.41 (dd, J = 9.3, 2.5 Hz, 1H), 6.40 (d, J = 2.5 

Hz, 1H), 3.81 (s, 3H), 2.74 (d, J = 6.9 Hz, 2H), 2.25 (m, 1H), 0.99 

(d, J = 6.7 Hz, 6H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 204.8, 165.8, 165.5, 131.7, 

113.7, 107.4, 100.8, 55.5, 46.7, 25.8, 22.7 ppm; GC-MS m/z = 208 (M+); Anal. Calcd for 

C12H16O3: C, 69.21; H, 7.74. Found: C, 69.08; H, 7.59. 
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Data for 81h: 1H NMR (400 MHz, CDCl3) δ 13.10 (s, 1H), 7.68 

(d, J = 8.4 Hz, 1H), 6.44 (dd, J = 8.4, 2.4 Hz, 1H), 6.42 (d, J = 2.4 

Hz, 1H), 3.83 (s, 3H), 3.19 (tt, J = 11.6, 2.9 Hz, 1H), 1.90-1.17 

(m, 10H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 208.3, 166.0, 165.8, 131.3, 112.3, 

107.5, 101.1, 55.5, 45.0, 29.6, 25.8, 25.8 ppm; GC-MS m/z = 234 (M+); Anal. Calcd for 

C14H18O3: C, 71.77; H, 7.74. Found: C, 71.53; H, 7.58. 

Data for 81i: 1H NMR (400 MHz, CDCl3) δ 12.99 (s, 1H), 7.72 

(d, J = 9.0 Hz, 1H), 7.35-7.21 (m, 5H), 6.42 (d, J = 2.5 Hz, 1H), 

6.37 (dd, J = 9.0, 2.5 Hz, 1H), 4.66 (q, J = 6.9 Hz, 1H), 3.78 (s, 

3H), 1.56 (d, J = 6.9 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 204.6, 166.1, 166.1, 

141.5, 132.0, 129.0, 127.5, 127.1, 107.6, 101.0, 101.0, 55.5, 46.9, 19.2 ppm; GC-MS m/z 

= 256 (M+); Anal. Calcd for C16H16O3: C, 74.98; H, 6.29. Found: C, 74.82; H, 6.16. 

Data for 81j: 1H NMR (400 MHz, CDCl3) δ 12.27 (s, 1H), 7.54-

7.51 (m, 2H), 7.48-7.44 (m, 1H), 7.41-7.36 (m, 2H), 6.17 (d, J = 

2.3 Hz, 1H), 5.92 (d, J = 2.3 Hz, 1H), 3.85 (s, 3H), 3.45 (s, 3H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 199.1, 166.4, 166.0, 161.9, 141.7, 130.8, 127.8, 

127.5, 105.6, 93.6, 91.3, 55.6, 55.1 ppm; GC-MS m/z = 258 (M+); Anal. Calcd for C15H14O4: 

C, 69.76; H, 5.46. Found: C, 69.44; H, 5.44. 

Data for 81k: 1H NMR (400 MHz, CDCl3) δ 12.11 (s, 1H), 7.46 

(d, J = 8.1 Hz, 2H), 7.18 (m, J = 8.1 Hz, 2H), 6.16 (d, J = 2.3 

Hz, 1H), 5.94 (d, J = 2.3 Hz, 1H), 3.85 (s, 3H), 3.48 (s, 3H), 

2.40 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 198.7, 166.1, 165.6, 161.8, 141.6, 
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138.7, 128.3, 128.2, 105.7, 93.6, 91.3, 55.6, 55.1, 21.6 ppm; GC-MS m/z = 272 (M+); Anal. 

Calcd for C16H16O4: C, 70.58; H, 5.92. Found: C, 70.57; H, 5.95. 

Data for 81l: 1H NMR (400 MHz, CDCl3) δ 12.09 (s, 1H), 

7.58-7.53 (m, 2H), 7.09-7.03 (m, 2H), 6.16 (d, J = 2.3 Hz, 1H), 

5.93 (d, J = 2.3 Hz, 1H), 3.85 (s, 3H), 3.48 (s, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 197.4, 166.4, 165.8, 164.4 (d, JCF = 251.8 Hz), 161.7, 137.7 (d, 

JCF = 3.5 Hz), 130.4 (d, JCF = 9.0 Hz), 114.5 (d, JCF = 21.9 Hz), 105.4, 93.7, 91.3, 55.7, 

55.1 ppm; GC-MS m/z = 276 (M+); Anal. Calcd for C15H13FO4: C, 65.21; H, 4.74. Found: 

C, 62.17; H, 4.76. 

Data for 81m: 1H NMR (400 MHz, CDCl3) δ 12.17 (s, 1H), 

7.47 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 6.16 (d, J = 

2.3 Hz, 1H), 5.92 (d, J = 2.3 Hz, 1H), 3.85 (s, 3H), 3.48 (s, 3H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 197.6, 166.6, 166.0, 161.7, 140.0, 136.9, 129.3, 

127.8, 105.3, 93.7, 91.3, 55.6, 55.1 ppm; GC-MS m/z = 292 (M+); Anal. Calcd for 

C15H13ClO4: C, 61.55; H, 4.48. Found: C, 61.20; H, 4.34. 

Data for 81n: 1H NMR (400 MHz, CDCl3) δ 12.41 (s, 1H), 

7.65 (d, J = 8.1 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 6.16 (d, J 

= 2.3 Hz, 1H), 5.91 (d, J = 2.3 Hz, 1H), 3.85 (s, 3H), 3.42 (s, 

3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 197.8, 167.1, 166.6, 161.9, 145.3 (q, JCF = 

1.2 Hz), 131.9 (q, JCF = 32.4 Hz), 127.6, 124.5 (q, JCF = 3.8 Hz), 123.8 (q, JCF = 272.6 Hz), 

105.2, 93.7, 91.3, 55.7, 55.0 ppm; GC-MS m/z = 326 (M+); Anal. Calcd for C16H13F3O4: 

C, 58.90; H, 4.02. Found: C, 58.81; H, 3.94. 
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Data for 81o: 1H NMR (400 MHz, CDCl3) δ 14.10 (s, 1H), 6.04 (d, 

J = 2.3 Hz, 1H), 5.90 (d, J = 2.3 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 

3.00 (q, J = 7.2 Hz, 2H), 1.13 (t, J = 7.2 Hz, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 206.3, 167.4, 165.7, 162.7, 105.6, 93.5, 90.6, 55.4, 55.4, 37.3, 8.5 

ppm; GC-MS m/z = 210 (M+); Anal. Calcd for C11H14O4: C, 62.85; H, 6.71. Found: C, 

62.45; H, 6.66. 

Data for 81p: 1H NMR (400 MHz, CDCl3) δ 14.15 (s, 1H), 6.04 

(d, J = 2.4 Hz, 1H), 5.89 (d, J = 2.4 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 

3H), 2.83 (d, J = 6.7 Hz, 2H), 2.18 (nonet, J = 6.7 Hz, 1H), 0.95 

(d, J = 6.7 Hz, 6H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 205.5, 167.7, 165.7, 162.5, 

105.8, 93.6, 90.7, 55.4, 55.4, 53.0, 25.2, 22.8 ppm; GC-MS m/z = 238 (M+); Anal. Calcd 

for C13H18O4: C, 65.53; H, 7.61. Found: C, 65.59; H, 7.62. 

Data for 81q: 1H NMR (400 MHz, CDCl3) δ 14.14 (s, 1H), 6.04 

(d, J = 2.4 Hz, 1H), 5.90 (d, J = 2.4 Hz, 1H), 3.84 (s, 3H), 3.79 (s, 

3H), 3.43 (tt, J = 11.0, 2.9 Hz, 1H), 1.89-1.78 (m, 4H), 1.73-1.67 

(m, 1H), 1.45-1.19 (m, 5H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 209.2, 167.9, 165.6, 

162.3, 105.1, 93.7, 90.8, 55.6, 55.4, 50.0, 29.4, 26.2, 26.1 ppm; GC-MS m/z = 264 (M+); 

Anal. Calcd for C15H20O4: C, 68.16; H, 7.63. Found: C, 67.86; H, 7.46. 

Data for 81r: 1H NMR (400 MHz, CDCl3) δ 14.07 (s, 1H), 

7.32-7.24 (m, 4H), 7.22-7.18 (m, 1H), 6.06 (d, J = 2.4 Hz, 1H), 

5.84 (d, J = 2.4 Hz, 1H), 5.00 (q, J = 6.9 Hz, 1H), 3.77 (s, 3H), 

3.74 (s, 3H), 1.49 (d, J = 6.9 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 205.8, 

168.0, 165.9, 162.1, 142.4, 128.3, 127.7, 126.3, 105.4, 93.6, 90.8, 55.4, 55.1, 50.8, 19.7 
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ppm; GC-MS m/z = 286 (M+); Anal. Calcd for C17H18O4: C, 71.31; H, 6.34. Found: C, 

71.26; H, 6.34. 

Data for 81s: 1H NMR (400 MHz, CDCl3) δ 13.96 (s, 1H), 8.55-

8.52 (m, 1H), 7.80-7.76 (m, 1H), 7.74-7.71 (m, 2H), 7.69-7.64 (m, 

1H), 7.63-7.51 (m, 5H), 7.23 (d, J = 8.8 Hz, 1H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 201.4, 163.9, 138.2, 137.3, 131.6, 130.4, 129.1, 128.3, 127.4, 

127.3, 126.0, 125.3, 124.5, 117.8, 112.5 ppm; GC-MS m/z = 248 (M+); Anal. Calcd for 

C17H12O2: C, 82.24; H, 4.87. Found: C, 82.01; H, 4.89. 

Data for 81t: 1H NMR (400 MHz, CDCl3) δ 13.84 (s, 1H), 8.54-

8.51 (m, 1H), 7.79-7.74 (m, 3H), 7.69-7.64 (m, 1H), 7.59-7.55 

(m, 1H), 7.52 (d, J = 8.9 Hz, 1H), 7.26-7.19 (m, 3H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 199.8, 164.8 (d, JCF = 253.4 Hz), 163.9, 137.3, 134.3 

(d, JCF = 3.3 Hz), 131.7 (d, JCF = 9.0 Hz), 130.4, 127.4, 127.0, 126.1, 125.2, 124.5, 118.0, 

115.5 (d, JCF = 22.0 Hz), 112.4 ppm; GC-MS m/z = 266 (M+); Anal. Calcd for C17H11FO2: 

C, 76.68; H, 4.16. Found: C, 76.46; H, 4.36. 

Data for 81u: 1H NMR (400 MHz, CDCl3) δ 14.09 (s, 1H), 8.46 (dd, 

J = 8.3, 1.3 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 8.9 Hz, 1H), 

7.62 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.52 (ddd, J = 8.3, 6.9, 1.2 Hz, 

1H), 7.26 (d, J = 8.9 Hz, 1H) 3.10 (q. J = 7.3 Hz, 2H), 1.29 (t, J = 7.3 Hz, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 206.9, 162.3, 137.2, 129.9, 127.3, 125.8, 125.3, 124.4, 124.2, 

118.2, 112.7, 31.9, 8.2 ppm; GC-MS m/z = 200 (M+); Anal. Calcd for C13H12O2: C, 77.98; 

H, 6.04. Found: C, 78.16; H, 6.05. 
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Data for 81v: 1H NMR (400 MHz, CDCl3) δ 14.40 (s, 1H), 8.47 

(dd, J = 8.4, 1.3 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.9 

Hz, 1H), 7.62 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.52 (ddd, J = 8.4, 

6.9, 1.3 Hz, 1H), 7.26 (d, J = 8.9 Hz, 1H), 3.35 (tt, J = 11.4, 3.1 Hz, 1H), 1.99-1.86 (m, 

4H), 1.82-1.75 (m, 1H), 1.65-1.54 (m, 2H), 1.50-1.38 (m, 2H), 1.36-1.25 (m, 1H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 209.8, 163.3, 137.2, 129.9, 127.3, 125.8, 125.6, 124.4, 

124.2, 118.0, 111.8, 45.3, 29.4, 25.9, 25.8 ppm; GC-MS m/z = 254 (M+); Anal. Calcd for 

C17H18O2: C, 80.28; H, 7.13. Found: C, 80.22; H, 7.15. 

Data for 81w: 1H NMR (400 MHz, CDCl3) δ 14.32 (s, 1H), 8.48 

(dd, J = 8.4, 1.3 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 8.9 

Hz, 1H), 7.63 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.53 (ddd, J = 8.4, 

6.9, 1.3 Hz, 1H), 7.27 (d, J = 8.9 Hz, 1H), 5.82-5.78 (m, 2H), 3.68-3.59 (m, 1H), 2.50-2.40 

(m, 1H), 2.32-2.17 (m, 3H), 2.09-2.02 (m, 1H), 1.89-1.78 (m, 1H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 209.3, 163.4, 137.2, 130.0, 127.3, 126.6, 125.9, 125.6, 125.5, 124.4, 

124.1, 118.2, 111.9, 41.2, 27.9, 25.8, 24.9 ppm; GC-MS m/z = 252 (M+); Anal. Calcd for 

C17H16O2: C, 80.93; H, 6.39. Found: C, 80.95; H, 6.47. 

Data for 81x: 1H NMR (400 MHz, CDCl3) δ 14.20 (s, 1H), 8.46-

8.43 (m, 1H), 7.71-7.67 (m, 2H), 7.61-7.57 (m, 1H), 7.52-7.47 

(m, 1H), 7.36-7.29 (m, 4H), 7.25-7.20 (m, 1H), 7.16 (d, J = 9.0 

Hz, 1H), 4.80 (q, J = 6.9 Hz, 1H), 1.60 (t, J = 6.9 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 206.2, 163.4, 141.3, 137.1, 130.1, 129.0, 127.6, 127.3, 127.1, 125.9, 125.4, 124.5, 

124.4, 118.2, 112.3, 47.5, 19.2 ppm; GC-MS m/z = 276 (M+); Anal. Calcd for C19H16O2: 

C, 82.58; H, 5.84. Found: C, 82.27; H, 5.81. 
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Data for 81y: 1H NMR (400 MHz, CDCl3) δ 11.24 (s, 1H), 7.94 (d, J = 

9.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.65-7.62 (m, 2H), 7.56 (tt, J = 7.5, 

1.3 Hz, 1H), 7.43-7.39 (m, 2H), 7.33-7.26 (m, 2H), 7.25 (d, J = 9.0 Hz, 

1H), 7.16 (dd, J = 7.0, 1.5 Hz, 1H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 200.4, 161.4, 140.3, 136.3, 132.6, 132.3, 129.4, 128.5, 128.5, 128.4, 126.7, 126.3, 

123.7, 119.1, 114.3 ppm; GC-MS m/z = 248 (M+); Anal. Calcd for C17H12O2: C, 82.24; H, 

4.87. Found: C, 81.97; H, 4.67. 

Data for 81z: 1H NMR (400 MHz, CDCl3) δ 11.95 (s, 1H), 7.91-7.88 (m, 

1H), 7.86 (d, J = 9.0 Hz, 1H), 7.80-7.77 (m, 1H), 7.58-7.53 (m, 1H), 

7.42-7.37 (m, 1H), 7.14 (d, J = 9.0 Hz, 1H), 3.49 (tt, J = 11.5, 3.2 Hz, 

1H), 1.99-1.91 (m, 2H), 1.88-1.81 (m, 2H), 1.77-1.62 (m, 3H), 1.40-1.24 

(m, 3H) ppm; 13C{1H} NMR (75.5 MHz, CDCl3) δ 212.0, 161.1, 136.1, 131.6, 129.2, 128.6, 

127.8, 124.2, 123.8, 119.4, 115.5, 50.2, 29.9, 25.7, 25.6 ppm; GC-MS m/z = 254 (M+); 

Anal. Calcd for C17H18O2: C, 80.28; H, 7.13. Found: C, 79.97; H, 6.99. 

Data for 83a: 1H NMR (400 MHz, CDCl3) δ 6.86 (d, J = 8.2 Hz, 

1H), 6.40 (dd, J = 8.2, 2.5 Hz, 1H), 6.37 (d, J = 2.5 Hz, 1H), 

6.34 (dd, J = 9.9, 1.6 Hz, 1H), 5.54 (dd, J = 9.9, 3.3 Hz, 1H), 4.85-4.80 (m, 1H), 3.77 (s, 

3H), 1.83-1.74 (m, 1H), 1.67-1.42 (m, 3H), 0.95 (t, J = 7.3, 3H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 160.5, 154.8, 127.0, 123.5, 123.0, 115.3, 106.6, 101.8, 75.1, 55.3, 37.5, 

18.1, 14.0 ppm; GC-MS m/z = 204 (M+); Anal. Calcd for C13H16O2: C, 76.44; H, 7.90. 

Found: C, 76.52; H, 7.89. 

Data for 83b: 1H NMR (400 MHz, CDCl3) δ 7.48-7.45 (m, 2H), 

7.41-7.31 (m, 3H), 6.94 (d, J = 8.2, 1H), 6.50 (dd, J = 9.8, 1.8 Hz, 
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1H), 6.44 (dd, J = 8.2, 2.5 Hz, 1H), 6.40 (d, J = 2.5 Hz, 1H), 5.90 (dd, J = 3.4, 1.8 Hz, 1H), 

5.67 (dd, J = 9.8, 3.4 Hz, 1H), 3.76 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.8, 

154.3, 140.9, 128.6, 128.3, 127.2, 127.0, 123.6, 121.8, 114.6, 107.0, 101.8, 77.3, 55.3 ppm; 

GC-MS m/z = 238 (M+). 1H and 13C NMR spectral data are in good agreement with the 

literature data.101 

Data for 83c: 1H NMR (400 MHz, CDCl3) δ 7.41-7.31 (m, 5H), 

6.89 (d, J = 8.3, 1H), 6.42 (dd, J = 8.3, 2.5 Hz, 1H), 6.33 (d, J = 

2.5 Hz, 1H), 6.31 (s, 1H), 5.64 (s, 1H), 3.73 (s, 3H), 1.69 (s, 3H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 160.1, 152.6, 139.3, 129.4, 128.6, 128.5, 127.5, 126.1, 119.4, 115.2, 106.6, 

101.6, 81.2, 55.2, 19.8 ppm; GC-MS m/z = 252 (M+); HRMS (APCI) Calcd for C17H17O2 

([M+H]+): 253.1223. Found: 253.1229. 

Data for 83d: 1H NMR (400 MHz, CDCl3) δ 7.40-7.36 (m, 

2H), 7.34-7.29 (m, 3H), 6.90 (d, J = 8.3 Hz, 1H), 6.41 (dd, J 

= 8.3, 2.5 Hz, 1H), 6.32 (s, 1H), 6.30 (d, J = 2.5 Hz, 1H), 5.66 (s, 1H), 3.72 (s, 3H), 1.97-

1.91 (m, 2H), 1.54-1.40 (m, 2H), 1.33-1.19 (m, 6H), 0.87 (t, J = 6.9 Hz, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 160.1, 152.7, 139.4, 133.7, 128.6, 128.5, 127.7, 126.3, 118.3, 

115.5, 106.7, 101.7, 80.2, 55.2, 33.0, 31.6, 28.9, 27.0, 22.5, 14.1 ppm; GC-MS m/z = 322 

(M+); HRMS (ESI) Calcd for C22H26O2 (M
+): 322.1927. Found: 322.1903. 

Data for 83e: 1H NMR (400 MHz, CDCl3) δ 7.46-7.43 (m, 4H), 

7.35-7.24 (m, 6H), 6.92 (d, J = 8.3 Hz, 1H), 6.58 (d, J = 9.8 Hz, 

1H), 6.53 (d, J = 2.5 Hz, 1H), 6.41 (dd, J = 8.3, 2.5 Hz, 1H), 6.03 (d, J = 9.8 Hz, 1H), 3.77 

(s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.9, 153.7, 145.0, 128.1, 127.4, 127.2, 
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127.0, 125.9, 123.0, 114.4, 107.1, 102.1, 82.8, 55.3 ppm; GC-MS m/z = 314 (M+); HRMS 

(ESI) Calcd for C22H18O2 (M
+): 314.1301. Found: 314.1289. 

Data for 83f: 1H NMR (400 MHz, CDCl3) δ 6.74 (d, J = 8.2 Hz, 

1H), 6.33 (dd, J = 8.2, 2.5 Hz, 1H), 6.29 (d, J = 2.5 Hz, 1H), 5.97-

5.95 (m, 1H), 4.94-4.88 (m, 1H), 3.74 (s, 3H), 2.43-2.36 (m, 1H), 2.23-2.16 (m, 1H), 2.08-

1.98 (m, 1H), 1.92-1.85 (m, 1H), 1.80-1.68 (m, 2H), 1.51-1.39 (m, 1H), 1.38-1.27 (m, 1H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 159.8, 154.0, 134.7, 126.0, 115.8, 114.8, 106.0, 

100.9, 77.4, 55.3, 35.1, 32.9, 26.7, 24.4 ppm; GC-MS m/z = 216 (M+); HRMS (APCI) 

Calcd for C14H17O2 ([M+H]+): 217.1223. Found: 217.1229. 

Data for 83g: 1H NMR (400 MHz, CDCl3) δ 6.64 (dd, J = 9.9, 

1.6 Hz, 1H), 6.04 (d, J = 2.3 Hz, 1H), 6.01 (d, J = 2.3 Hz, 1H), 

5.49 (dd, J = 9.9, 3.4 Hz, 1H), 4.80-4.75 (m, 1H), 3.78 (s, 3H), 

3.76 (s, 3H), 1.84-1.74 (m, 1H), 1.68-1.42 (m, 3H), 0.95 (t, J = 7.3 Hz, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 160.9, 156.1, 155.3, 120.9, 118.4, 104.9, 93.7, 91.5, 74.9, 55.5, 

55.3, 37.2, 18.1, 13.9 ppm; GC-MS m/z = 234 (M+); HRMS (ESI) Calcd for C14H18O3 (M
+): 

234.1250. Found: 234.1239; Anal. Calcd for C14H18O3: C, 71.77; H, 7.74. Found: C, 71.78; 

H, 7.89. 

Data for 83h: 1H NMR (400 MHz, CDCl3) δ 6.39-6.37 (m, 1H), 

6.06 (d, J = 2.3 Hz, 1H), 6.01 (d, J = 2.3 Hz, 1H), 4.51 (dd, J = 

8.7, 3.5 Hz, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 1.82-1.81 (m, 3H), 

1.78-1.56 (m, 2H), 1.01 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.1, 

155.3, 153.1, 129.5, 113.2, 105.3, 93.8, 91.4, 80.1, 55.5, 55.3, 25.4, 19.7, 9.7 ppm; GC-
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MS m/z = 234 (M+); HRMS (APCI) Calcd for C14H19O3 ([M+H]+): 235.1329. Found: 

235.1339. 

Data for 83i: 1H NMR (400 MHz, CDCl3) δ 7.51-7.47 (m, 2H), 

7.42-7.32 (m, 3H), 6.84 (dd, J = 9.9, 1.9 Hz, 1H), 6.09 (d, J = 2.1 

Hz, 1H), 6.06 (d, J = 2.1 Hz, 1H), 5.86 (dd, J = 3.5, 1.9 Hz, 1H), 

5.64 (dd, J = 9.9, 3.5 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 3H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 161.2, 156.2, 154.8, 140.8, 128.5, 128.2, 127.1, 119.7, 118.7, 104.3, 93.7, 91.7, 

77.1, 55.5, 55.3 ppm; GC-MS m/z = 268 (M+). 1H and 13C NMR spectral data are in good 

agreement with the literature data.102 

Data for 83j: 1H NMR (400 MHz, CDCl3) δ 7.47-7.42 (m, 

2H), 7.08-7.02 (m, 2H), 6.84 (dd, J = 9.9, 1.8 Hz, 1H), 6.04 

(s, 2H), 5.82 (dd, J = 3.5, 1.8 Hz, 1H), 5.59 (dd, J = 9.9, 3.5 

Hz, 1H), 3.81 (s, 3H), 3.75 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 162.6 (d, JCF 

= 246.8 Hz), 161.3, 156.2, 154.6, 136.6 (d, JCF = 3.2 Hz), 129.0 (d, JCF = 8.3 Hz), 119.3, 

119.0, 115.4 (d, JCF = 21.5 Hz), 104.3, 93.7, 91.8, 76.3, 55.5, 55.3 ppm; GC-MS m/z = 286 

(M+); Anal. Calcd for C17H15FO3: C, 71.32; H, 5.28. Found: C, 71.18; H, 5.05. 

Data for 83k: 1H NMR (400 MHz, CDCl3) δ 7.42-7.39 (m, 2H), 

7.36-7.30 (m, 3H), 6.64-6.62 (m, 1H), 6.03 (d, J = 2.3 Hz, 1H), 

5.99 (d, J = 2.3 Hz, 1H), 5.62 (br s, 1H), 3.82 (s, 3H), 3.71 (s, 3H), 

1.72-1.71 (m, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.3, 155.3, 153.1, 139.3, 

128.6, 128.5, 127.6, 127.4, 114.1, 104.6, 93.6, 91.6, 81.0, 55.5, 55.2, 19.9 ppm; GC-MS 

m/z = 282 (M+); HRMS (APCI) Calcd for C18H19O3 ([M+H]+): 283.1329. Found: 283.1334. 
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Data for 83l: 1H NMR (400 MHz, CDCl3) δ 7.41-7.37 (m, 

2H), 7.34-7.28 (m, 3H), 6.63-6.61 (m, 1H), 6.02 (d, J = 2.3 

Hz, 1H), 5.96 (d, J = 2.3 Hz, 1H), 5.63 (br s, 1H), 3.82 (s, 

3H), 3.70 (s, 3H), 2.04-1.89 (m, 2H), 1.54-1.39 (m, 2H), 1.33-1.18 (m, 6H), 0.86 (t, J = 

7.0, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.3, 155.5, 153.1, 139.4, 131.8, 128.5, 

128.4, 127.8, 113.0, 104.9, 93.7, 91.6, 80.0, 55.5, 55.3, 33.3, 31.6, 29.0, 27.2, 22.5, 14.1 

ppm; GC-MS m/z = 352 (M+); HRMS (ESI) Calcd for C23H28O3 (M
+): 352.2033. Found: 

352.2014. 

Data for 83m: 1H NMR (400 MHz, CDCl3) δ 7.46-7.43 (m, 4H), 

7.35-7.23 (m, 6H), 6.89 (dd, J = 9.9, 0.6 Hz, 1H), 6.19 (dd, J = 2.2, 

0.6 Hz, 1H), 6.00 (d, J = 2.2 Hz, 1H), 5.96 (d, J = 9.9 Hz, 1H), 3.77 

(s, 3H), 3.76 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 161.3, 156.2, 154.1, 145.0, 

128.0, 127.3, 126.9, 123.9, 118.0, 104.2, 94.0, 91.7, 82.6, 55.4, 55.3 ppm; GC-MS m/z = 

344 (M+); HRMS (APCI) Calcd for C23H21O3 ([M+H]+): 345.1485. Found: 345.1491. 

Data for 83n: 1H NMR (400 MHz, CDCl3) δ 8.22-8.15 (m, 1H), 

7.77-7.73 (m, 1H), 7.48-7.41 (m, 2H), 7.36 (d, J = 8.3 Hz, 1H), 

7.15 (d, J = 8.3 Hz, 1H), 6.52 (dd, J = 9.7, 1.6 Hz, 1H), 5.73 (dd, J 

= 9.7, 3.5 Hz, 1H), 5.10-5.05 (m, 1H), 2.00-1.90 (m, 1H), 1.74-1.53 (m, 3H), 1.00 (t, J = 

7.2 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 148.7, 134.4, 127.6, 126.1, 125.3, 

124.7, 124.6, 124.6, 124.3, 121.8, 120.0, 116.3, 75.4, 37.3, 18.1, 13.9 ppm; GC-MS m/z = 

224 (M+); HRMS (ESI) Calcd for C16H16O (M+): 224.1196. Found: 224.1202. Anal. Calcd 

for C16H16O: C, 85.68; H, 7.19. Found: C, 85.86; H, 7.49. 
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Data for 83o: 1H NMR (400 MHz, CDCl3) δ 8.22-8.19 (m, 1H), 7.77-

7.73 (m, 1H), 7.56-7.53 (m, 2H), 7.45-7.33 (m, 6H), 7.19 (d, J = 8.3 

Hz, 1H), 6.67 (dd, J = 9.7, 1.7 Hz, 1H), 6.15 (dd, J = 3.6, 1.7 Hz, 1H), 

5.90 (dd, J = 9.7, 3.6 Hz, 1H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 148.4, 141.0, 

134.5, 128.6, 128.2, 127.5, 126.7, 126.3, 125.4, 124.6, 124.5, 124.5, 123.2, 121.9, 120.3, 

115.6, 77.1 ppm; GC-MS m/z = 258 (M+); HRMS (ESI) Calcd for C19H14O (M+): 258.1039. 

Found: 258.1038. 

Data for 83p: 1H NMR (400 MHz, CDCl3) δ 8.13-8.09 (m, 1H), 7.74-

7.70 (m, 1H), 7.50-7.46 (m, 2H), 7.40-7.30 (m, 6H), 7.18 (d, J = 8.3 

Hz, 1H), 6.50 (s, 1H), 5.92 (s, 1H), 1.83 (s, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 146.5, 139.4, 134.0, 131.2, 128.6, 128.5, 127.4, 127.4, 125.7, 125.2, 

124.4, 124.2, 121.7, 120.3, 120.2, 116.2, 81.2, 20.0 ppm; GC-MS m/z = 272 (M+); HRMS 

(APCI) calcd for C20H17O ([M+H]+): 273.1274. Found: 273.1279. 

Data for 83q: 1H NMR (400 MHz, CDCl3) δ 8.19-8.15 (m, 1H), 

7.78-7.74 (m, 1H), 7.55-7.52 (m, 2H), 7.44-7.32 (m, 6H), 7.25 

(d, J = 8.3 Hz, 1H), 6.57 (s, 1H), 6.00 (s, 1H), 2.19-2.09 (m, 2H), 

1.71-1.55 (m, 2H), 1.46-1.32 (m, 6H), 0.98 (t, J = 7.0 Hz, 3H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 146.5, 139.4, 135.4, 134.0, 128.5, 128.5, 127.6, 127.4, 125.7, 125.2, 124.5, 

124.3, 121.7, 120.2, 119.2, 116.4, 80.1, 33.3, 31.7, 29.0, 27.0, 22.6, 14.1 ppm; GC-MS m/z 

= 342 (M+); HRMS (ESI) Calcd for C25H26O (M+): 342.1978. Found: 342.1979. 

Data for 83r: 1H NMR (400 MHz, CDCl3) δ 8.70-8.66 (m, 2H), 

8.47-8.43 (m, 1H), 8.09-8.05 (m, 1H), 7.72-7.63 (m, 2H), 7.61-7.56 

(m, 1H), 7.42-7.40 (m, 1H), 7.18 (dd, J = 9.9, 1.6 Hz, 1H), 5.90 
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(dd, J = 9.9, 3.7 Hz, 1H), 5.12-5.07 (m, 1H), 2.11-2.02 (m, 1H), 1.82-1.60 (m, 3H), 1.07 

(t, J = 7.2 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 147.3, 131.0, 129.2, 127.0, 

126.9, 126.5, 126.3, 125.5, 124.1, 123.9, 122.9, 122.5, 122.4, 121.8, 120.4, 111.5, 75.0, 

36.6, 18.2, 13.9 ppm; HRMS (ESI) Calcd for C20H18O (M+): 274.1352. Found: 274.1366; 

Anal. Calcd for C20H18O: C, 87.56; H, 6.61. Found: C, 87.56; H, 6.69. 

Data for 83s: 1H NMR (400 MHz, CDCl3) δ 8.69-8.62 (m, 2H), 8.37-

8.34 (m, 1H), 8.19-8.16 (m, 1H), 7.70-7.54 (m, 6H), 7.37-7.31 (m, 3H), 

7.18 (s, 1H), 5.97 (s, 1H), 2.00 (s, 3H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 144.8, 138.9, 130.9, 130.6, 129.0, 128.5, 128.4, 127.5, 126.8, 126.6, 126.5, 126.4, 

125.4, 124.0, 123.0, 122.3, 121.7, 116.2, 111.0, 80.5, 20.5 ppm; GC-MS m/z = 322 (M+); 

HRMS (APCI) Calcd for C24H19O ([M+H]+): 323.1430. Found: 323.1444. 

Data for 83t: 1H NMR (400 MHz, CDCl3) δ 8.64-8.54 (m, 2H), 8.07-

8.03 (m, 1H), 7.69-7.64 (m, 2H), 7.61-7.56 (m, 5H), 7.54-7.49 (m, 1H), 

7.41-7.30 (m, 5H), 7.27-7.23 (m, 2H) 6.35 (d, J = 9.9 Hz, 1H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 146.2, 144.9, 131.3, 129.0, 128.1, 127.5, 127.2, 127.0, 

126.9, 126.8, 126.7, 126.5, 125.5, 124.3, 123.0, 122.7, 122.5, 121.9, 120.1, 110.9, 82.8 

ppm; GC-MS m/z = 384 (M+); Anal. Calcd for C29H20O: C, 90.60; H, 5.24. Found: C, 90.44; 

H, 5.34. 

Data for 84a: 1H NMR (400 MHz, CDCl3) δ 11.74 (s, 

1H), 7.63 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 

7.48 (d, J = 8.5 Hz, 2H), 7.45 (s, 1H), 7.41 (s, 1H), 

7.39 (d, J = 8.5 Hz, 2H), 6.83 (s, 1H), 3.01-2.91 (m, 

3H), 2.52 (ddd, J = 15.5, 12.6, 2.9 Hz, 1H), 2.30-2.01 
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(m, 3H), 1.78-1.23 (m, 6H), 0.99 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 208.9, 

199.7, 161.0, 147.0, 138.3, 136.4, 136.1, 135.2, 133.9, 132.0, 131.4, 130.8, 130.5, 129.9, 

129.0, 128.7, 117.9, 117.0, 48.4, 47.6, 43.6, 37.6, 31.4, 29.8, 29.0, 26.3, 25.7, 14.5 ppm; 

HRMS (ESI) Calcd for C32H29Cl2O3 ([M+H]+): 531.1488. Found: 531.1485. 

Data for 84b: 1H NMR (400 MHz, CDCl3) δ 12.38 (s, 

1H), 7.65 (s, 1H), 6.70 (s, 1H), 6.49 (ddd, J = 9.6, 2.6, 

1.8 Hz, 1H), 3.30-3.22 (m, 1H), 2.96-2.84 (m, 2H), 

2.67 (ddd, J = 15.2, 6.4, 1.7 Hz, 1H), 2.43-2.37 (m, 1H), 

2.30-1.99 (m, 5H), 1.91-1.81 (m, 4H), 1.80-1.14 (m, 21H), 0.92 (s, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 209.6, 209.2, 160.8, 146.4, 142.5, 134.6, 130.7, 126.2, 117.9, 

116.2, 48.1, 47.9, 45.0, 43.6, 38.9, 37.6, 31.7, 31.4, 29.7, 29.6, 26.3, 26.0, 25.9, 25.8, 25.7, 

25.5, 25.5, 14.4 ppm; HRMS (ESI) Calcd for C32H43O3 ([M+H]+): 475.3207. Found: 

474.3209. 
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5.3.5 X-ray Crystal Data and Structure Refinements 

Table 5.1 X-ray crystal data for 81v 

Empirical formula  C17H18O2  

Formula weight  254.31  

Temperature/K  100.05(10)  

Crystal system  monoclinic  

Space group  P21/c  

a/Å  7.08927(18)  

b/Å  10.1152(2)  

c/Å  18.6070(5)  

α/°  90.00  

β/°  96.927(2)  

γ/°  90.00  

Volume/Å3  1324.56(6)  

Z  4  

ρcalcmg/mm3  1.275  

m/mm-1  0.082  

F(000)  544.0  

Crystal size/mm3  0.28 × 0.14 × 0.11  

Radiation  MoKα (λ = 0.71073)  

2Θ range for data collection  5.78 to 58.8°  

Index ranges  -9 ≤ h ≤ 9, -13 ≤ k ≤ 13, -25 ≤ l ≤ 24  

Reflections collected  15224  

Independent reflections  3372 [Rint = 0.0343, Rsigma = 0.0279]  

Data/restraints/parameters  3372/0/176  

Goodness-of-fit on F2  1.076  

Final R indexes [I>=2σ (I)]  R1 = 0.0467, wR2 = 0.1265  

Final R indexes [all data]  R1 = 0.0592, wR2 = 0.1374  

Largest diff. peak/hole / e Å-3  0.38/-0.23  
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Table 5.2 X-ray crystal data for 83t 

Empirical formula  C29H20O  

Formula weight  384.45  

Temperature/K  100.00(10)  

Crystal system  triclinic  

Space group  P-1  

a/Å  11.6412(4)  

b/Å  11.9623(5)  

c/Å  14.3355(6)  

α/°  94.336(3)  

β/°  103.650(3)  

γ/°  90.068(3)  

Volume/Å3  1933.99(12)  

Z  4  

ρcalcmg/mm3  1.320  

m/mm-1  0.605  

F(000)  808.0  

Crystal size/mm3  0.42 × 0.35 × 0.18  

Radiation  CuKα (λ = 1.54184)  

2Θ range for data collection  6.36 to 147.4°  

Index ranges  -14 ≤ h ≤ 10, -14 ≤ k ≤ 14, -17 ≤ l ≤ 17  

Reflections collected  18380  

Independent reflections  7504 [Rint = 0.0657, Rsigma = 0.0456]  

Data/restraints/parameters  7504/0/541  

Goodness-of-fit on F2  1.044  

Final R indexes [I>=2σ (I)]  R1 = 0.0743, wR2 = 0.2135  

Final R indexes [all data]  R1 = 0.0827, wR2 = 0.2229  

Largest diff. peak/hole / e Å-3  0.45/-0.35  
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Table 5.3 X-ray crystal data for 84b 

Empirical formula  C32H42O3  

Formula weight  474.66  

Temperature/K  99.8(5)  

Crystal system  triclinic  

Space group  P1  

a/Å  6.6192(2)  

b/Å  6.9546(2)  

c/Å  14.6658(7)  

α/°  99.503(3)  

β/°  96.444(3)  

γ/°  95.740(3)  

Volume/Å3  656.79(4)  

Z  1  

ρcalcg/cm3  1.200  

μ/mm-1  0.581  

F(000)  258.0  

Crystal size/mm3  0.18 × 0.14 × 0.02  

Radiation  CuKα (λ = 1.54184)  

2Θ range for data collection/°  13 to 146.86  

Index ranges  -8 ≤ h ≤ 8, -8 ≤ k ≤ 8, -17 ≤ l ≤ 18  

Reflections collected  11892  

Independent reflections  4532 [Rint = 0.0521, Rsigma = 0.0369]  

Data/restraints/parameters  4532/3/321  

Goodness-of-fit on F2  1.127  

Final R indexes [I>=2σ (I)]  R1 = 0.0644, wR2 = 0.1789  

Final R indexes [all data]  R1 = 0.0667, wR2 = 0.1804  

Largest diff. peak/hole / e Å-3  0.29/-0.30  

Flack parameter -0.1(4) 
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5.4 Experimental Procedures and Data for the Chapter 3 

5.4.1 General Procedures for the Catalytic C-H Coupling reaction of Phenols with 

Ketones 

 In a glove box, a phenol (0.5 mmol), a ketone (1.0-1.5 mmol), and complex 26 (9 

mg, 3 mol %) were dissolved in 1,2-dichloroethane (2 mL) in a 25 mL Schlenk tube 

equipped with a Teflon stopcock and a magnetic stirring bar. The tube was brought out of 

the glove box, and was stirred in an oil bath set at 125-140 °C for 16-72 h. The reaction 

tube was taken out of the oil bath, and was cooled to room temperature. After the tube was 

open to air, the solution was filtered through a short silica gel column by eluting with 

CH2Cl2 (10 mL), and the filtrate was analyzed by GC-MS. Analytically pure product was 

isolated by a simple column chromatography on silica gel (280-400 mesh, hexanes/EtOAc). 

The product was completely characterized by NMR and GC-MS spectroscopic methods. 

5.4.2 General Procedures for the Mechanistic Studies 

Deuterium Labeling Study. In a glove box, 3,5-dimethoxyphenol (0.77 g, 5.0 

mmol), cyclohexanone-2,2,6,6-d4 (93 % D, 1.5 mmol), and complex 26 (3 mol %) were 

dissolved in 1,2-dichloroethane (2 mL) in a 25 mL Schlenk tubes equipped with a Teflon 

screw cap stopcock. The tube were brought out of the box, and immersed in an oil bath 

preset at 125 °C for 16 h. The reaction tube was taken out of the oil bath, and was cooled 

to room temperature. After the tube was open to air, the solution was filtered through a 

short silica gel column by eluting with CH2Cl2 (10 mL), and the filtrate was analyzed by 

GC-MS. Analytically pure was isolated by a simple column chromatography on silica gel 
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(280-400 mesh, hexanes/EtOAc = 100:1 to 10:1), then were completely characterized by 

1H, 2H NMR and GC-MS spectroscopic methods. 

 Deuterium Isotope Effect Study. In a glove box, 3,5-methoxyphenol (0.5 mmol), 

cyclohexanone-2,2,6,6-d4 (1.5 mmol), and complex 26 were dissolved in 1,2-

dichlorobenzene (2 mL) in 25 mL Schlenk tubes equipped with a Teflon screw cap 

stopcock. The tubes were brought out of the box, and immersed in an oil bath preset at 

125 °C. The reaction rate was measured by monitoring the appearance of the product 

signals on 1H NMR, which were normalized against the internal standard 

methylsulfonylmethane in 20-60 min intervals for 300 min of the reaction time. The 

experiment was repeated by using cyclohexanone. The kobs was determined from a first-

order plot of -ln[(3,5-methoxyphenol)t/(3,5-methoxyphenol)0] vs time. 

5.4.3 X-Ray Crystallographic Determination of 98k and 101 

For 98k: Colorless prisms of 98k were grown in CH2Cl2 at room temperature. A 

suitable crystal with the dimension of 0.51  0.5  0.45 mm3 was selected and mounted on 

an Oxford SuperNova diffractometer equipped with dual microfocus Cu/Mo X-ray sources, 

X-ray mirror optics, and Atlas CCD area detector. A total of 16395 reflection data were 

collected by using MoKα (λ = 0.71073) radiation while the crystal sample was cooled at 

100.00 K during the data collection. Using Olex2, the molecular structure was solved with 

the ShelXS structure solution program by using Direct Methods, and the data was refined 

with the XL refinement package using Least Squares minimization. The molecular 

structure of 98k is shown in Figure 3.1. 
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For 101: Colorless flat needles of 101 were grown in CH2Cl2 at room temperature. 

A suitable crystal with the dimension of 0.58  0.24  0.10 mm3 was selected and mounted 

on an Oxford SuperNova diffractometer equipped with dual microfocus Cu/Mo X-ray 

sources, X-ray mirror optics, and Atlas CCD area detector. A total of 11890 reflection data 

were collected by using CuKα (λ = 1.54184) radiation while the crystal sample was cooled 

at 100.00 K during the data collection. Using Olex2, the molecular structure was solved 

with the ShelXS structure solution program by using Direct Methods, and the data was 

refined with the XL refinement package using Least Squares minimization. The molecular 

structure of 101 is shown in Figure 3.2. 
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5.4.4 Characterization Data of the Products 

Data for 98a: 1H NMR (400 MHz, CDCl3) δ 6.17 (d, J = 2.3 Hz, 1H), 

6.05 (d, J = 2.3 Hz, 1H), 5.79 (s, 1H), 5.79-5.76 (m, 1H), 3.77 (s, 

3H), 3.76 (s, 3H), 2.26-2.18 (m, 4H), 1.78-1.67 (m, 4H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 160.06, 158.13, 153.43, 133.09, 129.31, 111.50, 92.10, 91.18, 

55.59, 55.28, 28.81, 25.50, 22.86, 22.02 ppm; GC-MS m/z = 234 (M+). 

Data for 98c: 1H NMR (400 MHz, CDCl3) δ 6.16 (d, J = 2.3 Hz, 

1H), 6.06 (d, J = 2.3 Hz, 1H), 5.84 (s, 1H), 5.73 (t, J = 8.1 Hz, 1H), 

3.78 (s, 3H), 3.75 (s, 3H), 2.48-2.41 (m, 2H), 2.37-2.29 (m, 2H), 

1.70-1.48 (m, 8H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 159.95, 158.06, 153.86, 

136.28, 132.17, 112.18, 92.10, 91.21, 55.44, 55.27, 30.76, 29.66, 28.86, 26.88, 26.70, 26.52 

ppm; GC-MS m/z = 262 (M+); HRMS Calcd for C16H22O3 ([M+H]+): 263.1642, Found: 

263.1631. 

Data for 98d: 1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 7.4 Hz, 

1H), 7.46 (d, J = 7.4 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.26 (t, J 

= 7.4 Hz, 1H), 6.98 (s, 1H), 6.28 (d, J = 2.4 Hz, 1H), 6.17 (d, J 

= 2.4 Hz, 1H), 5.90 (s, 1H), 3.88 (s, 2H), 3.84 (s, 3H), 3.80 (s, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 160.79, 158.54, 154.38, 144.24, 144.10, 141.34, 130.93, 126.26, 

124.80, 123.46, 120.89, 105.47, 92.62, 91.38, 55.48, 55.30, 42.20 ppm; GC-MS m/z = 268 

(M+); HRMS Calcd for C17H16O3 ([M-H]-): 267.1027, Found: 267.1028. 
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Data for 98f: 1H NMR (400 MHz, CDCl3) δ 6.99 (d, J = 8.4 Hz, 1H), 

6.51 (d, J = 2.5 Hz, 1H), 6.46 (dd, J = 8.4, 2.5 Hz, 1H), 5.85-5.81 (m, 

1H), 5.79 (s, 1H), 3.78 (s, 3H), 2.28-2.17 (m, 4H), 1.82-1.65 (m, 4H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 159.46, 152.98, 134.64, 128.44, 127.43, 122.37, 

106.17, 100.55, 55.22, 29.96, 25.40, 22.96, 21.86 ppm; GC-MS m/z = 204 (M+). 

Data for 98g: 1H NMR (400 MHz, CDCl3) δ 8.26-8.22 (m, 1H), 7.79-

7.74 (m, 1H), 7.50-7.43 (m, 2H), 7.38 (d, J = 8.5 Hz, 1H), 7.21 (d, J 

= 8.5 Hz, 1H), 6.30 (s, 1H), 6.01-5.98 (m, 1H), 2.37-2.24 (m, 4H), 

1.88-1.72 (m, 4H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 147.08, 135.33, 133.45, 

128.39, 127.33, 126.03, 125.53, 125.23, 123.98, 122.90, 122.53, 119.37, 29.82, 25.49, 

23.00, 21.96 ppm; GC-MS m/z = 224 (M+). 

Data for 98h: 1H NMR (400 MHz, CDCl3) δ 8.31-8.26 (m, 1H), 

7.84-7.79 (m, 1H), 7.57-7.44 (m, 6H), 7.39-7.33 (m, 1H), 7.31-

7.25 (m, 2H), 6.26 (s, 1H), 3.90 (s, 2H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 148.64, 144.83, 143.98, 142.86, 133.79, 129.18, 127.51, 126.79, 126.59, 

125.87, 125.69, 125.08, 124.37, 123.65, 122.26, 121.16, 120.23, 116.64, 41.96 ppm; GC-

MS m/z = 258 (M+); HRMS Calcd for C19H14O ([M+H]+): 259.1117, Found: 259.1111. 

Data for 98i: 1H NMR (400 MHz, CDCl3) δ 7.39-7.33 (m, 2H), 7.33-

7.27 (m, 3H), 6.26 (d, J = 2.3 Hz, 1H), 6.12 (d, J = 2.3 Hz, 1H), 6.08 

(d, J = 1.4 Hz, 1H), 5.62 (s, 1H), 5.38 (d, J = 1.4 Hz, 1H), 3.83 (s, 

3H), 3.59 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.97, 158.46, 154.55, 141.38, 

139.43, 128.30, 128.06, 126.00, 117.55, 109.12, 92.46, 91.59, 55.70, 55.32 ppm; GC-MS 

m/z = 256 (M+); HRMS Calcd for C16H16O3 ([M-H]-): 255.1027, Found: 255.1029. 
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Data for 98j: 1H NMR (400 MHz, CDCl3) δ 7.29-7.23 (m, 4H), 

6.24 (d, J = 2.3 Hz, 1H), 6.09 (d, J = 2.3 Hz, 1H), 6.03 (d, J = 

1.3 Hz, 1H), 5.58 (s, 1H), 5.37 (d, J = 1.3 Hz, 1H), 3.82 (s, 

3H), 3.58 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 161.15, 158.39, 154.54, 140.51, 

138.10, 133.82, 128.43, 127.35, 117.79, 108.59, 92.54, 91.61, 55.68, 55.35 ppm; GC-MS 

m/z = 290 (M+); HRMS Calcd for C16H15O3Cl ([M-H]-): 289.0637, Found: 289.0642. 

Data for 98l: 1H NMR (400 MHz, CDCl3) δ 7.34-7.20 (m, 5H), 6.51 

(t, J = 7.3 Hz, 1H), 6.26 (d, J = 2.3 Hz, 1H), 6.16 (d, J = 2.3 Hz, 1H), 

5.26 (s, 1H), 3.83 (s, 3H), 3.64 (s, 3H), 2.07-1.99 (m, 2H), 1.49 (sextet, 

J = 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 160.91, 158.47, 154.09, 140.19, 134.47, 131.75, 128.29, 127.13, 125.75, 

106.95, 92.19, 91.52, 55.58, 55.21, 31.95, 22.35, 13.81 ppm; GC-MS m/z = 298 (M+); 

HRMS Calcd for C19H22O3 ([M+H]+): 299.1642, Found: 299.1631. 

Data for 98m: 1H NMR (400 MHz, CDCl3) δ 7.43-7.39 (m, 2H), 7.36-

7.27 (m, 4H), 7.24-7.15 (m, 5H), 6.19 (d, J = 2.3 Hz, 1H), 6.17 (d, J 

= 2.3 Hz, 1H), 5.27 (s, 1H), 3.83 (s, 3H), 3.57 (s, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 161.35, 158.86, 153.81, 141.47, 136.41, 132.76, 131.47, 128.46, 

128.33, 128.26, 127.67, 127.65, 126.05, 107.46, 92.77, 92.07, 55.64, 55.17 ppm; GC-MS 

m/z = 332 (M+); HRMS Calcd for C22H20O3 ([M-H]-): 331.1340, Found: 331.1343. 

Data for 98n: 1H NMR (400 MHz, CDCl3) δ 7.25-7.21 (m, 2H), 

6.98-6.91 (m, 2H), 6.47 (q, J = 6.8 Hz, 1H), 6.23 (d, J = 2.3 Hz, 

1H), 6.14 (d, J = 2.3 Hz, 1H), 5.18 (s, 1H), 3.82 (s, 3H), 3.63 

(s, 3H), 1.69 (d, J = 6.8 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 163.36, 161.16, 
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160.92, 158.47, 154.14, 136.54, 136.50, 132.13, 128.39, 128.38, 127.32, 127.24, 115.22, 

115.00, 106.35, 92.35, 91.72, 55.72, 55.31, 15.49 ppm; GC-MS m/z = 288 (M+); HRMS 

Calcd for C17H17O3F ([M+H]+): 289.1234, Found: 289.1228. 

Data for 98o: 1H NMR (400 MHz, CDCl3) δ 7.23-7.18 (m, 4H), 

6.52 (q, J = 6.9 Hz, 1H), 6.23 (d, J = 2.3 Hz, 1H), 6.14 (d, J = 

2.3 Hz, 1H), 5.18 (s, 1H), 3.82 (s, 3H), 3.62 (s, 3H), 1.70 (s, J 

= 6.9 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 161.19, 158.46, 154.16, 138.96, 

132.77, 132.13, 129.07, 128.39, 127.00, 106.03, 92.38, 91.70, 55.69, 55.29, 15.53 ppm; 

GC-MS m/z = 304 (M+); HRMS Calcd for C17H17O3Cl ([M+H]+): 305.0939, Found: 

305.0937. 

Data for 98p: 1H NMR (400 MHz, CDCl3) δ 7.24-7.20 (m, 

2H), 6.82-6.78 (m, 2H), 6.45 (q, J = 6.8 Hz, 1H), 6.24 (d, J 

= 2.3 Hz, 1H), 6.15 (d, J = 2.3 Hz, 1H), 5.25 (s, 1H), 3.82 

(s, 3H), 3.78 (s, 3H), 3.65 (s, 3H), 1.68 (d, J = 6.8 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 160.94, 158.86, 158.47, 154.16, 132.82, 132.25, 126.80, 126.64, 113.67, 106.69, 

92.27, 91.60, 55.72, 55.25, 55.15, 15.38 ppm; GC-MS m/z = 300 (M+); HRMS Calcd for 

C18H20O4 ([M-H]-): 299.1289, Found: 299.1294. 

Data for 98q: 1H NMR (400 MHz, CDCl3) δ 7.21-7.17 (m, 2H), 

7.10-7.06 (m, 2H), 6.53 (q, J = 6.9 Hz, 1H), 6.25 (d, J = 2.3 Hz, 

1H), 6.16 (d, J = 2.3 Hz, 1H), 5.23 (s, 1H), 3.83 (s, 3H), 3.65 (s, 

3H), 2.33 (s, 3H), 1.71 (d, J = 6.9 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.93, 

158.48, 154.16, 137.36, 136.87, 132.70, 129.04, 127.72, 125.54, 106.63, 92.21, 91.59, 
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55.71, 55.25, 21.02, 15.42 ppm; GC-MS m/z = 284 (M+); HRMS Calcd for C18H20O3 

([M+H]+): 285.1485, Found: 285.1478. 

Data for 98r: 1H NMR (400 MHz, CDCl3) δ 7.18-7.10 (m, 3H), 7.10-

7.05 (m, 2H), 6.76-6.74 (m, 1H), 6.17 (d, J = 2.3 Hz, 1H), 6.09 (d, J = 

2.3 Hz, 1H), 5.27 (s, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 2.14 (d, J = 1.4 

Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.78, 158.28, 152.14, 136.23, 131.22, 

130.74, 128.28, 127.80, 127.21, 109.06, 92.67, 91.75, 55.71, 55.28, 25.41 ppm; GC-MS 

m/z = 270 (M+); HRMS Calcd for C17H18O3 ([M-H]-): 269.1183, Found: 269.1186. 

Data for 98v: 1H NMR (400 MHz, CDCl3) δ 7.29-7.20 (m, 5H), 6.50 

(q, J = 6.9 Hz, 1H), 6.40 (s, 1H), 5.10 (s, 1H), 3.87 (s, 3H), 3.79 (s, 

3H), 3.49 (s, 3H), 1.74 (d, J = 6.9 Hz, 3H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 153.77, 151.46, 148.90, 140.92, 136.03, 133.60, 

128.47, 128.34, 127.29, 125.96, 111.27, 94.59, 60.97, 60.50, 55.80, 15.66 ppm; GC-MS 

m/z = 300 (M+); HRMS Calcd for C18H20O4 ([M-H]-): 299.1289, Found: 299.1294. 

Data for 98w: 1H NMR (400 MHz, CDCl3) δ 7.30-7.20 (m, 5H), 6.60 

(q, J = 6.9 Hz, 1H), 6.45-6.44 (m, 1H), 6.42-6.41 (m, 1H), 5.14 (s, 

1H), 3.81 (s, 3H), 1.97-1.95 (m, 3H), 1.67 (d, J = 6.9 Hz, 3H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 159.91, 153.56, 139.81, 138.62, 135.34, 128.55, 

128.43, 127.37, 125.77, 117.12, 108.28, 97.61, 55.16, 19.88, 15.32 ppm; GC-MS m/z = 

254 (M+); HRMS Calcd for C17H18O2 ([M-H]-): 253.1234, Found: 253.1237. 
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Data for 98x: 1H NMR (400 MHz, CDCl3) δ 7.30-7.19 (m, 5H), 6.56 (q, 

J = 6.9 Hz, 1H), 6.52-6.50 (m, 1H), 6.38-6.36 (m, 1H), 5.08 (s, 1H), 3.65 

(s, 3H), 2.38-2.37 (m, 3H), 1.70 (d, J = 6.9 Hz, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 157.56, 153.30, 140.14, 139.60, 133.15, 128.51, 128.34, 127.16, 

125.71, 111.05, 108.44, 104.25, 55.77, 21.88, 15.52 ppm; GC-MS m/z = 254 (M+). 

Data for 98ae: 1H NMR (400 MHz, CDCl3) δ 6.15 (d, J 

= 2.3 Hz, 1H), 6.04 (d, J = 2.3 Hz, 1H), 5.96 (br s, 1H), 

5.61 (s, 1H), 5.47-5.42 (m, 1H), 3.76 (s, 3H), 3.73 (s, 

3H), 2.68-2.42 (m, 5H), 2.38-1.89 (m, 8H), 1.76-1.64 

(m, 1H), 1.31-1.22 (m, 1H), 1.25 (s, 3H), 0.88 (s, 3H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 217.55, 208.76, 160.37, 158.49, 153.46, 141.57, 

132.20, 129.45, 122.41, 110.49, 92.29, 91.34, 59.34, 55.66, 55.33, 50.50, 50.48, 50.22, 

36.16, 34.96, 33.05, 32.63, 31.50, 26.47, 21.70, 18.76, 14.74 ppm; GC-MS m/z = 436 (M+); 

HRMS Calcd for C27H32O5 ([M+H]+): 437.2323, Found: 437.2309. 

Data for 100: 1H NMR (400 MHz, CDCl3) δ 7.33-7.23 (m, 4H), 7.21-

7.17 (m, 1H), 6.24 (d, J = 2.4 Hz, 1H), 6.14 (d, J = 2.4 Hz, 1H), 4.90 

(d, J = 4.8 Hz, 1H), 4.63 (d, J = 4.8 Hz, 1H), 3.81 (s, 3H), 3.61 (s, 

3H), 1.97 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 159.62, 158.26, 152.70, 147.35, 

146.20, 127.99, 127.62, 125.73, 105.10, 101.79, 93.88, 92.61, 55.33, 55.22, 36.27, 19.12 

ppm; GC-MS m/z = 282 (M+); HRMS Calcd for C18H18O3 ([M+H]+): 283.1329, Found: 

283.1349. 
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Data for 101: 1H NMR (400 MHz, CDCl3) δ 6.02 (d, J = 2.3 Hz, 

1H), 6.00 (d, J = 2.3 Hz, 1H), 3.74 (s, 3H), 3.72 (s, 3H), 3.71-3.68 

(br s, 1H), 3.43-3.38 (m, 1H), 2.09-2.01 (m, 1H), 1.96 (dd, J = 12.4, 

2.9 Hz, 1H), 1.87-1.80 (m, 1H), 1.77-1.63 (m, 2H), 1.59-1.45 (m, 2H), 1.44-1.29 (m, 1H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 159.43, 156.90, 156.67, 106.08, 98.64, 92.12, 

90.74, 55.24, 55.10, 38.69, 36.36, 29.51, 28.10, 19.13 ppm; GC-MS m/z = 250 (M+); 

HRMS Calcd for C14H18O4 ([M+H]+): 251.1278, Found: 251.1271. 

Data for 103: 1H NMR (400 MHz, CDCl3) δ 6.00 (d, J = 2.4 Hz, 1H), 

5.96 (d, J = 2.4 Hz, 1H), 3.73 (s, 3H), 3.72 (s, 3H), 2.35-2.21 (m, 2H), 

2.10-2.01 (m, 1H), 1.95-1.85 (m, 1H), 1.81 (s, 3H), 1.67 (s, 3H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 159.91, 156.62, 153.24, 110.33, 106.81, 93.10, 91.51, 

83.21, 55.14, 55.05, 42.74, 38.37, 24.10, 23.10 ppm; GC-MS m/z = 250 (M+); HRMS Calcd 

for C14H18O4 ([M+H]+): 251.1278, Found: 251.1274. 
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5.4.5 X-ray Crystal Data and Structure Refinements 

Table 5.4 X-ray crystal data for 98k 

Empirical formula  C17H18O3  

Formula weight  270.31  

Temperature/K  100.00(10)  

Crystal system  monoclinic  

Space group  P21/c  

a/Å  9.9036(2)  

b/Å  9.5634(2)  

c/Å  15.2192(4)  

α/°  90.00  

β/°  93.961(2)  

γ/°  90.00  

Volume/Å3  1438.01(6)  

Z  4  

ρcalcg/cm3  1.249  

μ/mm-1  0.085  

F(000)  576.0  

Crystal size/mm3  0.51 × 0.5 × 0.45  

Radiation  MoKα (λ = 0.71073)  

2Θ range for data collection/°  6.62 to 59.1  

Index ranges  -13 ≤ h ≤ 13, -12 ≤ k ≤ 13, -20 ≤ l ≤ 20  

Reflections collected  16395  

Independent reflections  3669 [Rint = 0.0346, Rsigma = 0.0323]  

Data/restraints/parameters  3669/0/185  

Goodness-of-fit on F2  1.034  

Final R indexes [I>=2σ (I)]  R1 = 0.0444, wR2 = 0.1001  

Final R indexes [all data]  R1 = 0.0628, wR2 = 0.1117  

Largest diff. peak/hole / e Å-3  0.31/-0.26  
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Table 5.5 X-ray crystal data for 110 

Empirical formula  C14H18O4  

Formula weight  250.28  

Temperature/K  100.00(10)  

Crystal system  monoclinic  

Space group  P21  

a/Å  5.53828(6)  

b/Å  24.4737(4)  

c/Å  8.98955(14)  

α/°  90.00  

β/°  91.2110(12)  

γ/°  90.00  

Volume/Å3  1218.19(3)  

Z  4  

ρcalcg/cm3  1.365  

μ/mm-1  0.816  

F(000)  536.0  

Crystal size/mm3  0.576 × 0.2375 × 0.1009  

Radiation  CuKα (λ = 1.54184)  

2Θ range for data collection/°  7.22 to 147.84  

Index ranges  -6 ≤ h ≤ 6, -29 ≤ k ≤ 29, -11 ≤ l ≤ 10  

Reflections collected  11890  

Independent reflections  4642 [Rint = 0.0312, Rsigma = 0.0317]  

Data/restraints/parameters  4642/1/338  

Goodness-of-fit on F2  1.034  

Final R indexes [I>=2σ (I)]  R1 = 0.0372, wR2 = 0.0971  

Final R indexes [all data]  R1 = 0.0399, wR2 = 0.1010  

Largest diff. peak/hole / e Å-3  0.19/-0.25  

Flack parameter 0.0(5) 
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5.5 Experimental Procedures and Data for the Chapter 4 

5.5.1 General Procedures for the Catalytic Synthesis of Indole and Quinoline 

Products 

In a glove box, complex 79 (13 mg, 0.75 mol %) and HBF4·OEt2 (12 mg, 7 mol %) 

were dissolved in 1,4-dioxane (1 mL) in a 25 mL Schlenk tube equipped with a Teflon 

stopcock and a magnetic stirring bar. The resulting mixture was stirred for 5 to 10 min until 

the solution turned to a pale green color. In an alternative procedure, the complex 26 (17 

mg, 3 mol %) and HBF4·OEt2 (12 mg, 7 mol %) were dissolved in 1,4-dioxane (1 mL). An 

arylamine (1.0 mmol), a diol (1.5 mmol), cyclopentene (204 mg, 3 equiv) and 1,4-dioxane 

(2 mL) were added to the reaction tube. After the tube was sealed, it was brought out of the 

glove box, and was stirred in an oil bath set at 110-130 °C (130-150 °C for the quinoline 

products) for 14 h. The reaction tube was taken out of the oil bath, and was cooled to room 

temperature. After the tube was open to air, the solution was filtered through a short silica 

gel column by eluting with CH2Cl2 (10 mL), and the filtrate was analyzed by GC-MS. 

Analytically pure product was isolated by a simple column chromatography on silica gel 

(280-400 mesh, hexanes/EtOAc). 

5.5.2 General Procedures for the Deuterium Labeling Study and Control 

Experiments 

Deuterium Labeling Study. In a glove box, complex 79 (13 mg, 0.75 mol %) and 

HBF4·OEt2 (12 mg, 7 mol %) were dissolved in 1,4-dioxane (1 mL) in a 25 mL Schlenk 

tube equipped with a Teflon stopcock and a magnetic stirring bar. The resulting mixture 

was stirred for 5 to 10 minutes until the solution turned to a pale green color. Then, aniline-
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2,3,4,5,6-d5 (98 mg, 0.5 mmol), 1-phenyl-1,2-ethanediol (104 mg, 0.75 mmol), and 

cyclopentene (102 mg, 3 equiv) in 1,4-dioxane (1 mL) were added to the reaction tube. 

After the tube was sealed, it was brought out of the glove box, and was stirred in an oil 

bath set at 110 °C for 14 h. Analytically pure product was isolated by column 

chromatography on silica gel (280-400 mesh, n-hexane/EtOAc). 

Reaction of Aniline with n-Butanol. In a glove box, complex 79 (7 mg, 0.75 

mol %) and HBF4·OEt2 (6 mg, 7 mol %) were dissolved in 1,4-dioxane (1 mL) in a 25 mL 

Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The resulting 

mixture was stirred for 5 to 10 min until the solution turned to a pale green color. Aniline 

(50 mg, 1.0 mmol), n-butanol (111 mg, 1.5 mmol) and 1,4-dioxane (2 mL) were added to 

the reaction tube. After the tube was sealed, it was brought out of the glove box, and was 

stirred in an oil bath set at 110 °C for 14 h. The reaction tube was taken out of the oil bath, 

and was cooled to room temperature. Analytically pure product was isolated by column 

chromatography on silica gel (280-400 mesh, n-hexane/EtOAc). 

Reaction of Aniline with α–Hydroxyketone. In a glove box, complex 79 (13 mg, 

0.75 mol %) and HBF4·OEt2 (12 mg, 7 mol %) were dissolved in 1,4-dioxane (1 mL) in a 

25 mL Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The 

resulting mixture was stirred for 5 to 10 min until the solution turned to a pale green color. 

Then, 3-methoxyaniline (123 mg, 1.0 mmol), benzoin (318 mg, 1.5 mmol) and 1,4-dioxane 

(2 mL) were added to the reaction tube. After the tube was sealed, it was brought out of 

the glove box, and was stirred in an oil bath set at 130 °C for 14 h. The reaction tube was 

taken out of the oil bath, and was cooled to room temperature. Analytically pure product 

was isolated by column chromatography on silica gel (280-400 mesh, n-hexane/EtOAc). 
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Dehydrogenation of 1-Phenyl-1,2-ethanediol. In a glove box, complex 79 (13 mg, 

0.75 mol %), 1-phenyl-1,2-ethanediol (138 mg, 1.0 mmol) and cyclopentene (204 mg, 3 

equiv) were dissolved in 1,4-dioxane (3 mL) in a 25 mL Schlenk tube equipped with a 

Teflon stopcock and a magnetic stirring bar. The tube was brought out of the glove box, 

and was stirred in an oil bath set at 110 °C for 3 h. The reaction tube was taken out of the 

oil bath, and was cooled to room temperature. The crude mixture was analyzed by 1H NMR. 
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5.5.3 Characterization Data of the Products 

Data for 106a: 1H NMR (400 MHz, CDCl3) δ 8.31 (br s, 1H), 7.69-

7.65 (m, 3H), 7.49-7.44 (m, 2H), 7.43-7.40 (m, 1H), 7.38-7.33 (m, 

1H), 7.26-7.21 (m, 1H), 7.19-7.14 (m, 1H), 6.87-6.85 (m, 1H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 137.8, 136.8, 132.3, 129.2, 129.0, 127.7, 125.1, 122.3, 

120.6, 120.2, 110.9, 99.9 ppm; GC-MS m/z = 193 (M+). 1H and 13C NMR spectral data are 

in good agreement with the literature data.103,104 

Data for 106b: 1H NMR (400 MHz, CDCl3) δ 7.80 (br s, 1H), 7.58-

7.55 (m, 1H), 7.32-7.29 (m, 1H), 7.18-7.09 (m, 2H), 6.29-6.26 (m, 

1H), 2.80-2.73 (m, 2H), 1.77-1.69 (m, 2H), 1.45 (sextet, J = 7.4 Hz, 

2H), 0.99 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 140.0, 135.7, 128.8, 

120.8, 119.7, 119.5, 110.2, 99.4, 31.2, 27.9, 22.4, 13.8 ppm; GC-MS m/z = 173 (M+). 1H 

and 13C NMR spectral data are in good agreement with the literature data.103 

Data for 106c: 1H NMR (400 MHz, CDCl3) δ 7.77 (br s, 1H), 7.57-7.53 (m, 

1H), 7.30-7.27 (m, 1H), 7.17-7.08 (m, 2H), 6.26-6.24 (m, 1H), 2.44 (d, J = 

0.9 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 136.0, 135.0, 129.0, 

120.9, 119.6(2C), 110.2, 100.3, 13.7 ppm; GC-MS m/z = 131 (M+). 1H and 13C NMR 

spectral data are in good agreement with the literature data.105,106 

Data for 106d: 1H NMR (400 MHz, CDCl3) δ 7.65 (br s, 1H), 7.50-7.47 (m, 

1H), 7.27-7.24 (m, 1H), 7.15-7.07 (m, 2H), 2.37 (s, 3H), 2.24 (s, 3H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 135.1, 130.6, 129.4, 120.8, 119.0, 

117.9, 110.0, 107.1, 11.5, 8.4 ppm; GC-MS m/z = 145 (M+). 1H and 13C NMR spectral data 

are in good agreement with the literature data.107 
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Data for 106f: 1H NMR (400 MHz, CDCl3) δ 7.74 (br s, 1H), 

7.41 (d, J = 8.5 Hz, 1H), 6.80 (d, J = 2.3 Hz, 1H), 6.77 (dd, J 

= 8.5, 2.3 Hz, 1H), 6.18-6.16 (m, 1H), 3.85 (s, 3H), 2.72 (t, J 

= 7.5 Hz, 2H), 1.74-1.64 (m, 2H), 1.48-1.37 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 155.6, 138.8, 136.4, 123.0, 120.1, 108.9, 99.0, 94.5, 55.7, 31.3, 

27.9, 22.4, 13.9 ppm; GC-MS m/z = 203 (M+). 1H and 13C NMR spectral data are in good 

agreement with the literature data.108 

Data for 106g: 1H NMR (400 MHz, CDCl3) δ 8.24 (br s, 1H), 

7.64-7.60 (m, 2H), 7.51 (d, J = 8.6 Hz, 1H), 7.45-7.40 (m, 2H), 

7.32-7.27 (m, 1H), 6.90 (d, J = 2.3 Hz, 1H), 6.81 (dd, J = 8.6, 

2.3 Hz, 1H), 6.77-6.76 (m, 1H), 3.87 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 

156.6, 137.6, 136.8, 132.5, 129.0, 127.2, 124.7, 123.5, 121.3, 110.2, 99.8, 94.4, 55.6 ppm; 

GC-MS m/z = 223 (M+). 1H and 13C NMR spectral data are in good agreement with the 

literature data.109 

Data for 106h: 1H NMR (400 MHz, CDCl3) δ 7.71 (br s, 1H), 7.33 

(d, J = 8.5 Hz, 1H), 6.83 (d, J = 2.3 Hz, 1H), 6.75 (dd, J = 8.5, 2.3 

Hz, 1H), 3.84 (s, 3H), 2.86-2.77 (m, 4H), 2.56-2.48 (m, 2H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 155.3, 142.2, 141.7, 119.5, 119.3, 118.9, 108.5, 95.8, 

55.8, 28.6, 25.9, 24.5 ppm; GC-MS m/z = 187 (M+). 1H and 13C NMR spectral data are in 

good agreement with the literature data.110 

Data for 106i: 1H NMR (400 MHz, CDCl3) δ 7.55 (br s, 1H), 7.33 

(d, J = 8.5 Hz, 1H), 6.80 (d, J = 2.3 Hz, 1H), 6.75 (dd, J = 8.5, 2.3 

Hz, 1H), 3.84 (s, 3H), 2.72-2.64 (m, 4H), 1.93-1.82 (m, 4H) ppm; 
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13C{1H} NMR (100 MHz, CDCl3) δ 155.7, 136.3, 132.8, 122.3, 118.2, 109.9, 108.2, 94.8, 

55.8, 23.3, 23.2, 23.2, 20.9 ppm; GC-MS m/z = 201 (M+). 1H and 13C NMR spectral data 

are in good agreement with the literature data.111 

Data for 106j: 1H NMR (400 MHz, DMSO-d6) δ 10.43 (br s, 1H), 

7.24 (d, J = 8.5 Hz, 1H), 6.79 (d, J = 2.2 Hz, 1H), 6.60 (dd, J = 

8.5, 2.2 Hz, 1H), 3.74 (s, 3H), 2.81-2.72 (m, 4H), 1.71-1.59 (m, 

4H), 1.43-1.31 (m, 4H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ 154.7, 135.6, 134.5, 

122.6, 117.5, 109.5, 107.6, 94.3, 55.2, 29.7, 29.3, 25.6(2C), 25.1, 21.8 ppm; GC-MS m/z 

= 229 (M+); HRMS (IT-TOF/ESI) Calcd for C15H20NO ([M+H]+): 230.1539, Found: 

230.1530. 

Data for 106k: 1H NMR (400 MHz, CDCl3) δ 8.37 (br s, 1H), 

7.63-7.60 (m, 2H), 7.44-7.39 (m, 2H), 7.31-7.27 (m, 1H), 6.86 

(dd, J = 2.3, 0.6 Hz, 1H), 6.63 (d, J = 0.6 Hz, 1H), 4.14 (s, 3H), 

3.90 (s, 3H), 3.86 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 151.3, 145.7, 136.0, 

135.8, 133.9, 132.3, 129.0, 127.2, 124.6, 116.4, 97.5, 89.4, 61.5, 60.8, 56.2 ppm; GC-MS 

m/z = 283 (M+); Anal. Calcd for C17H17NO3: C, 72.07; H, 6.05; N, 4.94. Found: C, 72.27; 

H, 6.28; N, 4.97. 

Data for 106l: 1H NMR (400 MHz, CDCl3) δ 8.42 (br s, 1H), 

7.53-7.50 (m, 1H), 7.40-7.37 (m, 1H), 7.31-7.27 (m, 1H), 7.20-

7.15 (m, 1H), 6.67 (s, 1H), 4.12 (s, 3H), 3.93 (s, 3H), 3.87 (s, 

3H), 3.80 (s, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 150.7, 147.4, 145.5, 141.6, 

137.4, 136.4, 135.0, 126.5, 125.2, 124.1, 120.2, 116.7, 113.0, 91.2, 61.6, 61.4, 56.3, 31.7 
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ppm; GC-MS m/z = 295 (M+); HRMS (IT-TOF/ESI) Calcd for C18H18NO3 ([M+H]+): 

296.1281, Found: 296.1274. 

Data for 106m: 1H NMR (400 MHz, CDCl3) δ 8.58 (br s, 1H), 

7.97-7.92 (m, 2H), 7.68 (d, J = 8.6 Hz, 1H), 7.54-7.49 (m, 1H), 

7.52 (d, J = 8.6 Hz, 1H), 7.44-7.39 (m, 1H), 6.42-6.41 (m, 1H), 

2.86 (t, J = 7.6 Hz, 2H), 1.79 (quintet, J = 7.6 Hz, 2H), 1.48 (sextet, J = 7.5 Hz, 2H), 1.01 

(t, J = 7.5 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 138.1, 129.8, 128.9, 125.2, 

124.6, 123.2, 121.4, 120.3, 120.3, 119.0, 101.1, 31.6, 28.0, 22.4, 13.9 ppm (one carbon 

signal obscured or overlapping); GC-MS m/z = 223 (M+). 1H and 13C NMR spectral data 

are in good agreement with the literature data.103 

Data for 106n: 1H NMR (400 MHz, CDCl3) δ 9.01 (br s, 1H), 8.07 

(d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.76-7.71 (m, 3H), 

7.59-7.53 (m, 2H), 7.52-7.43 (m, 3H), 7.37-7.33 (m, 1H), 6.98 (d, 

J = 2.3 Hz, 1H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 136.2, 132.5, 131.3, 130.5, 129.1, 

129.0, 127.4, 125.6, 125.3, 124.9, 123.9, 121.5, 121.2, 120.6, 119.3, 101.7 ppm; GC-MS 

m/z = 243 (M+). 1H and 13C NMR spectral data are in good agreement with the literature 

data.103,104 

Data for 106o: 1H NMR (400 MHz, CDCl3) δ 8.40 (br s, 1H), 7.92 (d, J 

= 8.3, 2H), 7.63 (d, J = 8.5 Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.52-7.47 

(m, 1H), 7.41-7.36 (m, 1H), 2.46 (s, 3H), 2.32 (s, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 129.9, 129.1, 128.9, 128.8, 125.1, 124.9, 123.1, 121.2, 119.7, 

119.1, 118.6, 108.9, 11.6, 8.6 ppm; GC-MS m/z = 195 (M+). 1H and 13C NMR spectral data 

are in good agreement with the literature data.112 
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Data for 106p: 1H NMR (400 MHz, CDCl3) δ 8.93 (br s, 1H), 8.07 (d, 

J = 8.1 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.82-7.78 (m, 1H), 7.61-7.43 

(m, 9H), 7.42-7.31 (m, 4H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 

135.0, 132.7, 132.5, 130.7, 130.5, 130.2, 128.9, 128.7, 128.5, 128.0, 127.4, 126.3, 125.6, 

124.5, 124.1, 121.4, 121.2, 119.5, 119.4, 116.8 ppm; GC-MS m/z = 319 (M+). 1H and 13C 

NMR spectral data are in good agreement with the literature data.113 

Data for 106q: 1H NMR (400 MHz, acetone-d6) δ 11.59 (br s, 1H), 

8.34-8.31 (m, 1H), 7.95-7.92 (m, 1H), 7.75 (d, J = 8.5 Hz, 1H), 

7.64-7.61 (m, 1H), 7.57-7.50 (m, 3H), 7.42-7.37 (m, 1H), 7.36-7.31 

(m, 1H), 7.21-7.16 (m, 1H), 3.77 (s, 2H) ppm; 13C{1H} NMR (100 MHz, acetone-d6) δ 

148.4, 143.1, 136.4, 136.0, 131.2, 129.6, 127.5, 126.3, 126.3, 125.2, 124.3, 124.0, 123.5, 

121.3, 121.3, 121.0, 120.2, 118.2, 30.7 ppm; GC-MS m/z = 255 (M+); HRMS (IT-TOF/ESI) 

Calcd for C19H14N ([M+H]+): 256.1121, Found: 256.1114. 

Data for 106r: 1H NMR (400 MHz, CDCl3) δ 8.40 (br s, 1H), 8.00-

7.93 (m, 2H), 7.70 (d, J = 8.6 Hz, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.56-

7.51 (m, 1H), 7.46-7.41 (m, 1H), 3.02-2.94 (m, 4H), 1.87-1.78 (m, 

4H), 1.58-1.46 (m, 4H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 133.8, 129.8, 128.9, 

128.8, 125.1, 124.1, 123.0, 121.4, 119.6, 119.1, 118.5, 113.5, 29.9, 29.8, 26.0, 25.8, 25.8, 

22.2 ppm; GC-MS m/z = 249 (M+); HRMS (IT-TOF/ESI) Calcd for C18H20N ([M+H]+): 

250.1590. Found 250.1582. 

Data for 106s: 1H NMR (400 MHz, CDCl3) δ 8.24 (br s, 1H), 

7.69-7.65 (m, 2H), 7.61 (d, J = 8.2 Hz, 1H), 7.49-7.44 (m, 2H), 

7.38-7.33 (m, 1H), 7.29-7.27 (m, 1H), 7.10 (dd, J = 8.2, 1.5 Hz, 
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1H), 6.84 (dd, J = 2.1, 0.8 Hz, 1H), 3.08 (septet, J = 7.0 Hz, 1H), 1.38 (d, J = 7.0 Hz, 6H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 143.6, 137.4, 137.1, 132.5, 128.9, 127.4, 127.4, 

124.9, 120.3, 119.7, 108.1, 99.8, 34.4, 24.4 ppm; GC-MS m/z = 235 (M+). 1H and 13C NMR 

spectral data are in good agreement with the literature data.104 

Data for 106t: 1H NMR (400 MHz, DMSO-d6) δ 11.50 (br 

s, 1H), 7.82-7.78 (m, 2H), 7.52 (d, J = 8.5 Hz, 1H), 7.46-

7.40 (m, 2H), 7.38-7.32 (m, 2H), 7.30-7.26 (m, 1H), 7.10-

7.05 (m, 1H), 7.01-6.96 (m, 3H), 6.90-6.88 (m, 1H), 6.75 (dd, J = 8.5, 2.2 Hz, 1H) ppm; 

13C{1H} NMR (100 MHz, DMSO-d6) δ 158.1, 152.0, 137.9, 137.6, 132.1, 129.9, 129.0, 

127.3, 125.3, 124.8, 122.7, 121.2, 117.9, 112.6, 101.5, 98.7 ppm; GC-MS m/z = 285 (M+); 

Anal. Calcd for C20H15NO: C, 84.19; H, 5.30; N, 4.91. Found: C, 84.34; H, 5.49; N, 4.96. 

Data for 106u: 1H NMR (400 MHz, DMSO-d6) δ 11.71 (br s, 

1H), 7.87-7.83 (m, 2H), 7.54 (d, J = 8.4 Hz, 1H), 7.50-7.44 (m, 

2H), 7.40 (d, J = 2.0 Hz, 1H), 7.36-7.31 (m, 1H), 7.01 (dd, J = 

8.4, 2.0 Hz, 1H), 6.94-6.93 (m, 1H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ 138.8, 

137.5, 131.7, 129.0, 127.8, 127.4, 126.0, 125.1, 121.4, 119.8, 110.8, 98.8 ppm; GC-MS 

m/z = 227 (M+). 1H and 13C NMR spectral data are in good agreement with the literature 

data.104,106 

Data for 106v: 1H NMR (400 MHz, CDCl3) δ 8.60 (br s, 1H), 7.80-

7.76 (m, 2H), 7.74-7.67 (m, 3H), 7.66-7.60 (m, 2H), 7.54-7.46 (m, 

3H), 7.40-7.36 (m, 1H), 7.33-7.29 (m, 2H), 6.98-6.97 (m, 1H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 139.2, 138.1, 134.6, 132.2, 129.6, 129.2, 128.9, 128.2, 
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127.7, 127.4, 125.4, 125.2, 122.2, 120.7, 119.9, 100.4 ppm; GC-MS m/z = 269 (M+); Anal. 

Calcd for C20H15NO: C, 89.19; H, 5.61; N, 5.20. Found: C, 89.00; H, 5.73; N, 5.27. 

Data for 106w: 1H NMR (400 MHz, CDCl3) δ 8.14 (br s, 1H), 

7.75-7.72 (m, 2H), 7.53-7.45 (m, 3H), 7.40-7.36 (m, 1H), 7.07-

7.04 (m, 1H), 6.87-6.86 (m, 1H), 2.49 (s, 6H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 137.1, 137.0, 132.6, 129.8, 128.9, 127.3, 127.1, 124.9, 123.0, 117.8, 

117.6, 100.4, 19.4, 13.1 ppm; GC-MS m/z = 221 (M+); Anal. Calcd for C16H15N: C, 86.84; 

H, 6.83; N, 6.33. Found: C, 86.99; H, 6.90; N, 6.43. 

Data for 106x: 1H NMR (400 MHz, CDCl3) δ 8.13 (br s, 1H), 7.69-

7.66 (m, 2H), 7.51-7.46 (m, 2H), 7.40-7.35 (m, 1H), 7.02 (s, 1H), 

6.90-6.87 (m, 2H), 2.64 (s, 3H), 2.51 (s, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 136.9, 136.5, 132.5, 132.3, 129.7, 128.9, 127.2, 126.9, 124.8, 122.3, 

108.4, 98.3, 21.7, 18.7 ppm; GC-MS m/z = 221 (M+); Anal. Calcd for C16H15N: C, 86.84; 

H, 6.83; N, 6.33. Found: C, 86.83; H, 6.84; N, 6.36. 

Data for 106y: 1H NMR (400 MHz, DMSO-d6) δ 11.6 (br s, 1H), 

7.86-7.81 (m, 2H), 7.56 (s, 1H), 7.47-7.43 (m, 2H), 7.34 (s, 1H), 

7.33-7.30 (m, 1H), 6.84-6.83 (m, 1H), 2.41 (s, 3H) ppm; 13C{1H} 

NMR (100 MHz, DMSO-d6) δ 138.6, 136.2, 131.9, 129.0, 128.1, 128.1, 127.7, 125.0, 

119.5, 113.0, 98.1, 20.4 ppm (one carbon signal obscured or overlapped); GC-MS m/z = 

241 (M+); HRMS (IT-TOF/ESI) Calcd for C15H13NCl ([M+H]+): 242.0731. Found: 

242.0730. Data for 5-chloro-4-methyl-2-phenylindole: 1H NMR (400 MHz, DMSO-d6) δ 

11.7 (br s, 1H), 7.90-7.86 (m, 2H), 7.49-7.45 (m, 2H), 7.35-7.32 (m, 1H), 7.24 (d, J = 8.5 

Hz, 1H), 7.09 (d, J = 8.5 Hz, 1H), 7.04-7.02 (m, 1H), 2.52 (s, 3H) ppm; 13C{1H} NMR 
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(100 MHz, DMSO-d6) δ 138.4, 135.2, 131.9, 130.0, 129.0, 127.7, 126.0, 125.1, 123.5, 

122.2, 110.4, 98.0, 16.0 ppm. 

Data for 106z: 1H NMR (400 MHz, CDCl3) δ 8.13 (br s, 1H), 7.73-

7.69 (m, 2H), 7.52-7.45 (m, 3H), 7.37-7.33 (m, 1H), 7.12 (d, J = 

8.0 Hz, 1H), 6.89 (d, J = 2.1 Hz, 1H), 3.15-3.08 (m, 4H), 2.33-2.24 

(m, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 139.0, 137.0, 133.9, 132.6, 128.9, 127.8, 

127.3, 125.2, 124.9, 118.6, 117.2, 100.6, 33.2, 29.9, 25.4 ppm; GC-MS m/z = 233 (M+); 

Anal. Calcd for C17H15N: C, 87.52; H, 6.48; N, 6.00. Found: C, 87.56; H, 6.58; N, 6.06. 

Data for 106aa: 1H NMR (400 MHz, CDCl3) δ 8.23 (br s, 1H), 

7.61-7.57 (m, 2H), 7.44-7.39 (m, 2H), 7.30-7.25 (m, 1H), 7.00 

(s, 1H), 6.86 (s, 1H), 6.72-6.70 (m, 1H), 5.95 (s, 2H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 145.1, 143.2, 136.6, 132.4, 131.8, 129.0, 127.1, 124.5, 

123.1, 100.6, 100.2, 99.1, 91.9 ppm; GC-MS m/z = 237 (M+). 1H and 13C NMR spectral 

data are in good agreement with the literature data.114 

Data for 106ab: 1H NMR (400 MHz, DMSO-d6) δ 11.39 (br s, 1H), 

7.44-7.31 (m, 9H), 7.30-7.24 (m, 2H), 6.93 (d, J = 2.2 Hz, 1H), 

6.71 (dd, J = 8.7, 2.2 Hz, 1H), 3.80 (s, 3H) ppm; 13C{1H} NMR 

(100 MHz, DMSO-d6) δ 156.1, 136.9, 135.4, 132.7, 132.7, 129.7, 128.7, 128.5, 127.9, 

127.2, 126.1, 122.4, 119.4, 113.3, 110.0, 94.3, 55.2 ppm; GC-MS m/z = 299 (M+). 1H and 

13C NMR spectral data are in good agreement with the literature data.115 

Data for 108a: 1H NMR (400 MHz, CDCl3) δ 8.87 (dd, J = 4.2, 1.7 Hz, 

1H), 8.09 (d, J = 8.2 Hz, 1H), 7.93 (s, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.45 

(dd, J = 8.4, 1,7 Hz, 1H), 7.32 (dd, J = 8.2, 4.2 Hz, 1H), 3.12 (septet, J 
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= 6.9 Hz, 1H), 1.36 (d, J = 6.9 Hz, 6H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 150.5, 

150.2, 148.5, 135.6, 127.5, 126.6, 126.5, 125.5, 120.3, 34.2, 23.7 ppm; GC-MS m/z = 171 

(M+); HRMS (IT-TOF/ESI) Calcd for C12H14N ([M+H]+): 172.1121, Found: 172.1111. 

Data for 108b: 1H NMR (400 MHz, CDCl3) δ 8.88 (dd, J = 4.2, 1.7 Hz, 

1H), 8.11-8.07 (m, 2H), 7.70 (d, J = 8.7 Hz, 1H), 7.46 (dd, J = 8.7, 2.2 

Hz, 1H), 7.36 (dd, J = 8.2, 4.2 Hz, 1H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 151.2, 

148.4, 135.8, 135.2, 128.9, 128.3, 127.5, 126.5, 121.2 ppm; GC-MS m/z = 163 (M+). 1H 

and 13C NMR spectral data are in good agreement with the literature data.116 

Data for 109b: 1H NMR (400 MHz, CDCl3) δ 7.08 (t, J = 8.0 Hz, 

1H), 6.68-6.65 (m, 1H), 6.59-6.58 (m, 1H), 6.49-6.45 (m, 1H), 3.73 

(br s, 1H), 3.06 (t, J = 7.1 Hz, 2H), 1.65 (sextet, J = 7.2 Hz, 2H), 

1.01 (t, J = 7.2 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 149.5, 134.9, 130.1, 

116.7, 112.0, 111.0, 45.5, 22.5, 11.5 ppm; GC-MS m/z = 169 (M+); HRMS (IT-TOF/ESI) 

Calcd for C9H13NCl ([M+H]+): 170.0731, Found: 170.0728. 

Data for 108c: 1H NMR (400 MHz, CDCl3) δ 8.87 (dd, J = 4.2, 1.7 Hz, 

1H), 8.04-8.00 (m, 1H), 8.01 (d, J = 9.0 Hz, 1H), 7.75 (d, J = 2.4 Hz, 1H), 

7.61 (dd, J = 9.0, 2.4 Hz, 1H), 7.38 (dd, J = 8.3, 4.2 Hz, 1H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 150.5, 146.5, 135.0, 132.2, 131.0, 130.3, 128.7, 126.3, 121.8 ppm; GC-

MS m/z = 163 (M+). 1H and 13C NMR spectral data are in good agreement with the literature 

data.118 

Data for 109c: 1H NMR (400 MHz, CDCl3) δ 7.13-7.09 (m, 2H), 

6.54-6.49 (m, 2H), 3.64 (br s, 1H), 3.05 (t, J = 7.1 Hz, 2H), 1.68-

1.58 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 
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MHz, CDCl3) δ 147.0, 129.0, 121.5, 113.7, 45.8, 22.6, 11.6 ppm; GC-MS m/z = 169 (M+). 

1H and 13C NMR spectral data are in good agreement with the literature data.119 

Data for 108d: 1H NMR (400 MHz, CDCl3) δ 8.81 (dd, J = 4.2, 1.7 Hz, 

1H), 8.17-8.14 (m, 1H), 7.70 (s, 1H), 7.25 (dd, J = 8.4, 4.2 Hz, 1H), 7.13 

(s, 1H), 2.56 (s, 3H), 2.46 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) 

δ 149.7, 148.6, 139.1, 133.9, 132.0, 129.1, 126.4, 125.5, 119.7, 21.6, 18.2 ppm; GC-MS 

m/z = 157 (M+). 1H and 13C NMR spectral data are in good agreement with the literature 

data.120 

Data for 108e: 1H NMR (400 MHz, CDCl3) δ 9.20 (d, J = 2.4 Hz, 1H), 

8.23 (d, J = 2.4 Hz, 1H), 7.74-7.71 (m, 2H), 7.63 (d, J = 8.3 Hz, 1H), 

7.55-7.50 (m, 2H), 7.45-7.41 (m, 1H), 7.40, (d, J = 8.3 Hz, 1H), 2.81 

(s, 3H), 2.54 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 148.5, 146.4, 138.1, 137.1, 

134.1, 133.3, 132.3, 129.9, 129.1, 127.8, 127.2, 126.3, 125.0, 20.7, 13.3 ppm; GC-MS m/z 

= 233 (M+). 1H and 13C NMR spectral data are in good agreement with the literature 

data.117,121,122 

Data for 108f: 1H NMR (400 MHz, CDCl3) δ 9.10 (d, J = 2.3 Hz, 

1H), 8.23 (d, J = 2.3 Hz, 1H), 7.76 (d, J = 8.9 Hz, 1H), 7.71-7.68 

(m, 2H), 7.54-7.49 (m, 2H), 7.46 (d, J = 2.5 Hz, 1H), 7.44-7.39 (m, 1H), 7.24 (dd, J = 8.9, 

2.5 Hz, 1H), 3.98 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.7, 149.9, 149.0, 

138.0, 133.0, 131.8, 129.1, 129.0, 127.8, 127.2, 123.2, 120.2, 107.1, 55.5 ppm; GC-MS 

m/z = 235 (M+). 1H and 13C NMR spectral data are in good agreement with the literature 

data.117 



161 
 

Data for 108g: 1H NMR (400 MHz, CDCl3) δ 8.95 (d, J = 2.3 Hz, 

1H), 8.08 (d, J = 2.3 Hz, 1H), 7.68-7.64 (m, 2H), 7.52-7.47 (m, 2H), 

7.43-7.38 (m, 2H), 7.08 (s, 1H), 6.10 (s, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 

150.6, 148.1, 147.3, 145.5, 137.9, 132.3, 132.2, 129.0, 127.8, 127.2, 125.0, 105.6, 102.8, 

101.7 ppm; GC-MS m/z = 249 (M+). 1H and 13C NMR spectral data are in good agreement 

with the literature data.117 

Data for 109g: 1H NMR (400 MHz, CDCl3) δ 7.36-7.31 (m, 2H), 

7.27-7.20 (m, 3H), 6.65 (d, J = 8.3 Hz, 1H), 6.21 (d, J = 2.3 Hz, 

1H), 6.01 (dd, J = 8.3, 2.3 Hz, 1H), 5.85 (s, 2H), 3.36 (br s, 1H), 

3.28 (dd, J = 12.2, 6.0 Hz, 1H), 3.17 (dd, J = 12.2, 8.4 Hz, 1H), 3.09-3.00 (m, 1H), 1.33 (d, 

J = 7.0 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 148.3, 144.4, 143.8, 139.5, 128.7, 

127.2, 126.6, 108.6, 104.6, 100.5, 96.1, 51.9, 39.1, 19.8 ppm; GC-MS m/z = 255 (M+). 

HRMS (IT-TOF/ESI) Calcd for C16H18NO2 ([M+H]+): 256.1332, Found: 256.1330. 

Data for 108h: 1H NMR (400 MHz, DMSO-d6) δ 8.62 (s, 1H), 8.14 

(s, 1H), 6.95 (s, 1H), 6.43 (s, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 2.41 (s, 

3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.2, 155.3, 152.4, 

148.3, 129.5, 127.2, 116.3, 99.3, 97.9, 55.5, 55.3, 18.4 ppm; GC-MS m/z = 203 (M+); 

HRMS (IT-TOF/ESI) Calcd for C12H14NO2 ([M+H]+): 204.1019, Found: 204.1015. 

Data for 108i: 1H NMR (400 MHz, CDCl3) δ 9.09 (d, J = 2.4 Hz, 

1H), 8.61 (d, J = 2.4 Hz, 1H), 7.73-7.69 (m, 2H), 7.52-7.47 (m, 

2H), 7.42-7.37 (m, 1H), 7.05 (d, J = 2.2 Hz, 1H), 6.54 (d, J = 2.2 

Hz, 1H), 3.98 (s, 3H), 3.96 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 161.2, 156.1, 

150.1, 149.4, 138.3, 130.9, 129.0, 128.1, 127.6, 127.1, 116.5, 99.4, 98.4, 55.8, 55.6 ppm; 
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GC-MS m/z = 265 (M+); HRMS (IT-TOF/ESI) Calcd for C17H16NO2 ([M+H]+): 266.1176, 

Found: 266.1170. 

Data for 108j: 1H NMR (400 MHz, CDCl3) δ 6.95 (d, J = 2.4 Hz, 

1H), 6.83-6.82 (m, 1H), 6.41 (d, J = 2.4 Hz, 1H), 3.89 (s, 3H), 3.86 

(s, 3H), 2.74 (s, 3H), 2.58 (s, 3H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 160.3, 158.7, 158.5, 151.3, 145.5, 121.9, 114.7, 100.1, 97.6, 55.4, 55.3, 24.6, 

24.0 ppm; GC-MS m/z = 217 (M+); HRMS (IT-TOF/ESI) Calcd for C13H16NO2 ([M+H]+): 

218.1176, Found: 218.1171. 

Data for 108k: 1H NMR (400 MHz, CDCl3) δ 9.34-9.30 (m, 1H), 9.03-9.00 

(m, 1H), 8.17-8.14 (m, 1H), 7.91 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 8.8 Hz, 

1H), 7.79-7.65 (m, 3H), 7.53-7.49 (m, 1H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 148.8, 146.5, 135.8, 133.5, 131.4, 128.1, 127.8, 127.7, 127.0, 126.3, 125.3, 124.3, 

121.7 ppm; GC-MS m/z = 179 (M+). 1H and 13C NMR spectral data are in good agreement 

with the literature data.123 

Data for 108l: 1H NMR (400 MHz, CDCl3) δ 9.30-9.27 (m, 1H), 8.84 (d, 

J = 2.2 Hz, 1H), 7.90-7.86 (m, 2H), 7.78-7.72 (m, 2H), 7.70-7.65 (m, 

1H), 7.58 (d, J = 8.8 Hz, 1H), 2.52 (s, 3H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 150.2, 144.4, 135.0, 133.1, 131.4, 131.2, 127.7, 127.6, 127.6, 126.9, 126.0, 

125.0, 124.0, 18.5 ppm; GC-MS m/z = 193 (M+). 1H and 13C NMR spectral data are in 

good agreement with the literature data.124 

Data for 108m: 1H NMR (400 MHz, CDCl3) δ 9.34-9.31 (m, 1H), 9.28 

(d, J = 2.3 Hz, 1H), 8.31 (d, J = 2.3 Hz, 1H), 7.94-7.90 (m, 1H), 7.83 

(d, J = 8.8 Hz, 1H), 7.80-7.69 (m, 4H), 7.73 (d, J = 8.8 Hz, 1H), 7.57-
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7.52 (m, 2H), 7.48-7.43 (m, 1H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 147.8, 145.5, 

137.9, 134.5, 133.5, 133.3, 131.3, 129.1, 128.1, 128.1, 128.0, 127.8, 127.3, 127.2, 126.1, 

125.4, 124.3 ppm; GC-MS m/z = 255 (M+). 1H and 13C NMR spectral data are in good 

agreement with the literature data.122 

Data for 108n: 1H NMR (400 MHz, CDCl3) δ 9.38-9.33 (m, 1H), 7.91-

7.88 (m, 1H), 7.87 (d, J = 9.0 Hz, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.73-

7.64 (m, 2H), 7.25 (s, 1H), 2.79 (s, 3H), 2.71 (s, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 157.2, 145.6, 143.9, 133.4, 131.6, 127.7, 127.5, 126.7, 126.2, 124.7, 

123.7, 123.3, 121.2, 25.3, 19.0 ppm; GC-MS m/z = 207 (M+). 1H and 13C NMR spectral 

data are in good agreement with the literature data.125 
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