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ABSTRACT 
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CONNECTIVITY IN INDIVIDUAL PATIENTS 

 

 

 

Esther Cox 

 

Marquette University, 2017 

 

 

 

Resting state functional MRI (rsfMRI) has been proven to be a valuable tool in 

clinical applications such as pre-surgical mapping, but there is not yet a functional and 

usable algorithm that can be used by physicians in a clinical setting to evaluate an 

individual patient for diseases and aberrant brain connectivity. If a physician wants to 

evaluate a patient in this way, the rsfMRI data must be looked at “by hand,” i.e. the 

physician must manually evaluate the data and identify the functional ICN’s and whether 

they are normal or aberrant. An algorithm that would automate this process and 

supplement the physician’s evaluation would be very valuable and would decrease the 

time needed while increasing accuracy of the data analysis. The algorithm could be used 

in clinical applications as discussed, or academic and research applications to explore the 

neural basis of neurological disorders and deficits (epilepsy, etc). 

rsfMRI data is significant for the proposed solution as it provides maps of 

functional brain connectivity within functionally specific neural networks, and those 

connectivity maps can help identify normal and abnormal brain conditions. Whether an 

ICA approach based on standard networks or an ROI seed based approach which utilizes 

temporal correlation is used, the end goal of this research is to develop and refine an 

imaging biomarker for aberrant brain connectivity. The biomarker algorithm should be 

able to detect the two main types of aberrant connectivity: increased (when abnormal 

brain connections are present) and decreased (when normal brain connections are 

missing). The algorithm should then correlate the connectivity patterns to a normative 

reference data set and create prioritized classification matches to that reference data set. 

This will allow identification of the aberrant connectivity patterns. Data from the Human 

Connectome Project (HCP) will be used to create the normative reference data set. The 

algorithm will finally be verified using simulated test data and test statistics. 
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CHAPTER I 

 

INTRODUCTION 

 

 

 Resting state functional MRI (rsfMRI) has been proven to be a valuable 

tool in clinical applications such as pre-surgical mapping, but there is not yet a functional 

and usable algorithm that can be used by physicians in a clinical setting to evaluate an 

individual patient for diseases and aberrant brain connectivity. If a physician wants to 

evaluate a patient in this way, the rsfMRI data must be looked at “by hand,” i.e. the 

physician must manually evaluate the data and identify the functional ICN’s and whether 

they are normal or aberrant.  

An algorithm that would automate this process and supplement the physician’s 

evaluation would be very valuable and would decrease the time needed while increasing 

accuracy of the data analysis. The algorithm could be used in clinical applications as 

discussed, or academic and research applications to explore the neural basis of 

neurological disorders and deficits (epilepsy, etc). 

rsfMRI data is significant for the proposed solution as it provides maps of 

functional brain connectivity within functionally specific neural networks, and those 

connectivity maps can help identify normal and abnormal brain conditions. Whether an 

ICA approach based on standard networks or an ROI seed based approach which utilizes 

temporal correlation is used, the end goal of this research is to develop and refine an 

imaging biomarker for aberrant brain connectivity. The biomarker algorithm should be 

able to detect the two main types of aberrant connectivity: increased (when abnormal 

brain connections are present) and decreased (when normal brain connections are 
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missing). The algorithm should then correlate the connectivity patterns to a normative 

reference data set and create prioritized classification matches to that reference data set. 

This will allow identification of the aberrant connectivity patterns. Data from the Human 

Connectome Project will be used to create the normative reference data set. The 

algorithm will finally be verified using patient test data and test statistics. 

The data used from the Human Connectome Project will represent actual patient 

data, however, for this thesis there will not be evaluation of an actual data set from an 

epileptic patient. The epileptic (aberrant) connectivity will be simulated in order to test 

the accuracy and noise sensitivity of the algorithm. Future work could continue with 

application of the algorithm to actual epilepsy patient data. 

 Finally for the purpose of this thesis, the following terms will be used. Magnetic 

Resonance Imaging will be defined as MRI, nuclear magnetic resonance as NMR, and 

resting state functional MRI as rsfMRI. ICA is independent component analysis, the 

method applied to the resting state MRI data to obtain the independent component 

networks (ICN), which represent the functionally connected areas of the brain. The data 

used is from the Human Connectome Project (HCP). 

  

 

 

 

 

 



3 
 

 

CHAPTER II 

LITERATURE REVIEW 

 

 

A. Magnetic Resonance Imaging 

 

 

 While the medical imaging technique of MRI has only become useful in a clinical 

setting relatively recently (within the past 30 years), the techniques and principles used in 

MRI have been developed over many more years and with contributions from many 

scientists (Geva, 2006). Indeed, “the scientists who made the extraordinary contributions 

… have led to five Nobel Prizes awarded to discoveries related to NMR/MRI” (Geva, 

2006).  

Among the scientists that contributed to the early development of MRI (i.e. before 

the phenomenon of nuclear magnetic resonance, or NMR, was discovered) are Jean 

Baptiste Joseph Fourier, Nikolas Tesla, and Sir Joseph Larmor. Although their 

discoveries and methods were made before NMR was known, they are critical to the 

measurement and analysis of MRI even today. The mathematical method of the Fourier 

transform that was developed by the French mathematician Jean Baptiste Joseph Fourier 

is critical to the creation of magnetic resonance images. Without it, the frequency and 

phase information contained in the raw NMR data could not be analyzed and image 

reconstruction would not be possible (Geva, 2006). Nikola Tesla was a Serbian-American 

inventor and researcher who had over 700 patents in the United States and Europe, and he 

“discovered the rotating magnetic field, the basis of most alternating current machinery” 

(Roguin, 2004). The Tesla, named after Nikola Tesla, is the SI unit of magnetic flux 

density, and is used in MRI as the measure of the strength of the applied magnetic field. 
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Sir Joseph Larmor was an Irish physicist who was the first to calculate the rate at which 

energy is radiated by an accelerated electron (Tubridy, 2000; Geva, 2006). The Larmor 

equation (named after him), is important in MRI because the Larmor frequency is the 

frequency at which a proton precesses when placed into an external magnetic field. The 

Larmor equation is ω = γB0 where ω is the precession frequency, γ is the gyromagnetic 

ratio, and B0 is the applied external magnetic field (Nishimura, 1996). The foundation of 

mathematics, physics, and engineering that was begun by these three scientists is what 

modern MRI was built upon today. 

As research continued into the modern era, an Austrian born scientist named 

Isidor Rabi began research into the magnetic properties of crystals and atomic nuclei in 

1929 and 1930 (Geva, 2006). He set up a molecular beam lab and in 1931 and began 

working on determining the nuclear spin and magnetic moment of sodium (Chodos, 

2006). Eventually, as he continued his work on the problem, Rabi improved his methods 

and developed the magnetic resonance method, which is the basis of MRI. The method 

discovered that atomic magnetic moments align in an external magnetic field and then 

spin (precess) about the direction of the magnetic field at the Larmor frequency, which 

depends on the strength of the external magnetic field and the gyromagnetic ratio 

(Chodos, 2006). Ultimately, this led to Rabi predicting in 1937 that “the magnetic 

moments of nuclei in these experiments could be induced to flip their orientation if they 

absorbed energy from an electromagnetic wave of the right frequency. They would also 

emit this amount of energy in falling back to the lower energy orientation” (Chodos, 

2006). Once this discovery was made, the molecular beam was modified so a radio 

frequency signal was applied to the beam to tune it to produce resonance. The resonance 
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was first observed in 1938, and Rabi was awarded the Nobel Prize in 1944 for his work 

(Chodos, 2006). Ultimately, the combination of the previous decades of work from this 

group of dedicated scientists culminated in the first MRI exam on a live human patient 

which occurred on July 3, 1977 (Chodos, 2006) 

A very simple description of how MRI works is as follows: the patient enters the 

scanner, and a radio wave is sent in. Then, the radio wave is turned off and the patient 

emits a signal, and finally the signal is received and sampled and the picture is 

reconstructed. However, the physics and details of how MRI works certainly deserve a 

more thorough examination. Much of the following information on magnetic resonance 

imaging can be found in the book Principles of Magnetic Resonance Imaging by Dwight 

G. Nishimura (Nishimura, 1996). 

First of all, it is important to know that biological tissue can be magnetized. 

Spinning charged particles create an electromagnetic field, and for the purposes of MRI 

the interest is in the charged nuclei of atoms that are present in the human body. 

Specifically, MRI uses the charged hydrogen nucleus. Each of these hydrogen nuclei 

produces a small magnet as it spins, and when these hydrogen “magnets” are placed into 

an external magnetic field they align. The hydrogen nuclei can align in either a parallel or 

an antiparallel state. When they are in the parallel state, they are in a low energy state, 

and when they align antiparallel, they are in a higher energy state. There are slightly more 

hydrogen protons in the lower energy state, and although there is only a very small 

amount more, that difference is enough for the biological tissue to become magnetized. 

This initial magnetization of the biological tissue is traditionally known as M0. However, 

M0 can’t be measured as is because the net magnetization is in the same direction as the 
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applied magnetic field (known as B0). In order to make the net magnetization of the tissue 

useful, a radio frequency (RF) excitation pulse (traditionally called B1) is applied. The 

pulse B1 is applied in the transverse plane and is applied at a frequency that matches the 

Larmor frequency of the hydrogen protons. Since the RF pulse is applied at the Larmor 

frequency, the protons will resonate at this frequency and energy will be added to the 

protons. The RF pulse is brief, and once it ends the protons will begin to spin (precess) 

out of the higher energy state and back to their original state. The added energy from the 

RF pulse will cause the random precessions to align, and this produces a magnetic 

resonance signal in the transverse plane that can be measured and used to reproduce an 

image. This phenomenon is shown visually in Figure 1. 

 

 

Figure 1: Figure F shows the aligned protons in the biological tissue that produces the net 

magnetization M0. Figure G shows the applied RF pulse that provides energy to the 

system and causes the protons to precess about the z axis at the Larmor frequency. Figure 

H shows the precessing protons returning to their equilibrium (lower energy) state, 

emitting a signal in the XY plane that can be measured by a receiver coil (Dimmock, 

2013). 

 

 

 In addition to the main external magnetic field and the applied RF pulse, a 

gradient magnetic field (G) is also applied. The purpose of this gradient field is to change 



7 
 

 

the value of B0 at different locations along the patient. This in turn changes the Larmor 

frequency across the volume, so at every location the precession frequency of the protons 

is different. This is absolutely critical to image reconstruction because with the gradient 

field, frequency maps to location (i.e. if we know the frequency we know the location of 

the slice within the volume). This allows for slice selective excitation, and it also allows 

frequency encoding in one direction and phase encoding in the other direction. In 

practice, a signal bandwidth is used for the RF pulse so that a slice of selected thickness 

will resonate. A smaller width produces a higher image resolution but has a lower signal 

since fewer protons will be resonating. The slope of the gradient also affects the slice 

thickness, with a steeper gradient slope producing a narrower slice. To get a sharply 

defined image slice, a rectangular shaped RF pulse (in the frequency domain) is needed. 

Even to this day, the quality of the gradient remains an issue. The more linear the 

gradient is, the better for image quality, but there are many factors that influence the 

linearity of the field. Even just the person laying inside of the scanner will affect the 

linearity of the gradient because they change the magnetic field.  

 As discussed earlier, the signal measured is in the transverse plane and is 

measured by a receiver RF coil. This receiver coil is often the same as the one that 

applies the RF pulse, and it measures the signal as current given off by the precessing 

protons. The signal is phase encoded in the y direction by the y direction gradient field Gy 

and frequency encoded in the x direction by the x direction gradient field Gx. As the data 

is received by the coil, it is received in k space, an abstract concept where the raw MRI 

data is stored before the Fourier transform is applied. Each of the received samples is a 

data point in k space, so when all the data is obtained you end up with a raw data matrice 
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that represents the spatial frequency of the signal. The center of the k space matrice is not 

the center of the image (k space does not correlate to spatial location within the image). 

Instead, the center of k space represents the amount of time the image changes slowly in 

space. This means that the edges of k space contain the fine details of the image, or the 

rapid changes across space, while the center of k space contains the coarser details of the 

image, or the slower changes across space. Finally, in order to transform the data from k 

space to image space (to reconstruct the image), the 2D Fourier Transform (2DFT) is 

applied to the data. The 2DFT transforms the data from frequency space to image 

(spatial) space, allowing reconstruction of the true image.  

 

B. Functional Magnetic Resonance Imaging 

 

In order to understand resting state functional Magnetic Resonance Imaging 

(rsfMRI), functional MRI (fMRI) must first be explained. fMRI is a method of MRI that 

developed in the 1990s and is a way to measure brain activity and function. According to 

Dr. Seiji Ogawa, who is credited as one of the discoverers of fMRI, “the most widely 

used method is based on BOLD (Blood Oxygenation Level Dependent) signal change 

that is due to the hemodynamic and metabolic sequelae of neuronal responses” (Ogawa & 

Sung, 2007). fMRI is based on the fact that the human brain is organized spatially so that 

specific functions of the brain are localized at various sites (Ogawa & Sung, 2007). That 

localized functionality is what allows fMRI to locate areas of the brain and map them 

spatially, along with the physiological basis of the BOLD signal.  

The BOLD effect in MRI functions is based on the hemoglobin molecule. In 

1936, Linus Pauling and Charles Coryl discovered that de-oxygenated hemoglobin is 
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paramagnetic and oxygenated hemoglobin is diamagnetic (Pauling & Coryl, 1936). This 

causes a difference in the magnetic susceptibility between blood and the surrounding 

tissue, and the water protons in the area around the blood sense the field distortions 

caused by the change in magnetic susceptibility, and they reflect the signal decay process 

(or precession as discussed earlier) (Ogawa & Sung, 2007). Thus, when the amount of 

deoxygenated hemoglobin in the blood changes, the relaxation of the water molecules 

changes, and these changes can be seen in the MRI image as variation in image intensity 

(Ogawa & Sung, 2007). 

The term blood oxygenation level dependent (BOLD) contrast was developed by 

Ogawa, Lee, Kay, and Tank in 1990 and applied to magnetic resonance imaging 

techniques (Ogawa, Lee, Kay, & Tank, 1990). Ogawa et al. demonstrated that  

Since BOLD contrast depends on the state of blood oxygenation, physiological 

events that change the oxy/deoxyhemoglobin ratio should lend themselves to 

noninvasive detection through the accentuation of BOLD contrast in gradient-

echo proton images at high magnetic fields (p. 9868). 

 

Put simply, increased neural activity in specific functional areas of the brain occurs as a 

person performs tasks, requiring increased blood flow to those activated areas and 

ultimately providing the BOLD signal that is measured by fMRI. 

fMRI data is traditionally collected by having the patient perform a specific task 

to activate a specific functional area of the brain. For example, the patient is asked to tap 

their fingers in a specific order in order to activate the motor cortex (i.e. to cause the 

increased blood flow that will lead to the BOLD signal), and the fMRI is able to measure 

the signal change and identify the motor cortex. Today, fMRI based on the BOLD signal 

is widely used to evaluate the neural basis of various functional parts of the brain, such as 

the sensorimotor and mental processes (Ogawa & Sung, 2007). One of the most 
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significant outcomes of fMRI that relates to this work is the functional brain maps that 

have been developed from fMRI. By providing specific stimuli to the patients, Shirer, 

Ryali, Rykhlevskaia, Menon, and Greicius were able to decode 90 different functional 

regions of interest (ROIs) (Shirer et al., 2011) as shown in Figure 2.  

 

 

Figure 2: Functional parcellation of the brain into 90 ROIs that cover the majority of 

cortical and subcortical gray matter (Shirer et al., 2012). Row A shows 5 of the 90 ROI’s, 

and Row B shows the 90 ROIs overlaid on a brain, demonstrating that a majority of the 

gray matter is covered (Shirer et al., 2012). 

 

 

These functional areas can be used to define which parts of the brain do what in the body, 

for example, which of the ROIs control the motor functions, which control the visual 

functions, etc. This is important for the research described in this thesis because it allows 

selection of only the areas of interest, in this case the medial-temporal lobe(s) that are 

affected by epilepsy. 

 

C. Resting State fMRI 

 

 Continuing to build on the base of MRI and fMRI, Bharat Biswal discovered what 

would ultimately come to be known as resting state fMRI (rsfMRI). Together with his 
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colleagues, Biswal discovered that there is a high temporal correlation between low 

frequency fluctuations of resting brain functional regions (Biswal, Yetkin, Haughton, 

Hyde, 1995). The data showed that the time course in the sensorimotor cortex highly 

correlated to other areas of the brain associated with motor function, even when the 

subjects were at rest (i.e. not performing a task as in traditional fMRI) (Biswal, et al., 

1995). This was a groundbreaking discovery “suggesting ongoing information processing 

and ongoing functional connectivity between these regions during rest (van den Heuvel et 

al., 2010). Figure 3 shows the temporal correlation compared to the traditional task-

activated response of fMRI for a component localized to the motor cortex. Biswal 

continued to build on the concept, further demonstrating the presence of BOLD and flow-

weighted frequency variations that, when used to weight the connectivity, result in a 

much improved resting state functional connectivity map (Biswal, et al., 1997). In this 

study “the resting state time series of a voxel in the motor network was correlated with 

the resting state time series of all other brain voxels, revealing a high correlation between 

the spontaneous neuronal activation patterns of these regions” (van den Heuven, et al., 

2010). This concept is shown visually in Figure 3.  
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Figure 3: “Resting-state fMRI studies are focused on measuring the correlation between 

spontaneous activation patterns of brain regions. Within a resting-state experiment, 

subjects are placed into the scanner and asked to close their eyes and to think of nothing 

in particular, without falling asleep. Similar to conventional task-related fMRI, the BOLD 

fMRI signal is measured throughout the experiment (panel a). Conventional task-

dependent fMRI can be used to select a seed region of interest (panel b). To examine the 

level of functional connectivity between the selected seed voxel i and a second brain 

region j (for example a region in the contralateral motor cortex), the resting-state time-

series of the seed voxel is correlated with the resting-state time-series of region j (panel 

c). A high correlation between the time-series of voxel i and voxel j is reflecting a high 

level of functional connectivity between these regions. Furthermore, to map out all 

functional connections of the selected seed region, the time-series of the seed voxel i can 

be correlated with the time-series of all other voxels in the brain, resulting in a functional 

connectivity map that reflects the regions that show a high level of functional 

connectivity with the selected seed region (panel d)” (van den Heuven et al., 2010). 

 

 

The high temporal correlation that is graphically displayed as time course in Figure 3 can 

also be seen in Figure 4 in the spatially related region of the brain (in this case the 

sensorimotor cortex) 
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Figure 4: a) Traditional fMRI task-activated response in the sensorimotor cortex due to 

left and right finger movement. b) The fluctuation response with the brain at rest from the 

temporal correlation discovered by Biswal et al. (Biswal et al., 1995). In this figure, red is 

a positive correlation and yellow is negative. 

 

 

This demonstrates again that there is spontaneous brain activity during a resting state that 

is correlated between functionally related brain regions to create functional connectivity 

maps, which is the basis of rsfMRI (van den Heuven et al., 2010). 

 One of the most significant benefits to rsfMRI is that the patient does not need to 

perform a specific task in order to obtain the functional connectivity map. The need for 

movement or another active task in task based fMRI can introduce motion artifact. For 

example, with fMRI if the area of the motor cortex that operates the legs needs to be 

isolated, the patient must move their legs in some way. This makes it very difficult to 

keep the head as still as required for an MRI. Thus, rsfMRI eliminating the need for a 

task holds many advantages, including for patients that may have a difficult time 

completing certain tasks, such as small children, the elderly, and epilepsy patients (very 

significant in this research).  

 



14 
 

 

D. Post Processing of rsfMRI Data 

 

 The data produced from rsfMRI can be processed in several ways. One of these 

methods is the seed based method where the connectivity is based on a predefined brain 

region known as a seed that is obtained from an activation map or a task based scan (van 

den Heuven et al., 2010). However, there are methods that do not require a seed in order 

to perform the classification. One of the most common of these methods and the one used 

to analyze the data used in this research project is Independent Component Analysis 

(ICA). A detailed explanation of the mathematical working of ICA can be found in 

Independent component analysis, A new concept by Pierre Comon (Comon, 1992). This 

method works by “attempting to separate independent “sources” that have been mixed 

together”, such as separating voices as was applied by Bell and Sejnowski in 1995 (Bell, 

Sejnowski, 1995; Calhoun, Adali, Pearlson, Pekar, 2001). When applied to rsfMRI data, 

it can be used to separate temporally independent sources, which is ideal since the 

correlations in rsfMRI data are temporal in nature (Calhoun et al., 2001). This was first 

done by Biswal and Ulmer in 1999 when they applied ICA to rsfMRI data. The results 

showed that ICA can reliably separate the temporal signal sources from the noise and 

determine the location of said signals (Biswal, Ulmer, 1999). Figure 5 shows some of the 

separated components from the ICA analysis.  
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Figure 5: The first 3 separate ICA components from the MRI data (Biswal, Ulmer, 1999) 

 

Further studies continued to validate the reliability of ICA when used to separate 

functional components of the brain from rsfMRI data. Van de Ven et al showed that 

spatial ICA yielded connectivity maps that were consistent both within and between 

subjects (Van de Ven, Formisano, Prvulovic, Roeder, Linden, 2004). Subjects were told 

to lie at rest in the MRI scanner and keep their eyes open to obtain the resting state data, 

and then the ICA analysis was performed on the MRI data, decomposing the datasets into 

components of interest (COIs) (Van de Ven et al., 2004). Figure 6 shows the top 3 

components of interest obtained from one of the subjects. 

 

Figure 6: The top 3 components of interest separated out from the rsfMRI data by ICA 

(Van de Ven et al., 2004) 
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De Luca et al and Beckmann et al further showed that the individual components that 

contribute to the rsfMRI data can be reliably separated and identified by ICA (De Luca, 

Beckmann, Stefano, Matthews, Smith, 2005; Beckmann, DeLuca, Devlin, Smith, 2005). 

It is also important to note that in a real physiological rsfMRI data set, both noise and the 

correlated random signals (i.e. the signals that are the source of the correlation) are 

present, and an accurate simulated component will include the noise.  

 

E. Using rsfMRI in a Clinical Setting 

 

rsfMRI is important to the research world as it provides important information 

about both the healthy brain and various disease types (Lee, Smyser, Shimonya, 2012). 

However, its use in a clinical setting is only beginning to be explored. One of the most 

common clinical applications is presurgical planning for patients with brain tumors as 

shown in Figure 7 (Lee et al., 2012). 

 

 

Figure 7: The motor and language functional areas in 2 patients. A) The somatosensory 

area can be seen as displaced due to the tumor. B) The Broca area is displaced due to the 

tumor (Lee et al., 2012). 
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The method can also be used for presurgical planning in epilepsy patients. Lui et al was 

the first to locate sensorimotor areas using rsfMRI in patients with epilepsy (Lui et al., 

2009), and further research continued to validate the rsfMRI data can be used to identify 

epileptic centers (Lee, 2012). Newer research has shown that rsfMRI has potential to be 

used to perform research and develop a deeper understanding of the neurological basis of 

Alzheimer disease, psychiatric diseases, depression, autism, schizophrenia, ADHD, and 

other neural diseases that have previously been difficult to diagnose (Lee et al., 2012). 

However, there are challenges that must be overcome before clinical applications are 

practical. The most prevalent is that it is difficult to accurately research clinical diseases 

and problems in individual patients (as opposed to groups of patients) (Lee et al., 2012). 

This is where the research presented in this thesis becomes important as the biomarker 

algorithm developed here will help advance rsfMRI research towards relevant clinical 

applications for individual applications (to be discussed further in Section G). 

 

 

F. Evaluating Groups of Patients 

 

 

Evaluating groups of patients holds promise in a clinical setting because 

combining multiple data sets and “jointly estimating the common functional networks is 

more robust” (Liu, Awate, Fletcher, 2012). Traditionally, this is done by identifying each 

patient’s common networks, and then combining them together to draw group inferences 

(Liu et al., 2012). Liu et al demonstrated that a stable and consistent group connectivity 

map can be produced (Liu et al., 2012), and Beckmann et al similarly showed successful 

group analysis (Beckman, Mackay, Filippin, Smith). Beckman et al analyzed the data as 
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shown graphically in Figure 8, by concatenating all of the subject’s data sets and then 

applying ICA to identify the resting state connectivity patterns present in the entire group 

(Beckmann, et al). 

 

 

Figure 8: The multiple sets of individual patient data are concatenated into a group data 

set, and then the ICA analysis is run to obtain a group ICA map of all of the common 

functional connectivity maps present in the entire group. 

 

 

The rsfMRI group data cannot simply be averaged because the time course of each 

person is unique and random. Thus the approach in Figure 8 makes it possible to perform 

a group analysis from the individual patient’s raw data. This group analysis is useful for 

looking at trends across large groups of patients, for example, to investigate the maps that 

are present in healthy individuals (as a group) verses diseased patients (as a group). 

While this is important in disease research and advancing rsfMRI analysis, it is not as 

useful in a clinical setting as a single subject evaluation. In order to be truly useful, a 

clinician must be able to analyze one single patient for their specific connectivity patterns 

and changes within that pattern due to disease. 

 

G. Single Subject Evaluations 
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As already mentioned briefly, individual subject rsfMRI data must be evaluated 

accurately in order to be truly useful in a clinical setting, and this is where the research 

presented in this thesis becomes important. Currently in this area, research has been done 

investigating the within subject test-retest reliability (reproducibility) and the between 

subject variation by Chou et al (Chou, Panych, Dickey, Petrella, Chen, 2012). They 

performed 9 resting state scans over 1 year and calculated the within subject 

reproducibility and the between subject variation. The data showed a long term within 

subject test-retest reproducibility of >70%, however, it also showed a significant 

between-subject variation (Chou et al., 2012). The significant variation is what makes it 

difficult to evaluate a single subject, especially without a functional classification 

algorithm that a clinician can use. Despite this difficulty, there are multiple studies and 

methods as described in Section D that continue to build the clinical credibility of rsfMRI 

when evaluating individuals, but there is still no functional and usable algorithm that 

clinicians can use to easily check individual patient data for aberrant connectivity patterns 

that may signal disease. The purpose of this research is to begin development of such a 

clinical tool. 

 

H. Medial Temporal Lobe Epilepsy 

 

In order to evaluate the approach developed here as a clinical tool, a patient with 

an aberrant connectivity pattern must be compared to a normative database. In this 

research, the chosen aberrant connectivity is due to medial (mesial) temporal lobe 

epilepsy (mTLE). Research has shown that patients with medial temporal lobe epilepsy 

have an aberrant connectivity pattern in the medial temporal lobe of the brain. In a study 
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by Wei Liao et al., 18 patients with mTLE were compared to 27 healthy controls. The 

mTLE patients showed increased connectivity within the medial temporal lobes and 

between the parietal and frontal lobes (Liao et al., 2010). These lobes are highlighted in 

Figure 9. 

 

 

Figure 9: The frontal and temporal lobes affected by mTLE (humandiagraminfo.com). 

 

Since the medial temporal lobe and frontal lobe are those affected by mTLE, a synthetic 

aberrant connectivity pattern will be created that simulates the abnormal connectivity 

between these lobes. The creation of this simulated aberrant connectivity pattern will be 

discussed in further detail in Chapter 3, Section C. 
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CHAPTER III 

METHODOLOGY 

 

 

A. Human Connectome Project Data 

 

 The data used in this research was obtained from work done by a consortium of 

10 institutions led by Washington University, University of Minnesota, and Oxford 

University (Van Essen et al., 2012). The 5 year project is titled the Human Connectome 

Project (HCP), and its purpose is “comprehensively mapping human brain circuitry in a 

target number of 1200 healthy adults” (Van Essen, 2016). The HCP data is collected 

using 4 different imaging modalities, including rsfMRI, on new 3T and 7T MRI scanners. 

The scanning took place at Washington University over a 2 day period (for each subject). 

Scans from 1200 healthy adults were collected and include both the resting state scans 

and anatomical T1 weighted and T2 weighted scans (Van Essen et al., 2012). Figure 10 

shows the schematic outline for the data collection process of the HCP. 

 

 

Figure 10: The schematic outline for the HCP project data collection (Van Essen, et al., 

2012). 
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The scans at Washington University were performed on a “customized 3T Connectome 

scanner adapted from a Siemens Skyra” (Van Essen, et al., 2012), and 200 of the subjects 

had additional scans performed with a customized 7T scanner at the University of 

Minnesota. The data collection was performed on 2 separate scanners to optimize the MR 

image data quality. According to The Human Connectome Project: A data acquisition 

perspective published by David Van Essen et al., “3T systems are the more mature and 

robust platforms, compatible with the need to scan a large number of subjects. 7T 

systems offer advantages, especially for the resting and task-based fMRI studies […] 

however, 7T platforms are less mature and more challenging to work with, and are thus 

incompatible with an ambitious data collection strategy” (Van Essen, et al., 2012). This 

resulted in the dual strategy used in the data collection. The customized 3T scanner, used 

to scan all 1200 subjects, was specially designed by the consortium with unique gradients 

and RF hardware. The gradients had higher amplitudes that served to increase SNR, and 

the RF hardware allowed parallel imaging, drastically reducing the acquisition times 

(very important due to the high volume of subject data that was collected) (Van Essen, et 

al., 2012). Exhaustive information on the specifics of the scanners, pulse sequences, and 

data collection process can be found in The Human Connectome Project: A data 

acquisition perspective (Van Essen, et al., 2012). 

The first data release included data from 900 subjects, and is open access to those 

in the scientific community that register and agree to Open Access Data Use Terms. The 

data used in this research was this first release open access data, and obtained through 

work done by Dr. Edgar DeYoe at the Medical College of Wisconsin. The data are de-
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identified so no IRB approval was needed for the lab to obtain and use the data. 

Individual subject data sets are identified only by a unique number (not correlated in any 

way to subject identity), and no other personal identifying information is included in the 

data. 

 The individual subject data used to create an aberrant connectivity data set (to be 

discussed further in Chapter 3, Section C) were chosen by manually examining the results 

of an independent component analysis (ICA) analysis of the HCP data and choosing 

network components that had good activation in the brain regions of interest in mesial 

temporal lobe epilepsy (Chapter 2, Section G). The ICA analysis was performed with the 

MELODIC software package (Jenkinson, 2013) which yields the connectivity patterns 

among different brain regions. The ICA networks from the analysis were then compared 

to a known brain map, and the subjects with good activation in the areas of interest were 

chosen as the base dataset to which aberrant synthetic signals were to be added (described 

below, section C). 

  

B. Creating the Normative Data Set 

 

 After the HCP data were obtained, the first step was creating a normative data set 

to which patterns of potentially aberrant connectivity could be compared. The schematic 

outline of the processing to create the group average for 3 subjects is shown in Figure 11, 

and the exact AFNI script used to accomplish this is attached in Appendix A. In order to 

create this normative set, 3 subject data sets were chosen at random. The data sets were 

co-registered to the MNI 152 human brain atlas, created by John Mazziotta, et al through 

the International Consortium for Brain Mapping (Mazziotta, et al., 2001). Next, they 
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were processed through the Melodic ICA analysis (Biswal, et al., 2012; Calhoun, et al., 

2001) and for each of the 3 subjects, the independent component networks (ICN's) that 

represented auditory, default, motor, and vision networks were manually identified by 

visually comparing the ICN’s to a published brain connectivity map (Shirer, et al., 2012). 

Next, the selected ICN’s from all 3 subjects were spatially averaged together to create a 

group average data set (and this process was repeated for each of the 4 different 

functional ICN’s). The averaging was performed with AFNI commands (including 

3dCalc), and the final group average data set consisted of the average ICNs for each of 

the 4 functional networks.  

 

 

 

Figure 11: The schematic of the process used to create the normative data sets for the 

auditory, default, motor, and vision ICNs. 

 

 

 C. Creating Simulated Aberrant Connectivity 
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 Functional connectivity is broadly “defined as statistical dependencies among 

remote neurophysiological events” (Friston, 2011), and in the case of rsfMRI, the 

statistical correlation is due to the temporal (time course) correlation between the voxels 

in different brain regions (this is further detailed in Chapter II, Section C). Thus, adding 

the same time course to a set of otherwise uncorrelated voxels will ultimately simulate 

functional connectivity. Our goal was to do this for a set of voxels within the medial 

temporal and frontal lobes, thus creating a simulated pattern of aberrant connectivity that 

might plausibly be found in medial temporal lobe epilepsy (mTLE) patients. The step by 

step process used to create the simulated aberrant connectivity pattern is outlined in 

Figure 12. 
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Figure 12: Schematic of process used to create simulated aberrant connectivity. 

 

 

In order to create simulated aberrant connectivity patterns that mimic those that 

might be in mTLE patients, the areas of the medial temporal lobe and frontal lobe 

affected by mTLE were identified manually as per the literature (Shirer, et al., 2012). The 

first step was to create a brain mask containing the set of voxels that were to be 

aberrantly connected. To make this mask, we randomly chose an empirical data set from 

Manually identify empirical data set from the HCP resting state data 

Run Melodic ICA analysis on chosen data set  

Choose ICNs with activation in frontal and parietal rsfMRI activation 

Threshold and normalize values in active foci, creating a mask with a 
realistic spatial amplitude profile 

Clean up mask by removing noise and any activation foci not in the fronto-temporal 
regions of interest 

Choose a random timecourse signal to be the simulated artificial connection 

Multiply the timecourse signal by every voxel in the mask from step 5 to simulate the 
aberrant connection 

Add Gaussian noise throughout the image at 8 varying amplitudes 
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the HCP resting state data and ran the Melodic ICA analysis.  ICNs containing voxels 

from the frontal and parietal cortex having strong resting state activation were selected 

and added together using the 3dcalc function in AFNI. Then, the combined resting state 

data were thresholded to isolate a subset of voxels that normally have strong resting state 

activation, thus providing a physiologically plausible set of voxels that might be 

aberrantly connected in mTLE. The resting state connectivity values (correlations) of the 

responsive voxels were then normalized to a range of 0 to 1.0. This created a mask with 

spatially realistic amplitude profiles within the activation foci and zero values 

everywhere else. The spatially varying amplitude is important in order to provide the 

aberrant connectivity signals with a physiologically plausible pattern within the brain (i.e. 

the signals within the centers of simulated regions of connectivity will be higher than at 

the edges). This is illustrated for several foci of activation in Figure 13. 

 

 

Figure 13: A representation of the physiological amplitude variation where yellow 

represents higher correlation and red represents lower correlation (Lee, et al., 2012) 
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Finally to complete the mask, the draw tool in the AFNI image viewer was used to clean 

up the mask created in the previous step in order to eliminate unwanted noise and any 

foci that were not within the lobes of interest in mTLE (frontal and temporal).  

To create the simulated aberrant connectivity (temporal correlation across voxels), 

a resting state fMRI timecourse was chosen at random. Figure 14 shows such a time 

course and its powerspectrum.  To create the artificial pattern of aberrant connectivity, 

the selected timecourse vector was multiplied by the amplitude scale factor for each 

voxel in the mask dataset described above. This then yielded a “3D plus time” volumetric 

dataset consisting of the scaled random timecourse within the voxels comprising the 

activity foci of the aforementioned mask and a zeroed timecourse everywhere else.  

 

 

 

Figure 14: Example of resting state fMRI time course (upper panel) and its 

powerspectrum (lower panel) that was added to target voxels to simulate aberrant 

functional connectivity. 

 

 

D. Simulated fMRI Noise 

 

The next step in creating the simulated aberrant connectivity was to add Gaussian noise.  
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Noise was added because real physiological brain connectivity signals always occur with 

some level of noise. The resulting signal for voxel ‘i’ is expressed by Equation 1 

(Beckmann et al., 2005). 

                                                              xi = Asi + ni                                                         (1) 

xi represents the signal measured at a specific voxel location (i) which is the sum of Asi 

and ni, where Asi represents the correlated random signal in that voxel, and ni represents 

Gaussian noise at that voxel (Beckmann et al., 2005). To realistically simulate the noise 

component ni, a different unique sample of Gaussian noise was added to each voxel 

throughout the entire brain using an AFNI function that generates the noise and adds it to 

the aberrant connectivity signal. Eight amplitudes of the Gaussian noise were added to 

the simulated connectivity signals in order to test the effectiveness of detecting aberrant 

connectivity as a function of signal to noise ratio, which ranged from 1.0 to 47. 

 

 Equation 2 is the final signal equation for the simulated aberrant connectivity and 

includes all the factors used to compute the final signals that comprise the simulated 

aberrant connectivity data set: 

xi = mi*Asi + S*ni                                                     (2) 

where xi again represents the total signal at a specific voxel location (i). Asi is the 

correlated random signal created by adding the time course, but in the final signal it is 

multiplied by mi, the ROI mask that varies in amplitude from 1 at the center to 0 at the 

edges to make the spatial profile of activation more physiologically plausible. Finally, the 

noise ni is multiplied by the scaling factor S to vary the Gaussian noise amplitude to 8 

different levels to allow testing with multiple Signal to Noise ratios. 
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E. The Biomarker Algorithm 

 

 The biomarker algorithm is a clinical tool that clinicians can use to evaluate if an 

individual patient’s connectivity pattern matches that of the normal population. To do 

this, the individual patient’s connectivity must be compared in an objective way to the 

normative database, and a quantitative evaluation of how well they match must be 

returned to the clinician. The clinician can then decide based on the quantitative value the 

next steps to take for each individual patient. This will reduce or eliminate the need for 

the clinician to manually look at each patient’s connectivity patterns and try to identify 

qualitatively if there is an aberrant pattern. The method of comparison that will be used to 

do the evaluation is the Dice coefficient.  

 The Dice coefficient is a statistical verification method that has become one of the 

more reliable comparison methods used in MRI research (Zou et. al., 2004). It was 

developed by Lee Dice to compare the degree to which 2 species are related in nature 

(Zou, et al, 2004). The Dice coefficient is a measure of the spatial overlap accuracy of 2 

images, in this case the patient connectivity pattern(s) and the normative connectivity 

patterns. The value of the Dice coefficient ranges from 0, which means there is no spatial 

overlap, to 1, meaning the images overlap completely (Zou, et. al., 2004). This method is 

useful for the comparison between patients with aberrant connectivity and a normative 

data set because it can spatially compare the degree to which the activated voxels in the 

aberrant data set match the activated voxels in the normative data set, and return a 

coefficient that is a reliable quantitative measure of how well they match. The Dice 

coefficient is calculated by Equation 3 

Dice (A,B) = 2(A∩B)/(A+B)                                          (3) 
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where A and B are the data sets being compared and ∩ is the intersection. Put simply, 

Dice (A,B) = 2(intersected region)/(sum of region A and region B) (Zou, et al., 2004)  

If one of the patient’s connectivity patterns matches that of a known network, then 

it will have a high Dice coefficient for that network and a low Dice coefficient for the 

rest. A good match (spatial overlap) occurs when the Dice coefficient is greater than 0.7, 

and if the Dice coefficient is less than 0.4 the overlap is considered poor (Zou, et al., 

2004). For the purposes of this research, any intermediate values (0.5 < value < 0.7) will 

be reported as inconclusive, so the doctor or caregiver can examine them further. The 

algorithm is written in MATLAB. 

The algorithm will accept an input data set for the patient, an input normative data 

set for each of 4 known connectivity networks (default mode, motor, vision, and 

auditory), and an optional mask input data set (to restrict the Dice comparison to certain 

areas of the brain so as to reduce computation time). The algorithm will then perform the 

spatial comparison and return the Dice coefficient of how well the patient data matches 

the normative connectivity patterns. The data will be output into a table so the Dice 

coefficient for each comparison can be displayed clearly, and then the whole table would 

repeat for each patient ICN. The table will show how well the patient’s connectivity 

matches each of the normative patterns and in the comment section will outline what the 

Dice coefficient likely means (i.e. if the patient’s connectivity is likely a match to motor, 

default, auditory, or visual). If there is a strong pattern of connectivity in the patient that 

does not correlate strongly with any of the known networks, it is likely to be aberrant (as 

in the above example) and is so marked in the table.  
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CHAPTER IV 

RESULTS 

 

 

A. Normative Dataset 

 

 The normative connectivity patterns, reflecting the degree of temporal correlation 

of the resting state fMRI signals for voxels within each network, from the 3 subjects 

chosen from the HCP data are shown in Figure 15 a) – d). The normative connectivity 

data set is the spatial average of the 3 subjects. 

 

    
Axial view  Sagittal view    Coronal view 

 

 
Time course 

a) Normative vision data set 

 

5cm 5cm 5cm 
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Axial view  Sagittal view     Coronal view 

 

 
Time course 

b) Normative default mode data set 

 

 

    
Axial view  Sagittal view    Coronal view 

 

 
Time course 

c) Normative auditory data set 
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Axial view  Sagittal view    Coronal view 

 

 
Time course 

d) Normative motor data set 

 

Figure 15: The normative data sets for the 4 brain regions chosen ( a) vision b) default 

mode c) auditory d) motor), with axial, sagittal, and coronal views from left to right. 

 

 

The normative data sets for vision, default mode, auditory, and motor functional areas 

were spatially averaged and match the known connectivity patterns for healthy 

individuals found in the previous research and literature (Shirer et al., 2012). They are 

broader (i.e. have larger areas of activation) since there are multiple subjects averaged 

together, but this is expected when compared to a single subject’s activation since there is 

more variation when multiple subjects are considered, and additionally since the averages 

were computed spatially, the spread may be due to individual variations in brain structure 

and function (anatomical, functional, etc). This makes the spatially averaged activation 

patterns good for comparing individual subject data because small variations (anatomical, 

etc) in individual brains will be accommodated by the normative data set. The motor data 

5cm 5cm 5cm 
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set is the most different from an individual subject motor connectivity pattern, but this is 

again due to the higher variability and also because the motor pattern is one of the more 

difficult ones for the Melodic ICA to distinguish (meaning that the SNR is lower). All 4 

group data sets were successfully created and can be used in the biomarker algorithm. 

The group data sets can be used in future research as well since they are actual subject 

data, the number of subjects included can be increased as well to create a larger 

normative data set. 

 

B. Simulated Aberrant Connectivity 

 

 The simulated aberrant connectivity pattern caused by mTLE is shown in Figure 

16. The activation pattern was successfully created and detected when the data set was 

processed through Melodic ICA.  

 

    
Axial         Sagittal       Coronal 

 

 
Time course 

Figure 16: The simulated aberrant connectivity in the medial temporal and frontal lobe 

due to mTLE including the time course graph. 
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The simulated connectivity pattern matches previously published patterns for mTLE 

patients, and it is a critical first step in testing and verifying the biomarker algorithm. By 

using the simulated connectivity shown in Figure 16, a clean and known connectivity 

pattern can be used to verify the effectiveness of the algorithm under ideal conditions and 

also to debug the algorithm. This is critical because it verifies that the algorithm is 

working correctly, making it easier to move forward in the future into testing with actual 

patient data (if the algorithm was not tested this way first, it would be extremely difficult 

to debug and verify it). 

 

C. Noise and Signal Level Sensitivity 

 

 The noise added to the aberrant connectivity signal was Gaussian temporal noise 

and was spatially distributed as shown in Figure 17.  

 

     
Axial   Sagittal     Coronal 

 

 
Time course 

Figure 17: The Gaussian noise added to the aberrant connectivity 
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The Gaussian noise simulates the noise present in every physiological signal and the 

noise seen in Figure 17 is added to the aberrant connectivity signal in Figure 16 by a 

simple addition command in AFNI. This much more accurately simulates a physiological 

connectivity pattern. The noise added to the aberrant connectivity is shown in Figure 18. 

In this example, the noise was added everywhere, but ideally it would be restricted to just 

the voxels in the brain area that have noise levels higher than voxels outside the brain. 

 

    
Axial   Sagittal    Coronal 

 

 
Time course 

Figure 18: The Gaussian noise added to the aberrant connectivity 

 

 

 The signal level was also changed from having a constant amplitude to having a 

varying amplitude with the center of activation having higher correlation and the edges 

having lower correlation (See Chapter III, Section D for further detail) and is shown in 

Figure 19.  
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Axial    Sagittal    Coronal 

 
Time course 

 

    
Axial   Sagittal    Coronal 

 
Time course 

 

Figure 19: The signal level before (top) and after (middle) it was changed from having 

constant amplitude to having higher amplitude in the center and lower at the edges. The 

time course graph shows the change in amplitude of the time course. 
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As seen in Figure 19, the signal after the signal level was changed from a uniform level to 

a physiologically accurate level can be seen in the varying colors (from green to red, 0 to 

1) with green showing the lower amplitude regions and red showing the higher amplitude 

regions. The red at the center of the activation areas shows the highest level of activation, 

while the edges are green showing a lower level of activation. This is further confirmed 

by the time course graph, which shows the high amplitude of the time course in the 

voxels at the center of the activation pattern and the voxels at the edge are lower 

amplitude. This makes the spatial pattern of simulated aberrant connectivity more 

physiologically accurate. The final simulated aberrant connectivity pattern used in the 

biomarker algorithm is the most accurate and most closely matches the form of the 

connectivity patterns from previous literature (Biswal et al., 1995; Lee et al, 2012), with 

varying signal level intensity and Gaussian noise included. Finally, since physiological 

noise varies in amplitude, the amplitude of the Gaussian noise was changed to 8 different 

levels to quantify the effectiveness of the biomarker algorithm on signals with various 

amounts of noise. These results are shown in Section D below.   

 

D. The Biomarker Algorithm 

 

 First, the biomarker algorithm was tested by comparing the connectivity patterns 

from the 4 known activation patterns to the normative data sets (so default was compared 

to default, motor to motor, etc). If the algorithm is working correctly, the Dice 

coefficients should be close to one. The biomarker algorithm was also used to compare 

the simulated aberrant connectivity pattern to each of the 4 brain activation regions in the 
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normative database, and the Dice coefficients should be low. The Dice coefficient was 

the output for each of the comparisons, and the results are summarized in Table 1.  

 

Table 1: The biomarker algorithm Dice comparison between individual patient 

connectivity from the auditory, default, motor, and visual activation regions to their 

corresponding normative databases. 

Patient 

Connectivity 

Normative Brain Region Dice 

Coefficient 

Comments 

Default    Default 0.92 + 0.065 High Dice coefficient, 

patient connectivity is 

likely default 

Motor   Motor 0.90 + 0.060 High Dice coefficient, 

patient connectivity is 

likely motor 

Auditory    Auditory 0.89 + 0.057 High Dice coefficient, 

patient connectivity is 

likely auditory 

Visual     Visual 0.92 + 0.035 High Dice coefficient, 

patient connectivity is 

likely visual 

mTLE     Default 0.36 + 0.026 Low Dice coefficient, 

patient connectivity is 

not likely default 

mTLE     Motor 0.49 + 0.015 Low Dice coefficient, 

patient connectivity is 

not likely motor 

mTLE     Auditory 0.45 + 0.026 Low Dice coefficient, 

patient connectivity is 

not likely auditory 

mTLE     Visual 0.51 + 0.007 Intermittent Dice 

coefficient, patient 

connectivity may be 

aberrant 

mTLE connectivity is potentially aberrant - no good match with known ICNs. 

 

 

As seen in Table 1, the aberrant connectivity pattern did not match any of the 4 known 

activation patterns from the auditory, default, motor, or visual brain regions since the 

Dice coefficients were low (0.50 or lower). An unpaired T test was performed of the 

averaged of the matched versus the average of the unmatched components, with p < 0.05 
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being statistically significant. The result of the test was p = 0.0002, further confirming 

that the difference between the aberrant connectivity pattern and the known connectivity 

patterns is statistically significant. This means that the simulated aberrant connectivity 

pattern being matched was correctly identified as potentially aberrant because it does not 

match a known connectivity pattern. While this testing shows that the algorithm is 

working correctly, the effectiveness (sensitivity and specificity) of the algorithm when 

noise is included in the physiological signal must be quantified. To do this, the amplitude 

of the Gaussian noise was changed to 8 different levels and added to the simulated 

aberrant connectivity, and then the biomarker algorithm run on each of the 8 data sets to 

get the Dice coefficient. When the signal to noise ratio (SNR) is high, the Dice 

coefficient should be high, and as the noise amplitude increases, the SNR and Dice 

coefficient should both decrease. The relationship is quantified and shown in Figure 20. 

 

 

Figure 20: The signal to noise ratio vs the Dice coefficient as the noise level in the 

rsfMRI signal is increased. 
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This relationship between noise and the Dice coefficient is a critical step in quantifying 

the biomarker algorithm. According to this curve, the minimum acceptable SNR to avoid 

misclassification of ICNs is 4.1 (obtained by solving the equation of the curve for the 

SNR with a Dice coefficient of 0.7). The biomarker algorithm also returns the amount of 

true positives, true negatives, false positives, and false negatives, so the sensitivity and 

specificity of the algorithm can be calculated for any signal based on its SNR. These 

measures are shown graphically in Figures 21 and 22.  

 

 

Figure 21: The Signal to Noise Ratio vs Specificity as the noise level in the rsfMRI signal 

is increased 

 

 

 

 
Figure 22: The Signal to Noise Ratio vs Sensitivity as the noise level in the rsfMRI signal 

is increased 
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 For example, when the SNR is at 9, the sensitivity is 0.80 and the specificity is 0.82. 

With the three curves (obtained from the biomarker algorithm) shown in Figures 20, 21, 

and 22, the Dice coefficient, sensitivity, and specificity can be calculated for any level of 

SNR in the rsfMRI signal (Altman, et al, 1994).  
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CHAPTER V 

DISCUSSION 

 

 

A. Significance in Single Subject Data Evaluation 

 

 This research is significant in moving rsfMRI towards use in a clinical setting for 

individual patients. In order to be useful in a clinical setting, clinicians and doctors must 

have a statistically verified method to compare individual patients to a healthy normative 

group database, and a clinical tool to perform the comparison so they no longer have to 

manually inspect the connectivity patterns to identify aberrant patterns. In this project we 

developed a biomarker algorithm suitable for use as a clinical tool for doctors. The 

algorithm was verified using single subject simulated data and comparing it to a healthy 

normative group database, and it successfully identified the simulated connectivity as 

aberrant by producing Dice coefficients lower than 0.5 when the simulated connectivity 

was compared to the normative database. When 2 data sets were compared that were the 

same, the Dice coefficient came out close to one, proving that the algorithm is working 

correctly. Additionally, the relationship between the Dice coefficients and the level of 

noise present in the signal (SNR) was quantified by running the biomarker algorithm on 8 

data sets, ranging from no noise to pure Gaussian noise, and obtaining the Dice 

coefficient for each set. This relationship is quantified by the equation y = 0.1214ln(x) + 

0.5289 where y is the Dice coefficient and x is the SNR. While the program cannot make 

patient care decisions, it can return comments on whether the Dice coefficient appears to 

show if a patient’s connectivity pattern is aberrant. This successful application of the 

biomarker algorithm is a critical success in developing a clinical tool for use in a clinical 
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setting for individual patients.  The normative database, simulated connectivity, and 

biomarker algorithm developed are a combination of advances toward the goal of making 

rsfMRI valuable for individual patients in a clinical setting. 

 

B. Comparison to Previous Work 

 

 The aberrant connectivity pattern that was simulated was based on the activation 

regions that are affected by mTLE as shown in previous research. Moreover, the noise 

and signal levels also match the physiological form of connectivity patterns as also 

established by previous research. Previous work has also investigated abnormal 

connectivity patterns in epilepsy (Zhang, et al., 2009; Xu, et al., 2014) as well as cerebral 

structure changes as a biomarker of epilepsy (Woermann et al, 1999), and this work 

builds on the previous research. Additionally, Vergun et al. recently released a paper on 

using machine learning to classify spatial maps of resting state networks according to 

their overall function (Vergun, et al, 2016). Such an approach might be helpful in future 

work to refine the biomarker algorithm described here. It is important to note that the 

approach described here differs from previous work as it combines the Dice coefficient 

spatial matching technique with simulations of aberrant connectivity in order to test the 

algorithm’s ability to accurately detect aberrant connectivity in single subjects rather than 

between groups. 

Previous work identified the brain activation patterns corresponding to the 

auditory, default, motor, and visual networks for individuals (Shirer, et al, 2012 and Liu, 

et al, 2009), and the group normative dataset reported here for the 4 networks matches 

these areas based on qualitative visual analysis. Our group results differ in that the 
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activation areas are a bit broader (i.e. the activation area is larger), but this is partially due 

to the fact that there are multiple data sets averaged together. Since the activation patterns 

are not identical, the slight variations cause the broader group activation pattern. Also, 

cross-subject averaging, as was done here, increases sensitivity which can also broaden 

the activation areas. Additionally, there can be variations in the sulcal anatomy that may 

contribute to the broader activation patterns when averaging across brains. One approach 

that could help mitigate this problem would be to use a surface based registration system, 

which provides “a common spatial framework and a substrate for open-ended 

comparisons across data sets” (Van Essen, 2004), or using a parcellation approach to 

better align functional brain subdivisions between subjects (Glasser, et al., 2016).     

 

C. Problems and Limitations 

 

 There are certainly limitations to this work that should be addressed if this 

research is to move forward in the future. One such limitation is the fact that only 4 

regions of the brain were used (motor, default, vision, auditory) to perform the Dice 

statistical comparison between the patient and the normative database. While the 4 

chosen represent 4 of the larger functional areas of the brain, there are fifteen plus other 

different, smaller regions that are also known. Expanding to more than the 4 areas would 

increase computation time for both the normative database and the algorithm’s 

functionality and would likely alter the criteria for classifying a pattern as aberrant to 

some degree. 

 

D. Future Work and Implications 
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 Future work on this research should address the problems and limitations 

discussed in Section C. Certainly, moving to a larger and more random population of 

subject data can be used to create a larger normative data set. The 3 subject normative 

data set, while effective as a first step, will only become more effective as more subjects 

are added to it as it will become more and more representative of an entire population, 

and also as more subjects are added, any outlying connectivity abnormalities that are not 

due to disease will be averaged out, creating a cleaner normative comparison. Recently 

released from the HCP is a large set of averaged ICN data from their patient pool, and 

future work would investigate using this large average set as the normative database. 

Ideally, the normative database would be set up so that as more healthy subject data was 

collected, it could simply be added to the existing normative database, and over time the 

healthy normative database would just grow larger and larger. This would decrease the 

effect of individual subject variations that occur naturally as they could be averaged out 

when combined with a much larger population. This averaging effect occurs with the 

HCP data set as well (which is the largest MRI data collection project to date), but it 

would only increase as the sample size increased. Of potential use in the future is a recent 

release from the HCP that has a group average of 900 subjects, with a group ICA analysis 

performed in Melodic on all 900 subjects. This 900 subject group average may be useful 

in the future in the biomarker algorithm for comparison to the aberrant connectivity. 

 Additionally, the algorithm and normative database could be expanded to include 

more than the 4 functional brain regions used here. The normative database would 

include all of the known functional areas (even the smaller ones) so the algorithm would 

be that much more accurate and potentially able to match even lower signal level aberrant 
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connectivity patterns. Obviously the current algorithm could make mistakes by indicating 

that a patient ICN is aberrant (does not match any of the tested normal patterns) but in 

fact matches a normal ICN that was not tested.  

 Future work with the algorithm would expand its functionality. Currently, the 

algorithm can perform the matching for the 4 different functional areas sequentially (one 

must be completed before the next can be performed). Ideally, the algorithm would be 

expanded to be able to perform the matching on all functional areas from the normative 

database simultaneously. This would make the input process for the user much easier. 

Additionally, it would be beneficial to add various display options, for example so the 

user could look at an overlay of the patient data vs. the normative data set. 

 Finally, to really use the algorithm in the future in a clinical setting, it must be 

verified using more aberrant connectivity patterns as well as actual patient aberrant 

connectivity patterns (instead of simulated). Further research and study would 

undoubtedly lead to using actual patient data in the algorithm once it has been proven to 

work with simulated data. Using actual patient data is an important step on the way to 

clinical application as it is what will be used in the algorithm on a daily basis in a clinical 

setting.  

 

 

 

 

 

 



49 
 

 

CHAPTER VI 

CONCLUSION 

 

 

 The goal of this research was to develop a biomarker to detect aberrant brain 

connectivity in individual patients. It is critical for rsfMRI use in a clinical setting that an 

individual’s connectivity pattern be evaluated on its own, without being averaged into a 

larger data set. Currently, research has been performed on clinical evaluations of group 

data, but no clinical tool exists to evaluate individuals. The research performed here seeks 

to advance previous research by developing a normative database, simulating an 

individual connectivity with an aberrant connectivity pattern, and using a biomarker 

algorithm to compare that individual’s aberrant connectivity to the healthy normative 

database. A biomarker algorithm of this type has not yet been developed, so the research 

here is a critical step forward in individual patient connectivity evaluation. 

 The outcome of this work is a biomarker algorithm that accepts inputs of an 

individual patient’s rsfMRI data and a normative database. The algorithm performs a 

spatial comparison of the 2 datasets and returns the Dice coefficient, with a Dice 

coefficient greater than 0.7 showing a statistically significant match between the 2 

datasets. The biomarker algorithm developed here and the Dice comparison process used 

to do so is an important step forward in the research of making rsfMRI useful for 

individual patients in a clinical setting. It is an automated matching method, meaning that 

classifying the patient’s connectivity pattern is automated and provides quantitative 

metrics of the goodness of match or lack of match to known healthy ICNs. This will save 

the clinician time, and expands the use of rsfMRI for clinical evaluations, which is also 
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important since rsfMRI is a valuable tool that is important especially for patients that 

can’t accomplish a task based MRI (the elderly, epilepsy patients, etc).  

 The field of MRI research has grown by leaps and bounds, especially since it 

began to be used in a clinical setting. The importance of individual patient evaluation in a 

clinical setting has been established, and research is moving to make this a reality. The 

research performed here successfully developed a biomarker that detected an aberrant 

connectivity pattern that plausibly might be caused by mTLE in an individual patient and 

as such is an important step forward in rsfMRI research. 
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Appendix A 

 

 

The spatial averaging code. Note that this code was used to spatially average each of the 

4 brain regions (motor, vision, default, auditory) individually. 

 

#!/bin/csh -f 

 

#### 

#@break-up - breaks up and afni brink into the wanted sub-briks and then glues them back 

together into one afni brik. 

## Note: subriks start at 0 while the compenets in melodic FSL do not, so you need to subtract 

one from the fsl compinenet number to get the correct afni subrik 

### This code was adapted with permission and assistance from Jedediah Mathis (MCW). 

#### 

 

#Variables 

 

set ec = 'CFQ' 

set task = 'melodic_IC_auto' 

## Subbrik selection. These are the manually identified ICN's that correspond to motor, default, 

auditory, or vision 

set sub1 = '2' 

set sub2 = '4' 

set sub3 = '9' 

set sub4 = '10' 

 

## Label new subriks with appropriate descriptor (labeling the chosen sub-briks 

set subn1 = 'IC 2' 

set subn2 = 'IC 4' 

set subn3 = 'IC 9' 

set subn4 = 'IC 10' 

 

# Set the prefix label to identify the file once it has been averaged. Uncomment the appropriate 

prefix based on what brain region is being averaged 

set prefix = 'melodic_IC-sub' 

#set prefixf = 'melodic_Motor_IC' 

#set prefixf = 'melodic_Default_IC' 

#set prefixf = 'melodic_Auditory_IC' 

set prefixf = 'melodic_Vision_IC' 

 

cd afni 

 

# Attach the prefix to each sub-brik 

3dcopy {$task}.nii.gz {$task}+orig 

3dcalc -a {$task}'+orig['{$sub1}']' -prefix {$prefix}{$sub1} -expr 'a'  

3dcalc -a {$task}'+orig['{$sub2}']' -prefix {$prefix}{$sub2} -expr 'a' 

3dcalc -a {$task}'+orig['{$sub3}']' -prefix {$prefix}{$sub3} -expr 'a' 
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3dcalc -a {$task}'+orig['{$sub4}']' -prefix {$prefix}{$sub4} -expr 'a' 

 

 

3drefit -sublabel 0 {$subn1} {$prefix}{$sub1}+orig 

3drefit -sublabel 0 {$subn2} {$prefix}{$sub2}+orig 

3drefit -sublabel 0 {$subn3} {$prefix}{$sub3}+orig 

3drefit -sublabel 0 {$subn4} {$prefix}{$sub4}+orig 

 

# Spatially average the sub-briks together 

3dmerge -gsmax -prefix {$prefixf}_merge {$prefix}{$sub1}+orig {$prefix}{$sub2}+orig 

{$prefix}{$sub3}+orig {$prefix}{$sub4}+orig
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