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Sufficient Conditions Used in Admittance 
Selection for Force-Guided Assembly of 
Polygonal Parts  
 

Shuguang Huang  
Department of Mechanical and Industrial Engineering, Marquette University, Milwaukee, WI, USA 
J. M. Schimmels  
Department of Mechanical and Industrial Engineering, Marquette University, Milwaukee, WI, USA  
 

Abstract: 
Admittance control approaches show significant promise in providing reliable force-guided assembly. An 
important issue in the development of these approaches is the specification of an appropriate admittance 
control law. This paper identifies procedures for selecting the appropriate admittance to achieve reliable force-
guided assembly of planar polyhedral parts for single-point contact cases. A set of conditions that are imposed 
on the admittance matrix is presented. These conditions ensure that the motion that results from contact 
reduces part misalignment. We show that, for bounded misalignments, if an admittance satisfies the 
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misalignment-reduction conditions at a finite number of contact configurations, then the admittance will also 
satisfy the conditions at all intermediate configurations. 

SECTION I. Introduction 
Admittance control has been used in assembly tasks to provide force regulation and force guidance. In robotic 
assembly tasks, the admittance maps contact forces into changes in the velocity of the body held by the 
manipulator. To achieve reliable assembly, the manipulator admittance must be appropriate for the particular 
assembly task. Here we identify procedures used to select the appropriate manipulator admittance for planar 
assembly. 

We consider a simple form of admittance, a linear admittance control law [1]. For planar applications, this 
admittance behavior has the form 

𝐯𝐯 = 𝐯𝐯0 + 𝐀𝐀𝐀𝐀 

(1) 

where 𝐯𝐯0 is the nominal twist (a three-vector for planar cases), 𝐀𝐀 is the contact wrench (force and torque) 
measured in the body frame (a three-vector), 𝐀𝐀 is the admittance matrix (a 3 × 3 matrix), and 𝐯𝐯 is the motion of 
the body. 

Many researchers have addressed the use of admittance for force guidance. Whitney [2], [3] proposed that the 
compliance of a manipulator be structured so that contact forces lead to decreasing errors. Peshkin [4] 
addressed the synthesis of an accommodation (inverse damping) matrix by specifying the desired force/motion 
relation at a sampled set of positional errors for a planar assembly task. An unconstrained optimization was then 
used to obtain an accommodation matrix that does not necessarily provide force guidance. Asada [5] used a 
similar unconstrained optimization procedure for the design of an accommodation neural network rather than 
an accommodation matrix. Others [6], [7] provided synthesis procedures based on spatial intuitive reasoning. 
None of these approaches, however, ensures that the admittance selected will, in fact, be reliable. 

A reliable admittance selection approach is to design the control law so that, at each possible part misalignment, 
the contact force always leads to a motion that reduces the existing misalignment. The approach is referred to 
as force assembly, and has been successful for workpart into fixture insertion when errors are infinitesimal [1], 
[8], [9]. 

For force assembly, the motion resulting from contact must instantaneously reduce misalignment. Since the 
configuration space of a rigid body is non-Euclidian, there is no “natural” metric for finite spatial error. In [10], 
several body-specific metrics are established. One metric is based on the Euclidean distance between a single 
point on the body and its location when properly positioned. The specific point on the body corresponds to the 
location having the maximum distance from its properly mated position. This point on the body is configuration 
dependent. 

In this paper, we consider a measure of error based on the Euclidean distance between an arbitrarily chosen 
single (fixed) point on the held body and its location when properly positioned. Because the selection of the 
reference location is arbitrary, one configuration-dependent location (point of maximum distance) can be 
selected to use the established metric or more than one location can be selected to further restrict the 
description of what constitutes error reduction in rigid body assembly. 

The misalignment reduction condition of force assembly requires that, at each possible misalignment, the 
contact force yields a motion that reduces the misalignment. Using the point-based measure of misalignment 



discussed above, this condition can be expressed mathematically, if we let 𝐝𝐝 (a three-vector for planar motion) 
be the line vector from the selected point at its properly mated position to its current position. Then, for error-
reducing motion, the condition is 

𝐝𝐝𝑇𝑇𝐯𝐯 = 𝐝𝐝𝑇𝑇(𝐯𝐯0 + 𝐀𝐀𝐀𝐀) < 0 

(2) 

which must be satisfied for all possible misalignments. 

Because the line vector 𝐝𝐝 depends on the rigid body configuration and because the number of configurations is 
infinite, it is impossible to impose the error-reduction condition for all misalignments. In application, however, 
the misalignments of the rigid body are bounded by the extremes within a contact state, or the accuracy of the 
robotic manipulator. Those misalignments on the “boundary” are of particular interest. 

Here, we show that, by identifying an admittance matrix that satisfies the error-reduction conditions at a finite 
number of configurations on the boundary, the error-reduction requirements are also satisfied for all 
configurations within the bounded area. 

This paper considers polygonal rigid body assembly involving planar motion constrained by frictionless, single-
point contact. Polygonal planar bodies in single-point contact have two types of stable contact states. One is 
referred to as “edge-vertex” contact; the other is referred to as “vertex-edge” contact. In “edge-vertex” contact, 
one edge of the held body is in contact with one vertex of the mating fixtured part [Fig. 1(a)]. In “vertex-edge” 
contact, one vertex of the held body is in contact with one edge of its mating part [Fig. 1(b)]. 

 
Fig. 1. Planar single-point contact. (a) Edge-vertex contact state. (b) Vertexedge contact state. 

In this paper, means of calculating the motion of a constrained body and an error-reduction function are derived 
in Section II. Sufficient conditions for error reduction for edge-vertex and vertex-edge contact states are derived 
in Section III and Section IV, respectively. These conditions show that an admittance matrix satisfying the error-
reduction conditions at the boundaries of a set of contact configurations, also satisfies the error-reduction 
conditions at all intermediate configurations. A brief discussion and a summary are presented in Section V. 

SECTION II. Error-Reducing Motion of a Constrained Rigid Body 
Consider a planar rigid body interacting with a surface as shown in Fig. 1. Let n (unit two-vector) be the surface 
normal (pointing toward the held body) at the contact point. The unit wrench associated with the normal force 
has the form 

𝐀𝐀𝑛𝑛 = �
𝐧𝐧

(𝐫𝐫× 𝐧𝐧) ⋅ 𝐤𝐤� 



(3) 

where 𝐫𝐫 is the position vector from the origin of the coordinate frame to the point of contact, 𝐵𝐵𝑐𝑐, and 𝐤𝐤 is the 
unit vector orthogonal to the plane. 

Let 𝜙𝜙 be the magnitude of the normal contact force. The contact wrench is 

𝐀𝐀 = 𝐀𝐀𝑛𝑛𝜙𝜙. 
(4) 

By the control law (1), the motion of the body is 

𝐯𝐯 = 𝐯𝐯0 + 𝐀𝐀𝐀𝐀𝑛𝑛𝜙𝜙. 
(5) 

Because the motion of the rigid body cannot penetrate the surface, the reciprocal condition [11]must be 
satisfied 

𝐀𝐀𝑛𝑛
𝑇𝑇𝐯𝐯 = 𝐀𝐀𝑛𝑛

𝑇𝑇𝐯𝐯0 + 𝐀𝐀𝑛𝑛
𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛𝜙𝜙 = 0. 

 

 

Fig. 2. Edge-vertex contact state. (a) Orientational variation. (b) Translational variation. 

The magnitude 𝜙𝜙 is determined from 

𝜙𝜙 =
−𝐯𝐯0𝑇𝑇𝐀𝐀𝑛𝑛

𝐀𝐀𝑛𝑛
𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛

. 

(6) 

 

Substituting (6) into (5) yields 

𝐯𝐯 =
(𝐯𝐯0𝐀𝐀𝑛𝑛

𝑇𝑇 − 𝐯𝐯0𝑇𝑇𝐀𝐀𝑛𝑛𝐈𝐈)𝐀𝐀𝐀𝐀𝑛𝑛

𝐀𝐀𝑛𝑛
𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛

. 

(7) 

 



If the compliant motion is error reducing, condition (2) must be satisfied for a given point. Thus 

𝐸𝐸 =
𝐝𝐝𝑇𝑇(𝐯𝐯0𝐀𝐀𝑛𝑛

𝑇𝑇 − 𝐯𝐯0𝑇𝑇𝐀𝐀𝑛𝑛𝐈𝐈)𝐀𝐀𝐀𝐀𝑛𝑛

𝐀𝐀𝑛𝑛
𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛

< 0 

(8) 

where 𝐀𝐀, 𝐝𝐝, and 𝐀𝐀 are expressed in a body frame. 

Since 𝐀𝐀 is positive definite, 𝐀𝐀𝑛𝑛
𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛 > 0, the denominator is positive. Therefore, the error-reduction function 

can be expressed as 

𝐹𝐹er = 𝐝𝐝𝑇𝑇(𝐯𝐯0𝐀𝐀𝑛𝑛
𝑇𝑇 − 𝐯𝐯0𝑇𝑇𝐀𝐀𝑛𝑛𝐈𝐈)𝐀𝐀𝐀𝐀𝑛𝑛. 

(9) 

For error-reducing motion, 𝐹𝐹er must be negative for all contact configurations considered. 

Since the contact wrench 𝐀𝐀𝑛𝑛 depends on the configuration of the body, the error-reduction function in (9) is a 
function of configuration. As shown in Fig. 1, for both contact states, the configuration of the body can be 
described by two variables (𝛿𝛿,𝜃𝜃). Thus, the function 𝐹𝐹er can be expressed as a function of (𝛿𝛿,𝜃𝜃). 

In each contact case, the range for each of the variables can be transformed to be centered about zero, e.g., 
[𝛿𝛿𝑚𝑚𝑚𝑚𝑛𝑛, 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚] ⇒ [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀] and [𝜃𝜃𝑚𝑚𝑚𝑚𝑛𝑛,𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚] ⇒ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] to facilitate subsequent analysis. 

In the following two sections, the variables 𝜃𝜃 and 𝛿𝛿 considered are within the ranges of [−𝜃𝜃𝑀𝑀 ,𝜃𝜃𝑀𝑀] and 
[−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀], respectively. Error-reduction conditions are obtained for the two single-point contact states 
illustrated in Fig. 1. 

SECTION III. Edge-Vertex Contact State 
Consider edge-vertex contact. We prove that, if an admittance matrix 𝐀𝐀 satisfies a set of conditions at the 
“boundary” points, then the A matrix ensures error-reducing motion for all intermediate configurations 𝜃𝜃 ∈
[−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. 

A. Error-Reduction Function 
In order to obtain the error-reduction function, we first express the contact wrench and the error-measure 
vector 𝐝𝐝 in terms of 𝛿𝛿 and 𝜃𝜃. 

For an edge-vertex contact state as shown in Fig. 2(a), when the held body rotates relative to the fixtured body 
about the contact point, the description of the contact wrench does not change in a body-based coordinate 
frame. When the held body translates relative to the fixtured body as shown in Fig. 2(b), the description of the 
contact wrench changes in a body-based coordinate frame as the contact point changes (although its direction is 
constant). Thus, the contact wrench is a function involving only the translational variable 𝛿𝛿. 

For all edge-vertex cases, the direction of the surface normal is constant in the body frame while the position 
vector of the contact point, 𝐫𝐫, varies. For an arbitrary 𝛿𝛿, 𝐫𝐫 can be expressed as 

𝐫𝐫𝛿𝛿 = 𝐫𝐫0 + 𝐫𝐫𝑒𝑒𝛿𝛿 

(10) 



where 𝐫𝐫0 is a vector from the body frame to a center point of the edge (constant) and 𝐫𝐫𝑒𝑒 is the unit vector along 
the edge. By (3), the unit wrench corresponding to the surface normal is 

𝐀𝐀𝑛𝑛 = �
𝐧𝐧

(𝐫𝐫𝛿𝛿 × 𝐧𝐧) ⋅ 𝐤𝐤�
. 

(11) 

It can be seen that in the body frame, the direction of 𝐀𝐀𝑛𝑛 is constant, while the last component (the moment 
term) is a linear function of 𝛿𝛿. 

Let 𝐝𝐝0′  be the error-measure two-vector at (𝜃𝜃, 𝛿𝛿) = (0,0), then for an arbitrary δ with θ=0, the error-measure 
vector 𝐝𝐝′ is 

𝐝𝐝𝛿𝛿′ = 𝐝𝐝0′ + 𝐫𝐫𝑒𝑒𝛿𝛿, 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀, 𝛿𝛿𝑀𝑀] 

(12) 

where 𝐫𝐫𝑒𝑒 is a unit vector along the contacting edge. Note that 𝐝𝐝0′  is constant in the global coordinate frame, 
while 𝐫𝐫𝑒𝑒 is constant in a body frame. Thus, for an arbitrary orientation 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] and 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 , 𝛿𝛿𝑀𝑀], the 
error-measure two-vector 𝐝𝐝′ is a function of 𝛿𝛿 and 𝜃𝜃 having the form 

𝐝𝐝′(𝛿𝛿,𝜃𝜃) = 𝐑𝐑𝐝𝐝0′ + 𝐫𝐫𝑒𝑒𝛿𝛿 

(13) 

where 𝐑𝐑 is the rotation matrix having the form 

𝐑𝐑(𝜃𝜃) = � cos𝜃𝜃 sin𝜃𝜃
− sin𝜃𝜃 cos𝜃𝜃� . 

(14) 

The line vector associated with 𝐝𝐝′(𝛿𝛿,𝜃𝜃) can be calculated 

𝐝𝐝(𝛿𝛿, 𝜃𝜃) = �
𝐑𝐑𝐝𝐝0′

(𝐫𝐫𝐵𝐵 × 𝐑𝐑𝐝𝐝0′ ) ⋅ 𝐤𝐤� + 𝛿𝛿 �
𝐫𝐫𝑒𝑒

(𝐫𝐫𝐵𝐵 × 𝐫𝐫𝑒𝑒) ⋅ 𝐤𝐤� 

(15) 

where 𝐫𝐫𝐵𝐵 is the position vector from the body frame origin 𝑂𝑂 to the error measure point 𝐵𝐵 (constant in body 
frame). 

Thus, for any intermediate configuration (𝛿𝛿, 𝜃𝜃), because 𝐀𝐀𝑛𝑛 in (11) only contains first-order terms in 𝛿𝛿 and 
𝐝𝐝(𝛿𝛿,𝜃𝜃) in (15) only contains first-order terms in sin𝜃𝜃, cos𝜃𝜃, and 𝛿𝛿, the error-reduction function (9) can be 
expressed as a third-order polynomial in 𝛿𝛿 in the form 

𝐹𝐹er(𝛿𝛿, 𝜃𝜃) = 𝑓𝑓3𝛿𝛿3 + 𝑓𝑓2𝛿𝛿2 + 𝑓𝑓1𝛿𝛿 + 𝑓𝑓0 

(16) 

where the coefficients 𝑓𝑓𝑚𝑚's have the form 

𝑓𝑓𝑚𝑚 = 𝑎𝑎𝑚𝑚 cos𝜃𝜃 + 𝑏𝑏𝑚𝑚 sin𝜃𝜃 



(17) 

where 𝑎𝑎𝑚𝑚  and 𝑏𝑏𝑚𝑚 are functions of the admittance 𝐀𝐀. 

B. Sufficient Conditions for Error Reduction 
The error-reduction condition requires that the error-reduction function in (16) must be negative in the range of 
configurations considered. In order to obtain sufficient conditions, we construct two functions, 𝐹𝐹0 and 𝐹𝐹𝑀𝑀, by 
replacing the cos𝜃𝜃 terms in (16) with 1 and cos𝜃𝜃𝑀𝑀, respectively 

𝐹𝐹0(𝛿𝛿,𝜃𝜃) = (𝑎𝑎3𝛿𝛿3 + 𝑎𝑎2𝛿𝛿2 + 𝑎𝑎1𝛿𝛿 + 𝑎𝑎0)
+(𝑏𝑏3𝛿𝛿3 + 𝑏𝑏2𝛿𝛿2 + 𝑏𝑏1𝛿𝛿 + 𝑏𝑏0) sin𝜃𝜃

𝐹𝐹𝑀𝑀(𝛿𝛿, 𝜃𝜃) = (𝑎𝑎3𝛿𝛿3 + 𝑎𝑎2𝛿𝛿2 + 𝑎𝑎1𝛿𝛿 + 𝑎𝑎0) cos𝜃𝜃𝑀𝑀
+(𝑏𝑏3𝛿𝛿3 + 𝑏𝑏2𝛿𝛿2 + 𝑏𝑏1𝛿𝛿 + 𝑏𝑏0) sin𝜃𝜃 .

 

(18)(19) 

For small 𝜃𝜃 (e.g., 𝜃𝜃 ≤ (𝜋𝜋/8)), 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 are close approximations of 𝐹𝐹er, and for any (𝛿𝛿,𝜃𝜃) in the range 
considered 

min{𝐹𝐹0,𝐹𝐹𝑀𝑀} ≤ 𝐹𝐹er ≤ max{𝐹𝐹0,𝐹𝐹𝑀𝑀} . 
(20) 

Thus, if both 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 are negative over the range 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 , 𝛿𝛿𝑀𝑀] and 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀], error-reducing motion is 
ensured over this range. 

For a given 𝜃𝜃, both 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 are third-order polynomials in 𝛿𝛿. To obtain conditions on 𝐹𝐹0 and 𝐹𝐹𝑀𝑀, we first 
evaluate the bounds on the coefficients of these two polynomials. 

By (18) and (19), the coefficients of 𝛿𝛿𝑚𝑚 in 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 are 

𝑓𝑓𝑚𝑚0(𝜃𝜃) = 𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑚𝑚 sin𝜃𝜃
𝑓𝑓𝑚𝑚𝑀𝑀(𝜃𝜃) = 𝑎𝑎𝑚𝑚 cos𝜃𝜃𝑀𝑀 + 𝑏𝑏𝑚𝑚 sin𝜃𝜃 .

 

(21)(22) 

 

 
Fig. 3. Vertex-edge contact state. (a) Orientational variation. (b) Translational variation. 

 



In the range of |𝜃𝜃| ≤ (𝜋𝜋 8⁄ ), both 𝑓𝑓𝑚𝑚0(𝜃𝜃) and 𝑓𝑓𝑚𝑚𝑀𝑀(𝜃𝜃) are monotonic. Thus, the maximum (minimum) values of 𝑓𝑓𝑚𝑚0 
and 𝑓𝑓𝑚𝑚𝑀𝑀(𝜃𝜃) are determined from their values at the two boundary points: 𝜃𝜃 = ±𝜃𝜃𝑀𝑀. Denote 

𝑠𝑠𝑀𝑀 = max��𝑓𝑓𝑚𝑚0(±𝜃𝜃𝑀𝑀)�, �𝑓𝑓𝑚𝑚𝑀𝑀(±𝜃𝜃𝑀𝑀)�, 𝑖𝑖 = 1,2,3�
𝑠𝑠0 = min{|𝑓𝑓00(±𝜃𝜃𝑀𝑀)|, |𝑓𝑓0𝑀𝑀(±𝜃𝜃𝑀𝑀)|} .

 

(23)(24) 

We prove that if 

𝑠𝑠0
𝑠𝑠𝑀𝑀 + 𝑠𝑠0

> 𝛿𝛿𝑀𝑀 

(25) 

then both 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 have no root for all 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀], 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. 

To prove this, consider the function 𝐹𝐹0 in (18). For an arbitrary 𝜃𝜃0 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀], 𝐹𝐹0 is a third-order polynomial in 
a single-variable 𝛿𝛿 

𝐹𝐹0(𝛿𝛿, 𝜃𝜃0) = 𝑐𝑐3𝛿𝛿3 + 𝑐𝑐2𝛿𝛿2 + 𝑐𝑐1𝛿𝛿 + 𝑐𝑐0
where
𝑐𝑐𝑚𝑚 = 𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑚𝑚 sin𝜃𝜃0 .
Let
𝑐𝑐𝑀𝑀 = max{|𝑐𝑐1|, |𝑐𝑐2|, |𝑐𝑐3|}

 

(26)(27)(28) 

then, as shown in the Appendix, each root of 𝐹𝐹0, 𝜉𝜉, must satisfy 

|𝜉𝜉| ≥
|𝑐𝑐0|

𝑐𝑐𝑀𝑀 + |𝑐𝑐0| . 

(29) 

Since 𝜃𝜃0 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀], by (23) and (24), we have 

𝑐𝑐𝑀𝑀 ≤ 𝑠𝑠𝑀𝑀 , |𝑐𝑐0| ≥ 𝑠𝑠0.
Therefore
𝑠𝑠𝑀𝑀
𝑠𝑠0

≥
𝑐𝑐𝑀𝑀
𝑐𝑐0

 

(30)(31) 

which leads to 

|𝜉𝜉| ≥
|𝑐𝑐0|

𝑐𝑐𝑀𝑀 + |𝑐𝑐0| ≥
𝑠𝑠0

𝑠𝑠𝑀𝑀 + 𝑠𝑠0
> 𝛿𝛿𝑀𝑀. 

(32) 



Thus, 𝐹𝐹0 has no root in [−𝛿𝛿𝑀𝑀 , 𝛿𝛿𝑀𝑀] for all 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. The same reasoning applies to 𝐹𝐹𝑀𝑀. Therefore, the 
functions 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 do not change sign if inequality (25) is satisfied. By (20), 𝐹𝐹er has no root in the same 
bounded area. Since 𝑠𝑠𝑀𝑀 in (23) and 𝑠𝑠0 in (24) are functions of the admittance 𝐀𝐀, (25)imposes a constraint on 𝐀𝐀. 
In summary, we have the following proposition. 

Proposition 1 
For an edge-vertex contact state, if at the configuration (𝛿𝛿,𝜃𝜃) = (0,0), the admittance satisfies the error-
reduction condition (2), and (25) is satisfied for the configuration boundary points [±𝛿𝛿𝑀𝑀 , ±𝜃𝜃𝑀𝑀], then the 
admittance will satisfy the error-reduction conditions for all configurations bounded by these four 
configurations. 

Thus, to ensure that contact yields error-reducing motion for the body for an edge-vertex contact state, only 
two conditions [(2) and (25)] need be satisfied. 

SECTION IV. Vertex-Edge Contact State 
In this section, vertex-edge contact is considered. As shown in Fig. 3, the configuration of the body can be 
determined by the orientation of the body 𝜃𝜃 and the location of the contact point 𝛿𝛿. 

Suppose that 𝜃𝜃 varies within the range of [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀], and δ varies within the range of [−𝛿𝛿𝑀𝑀 , 𝛿𝛿𝑀𝑀]. We prove that, 
if an admittance matrix 𝐀𝐀 satisfies a set of conditions determined at the “boundary” configurations, then the 
same admittance will ensure that the motion is error reducing for any intermediate configuration 𝜃𝜃 ∈
[−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀], 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀]. 

To prove the results, we first consider configuration variations in orientation and translation separately. Then, 
by combining the two cases, general results are obtained. 

A. Configuration Variation in Orientation 
Consider only orientational variation of the contact configuration as illustrated in Fig. 3(a). In this case, both the 
direction of the error-reduction vector 𝐝𝐝 and the direction of the contact force are changed by changing the 
orientation. We prove that, for 𝜃𝜃𝑀𝑀 ≤ (𝜋𝜋 4⁄ ), if A satisfies a set of conditions at 𝜃𝜃 = 0, then an error-reducing 
motion is ensured for all configurations 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. 

1. Error-Reduction Function 
Let 𝐀𝐀𝑛𝑛0 be the wrench, and 𝐝𝐝0 be the position vector associated with 𝜃𝜃 = 0. Suppose at 𝜃𝜃 = 0, an error-
reducing motion is obtained, i.e., 

𝐝𝐝0
𝑇𝑇𝐯𝐯0 + 𝐝𝐝0

𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛0 < 0. 

(33) 

Consider a rotation given by an angle change 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. If we denote 𝐧𝐧0 as the surface normal associated 
with 𝜃𝜃 = 0, then in the body coordination frame, the surface normal associated with 𝜃𝜃 is 

𝐧𝐧𝜃𝜃 = 𝐑𝐑(𝜃𝜃)𝐧𝐧0 

(34) 

where 𝐑𝐑 is the rotation matrix having the form of (14). 

Since contact is frictionless, the contact force is along the surface normal at the contact point. Thus, the unit 
contact wrench is 



𝐀𝐀𝑛𝑛(𝜃𝜃) = �
𝐧𝐧𝜃𝜃

(𝐫𝐫 × 𝐧𝐧𝜃𝜃) ⋅ 𝐤𝐤�
= �

𝐑𝐑𝐧𝐧0
(𝐫𝐫 × 𝐑𝐑𝐧𝐧0) ⋅ 𝐤𝐤� 

(35) 

where 𝐫𝐫 is the position vector from the origin of the body frame to the contact point (constant), and 𝐤𝐤 is the unit 
vector in the direction of the 𝑧𝑧 axis. 

Since the two configurations correspond to pure rotation about the contact point, the error-measure two-vector 
𝐝𝐝′ for an intermediate configuration can be expressed in the body frame as 

𝐝𝐝𝜃𝜃′ = 𝐑𝐑𝐝𝐝𝑐𝑐′ + 𝐝𝐝𝑏𝑏′  

(36) 

where 𝐝𝐝𝑐𝑐′  is the position two-vector from 𝐵𝐵ℎ to the contact point 𝐵𝐵𝑐𝑐, and 𝐝𝐝𝑏𝑏′  is the position two-vector from 𝐵𝐵𝑐𝑐 
to point 𝐵𝐵1. Note that 𝐝𝐝𝑐𝑐′  is a constant in the global frame, and 𝐝𝐝𝑏𝑏′  is constant in the body frame. Then, in the 
body frame, the line vector associated with 𝐝𝐝′ is obtained 

𝐝𝐝𝜃𝜃 = �
𝐝𝐝𝜃𝜃′

�𝐫𝐫𝐵𝐵 × 𝐝𝐝𝜃𝜃′ � ⋅ 𝐤𝐤
� 

(37) 

where 𝐫𝐫𝐵𝐵 is the position vector from the body frame origin to point 𝐵𝐵. 

By (9), the error-reduction function can be written as 

𝐹𝐹er(𝜃𝜃) = 𝐝𝐝𝜃𝜃𝑇𝑇𝐯𝐯0(𝐀𝐀𝑛𝑛
𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛) − 𝐝𝐝𝜃𝜃𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛(𝐀𝐀𝑛𝑛

𝑇𝑇𝐯𝐯0). 

(38) 

From (35) and (37), it can be seen that 𝐝𝐝𝜃𝜃 and 𝐀𝐀𝑛𝑛 involve first-order terms in sin𝜃𝜃 and cos𝜃𝜃. Thus, 𝐹𝐹er(𝜃𝜃) can be 
expressed in the form 

𝐹𝐹er(𝜃𝜃) = 𝑔𝑔1 sin3 𝜃𝜃 + 𝑔𝑔2 cos3 𝜃𝜃 + 𝑔𝑔3 sin2 𝜃𝜃 cos𝜃𝜃
+𝑔𝑔4 sin𝜃𝜃 cos2 𝜃𝜃 + 𝑔𝑔5 sin2 𝜃𝜃 + 𝑔𝑔6 cos2 𝜃𝜃
+𝑔𝑔7 sin𝜃𝜃 cos𝜃𝜃 + 𝑔𝑔8 sin𝜃𝜃 + 𝑔𝑔9 cos𝜃𝜃 + 𝑔𝑔10.

 

(39) 

Using the relation 

sin2 𝜃𝜃 = 1 − cos2 𝜃𝜃 

to eliminate all sin2𝜃𝜃 terms in (39), 𝐹𝐹er(𝜃𝜃) can be written in the form 

𝐹𝐹er(𝜃𝜃) = 𝑐𝑐1 cos3 𝜃𝜃 + 𝑐𝑐2 sin𝜃𝜃 cos2 𝜃𝜃 + 𝑐𝑐3 cos2 𝜃𝜃
+𝑐𝑐4 sin𝜃𝜃 cos𝜃𝜃 + 𝑐𝑐5 sin𝜃𝜃 + 𝑐𝑐6 cos𝜃𝜃 + 𝑐𝑐7

 

(40) 

where the 𝑐𝑐𝑚𝑚's are functions of the admittance matrix 𝐀𝐀. 



2. Error-Reduction Conditions 
To achieve error reduction at all other configurations considered, 𝐹𝐹er(𝜃𝜃) must be negative for all 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. 
Therefore, the function 𝐹𝐹er(𝜃𝜃) in (38) must have no root for 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. In order to determine the range of 
roots for 𝐹𝐹er(𝜃𝜃), we construct a polynomial that limits the high and low value of the components of 𝐹𝐹er(𝜃𝜃) over 
[−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. 

It can be verified that, for 0 ≤ 𝜃𝜃 ≤ (𝜋𝜋 4⁄ ), the following inequalities are valid: 

1 −
𝜃𝜃2

2 ≤ cos𝜃𝜃 ≤ 1,𝜃𝜃 −
𝜃𝜃3

3! ≤ sin𝜃𝜃 ≤ 𝜃𝜃

1 − 𝜃𝜃2 ≤ cos2 𝜃𝜃 ≤ 1,𝜃𝜃 −
4𝜃𝜃3

3! ≤ sin𝜃𝜃 cos𝜃𝜃 ≤ 𝜃𝜃

1 −
3𝜃𝜃2

2 ≤ cos3 𝜃𝜃 ≤ 1,𝜃𝜃 −
7𝜃𝜃3

3! ≤ sin𝜃𝜃 cos2 𝜃𝜃 ≤ 𝜃𝜃.

 

(41)(42)(43) 

Since 0 ≤ 𝜃𝜃 ≤ (𝜋𝜋 4⁄ ), these inequalities are valid throughout the range of investigated 𝜃𝜃. For 𝜃𝜃 ≥ 0, a “more 
positive” conservative polynomial approximation of 𝐹𝐹er(𝜃𝜃), 𝑃𝑃(𝜃𝜃) can be constructed by the following: 

• if 𝑐𝑐𝑚𝑚 > 0, replace the corresponding trigonometric term by the upper bound polynomial term in (41)–
(43); 

• if 𝑐𝑐𝑚𝑚 < 0, replace the corresponding trigonometric term by the lower bound polynomial term in (41)–
(43). 

As such, a third-order polynomial is obtained 

𝑃𝑃(𝜃𝜃) = 𝑝𝑝3𝜃𝜃3 + 𝑝𝑝2𝜃𝜃2 + 𝑝𝑝1𝜃𝜃 + 𝑝𝑝0. 
(44) 

Note that the variation between 𝑃𝑃(𝜃𝜃) and 𝐹𝐹er(𝜃𝜃) is quite small [𝑜𝑜(𝜃𝜃4)], and that 

𝐹𝐹er(𝜃𝜃) ≤ 𝑃𝑃(𝜃𝜃),∀𝜃𝜃 ∈ [0,𝜃𝜃𝑀𝑀]. 
(45) 

Thus, if 𝑃𝑃(𝜃𝜃) has no root for 𝜃𝜃 ∈ [0,𝜃𝜃𝑀𝑀], then 𝐹𝐹er(𝜃𝜃) has no root in the same range, and the error-reduction 
condition is satisfied. 

Since 𝑃𝑃(𝜃𝜃) is a third-order polynomial, the roots can be expressed analytically as a function of the coefficients 
ai. A constraint that ensures that the error-reduction condition is satisfied throughout the range can be obtained 
by requiring that any positive root be greater than 𝜃𝜃𝑀𝑀. Alternatively, a much simpler sufficient condition on the 
coefficients can be used to ensure the error-reduction condition. If we denote 

𝑝𝑝𝑀𝑀 = max{|𝑝𝑝1|, |𝑝𝑝2|, |𝑝𝑝3|} > 0 

then, it can be proved (see the Appendix) that any root of 𝑃𝑃(𝜃𝜃), 𝜃𝜃′, must satisfy 

|𝜃𝜃′| ≥
|𝑝𝑝0|

𝑝𝑝𝑀𝑀 + |𝑝𝑝0|. 



Thus, the condition 

|𝑝𝑝0|
𝑝𝑝𝑀𝑀 + |𝑝𝑝0| ≥ 𝜃𝜃𝑀𝑀  

(46) 

guarantees that the function 𝐹𝐹er(𝜃𝜃) has no root over [0,𝜃𝜃𝑀𝑀] and, together with (33), that error reduction for 
these configurations is ensured. 

Now, consider the case where – (𝜋𝜋 4⁄ ) ≤ 𝜃𝜃 < 0. In (41)–(43), the inequalities involving only cos𝜃𝜃 are still valid, 
while the inequalities involving sin𝜃𝜃 change directions, i.e., 

𝜃𝜃 ≤ sin𝜃𝜃 ≤ 𝜃𝜃 −
𝜃𝜃3

3!

𝜃𝜃 ≤ sin𝜃𝜃 cos𝜃𝜃 ≤ 𝜃𝜃 −
4𝜃𝜃3

3!

𝜃𝜃 ≤ sin𝜃𝜃 cos2 𝜃𝜃 ≤ 𝜃𝜃 −
7𝜃𝜃3

3! .

 

(47)(48)(49) 

For 𝜃𝜃 < 0, a “more positive” conservative polynomial approximation of 𝐹𝐹er(𝜃𝜃), 𝑄𝑄(𝜃𝜃) can be constructed by the 
following. 

• For the terms involving sin𝜃𝜃, if 𝑐𝑐𝑚𝑚 > 0, replace the corresponding trigonometric term by the upper-
bound polynomial term in (47)–(49); if 𝑐𝑐𝑚𝑚 < 0, replace the corresponding trigonometric term by the 
lower-bound polynomial term in (47)–(49). 

• For the terms involving only cos𝜃𝜃, if 𝑐𝑐𝑚𝑚 > 0, replace the corresponding trigonometric term by the upper-
bound polynomial term in (41)–(43); if 𝑐𝑐𝑚𝑚 < 0, replace the corresponding trigonometric term by the 
lower-bound polynomial term in (41)–(43). 

As such, a third-order polynomial is obtained 

𝑄𝑄(𝜃𝜃) = 𝑞𝑞3𝜃𝜃3 + 𝑞𝑞2𝜃𝜃2 + 𝑞𝑞1𝜃𝜃 + 𝑞𝑞0. 
(50) 

Again, note that the variation between 𝑄𝑄(𝜃𝜃) and 𝐹𝐹er(𝜃𝜃) is small [𝑜𝑜(𝜃𝜃4)], and that 

𝐹𝐹er(𝜃𝜃) ≤ 𝑄𝑄(𝜃𝜃),∀𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀, 0]. 
(51) 

If we denote 

𝑞𝑞𝑀𝑀 = max{|𝑞𝑞1|, |𝑞𝑞2|, |𝑞𝑞3|} > 0 

then, the condition 

|𝑞𝑞0|
𝑞𝑞𝑀𝑀 + |𝑞𝑞0| ≥ 𝜃𝜃𝑀𝑀 



(52) 

guarantees that the error-reduction function 𝐹𝐹er(𝜃𝜃) has no root over [−𝜃𝜃𝑀𝑀, 0] and, together with (33), that 
error reduction for these configurations is ensured. 

Combining (46) and (52), the error-reduction condition for any |𝜃𝜃| ≤ 𝜃𝜃𝑀𝑀 is obtained. Note that 

𝑝𝑝0 = 𝑞𝑞0 = 𝐹𝐹er(0). 
If we denote 

𝐹𝐹𝑀𝑀 = max{|𝑝𝑝1|, |𝑝𝑝2|, |𝑝𝑝3|, |𝑞𝑞1|, |𝑞𝑞2|, |𝑞𝑞3|} 

(53) 

then, the condition 𝐹𝐹er(0) < 0, and 

|𝐹𝐹er(0)|
𝐹𝐹𝑀𝑀 + |𝐹𝐹er(0)| ≥ 𝜃𝜃𝑀𝑀  

(54) 

ensures that 𝐹𝐹er(𝜃𝜃) is negative for all 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. Since all coefficients 𝑝𝑝𝑚𝑚 's and 𝑞𝑞𝑚𝑚's are functions of the 
admittance matrix 𝐀𝐀, inequality (54) imposes a constraint on 𝐀𝐀. 

Thus, for orientation variation with 𝜃𝜃𝑀𝑀 ≤ (𝜋𝜋 4⁄ ), a sufficient condition for error-reducing motion is that at the 
center angle, the error-reduction condition (33) is satisfied, and the admittance matrix 𝐀𝐀 satisfies inequality 
(54). 

B. Configuration Variation in Translation 
Now consider the translational variation of the contact configuration illustrated in Fig. 3(b). In this case, only 
translation along the edge is allowed, and the contact force does not change in the body frame. The 
configuration of the body can be determined by a vector d [Fig. 3(b)]. 

Suppose that, at the two locations 𝐝𝐝1 and 𝐝𝐝2, the error-reduction conditions are satisfied 

𝐝𝐝1𝑇𝑇𝐯𝐯0 + 𝐝𝐝1𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛1 < 0
𝐝𝐝2𝑇𝑇𝐯𝐯0 + 𝐝𝐝2𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛2 < 0

 

(55)(56) 

where 𝐀𝐀𝑛𝑛1 and 𝐀𝐀𝑛𝑛2 are the contact wrenches at 𝐝𝐝1 and 𝐝𝐝2, respectively. Thus, for any 𝛼𝛼, 𝛽𝛽 ≥ 0 

(𝛼𝛼𝐝𝐝1 + 𝛽𝛽𝐝𝐝2)𝑇𝑇𝐯𝐯0 + (𝛼𝛼𝐝𝐝1 + 𝛽𝛽𝐝𝐝2)𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛 < 0. 
(57) 

 



 
Fig. 4. General vertex-edge contact state. The conditions at four boundary configurations ensure the error-
reducing motion for all intermediate configurations. 

Consider an arbitrary configuration d between 𝐝𝐝1 and 𝐝𝐝2. Since the ends of these three vectors must be on a 
straight line, d is a convex combination of the vectors 𝐝𝐝1 and 𝐝𝐝2, i.e., 

𝐝𝐝 = 𝛼𝛼𝐝𝐝1 + 𝛽𝛽𝐝𝐝2 

(58) 

where 𝛼𝛼, 𝛽𝛽 ≥ 0, and 𝛼𝛼 + 𝛽𝛽 = 1. 

Since the contact wrench 𝐀𝐀𝑛𝑛 is the same in the body frame for all contact configurations, 𝐀𝐀𝑛𝑛 = 𝐀𝐀𝑛𝑛1 = 𝐀𝐀𝑛𝑛2. 
Substituting (58) into (57) yields 

𝐝𝐝𝑇𝑇𝐯𝐯0 + 𝐝𝐝𝑇𝑇𝐀𝐀𝐀𝐀𝐧𝐧 < 0. 
Thus, if at two configurations (−𝛿𝛿𝑀𝑀 ,𝜃𝜃) and (𝛿𝛿𝑀𝑀 ,𝜃𝜃) the error-reduction condition is satisfied, then the error-
reduction condition must be satisfied for all intermediate configurations (𝛿𝛿,𝜃𝜃) with 𝛿𝛿 ∈ −[𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀]. 

C. General Case 
The results presented in Sections IV-Aand IV-B can be generalized to intermediate edge-vertex contact 
configurations involving both translational and orientational variations from configurations at which the 
conditions were imposed. 

Let 𝐶𝐶(𝛿𝛿,𝜃𝜃) be an arbitrary configuration with 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀] and 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀], as shown in Fig. 4. Suppose 
that at the four extremal configurations 𝐶𝐶1(−𝛿𝛿𝑀𝑀,−𝜃𝜃𝑀𝑀), 𝐶𝐶2(−𝛿𝛿𝑀𝑀 ,𝜃𝜃𝑀𝑀), 𝐶𝐶3(𝛿𝛿𝑀𝑀 ,−𝜃𝜃𝑀𝑀), and 𝐶𝐶4(𝛿𝛿𝑀𝑀 ,𝜃𝜃𝑀𝑀), the error-
reduction condition is satisfied, and that at 𝜃𝜃 = −𝜃𝜃𝑀𝑀, 𝜃𝜃𝑀𝑀 (54)is satisfied. 

Consider first, the two configurations 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑀𝑀 determined by (−𝛿𝛿𝑀𝑀 ,𝜃𝜃) and (𝛿𝛿𝑀𝑀 ,𝜃𝜃), respectively. Since at 
configurations 𝐶𝐶1 and 𝐶𝐶2 the error-reduction condition (33) and inequality (54) are satisfied, by the results 
presented in Section IV-A, the error-reduction condition must be satisfied at configuration 𝐶𝐶𝑚𝑚. By the same 
reasoning, the error-reduction condition is also satisfied at the configuration 𝐶𝐶𝑀𝑀. Then, because the error-
reduction condition is satisfied at 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑀𝑀, by the results presented in Section IV-B, the error-reduction 
condition must also be satisfied for any 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀]. Thus we have the following proposition. 

Proposition 2 
For a vertex-edge contact state with variation of orientation [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] and variation of translation [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀], if 
at the two configurations with different contact boundary locations and the same zero angle 
�(𝛿𝛿,𝜃𝜃) = (−𝛿𝛿𝑀𝑀 , 0), (𝛿𝛿𝑀𝑀 , 0)� the admittance satisfies the error reduction conditions, and inequality (54) is 



satisfied for both −𝛿𝛿𝑀𝑀 and 𝛿𝛿𝑀𝑀, then the admittance will satisfy the error-reduction condition for all 
configurations bounded by four configurations, −𝛿𝛿𝑀𝑀, −𝜃𝜃𝑀𝑀), −𝛿𝛿𝑀𝑀, 𝜃𝜃𝑀𝑀), (𝛿𝛿𝑀𝑀, −𝜃𝜃𝑀𝑀), (𝛿𝛿𝑀𝑀, 𝜃𝜃𝑀𝑀). 

Thus, for an edge-vertex contact state, to ensure that the motion response due to contact is error reducing for 
all configurations considered, only four conditions need be satisfied. 

SECTION V. Discussion and Summary 
In this paper, error reduction of a single point on the held body is considered. If that point corresponds to that 
which is maximally displaced from its proper position, an established metric is used as a measure of error 
reduction. Alternately, the results could be applied to a finite set of points to further restrict the description of 
error reduction. If, for example, n points on the body are considered, the conditions in Propositions 1 and 2 must 
be satisfied for all of the n points. 

Note that the relative size of the space of acceptable admittance matrices is determined by the difficulty of the 
assembly task. Easier tasks yield a larger space of acceptable admittance matrices. 

Also note that, because the conditions imposed are for instantaneous motions and the imposed error-reduction 
measure does not explicitly consider rotation, it is possible to reduce the error measure while increasing the 
orientational misalignment of the parts. Reliability is increased when the range of orientational misalignments 
considered is larger than that expected for a given manipulator. 

In summary, we have presented an approach for admittance selection of a planar rigid body for force-guided 
assembly. We have shown that, for single-point contact cases, the admittance control law can be selected based 
on their behavior at a finite number of configurations. If the error-reduction conditions are satisfied at these 
configurations, the error-reduction conditions will be satisfied for all intermediate configurations. 

In ongoing work, we are investigating more general problems involving friction and multipoint contact. 

Appendix 
Consider an 𝑛𝑛 th-order polynomial 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0. 
Suppose 𝜉𝜉 is a root of 𝑓𝑓(𝑥𝑥), then it is proved [12] that 

|𝜉𝜉| ≤ max �1 + �
𝑎𝑎𝑛𝑛−1
𝑎𝑎𝑛𝑛

� , 1 + �
𝑎𝑎𝑛𝑛−2
𝑎𝑎𝑛𝑛

� ,⋯ ,1 + �
𝑎𝑎0
𝑎𝑎𝑛𝑛
��. 

Consider the transformation defined by 

𝜉𝜉 =
1
𝜂𝜂

then

𝑓𝑓 �
1
𝜂𝜂�

=
𝑎𝑎𝑛𝑛
𝜂𝜂𝑛𝑛 +

𝑎𝑎𝑛𝑛−1
𝜂𝜂𝑛𝑛−1 + ⋯+

𝑎𝑎1
𝜂𝜂 + 𝑎𝑎𝑜𝑜 = 0

 

which leads to 

𝑎𝑎0𝜂𝜂𝑛𝑛 + 𝑎𝑎1𝜂𝜂𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛−1𝜂𝜂 + 𝑎𝑎𝑛𝑛 = 0. 



Thus, 𝜂𝜂 is a root of the polynomial 

ℎ(𝑥𝑥) = 𝑎𝑎0𝑥𝑥𝑛𝑛 + 𝑎𝑎1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛−1𝑥𝑥 + 𝑎𝑎𝑛𝑛.
Therefore

�
1
𝜉𝜉�

= |𝜂𝜂| ≤ max �1 + �
𝑎𝑎1
𝑎𝑎0
� , 1 + �

𝑎𝑎2
𝑎𝑎0
� ,⋯ ,1 + �

𝑎𝑎𝑛𝑛
𝑎𝑎0
��

 

which implies 

|𝜉𝜉| ≥ �max �1 + �
𝑎𝑎1
𝑎𝑎0
� , 1 + �

𝑎𝑎2
𝑎𝑎0
� ,⋯ ,1 + �

𝑎𝑎𝑛𝑛
𝑎𝑎0
���

−1
.

Let
𝑎𝑎𝑀𝑀 = max{|𝑎𝑎1|, |𝑎𝑎2|,⋯ , |𝑎𝑎𝑛𝑛|} > 0
then

𝑚𝑚𝑎𝑎𝑥𝑥 �1 + �
𝑎𝑎1
𝑎𝑎0
� , 1 + �

𝑎𝑎2
𝑎𝑎0
� ,⋯ ,1 + �

𝑎𝑎𝑛𝑛
𝑎𝑎0
�� = 1 + �

𝑎𝑎𝑀𝑀
𝑎𝑎0
� .

Therefore

|𝜉𝜉| ≥ �1 + �
𝑎𝑎𝑀𝑀
𝑎𝑎0
��
−1

=
|𝑎𝑎0|

𝑎𝑎𝑀𝑀 + |𝑎𝑎0| .
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