Generation of Molecular Complexity from Cyclooctatetraene: Preparation of Aminobicyclo[5.1.0]octitols

Mohamed F. El-Mansy
Marquette University
Matthew Flister
Marquette University, matthew.flister@marquette.edu
Sergey Lindeman
Marquette University, sergey.lindeman@marquette.edu
Kelsey S. Kalous
Concordia University - Wisconsin
Daniel S. Sem
Marquette University, daniel.sem@marquette.edu

See next page for additional authors

Accepted version. Chemistry, a European Journal, Vol 21, No. 30 (July 20, 2015): 10886-10895. DOI. © 2015 John Wiley \& Sons, Inc. Used with permission.
This is the pre-peer reviewed version of the following article: "Generation of Molecular Complexity from Cyclooctatetraene: Preparation of Aminobicyclo[5.1.0] octitols," Chemistry, a European Journal, Vol 21, No. 30 (July 20, 2015): 10886-10895. DOI.
Dr, Daniel S. Sem was affiliated with the School of Pharmacy, Concordia University Wisconsin, Mequon, WI at the time of publication.

Authors

Mohamed F. El-Mansy, Matthew Flister, Sergey Lindeman, Kelsey S. Kalous, Daniel S. Sem, and William Donaldson

Generation of Molecular Complexity from Cyclooctatetraene: Preparation of Aminobicyclo[5.1.0]octitols

Mohamed F. El-Mansy
Department of Chemistry, Marquette University, Milwaukee, WI
Matthew Flister
Department of Chemistry, Marquette University, Milwaukee, WI
Sergey Lindeman
Department of Chemistry, Marquette University, Milwaukee, WI
Kelsey Kalous
School of Pharmacy, Concordia University Wisconsin, Mequon, WI
Daniel S. Sem
School of Pharmacy, Concordia University Wisconsin, Mequon, WI
William A. Donaldson
Department of Chemistry, Marquette University, Milwaukee, WI

Abstract

A series of eight stereoisomeric N-(tetrahydroxy bicyclo-[5.1.0]oct$\left.2 S^{*}-\mathrm{yl}\right)$ phthalimides were prepared in one to four steps from N - (bicyclo[5.1.0]octa-3,5-dien-2-yl)phthalimide (\pm)-7, which is readily available from cyclooctatetraene (62% yield). The structural assignments of the stereoisomers were established by ${ }^{1} \mathrm{H}$ NMR spectral data as well as X-ray crystal structures for certain members. The outcomes of several epoxydiol hydrolyses, particularly ring contraction and enlargement, are of note. The isomeric phthalimides as well as the free amines did not exhibit β-glucosidase inhibitory activity at a concentration of less than $100 \mu \mathrm{M}$.

Introduction

Polyhydroxyl aminocyclohexanes (aminocyclitols) are present as aglycon units in numerous aminoglycoside antibiotics, and certain of these compounds possess glycosidase inhibitory activity. ${ }^{1}$ A ringexpanded aminocycloheptitol 1 (Figure 1) has been isolated from the roots of Physalis alkekengi var. francheti; ${ }^{2}$ similar structures (-)-2 and (+)-3 are a-D-glucosidase inhibitors in the low micromolar range. ${ }^{3,4}$ There are relatively few bicyclic aminocyclitiols known. The aminobicyclo[4.1.0]heptitols $\mathbf{4} \mathbf{a}$ and (+)-4 b were designed to mimic the half-chair conformation of the oxacarbenium ion intermediate in glycolytic bond cleavage. Compound 4 a inhibits yeast a-glycosidase $\left(K_{\mathrm{i}}=0.107 \pm 0.015 \mu \mathrm{M}\right)$, whereas the corresponding acetamido $\mathbf{4 b}$ is relatively inactive against this enzyme. ${ }^{5}$ Balci and co-workers have reported the preparation of an amino bicyclo[4.2.0]octitol (\pm)-5. ${ }^{6}$ As part of our continued interest in the use of the simple hydrocarbon cyclooctatetraene for the synthesis of complex molecules, $, \underline{8}, \underline{\text { we }}$ herein report on the preparation of a series of eight protected amino bicyclo[5.1.0]octitiols ${ }^{6}$.

$(-)-1$

4a. $\mathrm{R}=\mathrm{H}$
$(+)-4 \mathrm{~b}, \mathrm{R}=\mathrm{Ac}$

(+)-5

6

Figure 1. Representative polyhydroxy aminocycloheptanes and polyhydroxy aminobicyclo[n.m.0]alkanes.
N-(Bicyclo[5.1.0]hepta-3,5-dien-1-yl)phthalimide (土)-7 was prepared from cyclooctatetraene in five steps and in 62% yield using a slight modification to the literature procedure (Scheme 1). ${ }^{8 \mathrm{~b}}$ The use of 2,3-dichloro-5,6-dicyanoquinone (DDQ) instead of ceric ammonium nitrate (CAN) in the oxidative decomplexation step was found to give superior yields. 1

Scheme 1. Preparation of N-(bicyclo[5.1.0]octa-3,5-dien-2-yl)phthalimide 7 (TMANO=trimethylamine N-oxide).

Results and Discussion

The treatment of (\pm)-7 with singlet oxygen gave (\pm)-8 as a single diastereomer (Scheme 2). The relative stereochemistry of 8 was tentatively assigned on the basis of that previously observed for the products of 7 with arylnitroso dienophiles. ${ }^{9}$ This tentative assignment was eventually corroborated on the basis of further reactions. Reduction of 8 with zinc in acetic acid gave the enediol (\pm)-9. Alternatively, the Kornblum-DeLaMare rearrangement ${ }^{10,11}$ of $\mathbf{8}$ with triethylamine gave a separable mixture of two regioisomeric enones (the bicyclic enone (\pm)-10 predominantly in 95% yield). Reduction of 10 under Luche conditions gave a unique endiol (\pm)-11. The C2-C3 relative stereochemistry of $\mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 1}$ were each assigned on the basis of their ${ }^{1} \mathrm{H}$ NMR spectral data; in particular, a large coupling between $\mathrm{H}-2$ and $\mathrm{H}-3(\mathrm{~J} \approx 10 \mathrm{~Hz})$ is indicative of a diaxial relationship of these protons.

（土）－12（67\％）

$(\pm)-10(95 \%) \xrightarrow{\text { d）}}$

（土）－11（95\％）

（土）－13（99\％）
（ \pm ）－14（94\％）

（ \pm ）－15（ 85% ）

Scheme 2．Oxidation of N－（bicyclo［5．1．0］octa－3，5－dien－2－yl）phthalimide．Reagents：a） ${ }^{1} \mathrm{O}_{2}$ ，$h v$（sunlamp），TPP；b） $\mathrm{Zn} / \mathrm{HOAc}^{2}$ c） NEt_{3} ；d） $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3}, \mathrm{MeOH}$ ；e）mCPBA（2 equiv）；f）$h v$（ Hg vapor）， $\mathrm{C}_{6} \mathrm{H}_{6} ;$ g） $\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H}$

The treatment of 7 with two equivalents of m－ chloroperoxybenzoic acid gave bisepoxide（土）－12．This same compound was obtained，albeit in lower overall yield，by photolysis of 8 with a medium pressure Hg vapor lamp．Epoxidation of $\mathbf{8}$ with trifluoroperacetic acid（generated by reaction of trifluoroacetic anhydride with hydrogen peroxide）gave the epoxy endoperoxide（ \pm ）－
13．The relative stereochemistry of $\mathbf{1 2}$ and $\mathbf{1 3}$ was established by using single－crystal X－ray diffraction analysis．${ }^{12}$ Reduction of 13 with zinc and acetic acid gave the epoxydiol（土）－14．The relative stereochemical assignment for 14 was based on the assigned structure of 13，and the fact that endoperoxide reduction takes place with retention of configuration at the $\mathrm{C}-\mathrm{O}$ bonds．Epoxidation of the enediol 9 with trifluoroperacetic acid gave epoxydiol（ \pm ）－15，whose structure was tentatively assigned because the stereochemical assignment indicated that it was unique from that of the diastereomeric epoxydiol 14．This tentative stereochemical assignment was eventually corroborated by single－crystal X－ray diffraction analysis （Figure 2）．Notably，for both 14 and 15，a large coupling between $\mathrm{H}-2$ and H－3（ $\mathrm{J} \approx 11-12 \mathrm{~Hz}$ ）indicated that these two protons have a diaxial orientation．

Figure 2．Structure of（ \pm ）－15（arbitrary atomic numbering）．
Catalytic dihydroxylation of bicyclic diene（ \pm ）－7 using one equivalent of N－methylmorpholine N－oxide（NMO）gave a separable mixture of two regioisomeric enediols（ \pm ）－16 and（ \pm ）－17（Scheme 3 ）． The major product arises from dihydroxylation on the olefin more remote to the electron－withdrawing phthalimide substituent at C－2． The structures of $\mathbf{1 6}$ and $\mathbf{1 7}$ were tentatively assigned on the basis of their ${ }^{1} \mathrm{H}$ NMR spectral data．In particular，the chemical shift for $\mathrm{H}-2$ of $\mathbf{1 6}(\delta=5.68 \mathrm{ppm})$ compared with that for $\mathrm{H}-2$ of $\mathbf{1 7}(\delta=5.25 \mathrm{ppm})$ is indicative of the proximity of the double bond to $\mathrm{H}-2$ in 16. Additionally，a large coupling between $\mathrm{H}-2$ and $\mathrm{H}-3$ of 17 （ $\mathrm{J}=10.6 \mathrm{~Hz}$ ） is indicative of a diaxial relationship of these protons．Epoxidation of 16 with trifluoroperacetic acid gave a single epoxydiol（ \pm ）－18．The relative stereochemistries of 16 and 18 were tentatively assigned on the basis of the stereochemistries we previously observed for the dihydroxylation of N－（2，4－cyclohexadien－1－yl）phthalimide and the epoxidation of this enediol（see inset Scheme 3 ），both of which were established by X－ray diffraction analysis．${ }^{13}$ The tentative stereochemical assignments of $\mathbf{1 6}$ and 17 were eventually corroborated by X－ray diffraction analysis of the tetraols derived from exhaustive hydroxylation of 7 （see below）．${ }^{3}$

（土）－17（23\％）
（土）－16（56\％）
（土）－18（83\％）

Chemistry，a European Journal，Vol 21，No． 30 （July 20，2015）：pg．10886－10895．DOI．This article is © Wiley－VCH Verlag and permission has been granted for this version to appear in e－Publications＠Marquette．Wiley－VCH Verlag does not grant permission for this article to be further copied／distributed or hosted elsewhere without the express permission from Wiley－VCH Verlag．

Scheme 3. Oxidative functionalization of N-(bicyclo[5.1.0]octa-3,5-dien-2yl)phthalimide and precedent for stereochemical assignments. 13 Reagents: a) OsO_{4} (cat.)/NMO (1 equiv); b) ($\left.\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}$; c) mCPBA (1 equiv).

Epoxidation of $\mathbf{7}$ with one equivalent of m CPBA gave a separable mixture of monoepoxide (\pm)-19 and enone (\pm)-20 (Scheme 4). The structural assignment for 19 was established by single-crystal X-ray diffraction analysis, ${ }^{12}$ whereas the structural assignment for 20 is based on its NMR spectral data. In particular, the presence of signals at $\delta=198.9,141.9$, and approximately 123.8 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 0}$ are consistent with a a, β-unsaturated ketone. Additionally, signals at $\delta=2.95$ and $3.11 \mathrm{ppm}\left(\mathrm{J}_{\text {gem }}=15.2 \mathrm{~Hz}\right.$) in the ${ }^{1} \mathrm{H}$ NMR spectrum and a CH_{2} signal at $\delta=41.5 \mathrm{ppm}$ in the distortionless enhancement by polarization transfer (DEPT) NMR spectrum of $\mathbf{2 0}$ are indicative of a diastereotopic set of geminal protons adjacent to a carbonyl group and the carbon to which they are attached. Because the relative ratio of $\mathbf{1 9}$ to $\mathbf{2 0}$ depended on the quality of the metachloroperbenzoic acid ($m \mathrm{CPBA}$) used as well as on reaction time and time of exposure of the reaction mixture to silica gel, we propose that enone $\mathbf{2 0}$ arises from 19 by acid-promoted rearrangement. Thus, protonation of the epoxide in $\mathbf{1 9}$ followed by regioselective cleavage of the $\mathrm{C}=\mathrm{O}$ bond adjacent to the cyclopropane ring leads to carbocation 21. Hydride migration affords the protonated enone 22, which upon deprotonation affords $\mathbf{2 0}$. This type of epoxide-to-ketone rearrangement is reminiscent of the "NIH-shift" for enzymatic hydroxylation of arenes. ${ }^{14}$ Dihydroxylation of 19 gave a single epoxydiol (\pm)-23, whose structure was established by single-crystal Xray diffraction analysis. $\underline{4}^{12}$

(土)-19 (70\%)

(土)-23 (97\%)

Scheme 4. Oxidative functionalization of N-(bicyclo[5.1.0]octa-3,5-dien-2yl)phthalimide. Reagents: a) mCPBA (1 equiv); b) OsO_{4} (cat.)/NMO (1 equiv).

[^0]As we have previously reported, , 8 b osmium-catalyzed hydroxylation of 7 with excess NMO as a reoxidant gave a separable mixture of two tetraols (\pm)-24 and (\pm)-25 (Scheme $\underline{5}$). The structures of 24 and 25 were tentatively assigned on the basis of their ${ }^{1} \mathrm{H}$ NMR spectral data (see below); these tentative assignments were eventually corroborated by single-crystal X-ray diffraction analysis (Figure $\underline{3}$ and Figure 4). $\underline{3}$, $\underline{4}{ }^{12}$

Figure 3. Structure of (\pm)-24 (arbitrary atomic numbering).

Figure 4. Structure of $(\pm)-\mathbf{2 5} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (arbitrary atomic numbering).
Furthermore, the unambiguous identification of the structures of 24 and 25 bolstered the stereochemical assignments for 17 and 16. Presumably, the introduction of two pairs of hydroxyl groups to $\mathbf{7}$ occurs in a stepwise fashion, and thus tetraol 24 arises through dihydroxylation of $\mathbf{1 7}$ on face of the olefin opposite to the C-4 hydroxyl group, according to the Kishi model for stereoselectivity. $\underline{15}$ Alternatively, tetraol 25 arises from dihydroxylation of 16; however, in this case the hydroxyl groups are introduced anti to the phthalimide

NOT THE PUBLISHED VERSION；this is the author＇s final，peer－reviewed manuscript．The published version may be accessed by following the link in the citation at the bottom of the page．
group at C－2．Notably，a separate experiment in which a mixture of $\mathbf{1 6 / 1 7}$ was subjected to dihydroxylation gave a mixture of 25／24 in the same ratio．Dihydroxylation of enediol 9 gave a single tetraol（ \pm ）－ 26，whereas a similar reaction of $\mathbf{1 1}$ gave a separable mixture of（ \pm ）－ 27 and（ \pm ）－28．The structures of polyols 24，25，26，27，and 28 were tentatively assigned on the basis of their ${ }^{1} \mathrm{H}$ NMR spectral data （see below）and the fact that dihydroxylation occurs in a syn－fashion； the spectral analysis of the bicyclic tetraols will be discussed separately．${ }^{5}$

（土）－11

（土）－26（79\％）
4）－27（34\％）
（ \pm ）－28（28\％）

Scheme 5．Preparation of aminopolyols by dihydroxylation．Reagents：a） OsO_{4} （cat．）／NMO（2 equiv）；b） OsO_{4}（cat．）／NMO（1 equiv）．

Hydrolysis of epoxydiols $\mathbf{1 8}$ or $\mathbf{2 3}$ using $\mathrm{CBr}_{4} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}^{16}$ gave a single tetraol（土）－29 or（土）－27，respectively（Scheme 6）．${ }^{6}$

NOT THE PUBLISHED VERSION; this is the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page.

Scheme 6. Preparation of aminopolyols by epoxide hydrolysis. Reagents: a) THF/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{CBr}_{4}$.

In contrast, hydrolysis of bisepoxide 12 gave a separable mixture of bicyclic tetraol $(\pm)-\mathbf{3 0}$ and the cyclooctene tetraol (\pm)-31. Hydrolysis of the epoxydiol 14 gave the tetraol (\pm)-32. In contrast, reaction of the diastereomeric epoxydiol 15 gave a unique aldehyde $(\pm)-33$. The structures of the epoxide hydrolysis products were tentatively assigned on the basis of their NMR spectral data; the spectral analysis of the bicyclic tetraols 29, 30, and 32 will be discussed in a separate paragraph. The tentative structural assignment for 32 was eventually corroborated by using single-crystal X-ray diffraction analysis (Figure $\underline{5}$). $\underline{5^{12}}$

Figure 5. Structure of (\pm)-32•CH3OH (arbitrary atomic numbering).
For cyclooctene 31, vicinally coupled signals in its ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta=5.74$ and $5.81 \mathrm{ppm}\left(J_{\text {cis }}=10.8 \mathrm{~Hz}\right.$) and geminally coupled signals at $\delta=2.31$ and $2.89 \mathrm{ppm}\left(J_{\mathrm{gem}}=12.4 \mathrm{~Hz}\right)$ are consistent with the cis olefinic functionality and adjacent methylene group, respectively. The stereochemistry of the four hydroxyl substituents relative to the phthalimide group in (\pm)-31 was eventually assigned on the basis of the single-crystal X-ray diffraction analysis (Figure $\underline{6}$). $\underline{6^{12}}$

Figure 6. Structure of (\pm)- $\mathbf{3 1}$ (arbitrary atomic numbering).
For 2-formylbicyclo[4.1.0]hept-2-ene (33), a singlet and narrow doublet at $\delta=9.54$ and 6.52 ppm , respectively, in its ${ }^{1} \mathrm{H}$ NMR spectrum, and signals at $\delta=194.0,148.0$, and 144.6 ppm in its ${ }^{13} \mathrm{C}$ NMR spectrum are indicative of the 2,3-disubstituted enal functionality present. In addition, the relatively large coupling between $\mathrm{H}-4$ and $\mathrm{H}-5$ ($J=9.8 \mathrm{~Hz}$) is consistent with these two protons having a trans-diaxial relationship. The tentative structure for 33 was eventually corroborated by using single-crystal X-ray diffraction analysis (Figure 7). 7^{12}

Figure 7. Structure of (\pm)-33 (arbitrary atomic numbering).

The structural assignments for many of the diastereomeric polyhydroxyl bicyclo[5.1.0]octanes are based on their ${ }^{1} \mathrm{H}$ NMR spectral data. The carbon skeleton present in these compounds adopts an expanded chair-like conformer, with the cyclopropane ring acting similar to a methylene group in a cyclohexane ring and the phthalimide substituent at C-2 occupying an equatorial orientation; this can be observed in the crystal structures of 24, 25, and 32. For this reason, it is possible to utilize the Karplus relationship between the coupling constant and dihedral angle of coupled protons. ${ }^{17}$ In particular, for the six diastereomers in which the C-2 phthalimide and the C-3 hydroxyl are trans (i.e., diequatorial; 24, 25, 26, 27, 28, and 32), the coupling between $\mathrm{H}-2$ and $\mathrm{H}-3$ is relatively large ($J \approx 11 \mathrm{~Hz}$). Conversely, for the two diastereomers in which the $\mathrm{C}-2$ phthalimide and $\mathrm{C}-3$ hydroxyl are cis (29 and 30), the coupling between $\mathrm{H}-2$ and $\mathrm{H}-3$ is considerably smaller (2.2 Hz). In addition, for the diastereomers in which the C-3 and C-4 hydroxyl groups are diequatorial (26, 28, and $\mathbf{3 2}$), the coupling between $\mathrm{H}-3$ and $\mathrm{H}-4$ is relatively large (≈ 10 $\mathrm{Hz})$, whereas for those diastereomers in which the $\mathrm{C}-3$ hydroxyl is equatorial and the C-4 hydroxyl is axial (24, 25, and 27) the coupling between $\mathrm{H}-3$ and $\mathrm{H}-4$ is considerably smaller ($\approx 0-2 \mathrm{~Hz}$). For those diastereomers in which the $\mathrm{C}-5$ and $\mathrm{C}-6$ hydroxyl groups are diequatorial (27 and 30), or the $\mathrm{C}-4$ and $\mathrm{C}-5$ hydroxyls are diequatorial (32), the coupling between the protons on these carbons is relatively large ($\approx 9 \mathrm{~Hz}$). In addition, the relative stereochemistry of certain adjacent hydroxyl groups was assigned on the basis of the known syn relationship engendered by osmium-catalyzed dihydroxylation and the known anti relationship engendered by epoxide hydrolysis under these conditions.

The outcome of the epoxide hydrolyses deserves comment. The hydrolysis of epoxydiol $\mathbf{1 8}$ to give $\mathbf{2 9}$ proceeds through selective

[^1]cleavage of the $\mathrm{C} 3-\mathrm{O}$ bond. The resulting trans- diaxial orientation of the C3 and C4 hydroxyl groups can be rationalized on the basis of the Furst-Plattner rule for ring opening through a chair-like transition state. 18 In contrast, hydrolysis of epoxydiol 23 proceeds through cleavage of the $\mathrm{C} 6-\mathrm{O}$ bond to generate a trans-diequatorial relationship. This selective cleavage is the result of a greater stabilization of the partial positive charge on the protonated form of the epoxydiol at C-6 because of the stabilizing influence of the adjacent cyclopropane ring. ${ }^{19}$

The hydrolysis of bisepoxide $\mathbf{1 2}$ yields two products. It is proposed that the bicyclo[5.1.0]octanetetraol 30 arises through initial opening of the C3-C4 oxirane ring in a diaxial fashion to generate the C3 diastereomer of 23; subsequent epoxide opening of the C5-C6 oxirane occurs at the $\mathrm{C} 6-\mathrm{O}$ bond similar to $\mathbf{2 3}$. We propose that the cyclooctene product $\mathbf{3 1}$ is the product of initial protonation at the C5C6 oxirane (34, Scheme $\underline{7}$). A number of possible routes may be envisioned (Scheme 7): 1) a cyclopropyl to butenyl carbocation rearrangement to generate 35, followed by a facially selective reaction with water to afford 36 ; or 2) an $S_{N} 2^{\prime}$-type opening in which attack of a molecule of water at C1 of the protonated epoxide cleaves both the cyclopropane ring and the epoxide ring to directly generate $\mathbf{3 6}$; or 3) an intramolecular attack of one of the phthalimide oxygens at C1 of the cyclopropane with concomitant opening of both three-membered rings to generate 38, followed by addition of water to give the hydroxyisoindolinone $\mathbf{3 9}$, which can collapse to $\mathbf{3 7}$. 20 We favor the latter mechanism (3) for a number of reasons. It seems unlikely that a "free" carbocation such as 35 would lead to a stereoselective outcome. In fact, attempts to computationally model the protonated bisepoxide 34 using B3LYP/6-311+G(d,p) instead resulted in 38 as a minimized structure. Addition of explicit water to the optimization of protonated 34 did result in a minimized structure, in which the distance between the C 1 cyclopropane carbon and the phthalimide oxygen was $3.2 \AA$. This structure also revealed that approach of an external water molecule (i.e., pathway 2) would be significantly hindered by the phthalimide substituent.

[^2]NOT THE PUBLISHED VERSION; this is the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page.

Scheme 7. Intramolecular participation of the phthalimide oxygen in ring opening of 12 to afford cyclooctene 31.

Finally, the ring-contracted aldehyde 33, formed from exposure of $\mathbf{1 5}$ to the standard hydrolysis conditions, arises because of a concerted 1,2 -shift of C7 to C5 with concomitant opening of the protonated epoxide ring (Scheme $\underline{8}$). ${ }^{21}$ Deprotonation of the resultant oxocarbenium ion 40, followed by dehydration gives $\mathbf{3 3}$. We rationalize the divergent reaction pathways for diastereomeric epoxydiols $\mathbf{1 4}$ and $\mathbf{1 5}$ on the basis of stereoelectronic control. As can be seen in the crystal structure for $\mathbf{1 5}$ (Figure $\underline{2}$), the bond that shifts is aligned nearly antiperiplanar with the $\mathrm{C} 5-\mathrm{O}$ bond. This alignment would not be present in diastereomer 14, which undergoes a more classical epoxide ring opening. ${ }^{8}$

Scheme 8. Proposed mechanism for ring contraction of 15.
Deprotection of the phthalimide group proved to be challenging. The attempted acid hydrolysis of the phthalimide group leads to products in which the cyclopropane ring is no longer intact, as evidenced by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The exact nature of these ringopened products was not established. Use of anion exchange resins, ${ }^{22}$ partial reduction with NaBH_{4} in acidic medium followed by heating at reflux, $\underline{23}$ or treatment with n-butylamine ${ }^{\underline{ } 4}$ or methylamine ${ }^{25}$ similarly led to complex mixtures of unidentified products. Ultimately, cleavage of the phthalimide groups of 24-29, 30, and 32 with hydrazine [Eq. (1)] proceeded to give the corresponding amines 6; however, separation of these compounds from the byproduct 2,3-dihydro-1,4phthalazinedione 41 eluded attempts in our hands with normal and reversed-phase chromatography. Nonetheless, the inhibitory activity of 24-29, 30, 32, and the mixtures of amine diastereomers 6 and 41 against β-glucosidase was evaluated. $\underline{26}$ In all cases we observed no inhibition at concentrations of less than $100 \mu \mathrm{M}$.

Conclusion

Eight racemic stereoisomeric N-(tetrahydroxybicyclo-[5.1.0]oct-2S*-yl)phthalimides 24-29, 30, and 32, have been prepared from N -(bicyclo[5.1.0]octa-3,5-dien-2-yl)phthalimide (土)-7, which is itself prepared from cyclooctatetraene. The structural assignments for these
stereoisomers was established by using ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ coupling values and corroborated for 24, 25, and $\mathbf{3 2}$ by using X-ray diffraction analysis. Certain epoxydiol hydrolyses resulted in ring-expanded or ringcontracted products. Hydrazinolysis of the phthalimide group led to the corresponding amines, which were inseparable from the 2,3-dihydro-1,4-phthalazinedione byproduct. Neither the phthalimides nor the free amines exhibited β-glucosidase inhibitory activity at concentrations of less than $100 \mu \mathrm{M}$.

Experimental Section

General methods

All reactions involving moisture or air-sensitive reagents were carried out under a nitrogen atmosphere in oven-dried glassware with anhydrous solvents. THF and diethyl ether were distilled from sodium/benzophenone. Purifications by flash chromatography were carried out using silica gel ($32-63 \mu$). NMR spectra were recorded on either a Varian Mercury+ 300 MHz or a Varian UnityInova 400 MHz instrument. $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$, and [D_{6}]acetone were purchased from Cambridge Isotope Laboratories. ${ }^{1} \mathrm{H}$ NMR spectra were calibrated to $\delta=7.27 \mathrm{ppm}$ for residual $\mathrm{CHCl}_{3}, 3.31 \mathrm{ppm}$ for $\mathrm{CD}_{2} \mathrm{HOD}$, 2.50 ppm for [D_{5}]DMSO, or 2.05 ppm for [D_{5}]acetone. ${ }^{13} \mathrm{C}$ NMR spectra were calibrated from the central peak at $\delta=77.23 \mathrm{ppm}$ for CDCl_{3}, 49.15 ppm for $\mathrm{CD}_{3} \mathrm{OD}, 39.52 \mathrm{ppm}$ for $\left[\mathrm{D}_{5}\right] \mathrm{DMSO}$, or 29.92 ppm for [D_{6}]acetone. Coupling constants are reported in Hz .

Syntheses

5-Phthalimido-7,8-dioxatricyclo[4.2.2.0 ${ }^{2,4}$]dec-9-ene (土)8: Tetraphenylporphorine (TPP) ($9 \mathrm{mg}, 0.139 \mathrm{mmol}$) was added to a solution of diene $(\pm)-7(350 \mathrm{mg}, 1.394 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The deep-purple solution was irradiated with a 100 W halogen lamp, while ultra-pure O_{2} was bubbled through the solution and stirred in an ice bath for 6 h . The reaction mixture was concentrated, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/ethyl acetate $=2: 3$) to give $(\pm)-8(286 \mathrm{mg}, 72 \%)$ as a colorless solid. M.p. $=159-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70-7.90(\mathrm{~m}, 4 \mathrm{H}$; Phth), 6.55 (dd, J=8.2, 8.6 Hz, $1 \mathrm{H} ; \mathrm{C} \equiv \mathrm{CH}$), 6.26 (dd, J=8.2, 9.0 Hz ,
$1 \mathrm{H} ; \mathrm{C} \equiv \mathrm{CH}$ ），5．33－5．26（m， $2 \mathrm{H} ; \mathrm{H}-2, \mathrm{H}-6$ ），4．48－4．45（brs， $1 \mathrm{H} ; \mathrm{H}-$ 5），1．71－1．62（m， $2 \mathrm{H} ; \mathrm{H}-2, \mathrm{H}-4), 1.44$（pent，J＝8．4， $1 \mathrm{H} ; \mathrm{H}-3$＇），0．74－ $0.64 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H} ; \mathrm{H}-3){ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=168.4(\mathrm{C} \equiv \mathrm{O})$ ， 134．4，132．0，128．7，127．4，123．6，77．9，77．4， 52.2 （C－5），17．5，15．4， 11.1 ppm ；elemental analysis calcd（\％）for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}$ ：C 67．84；H 4．62；found：C 67．81；H 4．64．

10－Phthalimido－2，5－dioxatetracyclo［7．1．0 ${ }^{1,3} .0^{4,6}$ ］decane

（土）－12：m－Chloroperoxybenzoic acid（ $319 \mathrm{mg}, \approx 70 \% \mathrm{wt} ., \approx 1.29$ $\mathrm{mmol})$ was added to a solution of diene（ \pm ）－7（ $130 \mathrm{mg}, 0.516 \mathrm{mmol}$ ） in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ ．The reaction mixture was stirred under N_{2} for 12 h ，after which monitoring by TLC indicated the disappearance of starting material．The mixture was concentrated and the solid residue was treated with saturated aqueous bicarbonate（5 mL ）with stirring for 30 min ．The mixture was extracted several times with ethyl acetate，dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ ，and concentrated．Recrystallization of the residue from benzene gave colorless crystals of（土）－12（137 $\mathrm{mg}, 93$ \％）．M．p．$>250^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.92-7.72(\mathrm{~m}$ ， 4 H ；Phth）， 5.16 （d，J＝5．6 Hz， 1 H ；H－8）， 3.70 （dd，J＝4．2，5．4 Hz， 1 H ）， 3.51 （dd，J＝4．4， $6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 3.47 （dd，J＝2．6， $4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 3.31 （dd， J＝2．4， $4.4 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 1.46 （tt，J＝6．0， $9.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9$ ）， 1.29 （td，J＝4．0， $\left.6.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-10^{\prime}\right)$ ，1．05－1．12 ppm（m， $2 \mathrm{H} ; \mathrm{H}-1, \mathrm{H}-10$ ）；${ }^{13} \mathrm{C}$ NMR（100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.1(\mathrm{C} \equiv \mathrm{O}), 134.4,132.1,123.6,58.5,53.7,52.2$ ， 51．2，47．6，19．9，11．3， 11.1 ppm ；elemental analysis calcd（\％）for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}$ ：C 67．84；H 4．62；found：C 67．44；H 4．68．The same bisepoxide could be generated by irradiation of a solution of（ \pm ）－8 in benzene with a medium－pressure Hg lamp（ 67% ）．

N－（3R＊，6R＊－Dihydroxybicyclo［5．1．0］oct－4－en－2R＊－

yl）phthalimide（土）－9：Activated zinc dust（ 250 mg ）was added to a solution of endoperoxide（ \pm ）－8（ $250 \mathrm{mg}, 0.880 \mathrm{mmol}$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（20 mL ），followed by dropwise addition of a solution of acetic acid（537 $\mathrm{mg}, 8.803 \mathrm{mmol}$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ over a 10 min period．The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ ，and then filtered through a Celite column．The column was then washed with methanol．The fractions collected were allowed to slowly evaporate under atmospheric pressure，and the residue was purified by column chromatography （ SiO_{2} ，hexanes／ethyl acetate＝1：4）to give（ \pm ）－9（249 mg， 98% ）as colorless crystals．M．p．$=217-219^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ $600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）： $\delta=7.90-7.79$（m，4 H；Phth）， 5.82 （ddd，J＝2．1， $6.3,12.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-$

5）， 5.62 （ddd，J＝1．2， $3.6,12.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 4.78$（td，J＝3．0， 10.8 Hz ， $1 \mathrm{H} ; \mathrm{H}-3), 4.66$（dd，J＝4．2， $10.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$ ）， 4.47 （dt，J＝1．5， 5.8 Hz ， $1 \mathrm{H} ; \mathrm{H}-6), 1.35$（tt，J＝5．7， $9.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7$ ）， 1.21 （ddt，J＝4．5，6．3， 9.0 $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{H}-1), 0.95$（q，J＝5．8 Hz， $1 \mathrm{H} ; \mathrm{H}-8 e n d o$ ）， $0.81 \mathrm{ppm}(\mathrm{dt}, \mathrm{J}=5.4$ ， $9.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 \mathrm{exo}) ;{ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=170.3$（ $\mathrm{C} \equiv \mathrm{O}$ ）， 135．4，134．0，133．5，133．3，124．1，70．6，67．2，53．5，23．2，17．1， 9.2 ppm．HRMS（FAB）：m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}+\mathrm{Na}^{+}$： $308.0893\left[M+\mathrm{Na}^{+}\right]$； found：308．0895．

N－（3R＊－Hydroxy－6－oxo－bicyclo［5．1．0］oct－4－en－2R＊－ yl）phthalimide（土）－10 and N－（6S＊－Hydroxy－3－oxo－ bicyclo［5．1．0］oct－4－en－2R＊－yl）phthalimide：A solution of $E t_{3} \mathrm{~N}$

 （ $0.25 \mathrm{~mL}, 1.761 \mathrm{mmol}$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to a solution of endoperoxide（ \pm ）－8（ $250 \mathrm{mg}, 0.880 \mathrm{mmol}$ ）in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ ．The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h ，the solvent evaporated，and the residue was purified by column chromatography（ $\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ）to give（ \pm ）－10（ $238 \mathrm{mg}, 95 \%$ ） followed by（ \pm ）－N－（6S＊－Hydroxy－3－oxo－bicyclo［5．1．0］oct－4－en－2R＊－ yl）phthalimide（ $5 \mathrm{mg}, 2 \%$ ），both as colorless solids．（土）－10：M．p． $227-228^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.85-7.83$（ $4 \mathrm{H}, \mathrm{m}$, Phth）， 6.40 （dd，J＝2．4， $13.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 5.91$（ddd，J＝1．6， $2.8,13.6 \mathrm{~Hz}$ ， $1 \mathrm{H} ; \mathrm{H}-5), 4.97$（tdd，J＝2．4，9．6， $10.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2), 4.80$（d，J＝10．0 Hz， 1 H；H－3）， 2.23 （d，J＝9．2 Hz， 1 H；OH）， 2.14 （ddt，J＝1．6，5．4， 9.1 $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{H}-7), 1.73$（q，J＝8．7 Hz， $1 \mathrm{H} ; \mathrm{H}-8 e n d o$ ）， 1.62 （td，J＝5．8， 7.2 $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{H}-1), 1.45 \mathrm{ppm}(\mathrm{dt}, \mathrm{J}=6.0,8.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 \mathrm{exo}) ;{ }^{13} \mathrm{C}$ NMR （100 MHz，［D6］acetone）：$\delta=199.0$（C－6）， 168.7 （ $\mathrm{C} \equiv$ O Phth），145．0， 135．1，133．2，127．0，123．9，68．0，53．4，28．2，21．2， 13.5 ppm； elemental analysis calcd（\％）for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}$ ：C 67．84；H 4．62；found：C 67．92；H 4.65.（土）－N－（6S＊－Hydroxy－3－oxo－bicyclo［5．1．0］oct－4－en－2R＊－
yl）phthalimide：M．p． $182-183^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：
$\delta=7.92-7.82$（m， $4 \mathrm{H} ;$ Phth）， 7.01 （dd，J＝3．0， $12.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5), 6.07$ （dd，J＝2．8，12．0 Hz，1 H；H－4）， 4.52 （d，J＝10．8 Hz，1 H）， 4.48 （td， $J=2.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 2.08 （ddt，J＝4．8，7．0， $10.6,1 \mathrm{H} ; \mathrm{H}-1$ ），1．69－1．61 （m， $1 \mathrm{H} ; \mathrm{H}-7$ ）， 1.25 （dt，J＝5．6， $7.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 \mathrm{exo}$ ）， 1.01 ppm （q， J＝4．9 Hz， $1 \mathrm{H} ; \mathrm{H}-8 e n d o) ;{ }^{13} \mathrm{C}$ NMR（100 MHz，CD $\left.{ }_{3} \mathrm{OD}\right): \delta=194.7$（C－3）， 169.5 （ $\mathrm{C} \equiv$ O Phth），158．2，135．8，133．2，129．5，124．5，74．1，64．3， 27．5，18．2， 13.6 ppm．

N-(3R*,6S*-Dihydroxybicyclo[5.1.0]oct-4-en-2R*-

 yl)phthalimide (土)-11: $\left[\mathrm{CeCl}_{3}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}(604 \mathrm{mg}, 1.620 \mathrm{mmol})$ was added to a solution of (\pm)-10 ($230 \mathrm{mg}, 0.810 \mathrm{mmol}$) in THF (4 mL) and methanol (7 mL). The mixture was stirred at room temperature until all the material dissolved ($\approx 30 \mathrm{~min}$). The solution was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(62 \mathrm{mg}, 1.620 \mathrm{mmol})$ was added portionwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 h , the solvent concentrated, and the resultant residue was partitioned between water and ethyl acetate. Evaporation of the solvent gave (\pm)-11 (220 mg , 94 \%) as a colorless solid. M.p. $225-227^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.90-7.78$ (m, 4 H ; Phth), 5.55 (td, J=2.4, $13.2 \mathrm{~Hz}, 1 \mathrm{H}$; $\mathrm{H}-4), 5.47$ (qd, J=1.7, $13.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5$), $4.84-4.81$ (m, $1 \mathrm{H} ; \mathrm{H}-6$), 4.60 (qd, J=2.4, $10.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3), 4.49(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2)$, 1.42-1.34 (m, $1 \mathrm{H} ; \mathrm{H}-7$), 1.21 (dt, J=6.1, $9.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1$), 0.96 (q, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$; H-8endo), $0.70 \mathrm{ppm}(\mathrm{dt}, J=5.9,8.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 \mathrm{exo}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=170.0,135.4,133.6,132.0,130.4$, 124.2, 69.1, 68.4, 53.6, 19.9, 16.2, 2.5 ppm ; HRMS (FAB): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}+\mathrm{Na}^{+}$: $308.0893\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; found: 308.0895.Epoxidation of (土)-8: $\mathrm{H}_{2} \mathrm{O}_{2}(0.25 \mathrm{~mL}, 3.5 \mathrm{mmol}, 50 \mathrm{wt} \%$ solution) was added to an ice-cold solution of trifluoroacetic anhydride ($0.50 \mathrm{~mL}, 3.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and the mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$ and then at room temperature for 1 h . The previously prepared trifluoroperacetic acid solution was then added dropwise to an ice-cold solution of endoperoxide (\pm)-8 ($130 \mathrm{mg}, 0.458 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ and THF (2.5 mL). After addition was complete, the mixture was warmed to room temperature and stirred for 4 h . The solvent was evaporated by blowing nitrogen gas over the solution to give (\pm)-13 (136 mg, 99%) as a colorless solid. M.p. $205-206{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.93-7.85$ (m, $2 \mathrm{H} ;$ Phth), 7.82-7.73 (m, 2 H ; Phth), 5.59 (dd, J=3.5, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.08 (dt, J=3.6, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.49(\mathrm{q}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2), 3.85(\mathrm{t}, \mathrm{J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.91$ ($\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 e n d o$), 1.77 (ddt, J=2.0, 6.8, 8.7 Hz, $1 \mathrm{H} ; \mathrm{H}-1$), 1.49 (pent, J=7.9 Hz, $1 \mathrm{H} ; \mathrm{H}-7$), 0.96 ppm (td, J=6.3, $8.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}$-8exo); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.4,134.7$, 131.8, 123.8, 79.0, 74.7, 52.3, 47.9, 47.0, 16.5, 15.8, $9.7 \mathrm{ppm} ;$ HRMS (FAB): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{5}+\mathrm{Na}^{+}: 322.0686\left[M+\mathrm{Na}^{+}\right]$; found: 322.0688.

N－（4R＊，5S＊－Epoxy－3R＊，6S＊－dihydroxybicyclo［5．1．0］oct－ 2S＊－yl）phthalimide（土）－14：The reduction of epoxy endoperoxide $(\pm)-\mathbf{1 3}(110 \mathrm{mg}, 0.367 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ with activated zinc dust（ 110 mg ）was carried out in a fashion similar to the preparation of $(\pm)-9$ ．The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$ ， $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=19: 1$ ）to give（ \pm ）－14（ $63 \mathrm{mg}, 63 \%$ ）as a colorless solid． M．p． $194-195^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=7.91-7.73$（m， 4 H ； Phth）， 4.80 （dd，J＝3．5， $11.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$ ）， 4.54 （dd，J＝0．8， 11.0 Hz ， $1 \mathrm{H} ; \mathrm{H}-3), 4.43(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6), 3.29(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-$ 3.20 （m， 1 H ）， 1.15 （ddt，J＝3．5， $6.7,9.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7$ ）， 1.07 （dddt， $J=0.8,4.0,6.7,9.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1), 0.78(\mathrm{dt}, J=5.5,9.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-$ 8exo）， $0.68 \mathrm{ppm}(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 e n d o) ;{ }^{13} \mathrm{C}$ NMR（ 100 MHz ， $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=170.2,135.4,133.5,124.2,70.1,65.6,61.0,58.0,51.6$ ， 19．8，18．5， 7.2 ppm ；HRMS（FAB）：m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5}+\mathrm{Na}^{+}$： $324.0842\left[\mathrm{M}^{+} \mathrm{Na}^{+}\right]$；found： 324.0843 ．

N－（4S＊，5R＊－Epoxy－3R＊，6S＊－dihydroxybicyclo［5．1．0］oct－ 2S＊－yl）phthalimide（土）－15：The epoxidation of enediol（土）－9（70 $\mathrm{mg}, 0.245 \mathrm{mmol}$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}(1: 1,5 \mathrm{~mL})$ with trifluoroacetic acid was carried out in a fashion similar to the preparation of（ \pm ）－13． Purification of the crude residue column chromatography $\left(\mathrm{SiO}_{2}\right.$ ， hexanes／ethyl acetate gradient $=2: 3 \rightarrow 3: 7$ ）to give recovered 9 （ 9 mg ） followed by（ \pm ）－15（ $53 \mathrm{mg}, 83 \%$ based on recovered starting material （b．r．s．m．））as a colorless solid．M．p． $205-206^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ 400 MHz ， $\mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=7.85$（brs， 4 H ；Phth）， 4.78 （dd，$J=7.6,12.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$ ）， 4.01 （dd，J＝6．8， $12.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3$ ），3．32－3．19（m， $2 \mathrm{H} ; \mathrm{H}-5$ and H－6）， 3.03 （dd，J＝4．7， $6.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 1.34(\mathrm{tt}, J=7.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-$ 1.20 （m， 1 H ）， 0.99 （td，J＝5．2， $6.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 e n d o$ ）， 0.86 ppm （ddd， J＝4．4，8．8， $9.6 \mathrm{~Hz}, 1 \mathrm{H}$ ；H－8exo）；${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）： $\delta=170.5,170.2,135.6,135.4,133.6,133.0,124.3,124.1,76.7$ ， $68.6,60.1,58.5,53.4,23.5,17.6,13.1 \mathrm{ppm} ;$ HRMS（FAB）： m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5}+\mathrm{Na}^{+}$： $324.0842\left[\mathrm{M}+\mathrm{Na}^{+}\right.$］；found：324．0844．

N－（5S＊，6R＊－Dihydroxybicyclo［5．1．0］oct－3－en－2R＊－ $y \mathrm{l}) \mathrm{phthalimide}(\pm)-16$ and $\boldsymbol{N}-\left(3 R^{*}, 4 S^{*}-\right.$ dihydroxybicyclo［5．1．0］oct－5－en－2S＊－yl）phthalimide（土）－17：A solution of N－methylmorpholine－N－oxide（ $0.32 \mathrm{~mL}, 1.2 \mathrm{mmol}, 50 \mathrm{wt} \%$ in water）was added to a solution of diene（ \pm ）－7（ $300 \mathrm{mg}, 1.20 \mathrm{mmol}$ ） in acetone $(10 \mathrm{~mL})$ ，followed by a solution of $\mathrm{OsO}_{4}(0.2 \mathrm{~mL}, 0.2 \mathrm{M}$ in toluene）．The mixture was stirred for 1 h at room temperature．The

[^3]reaction was quenched with $\mathrm{NaHSO}_{3}(100 \mathrm{mg})$ and stirred for 30 min then adsorbed onto silica gel for purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/ethyl acetate $\left.=2: 3\right)$ to give recovered 7 (81 mg), followed by (\pm)-16 (138 mg, 56 \% b.r.s.m.) followed by (\pm)-17 ($72 \mathrm{mg}, 29$ \% b.r.s.m.), both as colorless solids. (土)-16: M.p. $218-221^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=7.90-7.70$ (m, 4 H ; Phth), 5.68 (pent, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$), 5.55 (ddd, J=2.0, $5.2,12.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{C}$ = CH), 5.43 (ddd, J=2.0, 3.6, $12.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{C} \equiv \mathrm{CH}$), 4.60-4.68 (m, $1 \mathrm{H} ; \mathrm{H}-5), 4.10-4.20(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-6), 2.41(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OH}), 2.25$ (d, J=3.6 Hz, $1 \mathrm{H} ; \mathrm{OH}$), 1.48 (tt, J=6.7, $9.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7$), 1.22-1.14 (m, $1 \mathrm{H} ; \mathrm{H}-1), 1.08(\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 e n d o), 0.83 \mathrm{ppm}(\mathrm{dt}, \mathrm{J}=5.9$, $8.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 \mathrm{exo})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.0,134.3$, 132.2, 128.6, 127.2, 123.5, 73.0, 71.9, 48.7, 17.9, 16.5, $7.2 \mathrm{ppm} ;$ HRMS (FAB): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}+\mathrm{Na}^{+}: 308.0893\left[M+\mathrm{Na}^{+}\right.$]; found: 308.0894. (土)-17: M.p. $=219-220^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=7.88-7.81$ (m, $2 \mathrm{H} ;$ Phth), 7.76-7.67 (m, $2 \mathrm{H} ;$ Phth), 6.16 (dd, J=5.8, $11.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5), 5.65$ (dd, J=7.6, $12.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6$), 5.25 (dd, J=4.0, $10.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2), 4.40-4.30(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-5$ and H-6), 2.43 (d, J=8.0 Hz, $1 \mathrm{H} ; \mathrm{OH}), 1.98(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OH}), 1.54-1.45$ (m, $1 \mathrm{H} ; \mathrm{H}-1), 1.41$ (dq, J=4.0, $8.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7$), 1.05 (dt, J=4.6, 9.2 $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{H}-8 \mathrm{exo}$), $0.90 \mathrm{ppm}(\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 e n d o) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.2,134.7,134.1,132.3,123.4,123.3,71.1,68.7$, 50.1, 19.6, 15.9, 13.4 ppm; HRMS (FAB): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}+\mathrm{Na}^{+}: 308.0893\left[M+\mathrm{Na}^{+}\right]$; found: 308.0894.

N-(3R*,4R*-Epoxy-5S*,6S*-dihydroxybicyclo[5.1.0]oct-

 2S*-yl)phthalimide (\pm)-18: The epoxidation of enediol (\pm)-16 (138 $\mathrm{mg}, 0.484 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ with trifluoroacetic acid was carried out in a fashion similar to the preparation of 15. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/ethyl acetate $=30: 70$) to give $(\pm)-\mathbf{1 8}(121 \mathrm{mg}, 83 \%)$ as a colorless solid. M.p.>250 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, [D6]DMSO): $\delta=7.93-7.81$ (m, 4 H ; Phth), 4.94 (d, J=5.9 Hz, 1 H; H-2), 4.82 ($t, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.59 (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ ($\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.73(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dq}, \mathrm{J}=5.1,8.6 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{H}-7), 1.20$ (q, J=5.7 Hz, $1 \mathrm{H} ; \mathrm{H}-8 e n d o$), 1.04 (tt, J=5.9, 8.6 Hz , $1 \mathrm{H} ; \mathrm{H}-1), 0.84 \mathrm{ppm}(\mathrm{dt}, \mathrm{J}=6.7,8.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 \mathrm{exo}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=168.5,134.7,131.3,123.1,82.0,80.6,72.9$,70．3，50．7，15．5，14．2， 7.7 ppm ；HRMS（FAB）：m／z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5}+\mathrm{Na}^{+}$： $324.0842\left[\mathrm{M}+\mathrm{Na}^{+}\right]$；found：324．0846．

N－（5R＊，6S＊－Epoxybicyclo［5．1．0］oct－3－en－2S＊－

 $y \mathrm{l}) \mathrm{phthalimide}(\pm)-19$ and \boldsymbol{N}－（5－oxobicyclo［5．1．0］oct－3－en－ 2S＊－yl）phthalimide（土）－20：A solution of meta－chloroperoxybenzoic acid（ $196 \mathrm{mg}, \approx 0.794 \mathrm{mmol}, \approx 70 \mathrm{wt} \%$ ）in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（2 mL ）was added dropwise to a solution of diene（ \pm ）－7（ $200 \mathrm{mg}, 0.794$ $\mathrm{mmol})$ in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ ．The solution was stirred under N_{2} for 5 h ，at which time monitoring by TLC showed complete disappearance of starting material．The solvent was evaporated and the residue was treated with saturated bicarbonate solution（ 5 mL ） with stirring for 30 min ．The mixture was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ，concentrated，and purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$ ， hexanes／ethyl acetate＝7：3）to give（ \pm ）－19（153 mg， 70 \％）followed by（ \pm ）－20（ $28 \mathrm{mg}, 12 \%$ ），both as colorless solids．（ \pm ）－19：M．p．196－ $198{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=0.90-0.97$（ $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 e x o$ ）， $1.07(1 \mathrm{H}, \mathrm{br}$ q，J＝7．6 Hz，H－8endo）， $1.58(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-7), 3.19$ （ $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{H}-5$ or H－6）， 3.57 （ $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{H}-5$ or H－6）， $5.63(1 \mathrm{H}$, brd，$J=12.0 \mathrm{~Hz}, \mathrm{H}-3), 5.78(1 \mathrm{H}, J=2.9,5.5,12.0 \mathrm{~Hz}, \mathrm{H}-4)$ ， 5.91 （ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{H}-2$ ），7．70－7．93 ppm（ $4 \mathrm{H}, \mathrm{m}$, Phth）；${ }^{13} \mathrm{C}$ NMR （ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=8.3,13.8,18.8,47.6,52.8,54.9,123.4,123.5$ ， 132．2，132．8，134．2， 167.9 ppm ；HRMS（FAB）：m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}+\mathrm{Na}^{+}$： 290.0788 ［ $\mathrm{M}+\mathrm{Na}^{+}$］；found：290．0789．（ \pm）－20：M．p． $122-123^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=0.74(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.4$ and 9.0 $\mathrm{Hz}, \mathrm{H}-8 \mathrm{exo}$ ）， 1.03 （ $1 \mathrm{H}, \mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{H}-8 e n d o$ ）， $1.20-1.28$（ $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and H－7）， $2.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.2 \mathrm{~Hz}, \mathrm{H}-6), 3.11(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=15.2 \mathrm{~Hz}, \mathrm{H}-$ 6＇），5．61－5．64（1 H，brs，H－2）， 6.12 （ $1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.8,3.1,12.9 \mathrm{~Hz}, \mathrm{H}-$ 4）， 6.24 （ $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.6,13.0 \mathrm{~Hz}, \mathrm{H}-3$ ）， $7.75-7.93 \mathrm{ppm}(4 \mathrm{H}, \mathrm{m}, \mathrm{Phth})$ ； ${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=4.7,8.4,17.9,41.6,49.4,123.78$ ， 123．84，132．0，132．6，134．6，141．9，167．7， 198.9 ppm；HRMS（FAB）： m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}+\mathrm{Na}^{+}$： $290.0788\left[\mathrm{M}+\mathrm{Na}^{+}\right]$；found：290．0789．N－（5S＊，6S＊－Epoxy－3R＊，4R＊－dihydroxybicyclo［5．1．0］oct－ 2S＊－yl）phthalimide（土）－23：The dihydroxylation of（土）－19（100 mg， 0.373 mmol ）in acetone（ 5 mL ）with catalytic $\mathrm{OsO}_{4}(0.14 \mathrm{~mL}, 0.2 \mathrm{M}$ in toluene）and N－methylmorpholine－N－oxide（ $100 \mathrm{mg}, 0.857 \mathrm{mmol}$ ）in water（ 1 mL ）was carried out in a fashion similar to the dihydroxylation of（ \pm ）－7．Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$ ， hexanes／ethyl acetate gradient $1: 1 \rightarrow 1: 4$ ）gave（ \pm ）－23（ $109 \mathrm{mg}, 97 \%$ ）

[^4]as a colorless solid．M．p．$>220^{\circ} \mathrm{C}$ ；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz},\left[\mathrm{D}_{6}\right.$ ］acetone）： $\delta=7.84$（s， $4 \mathrm{H} ;$ Phth）， 5.19 （dd，J＝5．8， $11.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$ ），4．36－4．41 （m， $2 \mathrm{H} ; \mathrm{H}-3$ and $\mathrm{H}-4), 4.16(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OH}), 3.58$（brd，J＝4．8 $\mathrm{Hz}, 1 \mathrm{H}$ ）， 3.35 （ddd，$J=0.6,4.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$（d，J＝5．2 Hz， 1 H ； OH ）， 1.56 （brq，J＝8．3 Hz， $1 \mathrm{H} ; \mathrm{H}-7$ ）， 1.23 （tt，J＝6．8， $8.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-$ 1）， 0.96 （dt，J＝4．9， $6.7 \mathrm{~Hz}, 1 \mathrm{H}$ ；H－8endo）， $0.84 \mathrm{ppm}(\mathrm{dt}, \mathrm{J}=4.8,9.2$ $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{H}-8 \mathrm{exo}) ;{ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone）：$\delta=169.8,135.4$ ， 133．6，124．1，70．7，67．9，58．4，56．5，53．0，20．8，16．8， 7.2 ppm； HRMS（FAB）：m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5}+\mathrm{Na}^{+}: 324.0842\left[\mathrm{M}+\mathrm{Na}^{+}\right]$； found： 324.0843.
N－（3R＊，4R＊，5S＊，6S＊－Tetrahydroxybicyclo［5．1．0］oct－2S＊－ $y \mathrm{l}) \mathrm{ph}$ halimide（ \pm ）－25 and $* N-\left(3 R^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right.$－ tetrahydroxybicyclo［5．1．0］oct－2S＊－yl）phthalimide（土）－24：The exhaustive hydroxylation of（ \pm ）－7（ $300 \mathrm{mg}, 1.20 \mathrm{mmol}$ ）in acetone with catalytic OsO_{4} was carried out in a similar fashion to the dihydroxylation of 7 except that an excess of NMO（ $419 \mathrm{mg}, 3.59$ mmol ）was used．Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right)$ gave $(\pm)-25$（ 187 mg ， 49% ）followed by（ \pm ）－24（ $79 \mathrm{mg}, 21 \%$ ）both as a colorless solids． （土）－25：M．p．229－230 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=7.89-7.76$ （m， 4 H ；Phth）， 5.16 （dd，J＝2．6， $10.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$ ），4．50－4．44（m， $1 \mathrm{H} ; \mathrm{H}-6), 4.27$（dd，J＝1．8， $11.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3$ ），4．14－4．10（m， $1 \mathrm{H} ; \mathrm{H}-$ 4）， 3.54 （ $\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5$ ）， 1.39 （ddt，J＝4．8， $7.0,9.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-$ 7）， 1.19 （ddt，J＝2．6，6．6， $9.2 \mathrm{~Hz}, 1 \mathrm{H}$ ；H－1）， $0.89-0.74 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}$ ； H －8exo and H －8endo）；${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=169.9,135.3$ ， $135.2,133.7,133.3,124.2,123.8,81.0,76.1,69.7,68.8,50.8,20.8$ ， 18．7， 6.8 ppm ；elemental analysis calcd（\％）for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$ ：C 59．51，H 5．43，N 4．34；found：C 59．56，H 5．49，N 4．35．（土）－24：M．p． 241－244 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=7.87-7.75$（m， $4 \mathrm{H} ;$ Phth）， 5.05 （dd，J＝2．9， $11.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2), 4.59$（d，J＝10．6 Hz， $1 \mathrm{H} ; \mathrm{H}-3$ ）， 4.34 （d，J＝3．5 Hz， $1 \mathrm{H} ; \mathrm{H}-6), 4.00$（s， $2 \mathrm{H} ; \mathrm{H}-4$ and H－5），1．63－1．53 （m，1H），1．23－1．02（m，2 H），0．63 ppm（dt，J＝5．3，9．0 Hz， $1 \mathrm{H} ; \mathrm{H}-$ 8exo）；${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=170.2,135.3,135.1,124.1$ ， 123．8，76．4，75．9，68．7，66．3，51．7，19．8，18．1， 7.3 ppm ；elemental analysis calcd（\％）for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}$ ：C 60．18，H 5．37；found：C $60.18, \mathrm{H}$ 5．32．

N－（3R＊，4S＊，5R＊，6S＊－Tetrahydroxybicyclo［5．1．0］oct－2S＊－ yl）phthalimide（土）－26：Dihydroxylation of（ \pm ）－9（140 mg， 0.489

[^5]mmol) in acetone with catalytic OsO_{4} and NMO ($85 \mathrm{mg}, 0.73 \mathrm{mmol}$) was carried out in a similar fashion to the dihydroxylation of 7 . The residue was purified by column chromatography (SiO_{2}, hexanes/ethyl acetate $=1: 4)$ to give (\pm)-26 (133 mg, 85%) as a colorless solid. M.p. $254-255^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.90-7.78$ (m, 4 H ; Phth), 4.71 (dd, J=3.8, 10.2 Hz, $1 \mathrm{H} ; \mathrm{H}-2$), 4.37 (t, J=10.0 Hz, $1 \mathrm{H} ; \mathrm{H}-3$), 4.30 (t, J=5.4 Hz, $1 \mathrm{H} ; \mathrm{H}-6), 4.05$ (dd, J=2.8, $6.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5), 3.64$ (dd, J=2.6, $9.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 1.50$ (q, J=6.1 Hz, $1 \mathrm{H} ; \mathrm{H}-8 e n d o$), 1.261.18 (m, $1 \mathrm{H} ; \mathrm{H}-7$), 1.11 (ddt, J=3.6, $6.4,9.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1$), 0.71 ppm ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=5.6,9.2 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{exo}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=170.2,135.5,135.3,133.9,133.4,124.2,124.0,76.3,73.6,71.9$, 66.4, 55.3, 20.5, 17.8, 7.6 ppm ; elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}$: C 60.18, H 5.36; found: C 60.01, H 5.36.

N-(3R*,4S*,5R*,6R*-Tetrahydroxybicyclo[5.1.0]oct-2S*yl)phthalimide (\pm)-28 and N-(3 $R^{*}, 4 R^{*}, 5 S^{*}, 6 R^{*}$ -tetrahydroxybicyclo[5.1.0]oct-4-en-2S*-yI)phthalimide (\pm)-27:

 The dihydroxylation of $(\pm)-\mathbf{1 1}(300 \mathrm{mg}, 1.049 \mathrm{mmol})$ in acetone with catalytic OsO_{4} and $\mathrm{NMO}(184 \mathrm{mg}, 1.573 \mathrm{mmol})$ was carried out in a fashion similar to the preparation of $(\pm)-\mathbf{2 6}$. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=2: 3\right)$ to give (\pm)-28 ($93 \mathrm{mg}, 28 \%$) followed by (\pm)-27 ($117 \mathrm{mg}, 34 \%$), both as colorless solids. (土)-28: M.p. 201-203 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CD ${ }_{3} \mathrm{OD}$): $\delta=7.91-$ 7.72 (m, 4 H ; Phth), 4.56 (dd, J=2.7, $11.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$), 4.45 (t, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3), 4.17-4.10(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-5$ and H-6), 3.27 (dd, J=1.6, $9.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 1.70(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 e n d o), 1.24-1.14$ (m, $1 \mathrm{H} ; \mathrm{H}-7), 1.09$ (ddt, J=2.7, 6.3, $9.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1$), $0.69 \mathrm{ppm}(\mathrm{dt}$, J=5.5, $9.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 e x o)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=170.1$, 170.0, 135.5, 135.2, 133.8, 133.3, 124.2, 124.0, 77.0, 76.0, 70.1, 66.4, 55.5, 20.2, 17.8, 8.4 ppm ; elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}$: C 60.18, H 5.36; found: C 59.93, H 5.29. (\pm)-27: M.p. $>230{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CD ${ }_{3} \mathrm{OD}$): $\delta=7.90-7.76$ (m, $4 \mathrm{H} ;$ Phth), 5.50 (dd, J=3.0, $11.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2), 4.30(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3)$, 4.26 (dd, J=3.6, $9.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6)$, 4.06 (s, $1 \mathrm{H} ; \mathrm{H}-4$), 3.34 (d, J=8.4 $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{H}-5), 1.31$ (ddt, J=3.6, 6.8, $9.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7$), 1.16 (ddt, J=3.0, 6.6, 9.6 Hz, $1 \mathrm{H} ; \mathrm{H}-1$), 0.90 (q, J=6.4 Hz, 1 H ; H-8endo), 0.67 ppm (dt, J=6.0, $9.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 \mathrm{exo}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=170.5,170.2,135.4,135.3,133.8,133.4,124.2,123.9,78.1$,74．1，69．3，68．6，50．9，20．0，18．1， 4.9 ppm ；elemental analysis calcd （\％）for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}$ ：C 60．18，H 5．36；found：C 59．65，H 5．38．
$N-\left(3 R^{*}, 4 R^{*}, 5 S^{*}, 6 R^{*}\right.$－Tetrahydroxybicyclo［5．1．0］oct－4－ en－2S＊－yl）phthalimide（ \pm ）－27：Carbon tetrabromide（ $20 \mathrm{mg}, 0.058$ mmol ）was added as a catalyst to a solution of epoxydiol（土）－23（87 $\mathrm{mg}, 0.29 \mathrm{mmol}$ ）in water（ 3 mL ）．The mixture was heated at reflux with stirring for 8 h ，the solvent was evaporated and the residue was recrystallized from methanol to give（ \pm ）－27 as colorless crystals（61 $\mathrm{mg}, 66 \%)$ ．The spectral date for this product was consistent with that previously obtained．
N－（3S＊，4S＊，5S＊，6R＊－Tetrahydroxybicyclo［5．1．0］oct－2S＊－ $\mathrm{y})$ phthalimide（ \pm ）－30 and $N-\left(1 R^{*}, 3 R^{*}, 4 R^{*}, 5 ?^{*}\right.$－tetrahydroxy－ 6－cycloocten－2R＊－yI）phthalimide（土）－31：The hydrolysis of bisepoxide（ \pm ）－12（ $90 \mathrm{mg}, 0.32 \mathrm{mmol}$ ）in THF（ 5 mL ），dionized water （ 7 mL ），and a catalytic amount of $\mathrm{CBr}_{4}(42 \mathrm{mg}, 0.13 \mathrm{mmol}$ ）was carried out in a fashion similar to the hydrolysis of（ \pm ）－23．Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=19: 1\right)$ gave （ \pm ）－30（ $46 \mathrm{mg}, 46 \%$ ）followed by（ \pm ）－31（ $17 \mathrm{mg}, 18 \%$ ），both as colorless solids．（土）－30：M．p． $218-220^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）： $\delta=7.92-7.80$（m， 4 H；Phth）， 5.16 （t，J＝2．2 Hz， $1 \mathrm{H} ; \mathrm{H}-2$ ）， 4.28 （dd， $J=3.8,9.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6), 4.03$（td，J＝1．7， $6.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3$ ）， 3.98 （dd， J＝2．0， $6.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 3.64$（dd，J＝1．6， $9.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5)$ ， 1.56 （q， $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ；H－8endo）， 1.32 （ddt，J＝3．2， $6.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 1.03 （brq，J＝8．6 Hz， 1 H ）， $0.70 \mathrm{ppm}(\mathrm{dt}, J=5.6,8.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8 e x o) ;{ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=171.1,135.7,133.4,124.4,75.9,74.6$ ， 72．1，70．1，50．4，19．7，16．7， 7.6 ppm；elemental analysis calcd（\％） for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}$ ：C 60．18，H 5．36；found：C 59．84，H 5．29．（ \pm ）－31：${ }^{1} \mathrm{H}$ NMR（400 MHz，CD $\left.{ }_{3} \mathrm{OD}\right): \delta=7.90-7.78$（m， 4 H ；Phth）， 5.81 （dd， $J=6.0,10.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2), 5.74$（ddt，J＝1．6， $6.8,10.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1$ ）， 4.93 （br d，J＝6．0 Hz，1 H）， 4.88 （d，J＝4．0 Hz，1 H）， 4.30 （d，J＝6．0 Hz， $1 \mathrm{H} ; \mathrm{H}-4), 4.08$（dd，J＝1．0， $5.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3), 3.93-3.86(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-$ 7）， 2.89 （dt，J＝9．2， $12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8), 2.31 \mathrm{ppm}(\mathrm{td}, \mathrm{J}=6.6,12.4 \mathrm{~Hz}$ ， $\left.1 \mathrm{H} ; \mathrm{H}-8^{\prime}\right)$ ；${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta=170.6,138.3,135.5,133.4$ ， 126．1，124．2，77．6，77．1，76．3，69．0，52．5， 34.7 ppm ；HRMS（FAB）： m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}+\mathrm{Na}: 342.0948\left[\mathrm{M}+\mathrm{Na}^{+}\right]$；found：342．0949．

N－（3S＊，4R＊，5S＊，6S＊－Tetrahydroxybicyclo［5．1．0］oct－2S＊－ yl）phthalimide（ \pm ）－29：Hydrolysis of epoxydiol（ \pm ）－18（120 mg，

[^6]0.399 mmol) in THF (5 mL) with a catalytic amount of CBr_{4} (26 mg , 0.079 mmol) was carried out in a fashion similar to the hydrolysis of $(\pm)-23$. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ gradient $=19: 1 \rightarrow 9: 1$) gave recovered (\pm) - $\mathbf{1 8}(26 \mathrm{mg})$ followed by (\pm)-29 ($81 \mathrm{mg}, 81 \%$) as a colorless solid. M.p. 202$204{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.92-7.86$ (m, 2 H; Phth), 7.86-7.81 (m, 2 H; Phth), 5.33 (t, J=2.2 Hz, $1 \mathrm{H} ; \mathrm{H}-2$), 4.63 (d, J=4.4 Hz, $1 \mathrm{H} ; \mathrm{H}-6), 4.07$ (td, J=1.6, $6.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4$), 4.04 (td, J=1.6, 6.0 $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{H}-3$), 3.83 (brs, $1 \mathrm{H} ; \mathrm{H}-5$), 1.54-1.46 (m, 1 H), 1.41-1.28 (m, 1 H), 1.11 (q, J=8.0 Hz, $1 \mathrm{H} ; \mathrm{H}-8 e n d o$), $0.81 \mathrm{ppm}(\mathrm{dt}, \mathrm{J}=5.5,9.4$ $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{H}-8 \mathrm{exo}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=171.0,135.7,133.4$, 124.4, 78.2 (br), 76.6, 68.6 (br), 50.4, 20.2, 18.5, 9.2 ppm; HRMS (FAB): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}+\mathrm{Na}^{+}: 324.0948\left[M+\mathrm{Na}^{+}\right]$; found: 324.0950.
$N-\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 S^{*}\right.$-Tetrahydroxybicyclo[5.1.0]oct-2S*-
yl)phthalimide (\pm)-32: The hydrolysis of epoxydiol (\pm) - $\mathbf{1 4}$ (40 mg , 0.13 mmol) in THF (1 mL) and deionized water (5 mL) with a catalytic amount of CBr_{4} ($9 \mathrm{mg}, 0.03 \mathrm{mmol}$) was carried out in a fashion similar to the hydrolysis of $(\pm)-23$. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=9: 1\right)$ gave (\pm)-32 ($39 \mathrm{mg}, 92 \%$) as a colorless solid. M.p. $=126-128^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.91-7.67$ (m, 4 H; Phth), 4.79 (dd, J=2.8, $10.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$), 4.44-4.30 (brm, $1 \mathrm{H} ; \mathrm{H}-6), 4.00$ (dd, J=9.0, $10.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3$), 3.53 (t, J=8.8 Hz, $1 \mathrm{H} ; \mathrm{H}-4), 3.45$ (brd, J=8.8 Hz, $1 \mathrm{H} ; \mathrm{H}-5), 1.33$ (tt, $J=6.2,9.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7$), 1.17 (ddt, J=3.1, $6.3,9.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1$), 0.90 (q, J=6.3 Hz, $1 \mathrm{H} ; \mathrm{H}-8 e n d o$), $0.80 \mathrm{ppm}(\mathrm{td}, \mathrm{J}=6.1,9.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-$ 8exo); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=168.5,133.8,132.0,122.6$, 73.2, 71.5, 68.1, 65.7, 51.9, 17.7, 16.7, 6.3 ppm; elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}$: C 60.18, H 5.36; found: C 59.97, H 5.36.

Formylcyclohexene (土)-33: The hydrolysis of epoxydiol (\pm)15 ($150 \mathrm{mg}, 0.497 \mathrm{mmol}$) in THF (2 mL) and deionized water (10 mL) with a catalytic amount of $\mathrm{CBr}_{4}(33 \mathrm{mg}, 0.099 \mathrm{mmol})$ was carried out in a fashion similar to the hydrolysis of $(\pm)-23$. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/ethyl acetate gradient=11:9 to 3:7) gave (\pm)-33 as a colorless solid ($53 \mathrm{mg}, 45 \%$) followed by recovered starting material (\pm)-15 (41 mg). (\pm)-33: M.p. $215-216{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CD3OD): $\delta=9.54$ (s, $\left.1 \mathrm{H} ; \mathrm{CHO}\right), 7.96-$ 7.76 (m, 4 H; Phth), $6.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH}), 5.09$ (d, J=9.8

[^7]Hz, $1 \mathrm{H} ; \mathrm{H}-4), 4.49$ (dd, J=3.9, $9.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5)$, 2.09 (dt, J=4.7, 8.2
Hz, $1 \mathrm{H} ; \mathrm{H}-1), 1.52$ (ddt, J=3.9, $6.3,8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6), 1.13$ (dt, J=5.1, $8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7 \mathrm{exo}$), $1.03 \mathrm{ppm}(\mathrm{q}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7 \mathrm{endo}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=194.0,170.3,148.0,144.6,135.5$, 133.5, 124.2, 64.9, 54.7, 14.9, 14.4, 10.0 ppm; HRMS (FAB): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}+\mathrm{Na}^{+}$: 306.0737 [M+Na+]; found: 306.0739.

β-Glucosidase inhibitions²2

Activities against β-glucosidase were determined at $25^{\circ} \mathrm{C}$ at pH in 100 mM sodium acetate buffer with p-nitrophenyl β-D-glucoside as substrate against β-D-glucosidase (Aldrich). The release of p nitrophenolate was measured continuously at 405 nm .

Acknowledgements

This work was supported by the National Science Foundation (CHE-0848870) and NSF instrumentation grants (CHE-0521323). High-resolution mass spectra were obtained at the COSMIC lab at Old Dominion University. The corresponding author thanks Dr. David Lindsay for stimulating discussions concerning the formation of compound $\mathbf{3 1}$.

References

${ }^{1 a}$ V. H. Lillelund, H. H. Jensen, X. Liang, M. Bols, Chem. Rev. 2002, 102, 515553;
${ }^{1 b}$ T. Mahmud, P. M. Flatt, X. Wu, J. Nat. Prod. 2007, 70, 1384-1390;
${ }^{1 c}$ S. Ogawa, M. Kanto, Y. Suzuki, Mini-Rev. Med. Chem. 2007, 7, 679-691;
${ }^{1 d}$ A. Osuch-Kwiatkowska, S. Jarosz, Curr. Org. Chem. 2014, 18, 1674-1685.
${ }^{2}$ N. Asano, A. Kato, H. Kizu, K. Matsui, Phytochemistry 1996, 42, 719-721.
${ }^{3}$ C. Gravier-Pelletier, W. Maton, T. Dintinger, C. Tellier, Y. Le Merrer, Tetrahedron 2003, 59, 8705-8720.
${ }^{4}$ For other recent syntheses of medium-ring cyclitols, see:
${ }^{4 a}$ K. Ecer, E. Salamci, Tetrahedron 2014, 70, 8389-8396;
${ }^{4 \mathrm{~b}} \mathrm{G}$. Mehta, R. Mohanrao, S. Katukojvala, Y. Landais, S. Sen, Tetrahedron Lett. 2011, 52, 2893-2897;
${ }^{4 c}$ R. Beniazza, V. Desvergnes, G. Mehta, N. Blanchard, F. Robert, Y. Landais, J. Org. Chem. 2011, 76, 791-799;
${ }^{4 d}$ E. Girard, V. Desvergnes, C. Tarnus, Y. Landais, Org. Biomol. Chem. 2010, 8, 5628-5634;
${ }^{4 e}$ T. K. M. Shing, W. F. Wong, T. Ikeno, T. Yamada, Org. Chem. 2007, 9, 207209;
${ }^{4 f}$ C. Curti, F. Zanardi, L. Battistini, A. Sartori, G. Rassu, L. Auzzas, A. Roggio, L. Pinna, G. Casiraghi, J. Org. Chem. 2006, 71, 225-230;
${ }^{49}$ O. Andriuzzi, C. Gravier-Pelletier, G. Bertho, T. Prange, Y. Le Merrer, Beilstein J. Org. Chem. 2005, 1, 12.
${ }^{5}$ K. S. E. Tanaka, G. C. Winters, R. J. Batchelor, F. W. B. Einstein, A. J. Bennet, J. Am. Chem. Soc. 2001, 123, 998-999.
${ }^{6}$ L. Kelebekli, M. Celik, E. Sahin, Y. Kara, M. Balci, Tetrahedron Lett. 2006, 47, 7031-7035.
${ }^{7}$ K. W. Glaeske, W. A. Donaldson, Mini-Rev. Org. Chem. 2012, ${ }^{9}$, 31-43.
${ }^{8 a}$ N. J. Wallock, W. A. Donaldson, Tetrahedron Lett. 2002, 43, 4541-4543;
${ }^{8 b}$ N. J. Wallock, W. A. Donaldson, J. Org. Chem. 2004, 69, 2997-3007;
${ }^{8 c}$ S. Chaudhury, S. Lindeman, W. A. Donaldson, Tetrahedron Lett. 2007, 48, 7849-7852;
${ }^{8 d}$ M. F. El-Mansy, A. Sar, S. Chaudhury, N. J. Wallock, W. A. Donaldson, Org. Biomol. Chem. 2012, 10, 4844-4846;
${ }^{8 e}$ M. F. El-Mansy, A. Sar, S. Lindeman, W. A. Donaldson, Chem. Eur. J. 2013, 19, 2330-2336.
${ }^{9}$ S. S. Templin, N. J. Wallock, D. W. Bennett, T. Siddiquee, D. T. Haworth, W. A. Donaldson, J. Heterocycl. Chem. 2007, 44, 719-724.
${ }^{10 a}$ N. Kornblum, H. E. DeLaMare, J. Am. Chem. Soc. 1951, 73, 880-881;
${ }^{10 b}$ D. R. Kelly, H. Bansal, J. J. G. Morgan, Tetrahedron Lett. 2002, 43, 93319333;
${ }^{10}$ E. Mete, R. Altundaş, H. Seçen, M. Balci, Turk. J. Chem. 2003, 27, 145153.
${ }^{11}$ For recent applications of the Kornblum-DeLaMare rearrangement, see:
${ }^{11 a}$ M. J. Palframan, G. Kociok-Kohn, S. E. Lewis, Chem. Eur. J. 2012, 18, 4766-4774;
${ }^{11 b}$ V. L. Paddock, R. J. Phipps, A. Conde-Angulo, A. Blanco-Martin, C. GiroManas, L. J. Martin, A. J. P. White, A. C. Spivey, J. Org. Chem. 2011, 76, 1483-1486.
${ }^{12}$ CCDC 1052609 (12), 1052600 (13), 1052603 (15), 1052607 (19), 1052611 (23), 1052614 (24), 1052615 (25), 1052616 (31), 1052617 (32), 1052618 (33) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
${ }^{13}$ A. Sar, S. Lindeman, W. A. Donaldson, Org. Biomol. Chem. 2010, 8, 39083917.
${ }^{14}$ G. Guroff, J. W. Daly, D. M. Jerina, J. Renson, B. Witkop, S. Udenfriend, Science 1967, 157, 1524-1530.
${ }^{15}$ J. K. Cha, W. J. Christ, Y. Kishi, Tetrahedron Lett. 1984, 40, 2247-2255.
${ }^{16}$ J. S. Yadav, B. V. S. Reddy, K. Harikishan, C. Madan, A. V. Narsiah, Synthesis 2005, 2897-2900.
${ }^{17}$ M. Karplus, J. Am. Chem. Soc. 1963, 85, 2870-2871.

NOT THE PUBLISHED VERSION; this is the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page.
${ }^{18}$ A. Fürst, P. A. Plattner, Helv. Chim. Acta 1949, 32, 275-283.
${ }^{19}$ M. E. Sengül, A. Menzek, E. Sahin, M. Arik, N. Saracoglu, Tetrahedron 2008, 64, 7289-7294.
${ }^{20}$ C. S. Cho, J. W. Lee, D. Y. Lee, S. C. Shim, T. J. Kim, Chem. Commun. 1996, 2115-2116.
${ }^{21}$ Ring contraction of epoxycyclohexanols catalyzed by LiBr has been reported to generate cyclopentene carboxyaldehydes:
${ }^{21 a}$ G. Magnusson, S. Thoren, J. Org. Chem. 1973, 38, 1380-1384;
${ }^{21 b}$ R. Bergman, G. Magnusson, J. Org. Chem. 1986, 51, 212-271;
${ }^{21 c}$ F. Pontén, G. Magnusson, J. Org. Chem. 1997, 62, 7972-7977.
${ }^{22}$ N. Kuriyama, Y. Inoue, K. Kitagawa, Synthesis 1990, 735-738.
${ }^{23}$ J. O. Osby, M. G. Martin, B. Ganem, Tetrahedron Lett. 1984, 25, 20932096.
${ }^{24}$ P. L. Durette, E. P. Meitzner, T. Y. Shen, Tetrahedron Lett. 1979, 20, 40134016.
${ }^{25}$ M. S. Motawia, J. Wengel, A. E. S. Abdel-Megid, E. B. Pedersen, Synthesis 1989, 384-387.
${ }^{26}$ M. V. Kelemen, W. J. Whelan, Arch. Biochem. Biophys. 1966, 117, 423-428.

[^0]: Chemistry, a European Journal, Vol 21, No. 30 (July 20, 2015): pg. 10886-10895. DOI. This article is © Wiley-VCH Verlag and permission has been granted for this version to appear in e-Publications@Marquette. Wiley-VCH Verlag does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Wiley-VCH Verlag.

[^1]: Chemistry, a European Journal, Vol 21, No. 30 (July 20, 2015): pg. 10886-10895. DOI. This article is © Wiley-VCH Verlag and permission has been granted for this version to appear in e-Publications@Marquette. Wiley-VCH Verlag does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Wiley-VCH Verlag.

[^2]: Chemistry, a European Journal, Vol 21, No. 30 (July 20, 2015): pg. 10886-10895. DOI. This article is © Wiley-VCH Verlag and permission has been granted for this version to appear in e-Publications@Marquette. Wiley-VCH Verlag does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Wiley-VCH Verlag.

[^3]: Chemistry，a European Journal，Vol 21，No． 30 （July 20，2015）：pg．10886－10895．DOI．This article is © Wiley－VCH Verlag and permission has been granted for this version to appear in e－Publications＠Marquette．Wiley－VCH Verlag does not grant permission for this article to be further copied／distributed or hosted elsewhere without the express permission from Wiley－VCH Verlag．

[^4]: Chemistry，a European Journal，Vol 21，No． 30 （July 20，2015）：pg．10886－10895．DOI．This article is © Wiley－VCH Verlag and permission has been granted for this version to appear in e－Publications＠Marquette．Wiley－VCH Verlag does not grant permission for this article to be further copied／distributed or hosted elsewhere without the express permission from Wiley－VCH Verlag．

[^5]: Chemistry，a European Journal，Vol 21，No． 30 （July 20，2015）：pg．10886－10895．DOI．This article is © Wiley－VCH Verlag and permission has been granted for this version to appear in e－Publications＠Marquette．Wiley－VCH Verlag does not grant permission for this article to be further copied／distributed or hosted elsewhere without the express permission from Wiley－VCH Verlag．

[^6]: Chemistry，a European Journal，Vol 21，No． 30 （July 20，2015）：pg．10886－10895．DOI．This article is © Wiley－VCH Verlag and permission has been granted for this version to appear in e－Publications＠Marquette．Wiley－VCH Verlag does not grant permission for this article to be further copied／distributed or hosted elsewhere without the express permission from Wiley－VCH Verlag．

[^7]: Chemistry, a European Journal, Vol 21, No. 30 (July 20, 2015): pg. 10886-10895. DOI. This article is © Wiley-VCH Verlag and permission has been granted for this version to appear in e-Publications@Marquette. Wiley-VCH Verlag does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Wiley-VCH Verlag.

