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Multidirectional compliance and constraint 
for improved robotic deburring. Part 2: 
improved bracing 
 

Joseph M. Schimmels 
Department of Mechanical and Industrial Engineering, Marquette University, Milwaukee, WI 

 

Abstract 
This two-part paper presents a method for both improving the positioning capability and increasing the effective 

stiffness (bracing) of a robotic manipulator through multidirectional compliance and constraint. Improved 

positioning and improved bracing are attained through the effective use of multiple unilateral kinematic 

constraints in different directions. The companion paper identified how to specify the compliant characteristics 

of a manipulator so contact forces lead to deflections that eliminate positional misalignments and result in 

improved relative positioning through force guidance. In this part, we show that the characteristics beneficial to 

force guidance are the same characteristics that provide improved bracing when partially constrained by 

contact. Improved bracing is demonstrated in the context of workpart edge deburring. 

https://doi.org/10.1016/S0736-5845(00)00060-0
http://epublications.marquette.edu/
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1. Introduction 
As presented in the companion paper [1], accurate relative positioning can be attained and maintained through 

the effective use of compliance and constraint. Here, we demonstrate that the form of compliance that 

improves a manipulator's positioning ability is the same form of behavior that improves its ability to maintain 

jig–workpart contact despite finite force disturbances. 

The effective use of compliance and constraint in robotic material removal is demonstrated here for edge 

deburring. The surfaces adjacent to the workpart edge are used as reference surfaces whose intersection 

defines the edge of the workpart. Contact between these reference surfaces and the elements of a properly 

designed end-effector mounted jig establishes a workpart-edge-based reference frame to which a material 

removal tool is attached. An example of the use of compliance and constraint in deburring is illustrated in Fig. 1 

of the companion paper [1]. 

 
Fig. 1. Commanded and Constrained Deflections. The commanded deflection Δx̄comm is the deflection of the 
compliance from its commanded position. The constrained deflection Δx̄con is the deflection of the compliance 
from its properly constrained position. Here only the translational component p̄ of each is illustrated. 
 

To ensure that accurate relative positioning is maintained in a material removal task, the manipulator must 

reject forces generated by tool–workpart interaction. By achieving unilateral contact with the workpart and 

“preloading” the compliance, the manipulator end-effector is “braced” to increase the effective end-point 

stiffness of the manipulator. Through manipulator bracing, material removal disturbance forces result in no end-

effector deflection when the force preload is not exceeded or in much smaller deflections when the preload is 

exceeded. 

As demonstrated in the companion paper [1], a compliance with the specified form of directional coupling 

behavior is best for attaining and maintaining accurate positioning despite positioning errors. Here, we show 

that the specified form of directional coupling is also beneficial in maintaining accurate positioning by better 

rejecting the forces that are generated in the material removal process. 

1.1. Background 
This paper addresses improved bracing through the use of multidirectional compliance and constraint. The 

benefits associated with the proposed concepts are demonstrated in robotic edge material removal tasks for 

which accurate relative positioning and rejection of tool–workpart interaction forces are important. 



In previous work involving manipulator–workpart interaction, others [2], [3] have addressed the use of 

kinematic constraint to brace and stiffen the manipulator when removing material. In their work, bracing was 

accomplished by a single point of contact between the manipulator and the environment. In the proposed work, 

multiple points of contact and directional coupling in the compliance are used to increase the bracing effect in a 

multidimensional context. 

In this work, the compliance of the manipulator is specified. Compliance, here refers to the spring-like 

characteristics of the manipulator admittance. Admittance refers to a manipulator's mapping of forces to 

motions — the inverse of the manipulator impedance [4]. Often, when considering multidirectional mechanical 

behavior, a diagonal matrix is used to identify the behavior along specified axes at a particular coordinate frame 

— the center of compliance. In the compliance specification algorithm presented in the companion paper, the 

compliance matrix attained does not, in general, behave as a compliance center. Here, we show that the 

directional coupling behavior not found in a compliance center is beneficial in increasing the effective stiffness 

of a partially constrained (braced) manipulator. 

In this work, the behavior of a unilaterally constrained multidirectional compliance is investigated. Previously, 

others [5], [6], [7], [8] have investigated the behavior of an unconstrained multidirectional compliance. It is 

shown here that the compliance and the constraint together dictate the overall performance of the manipulator 

in material removal tasks. 

1.2. Compliance control law 
A compliance control law is used in this application. As presented and discussed in the companion paper, the 

linear compliance control law is given by 

(1) 

δx=̄C̄̄̄̄f ̄̄ 

where C̄̄̄̄ is the 𝑁 × 𝑁 manipulator compliance matrix, a multidimensional linear mapping of forces to 

deflections; δx ̄is the small translational/orientational deflection (a twist [9]) of the manipulator from its 

commanded (“nominal”, “unconstrained”, or “virtual”) position and orientation; and f ̄̄ is the force and torque 

(wrench [9]) acting on the manipulator. 

Note that, for compliance, contact is maintained by the deflection from the commanded position/orientation 

(i.e., forces are positive only if the commanded position corresponds to geometrical conflict between jig and 

workpart). 

1.3. Overview 
This paper introduces the concept of using multidimensional compliance and constraint in robotic material 

removal applications and illustrates the associated benefits of the concept, improved relative positioning and 

improved bracing. Jig–workpart contacts are used to provide unique relative positioning with respect to the 

workpart edge, and the compliance of the manipulator is used to ensure that the unique relative positioning is 

maintained despite small finite positional error and finite force disturbances. 

Section 2 identifies how the effective stiffness of the manipulator is increased through multidirectional bracing. 

Unilateral contact and compliance preload are used together with the directional coupling in the compliance to 

reject forces associated with material removal. The properties and terms used in quantifying improved bracing 

are defined. The calculations used in evaluating these properties when unconstrained, partially constrained, and 

completely constrained are identified. 



In Section 3, the improved bracing attained using the prescribed directional coupling in the compliance matrix is 

demonstrated with the same three matrices in the same three degree-of-freedom positioning example used in 

the companion paper [1]. 

Section 4 provides a summary and discussion of results and a brief overview of the direction of future work. 

2. Improved bracing 
By establishing multiple points of contact, the manipulator is braced in multiple directions to better reject 

material removal forces that could cause the jig to lose its desired relative positioning. The effective stiffness of 

the manipulator is increased by compliance preload (for which the external force is, in effect, reduced in 

magnitude) and partial constraint (for which the deflection is modified by unilateral kinematic constraint). 

First, concepts useful in evaluating the effectiveness of a brace in a multidirectional context are developed. A 

general procedure for calculating the constrained deflection that results from an externally applied force is 

presented. 

2.1. Definitions 
The directional variation in compliance is often represented by a compliance ellipsoid to assist in developing a 

physical appreciation of a compliance matrix. This representation, however, is not useful when the compliance is 

unilaterally constrained. A means of assessing the effective brace (or reduction in the effective compliance) 

resulting from contact is considered here. 

In previous work by West [10], the essential compliance was defined to be the measure of deflection in the 

direction of the applied force (for which the diagonal elements of the compliance matrix are deemed essential). 

Here, since deflection in any direction causes loss of unique relative positioning, we define a new term that 

considers the actual deflection of the jig. 

2.1.1. Effective compliance 
The effective compliance is defined here as the magnitude of the translational deflection of a point on a body 

that results from a unit force applied at that point. The location of that point determines, in part, the magnitude 

of the deflection. Here, in this deburring example, it is chosen to be the location where the deburring tool 

contacts the workpart — the location at which the disturbance force is applied as illustrated in Fig. 1 of the 

companion paper [1]. The effective compliance, 𝐂eff is defined by 

(2) 

Ceff=Δx/̄f ̄̄e 

where Δx̄=[p̄T,Δθr̄T] as described in [1], for our purposes, its magnitude is the magnitude of the translational 

deflection Δx̄2=p̄Tp̄;; and f ̄̄e is the magnitude of an externally applied wrench. Since 𝜏 = 0̄ at the point of the 

applied force, f ̄̄e 2=f ̄̄e Tf ̄̄e. 

The variation of this measure with varying direction of applied force is investigated. The directionally dependent 

effective compliance is represented with a vector: 

(3) 

C̄̄eff=Cefff ̄̄̄̂e=Δxf̄ ̄̄ef ̄̄̄̂e 

where f ̄̄̄̂e is a unit applied wrench in the direction of f ̄̄e,f ̄̄̄̂e Tf ̄̄̄̂e=1. The effective compliance indicates the 

magnitude of the deflection caused by a unit force in the specified direction. 



Related to the effective compliance is the effective brace. 

2.1.2. Effective brace 
The effective brace, 𝐁eff, is defined to be the normalized reduction in the effective compliance due to the 

constraint 

(4) 

Beff=Ceffunc −Ceffcon Ceffunc . 

This also varies as a function of the direction of the applied force and is similarly represented with a vector: 

(5) 

B̄̄eff=Ceffunc −Ceffcon Ceff unc
f ̄̄̄̂e=Δxūnc−Δxc̄onΔxūncf ̄̄̄̂e 

where C𝑒𝑓𝑓𝑢𝑛𝑐  is the unconstrained effective compliance, and C𝑒𝑓𝑓𝑐𝑜𝑛  is the constrained effective compliance. 

The constrained deflection, Δx̄con is the deflection of the jig from its constrained location (the translational 

component p̄con is illustrated in Fig. 1). The magnitude of the constrained deflection is given by 

Δx̄con 2=p̄con Tp̄con. 

The effective brace indicates the degree to which unilateral contact reduces the deflection that results from a 

unit force in the specified direction. 

2.2. Calculations 
The procedures needed to calculate effective compliance for no constraint, partial constraint, and complete 

constraint are provided below. 

2.2.1. Unconstrained effective compliance 
As described above, the unconstrained compliance serves as a reference in assessing the effective brace. The 

unconstrained deflection calculated using Eq. (18) of the companion paper [1] is given as 

(6) 

Δxūnc=C̄̄̄̄f ̄̄e. 

Therefore, the unconstrained compliance in direction f ̄̄̄̂e is 

(7) 

Ceff unc=C̄̄̄̄f ̄̄e/f ̄̄e. 

2.2.2. Constrained effective compliance 
For the constrained case considered below, the deflection from its constrained position at the workpart edge, as 

illustrated in Fig. 1, for any specified preload is obtained with the procedure provided below. A freebody 

diagram of the jig, which illustrates the forces that act on it that could lead to deflection from its proper 

position, is shown in Fig. 2. 

1. First determine whether the jig is actually constrained in its proper position for the commanded 

deflection. To do this, calculate the preload force using the commanded geometric interference and the 

compliance as 

(8) 



fp=−C̄̄̄̄
−1

Δxc̄omm 

where f ̄̄p is the preload force — the wrench provided by the compliance that results from the 

commanded deflection, Δxc̄omm. To confirm that the commanded deflection yields a properly 

positioned jig when no external force is applied, contact forces must, as in Section 3.2.2 of the 

companion paper, be nonnegative (i.e., contact wrenches are directed out of the workpart): 

(9) 

φp=−W̄̄̄̄
−1

f ̄̄p⩾0̄. 

The jig is not constrained in its proper position for the commanded deflection if this condition is not 

satisfied. 

2. Next, calculate the constrained deflection from its proper position relative to the workpart edge, Δx̄con, 

using the following optimization:1 

(10) 

minimize(Δxc̄omm+Δxc̄on) TC̄̄̄̄
−1

(Δxc̄omm+Δxc̄on) 

(11) 

subjecttoW̄̄̄̄
T

Δxc̄on⩾0̄) 

(12) 

−W̄̄̄̄
−1

(f ̄̄e−C̄̄̄̄
−1

(Δxc̄omm+Δxc̄on))⩾0̄. 

The constrained deflection resulting from the externally applied force obtained using this procedure: (1) 

ensures that the work performed by the constraint wrenches is nonnegative (Eq. (11)); and (2) ensures 

that the constraint wrench magnitudes remain directed out of the workpart (remain nonnegative) (Eq. 

(12)). The second constraint equation enforces the fact that contact at each element is unilateral and 

therefore is not capable of pulling the jig into position. The set of linear inequalities associated with 

these constraint conditions define a polyhedral convex cone of possible solutions (a very large set of 

solutions). The actual deflection is the one having the least potential energy. Potential energy provides a 

useful metric in evaluating the magnitude of deflections involving both translation and rotation. 

The constrained compliance in direction f ̄̄̄̂e is 

(13) 

Ceff con=Δxc̄on/f ̄̄e 

where Δx̄con is obtained using the optimization procedure described in , , . 



 
Fig. 2. Three-Point Contact Jig Free Body Diagram. The preload force f ̄̄p, the external (deburring) force f ̄̄e, and 

the contact forces on the jig locators w̄I,i=1,2,3, are illustrated. 
 

Because deflections are finite, error exists in the linear approximations considered here. However, if rotational 

deflections are small, associated errors are also small. 

2.2.3. Complete constraint 
In application, the compliance will be preloaded to ensure accurate positioning and further improve bracing. 

Before deflection from its constrained position can occur along an axis of unilateral kinematic constraint, the 

external force applied to a manipulator along that axis must exceed the compressive force exerted on the 

workpart by the manipulator (i.e., must exceed the preload). Therefore, to provide complete constraint to a 

known external force, the geometrical interference must provide a preload force, f ̄̄p, greater than the externally 

applied force, f ̄̄e in the direction of f ̄̄e. 

Similar to that generated in the companion paper, a space of deflections, 𝑋, from the properly mated position 

and orientation that will reject a known external force can be constructed. Deflection from the properly mated 

position and orientation can only occur if the balance of forces from the preload (f ̄̄p=−C̄̄̄̄
−1

Δx̄comm), the workpart 

contact (f ̄̄w=W̄̄̄̄ φ), and the external force (f ̄̄e) indicates that contact wrenches are negative. The space of 

acceptable commanded deflections that provide complete constraint to force f ̄̄e is defined by those commanded 

deflections that maintain positive contact forces despite the externally applied force. Similar to Eq. (21) in the 

companion paper, the space of acceptable deflections that maintain contact is a PCC now defined by 

(14) 

(C̄̄̄̄W̄̄̄̄ )
−1

Δxc̄omm⩾W̄̄̄̄
−1

f ̄̄e 

where Δx̄comm is the commanded deflection from the jig properly mated position. 

The space of deflections from the properly mated position and orientation, 𝑋, that will reject an external force 

of known magnitude, f ̄̄e, but arbitrary direction can also be constructed. 

(15) 

(C̄̄̄̄W̄̄̄̄ )
−1

Δxc̄omm⩾W̄̄̄̄
−1

f ̄̄e∀f ̄̄ef ̄̄e Tf ̄̄e=f ̄̄e 2, 

(16) 

(C̄̄̄̄W̄̄̄̄ )
−1

Δxc̄omm⩾f ̄̄̄̂eW̄̄̄̄
−1

f ̄̄̄̂e∀f ̄̄̄̂ef ̄̄̄̂e Tf ̄̄̄̂e=1. 

This condition is, in essence, the intersection of an infinite number of PCCs. The intersection must satisfy the 

worst case for each row (maximum values in W̄̄̄̄
−1

f ̄̄̄̂e). The maximum value for each row is obtained when f ̄̄̄̂e and 

w̄ I 
−1 are “aligned” (in the same translational direction), where w̄ I 

−1 is the 𝑖th row of W̄̄̄̄
−1

. This yields 



(17) 

(C̄̄̄̄W̄̄̄̄ )
−1

Δxc̄omm⩾f ̄̄e ∑ j=1L(w1j 
−1) 2 ⋮ ∑ j=1L(wMj 

−1) 2 

where wij
−1 is the element in the 𝑖th row and 𝑗th column of W̄̄̄̄

−1
; and 𝐿 is the number of translational elements 

in f ̄̄e. 

3. Demonstration of improved bracing 
The analysis procedure derived above for evaluating the bracing characteristics of a manipulator is 

demonstrated with the three-degree-of-freedom example considered in the companion paper [1]. The improved 

bracing performance associated with directional coupling is shown using the same compliance matrices. The 

unconstrained, partially constrained, and completely constrained behavior of the compliance matrices with 

varying types of directional coupling are addressed below. The three matrices are 

C̄̄̄̄d=I ̄̄̄̄, 

C̄̄̄̄mar=3−3−2−353−232, 

C̄̄̄̄max=2.86−2.82−1.89−2.823.802.84−1.892.842.21. 

3.1. No constraint 
Consider a unit external wrench acting at the origin of task coordinate frame2 that acts along the direction that 

we anticipate receiving the largest material removal forces, f ̄̄̄̂e=[2/2,2/2,0] T. 

The unconstrained deflection is calculated using Eq. (6). For the decoupled matrix, the unconstrained deflection 

in this direction is: Δx̄unc d=[2/2,2/2,0] T. For the compliance matrix that marginally satisfies the conditions for 

force assembly, the unconstrained deflection in this directions is Δx̄unc mar
=[0,2,2/2] T. 

Since the magnitude of the translational component of the deflection Δx̄unc mar
 is a factor of 2 larger than that 

for Δxūnc d, equivalent magnitude unconstrained deflection can be obtained if the C̄̄̄̄mar matrix is appropriately 

scaled. The coupled matrix, C̄̄̄̄c, used subsequently refers to 

(18) 

C̄̄̄̄c=12C̄̄̄̄mar. 

The compliance matrix that will ensure force assembly for friction close to the maximum can be similarly scaled 

so that the unconstrained translational deflection resulting from a force in this direction has the same 

magnitude as those obtained with the other matrices. The scaled matrix is given by 

(19) 

C̄̄̄̄m=1.4419C̄̄̄̄max. 

The magnitudes of the translational component of the unconstrained deflection in response to external force 

input f ̄̄̄̂e=[2/2,2/2,0] T direction for the compliance matrices are equal to each other: Δx̄uncd =Δx̄unc c=Δxūnc m=1. 

Also, since unit translational deflection resulted from unit force input, the unconstrained compliance in this 

direction for each matrix is Ceff unc d
=Ceff unc c

=Ceff unc m
=1. 



By scaling the matrices in this way, the unconstrained deflection for each matrix is the same in the most likely 

direction of force disturbance. This also establishes a reference, used subsequently, for evaluating constrained 

compliance. 

3.2. Partial constraint without preload 
For the case without preload, the jig is nominally positioned exactly on the workpart edge with no compression 

of the compliance (i.e., Δx̄comm=0)̄. 

3.2.1. Single direction evaluation 
The constrained deflection calculated using the procedure outlined in Section 2.2.2 yields a constrained 

deflection that is equal to the unconstrained deflection for C̄̄̄̄d and C̄̄̄̄c in the given direction of applied force 

(along a 45° angle from edge): 

(20) 

Δx̄con d=22,22,0 T=Δx̄unc d, 

(21) 

Δx̄con c=0,1,12 T=Δx̄unc c. 

However, for C̄̄̄̄m, the constrained and unconstrained deflections are significantly different 

(22) 

Δxc̄on m=0.2305,0,0 T≠Δxūnc m=[0.0408,0.9992,0.9686] T. 

The effective constrained compliance values in this direction for these matrices with these constraints are 

calculated using Eq. (2) as: Ceff con d
=Ceff con c

=1 and Ceff con d
=0.2305. 

The effective brace (calculated using Eq. (4)) for C̄̄̄̄d and C̄̄̄̄c in the given direction of applied force is 

Beff d=Beff c=0. This indicates that the jig is not braced in this direction by contact. 

The effective brace in this direction for C̄̄̄̄m, however, is significant: Beff m=0.7695. This indicates that the 

magnitude of the constrained deflection is almost 77% less than the unconstrained deflection for a force 

provided along this axis! 

3.2.2. General evaluation 
To better understand the behavior attained with directional coupling, a general evaluation of external forces is 

considered. The procedures illustrated above have been programmed to evaluate effective compliance and 

effective bracing behavior for a force acting at the specified point (the point of tool/workpart contact) in any 

direction. 

Fig. 3 illustrates the directional variation in the constrained and unconstrained effective compliance for the 

three example compliance matrices. The dashed circle in Fig. 3a illustrates the isotropic behavior associated with 

the unconstrained directionally decoupled compliance matrix (C̄̄̄̄d=I ̄̄̄̄) and the solid line illustrates its effective 

compliance with constraint. The dashed line in Fig. 3b illustrates the anisotropic behavior of the directionally 

coupled compliance matrix C̄̄̄̄c (given in Eq. (18)) and the solid line its effective compliance with constraint. Note 

that the effective compliance is reduced along axes that are not constrained without the compliance. Fig. 3c 

illustrates the very anisotropic behavior associated with a compliance matrix that provides large directional 



coupling C̄̄̄̄m (given in Eq. (19)). The effective compliance is reduced in all directions when this high degree of 

directional coupling is present in the compliance matrix. 

 
Fig. 3. Comparison of the Directional Variation in the Effective Unconstrained and Constrained Compliance for 
Example Matrices. In each figure the dashed line identifies the unconstrained compliance and the solid line, the 
constrained compliance. Fig. 2a was generated using the example decoupled compliance matrix, C̄̄̄̄d; Figs 2b and 
c were generated using an increasing amount of directional coupling, using C̄̄̄̄c and C̄̄̄̄m, respectively. 
 

Also shown in each figure are the results of the effective compliance for external force input in the 

f ̄̄̄̂e=[2/2,2/2,0] T direction (calculated in Section 3.2.1). The effective constrained compliance is indicated with a 

solid dot, and the effective unconstrained compliance is indicated with an open dot along a 45° angle from the 

origin in each figure. Only for C̄̄̄̄m are the different dots not superimposed, indicating a nonzero effective brace 

along this direction for this matrix (as calculated). 

Fig. 4 better illustrates the comparison of the effective constrained compliance for the decoupled matrix C̄̄̄̄d and 

the matrix with large directional coupling C̄̄̄̄m. This figure shows the significant reduction in the effective 

compliance due to the specified coupling in the compliance matrix. As shown here, through directional coupling, 

the effective stiffness of the manipulator is increased even without preload. As in Fig. 3, the effective 

constrained compliance for external force input in the f ̄̄̄̂e=[2/2,2/2,0] T direction is indicated with a solid dot for 

each compliance. 

 
Fig. 4. Directional Variation of the Constrained Effective Compliance for C̄̄̄̄d and C̄̄̄̄m. The solid line identifies the 
constrained effective compliance for the example decoupled compliance matrix C̄̄̄̄d, and the dashed line 
identifies the constrained effective compliance for the compliance matrix with large directional coupling C̄̄̄̄m. 
 

Fig. 5 illustrates the comparison of the effective brace, B̄̄eff, for the example matrices. Recall that the effective 

brace, as defined in Eq. (5), indicates the normalized reduction in the unconstrained compliance that results 

from constraint. As shown, the coupled matrices provide a significantly larger effective brace in the 

unconstrained directions when only partially (unilaterally) constrained. The effective brace for external force 

input in the f ̄̄̄̂e=[2/2,2/2,0] T direction is indicated with a solid dot for each compliance. 



 
Fig. 5. Directional Variation of the Effective Brace Provided by Multidirectional Constraint. The solid line, the 
dashed line and the dash-dot line identify the effective brace for the example decoupled compliance matrix C̄̄̄̄d, 
the example coupled compliance matrix C̄̄̄̄c, and a compliance matrix with increased directional coupling C̄̄̄̄m, 
respectively. 
 

3.3. Complete constraint with preload 
To determine the space of deflections from the properly mated position and orientation that will reject any 

external force of magnitude of half a unit (f ̄̄e=0.5 force units) acting at the point of tool/workpart contact, Eq. 

(17) must be satisfied. Since, in this example, 𝐿 = 2 and 

W̄̄̄̄
−1

=100−1211−1−1 

Eq. (17) becomes 

(23) 

(C̄̄̄̄W̄̄̄̄ )
−1

Δxc̄omm⩾12152. 

Next, the space of acceptable translational deflections from the properly mated position is obtained by 

intersecting the PCC of Eq. (23) with the 𝛥𝜃 = 0 surface (as in Section 4.1 of the companion paper [1]). 

The space of acceptable translational deflections that maintain the proper positioning despite an arbitrarily 

directed half unit force acting at the point of tool/workpart contact is illustrated in Fig. 6 for each of the example 

compliance matrices. This space is very similar to the space of nominal positions that provides accurate relative 

positioning discussed in Section 4 of the companion paper [1]. In fact, Fig. 4 of that paper can be viewed as the 

space of nominal positions that will reject forces of zero magnitude yet maintain accurate relative positioning. 

As the magnitude of the external force increases, the corresponding space of commanded deflections providing 

complete constraint for each matrix is shifted down and to the left. As in accurate relative positioning, 

directional coupling increases the space of acceptable nominal positions that will reject externally applied 

forces. 



 
Fig. 6. Space of Acceptable Translational Deflections that Totally Reject a Force of One Half Unit Magnitude. The 
space of commanded translational deflections that will maintain desired positioning despite any force of half 
unit magnitude that is arbitrarily directed but acts at the point of tool–workpart contact is illustrated for the 3 
example matrices. As the relative amount of directional coupling increases, the space of acceptable commanded 
deflections that rejects the external force increases (i.e., 𝑋Cd

⊂ 𝑋Cc
⊂ 𝑋Cm

). 

 

Although the unconstrained compliance for the matrices with specified directional coupling is greater than the 

unconstrained compliance of the decoupled matrix in almost all directions (as shown in Fig. 3), the constrained 

compliance with preload is effectively zero! Therefore, the effective stiffness of the manipulator is dramatically 

increased when it is both constrained and is described by a compliance matrix of the specified form. The 

increase in the effective brace — the reduction in the compliance due to contact — is dramatic. 

4. Summary and conclusions 
This paper has presented a means of accurately tracking a workpart edge despite finite manipulator inaccuracy. 

In this work: (1) the physical constraints of the task environment are used to provide relative positional 

information of the manipulator end-effector with respect to the workpart, and (2) the compliance of the 

manipulator is programmed to provide both external force rejection and positional error correction while 

tracking these constraints. 

The improved bracing behavior associated with the specified direction coupling was demonstrated using a three 

degree of freedom relative positioning example. The performance of matrices with varying degrees of the 

specified coupling was compared with that of a compliance “center”. The directionally coupled matrices 

provided a significantly improved rejection of disturbance forces. 

Current work addresses how to exactly realize a spatial compliance matrix having the coupling characteristics in 

a compact mechanism. 
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1 This optimization with quadratic objective function with linear constraints is convex. Therefore, the local 
minimum is the global minimum. Computation time on a PC is less than 1s. 

2 Note that a transformation of the compliance matrix (Eq. (11) in [1]) is required if the task frame origin and the 
location where the tool contacts the workpart are not collocated. In this example, because the task 
frame origin is located at the location of tool–workpart contact, no transformation is required. 
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