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Generalized Phase Space Projection for 
Nonlinear Noise Reduction 
 

 

Michael T. Johnson 
Marquette University, EECE, Milwaukee, WI 
Richard J. Povinelli 
Marquette University, EECE, Milwaukee, WI  
 

Abstract 
Improved phase space projection methods, adapted from related work in the linear signal processing field based 
on subspace decomposition, are presented for application to the problem of additive noise reduction in the 
context of phase space analysis. These methods improve upon existing methods such as Broomhead–King 
singular spectrum analysis projection by minimizing overall signal distortion subject to constraints on the 
residual error, rather than using a direct least-squares fit. This results in a range of weighted projections which 
estimate and compensate for the portion of the principal component's singular values corresponding to noise 
rather than signal energy, and which include least-squares (LS) and least minimum mean square error (LMMSE) 
as subcases. The nature of phase space covariance, the key element in construction of the projection matrix, is 

https://doi.org/10.1016/j.physd.2005.01.011
http://epublications.marquette.edu/


examined across global phase spaces as well as within local neighborhood regions. The resulting algorithm, 
illustrated on a noisy Henon map as well as on the task of speech enhancement, is applicable to a wide variety of 
nonlinear noise reduction tasks. 

Keywords 
Noise reduction, Singular spectrum analysis, Subspace decomposition 

1. Introduction 
The task of noise reduction is a central theme in a wide variety of fields. Methods for optimal signal/noise 
separation include linear signal processing techniques such as Wiener filtering and Kalman filtering as well as 
nonlinear methods such as manifold decomposition and phase space projection. There is often a great deal of 
overlap in the underlying concepts on which methods from separate areas are based, and significant 
improvements in both understanding and technique may be gained through cross-disciplinary study. In the work 
presented here, we establish a relationship between phase space projection methods commonly used on 
nonlinear dynamical systems and subspace decomposition methods commonly used in linear signal processing. 
From this relationship, we show that phase space techniques such as Broomhead–King projection can be 
improved by weighting the projection operator using a constraint-based minimization process. 

A reconstructed phase space (RPS) matrix Y of dimension d and lag τ is called a trajectory matrix and defined by: 

(1) Y =

⎣
⎢
⎢
⎡
y1+(𝑑𝑑−1)𝜏𝜏
y2+(𝑑𝑑−1)𝜏𝜏

⋮
y𝑁𝑁 ⎦

⎥
⎥
⎤

= �

𝑦𝑦1+(𝑑𝑑−1)𝜏𝜏 ⋯ 𝑦𝑦1+𝜏𝜏 𝑦𝑦1
𝑦𝑦2+(𝑑𝑑−1)𝜏𝜏 ⋯ 𝑦𝑦2+𝜏𝜏 𝑦𝑦2

⋮ ⋱
𝑦𝑦𝑁𝑁 ⋯ 𝑦𝑦𝑁𝑁−(𝑑𝑑−2)𝜏𝜏 𝑦𝑦𝑁𝑁−(𝑑𝑑−1)𝜏𝜏

�

(𝑁𝑁−(𝑑𝑑−1)𝜏𝜏)×𝑑𝑑

, 

where the row vectors yn, with n = (1 + (d − 1)τ) … N, represent individual points in the RPS: 

(2) y𝑛𝑛 = [𝑦𝑦𝑛𝑛−(𝑑𝑑−1)𝜏𝜏 ⋯ 𝑦𝑦𝑛𝑛−𝜏𝜏 𝑦𝑦𝑛𝑛]. 

The fundamental nature of an RPS is captured by a characteristic pattern traced out in the space, the orbit or 
trajectory of the system. In dissipative systems, there exists a bounded subset of the phase space to which 
trajectories asymptote as time increases, called an attractor [1]. The motivation to use RPSs for analysis lies with 
historical work in topology and nonlinear systems analysis [2], [3], [4], [5], [6], which has shown that when 
constructed properly RPSs are homeomorphic embeddings of the underlying system's state space. RPSs may be 
constructed from either a single or multiple time-series, and there are a variety of methods available to estimate 
the appropriate lag and dimension from data [7], [8]. RPSs can be a useful tool in the analysis of many kinds of 
systems, especially those with nonlinearities that traditional frequency domain analysis cannot capture. For an 
introduction to the analysis and behavior of nonlinear dynamical systems in general and chaotic systems in 
particular see [1], [9], [10]. For an overview of analysis and applications using reconstructed phase spaces 
see [7], [11], [12]. 

2. Noise models and review of nonlinear noise reduction techniques 
Noise reduction is a key area where RPS analysis can be a powerful tool. An observed time series signal with 
additive noise is given by 

(3) y = x + w, 

where y ≜ {𝑦𝑦𝑛𝑛,𝑛𝑛 = 1 …𝑁𝑁} represents the observed signal, and the unknown clean signal x and additive 
noise w are assumed to be independent. This directly equates to the trajectory matrix relationship 



(4) Y = X + W, 

where Y, X and W are the corresponding time-delay RPSs of each signal. It is assumed that x is itself generated 
by an underlying dynamical system given by 

(5) x𝑛𝑛 = F(x𝑛𝑛−1) + v𝑛𝑛−1, 

where xn is a point in the reconstructed phase space (or true phase space) representing the dynamical system 
and vn an additive noise vector referred to as a “dynamical noise” component, since it is coupled into the system 
at each time step. In the absence of either dynamical noise or additive noise components, the observed time 
series is completely deterministic and is an exact representation of the underlying system F (which for 
nonlinear/chaotic systems may still have exhibit extremely complex behavior and a broad-band spectral 
composition). 

The goal of noise reduction is essentially to find the best possible estimate of the noise-free signal. Current 
methods for accomplishing this task with nonlinear systems are primarily based on either projections of the 
phase space or on manifold decomposition along stable and unstable directions of the attractor. 

In global Principal Components Analysis, also known as Singular Systems Analysis per Broomhead and King [13], 
a singular value decomposition Y = UΣCH is taken on the trajectory matrix, where C is the eigenvector matrix of 
the trajectory covariance. A projected trajectory matrix is computed via the equation: 

(6) X̂ = YC1C1𝐻𝐻 , 

where C1 consists of the columns of C such that the corresponding singular values are greater than the noise 
level threshold σw. The result is that the original attractor is projected onto the principal eigenvectors of the 
space. To implement this approach for noise reduction, the original time series is over-embedded, i.e. 
embedded into a dimension well over that required for attractor representation. The principal axes are 
determined with an SVD of the trajectory matrix, and a projection is done using Eq. (6) above. An enhanced one-
dimensional signal is created from the new space, typically by time-aligning and averaging the columns of the 
trajectory matrix. 

The concept of projection within the reconstructed phase space can be easily adapted to apply to local 
neighborhoods within the space. Schreiber and Grassberger [14], Cawley and Hsu [15], and Sauer [16] have all 
developed methods based on this idea, among which the primary differences are the mechanisms by which the 
dynamics of the system are approximated within the local neighborhood regions. For these approaches, the 
time series is over-embedded as with the global method, and then each point in the space is individually 
transformed using a projection based only on its local neighborhood region. 

Another approach is noise reduction based on shadowing, introduced by Hammel [17] and extended by Farmer 
and Sidorowich [18], which is based on an a priori knowledge of the system function xn+1 = F(xn). Given this 
knowledge of the system, the shadowing lemma [19] is used to identify a noise-free trajectory that is close to 
the original noisy trajectory by factoring the dynamics into stable (exponentially contracting) and unstable 
(exponentially expanding) directions, a process known as manifold decomposition. Provided that the system F is 
everywhere hyperbolic, this decomposition is always possible; however, if homoclinic tangencies or near-
tangencies are present such that the angle between the stable and unstable directions is close to zero, the 
algorithm performs poorly and must be augmented by more robust and computationally expensive methods. 



3. Linear subspace models 
Subspace decomposition is a well-established technique in linear signal processing, based on the underlying 
assumption that a noise-free signal segment x of length K can be represented as a superposition of M linearly 
independent basis vectors 

(7) x = Vs, 

where V is a K × M matrix whose columns are basis vectors, and s the vector of coefficients. A typical set of 
bases for V might be the damped complex sinusoid model, with columns: 

(8) V𝑚𝑚 = [1 𝜌𝜌𝑚𝑚1 e𝑗𝑗1𝜔𝜔𝑚𝑚 ⋯ 𝜌𝜌𝑚𝑚𝐾𝐾−1e𝑗𝑗(𝐾𝐾−1)𝜔𝜔𝑚𝑚]T, 

where 0 ≤ ρm ≤ 1 is a damping coefficient and 0 ≤ ωm ≤ 2π the mth basis frequency. The additive noise model of 
(3) can be analyzed through the use of the resulting autocorrelation function equation: 

(9) Ry = Rx + Rw, 

where Ry = E{yyH}, and Rx and Rw are defined similarly, each K × K matrices. The covariance matrix Ry is a Toeplitz 
matrix of autocorrelation values 

(10) Ry =

⎣
⎢
⎢
⎡

𝑟𝑟(0) 𝑟𝑟(1) ⋯ 𝑟𝑟(𝐾𝐾 − 1)
𝑟𝑟(−1) 𝑟𝑟(0) 𝑟𝑟(𝐾𝐾 − 2)
⋮ ⋱

𝑟𝑟(−𝐾𝐾 + 1) 𝑟𝑟(−𝐾𝐾 + 2) 𝑟𝑟(0) ⎦
⎥
⎥
⎤
, 

which can be estimated using a temporal average from the windowed data matrix 

(11) A𝐻𝐻 = �

𝑦𝑦𝐾𝐾 𝑦𝑦𝐾𝐾+1 ⋯ 𝑦𝑦𝑁𝑁
𝑦𝑦𝐾𝐾−1 𝑦𝑦𝐾𝐾 𝑦𝑦𝑁𝑁−1
⋮ ⋱
𝑦𝑦1 𝑦𝑦2 𝑦𝑦𝑁𝑁−𝐾𝐾+1

�

𝐾𝐾×(𝑁𝑁−𝐾𝐾+1)

, 

through the relationship 

(12) Ry ≈
1

𝑁𝑁−𝐾𝐾+1
𝛷𝛷 = 1

𝑁𝑁−𝐾𝐾+1
AHA, 

where 𝛷𝛷 ≜ A𝐻𝐻A is known as the correlation matrix. Reviewing Eq. (1), we see that the data matrix A and 
trajectory matrix Y have the same structure, so that for lag τ = 1 and dimension d = K, we have A = Y and Ry = C, 
the trajectory covariance matrix. 

Without loss of generality, we assume that the noise is white, since if this is not the case it can be whitened by 
applying Rw

−1/2, known a priori or estimated from segments without signal content, to the system [20]. Given 
this, the covariance of the noise is simply Rw = 𝜎𝜎𝑤𝑤2 I𝐾𝐾, where 𝜎𝜎𝑤𝑤2  is the additive noise power. Another 
consequence of this is that the eigenvectors of Ry are also eigenvectors of Rx and Rw. For real time series data, 
these covariance matrices will always be positive definite and Toeplitz. Performing a Karhunen–Loeve Transform 
(KLT) on Ry, we see that the decomposition of the noisy covariance matrix leads to 

(13) Ry = Rx + Rw = Q𝛬𝛬𝑥𝑥Q𝐻𝐻 + 𝜎𝜎𝑤𝑤2QI𝐾𝐾Q𝐻𝐻 = Q(𝛬𝛬𝑥𝑥 + 𝜎𝜎𝑤𝑤2 I𝐾𝐾)Q𝐻𝐻 . 

Given (7) and the assumption of no zero-valued coefficients in s, the rank of Rx will be M, so there will always 
be M positive eigenvalues and (K − M) zero eigenvalues. This leads to a KLT that can be written in the block 
matrix form: 



(14) Ry = [Q1 Q2] �
(𝛬𝛬𝑥𝑥1 + 𝜎𝜎𝑤𝑤2 I𝑀𝑀) 0

0 𝜎𝜎𝑤𝑤2 I(𝐾𝐾−𝑀𝑀)
� �

Q1
𝐻𝐻

Q2
𝐻𝐻�. 

If the dimension M is known a priori it is possible to estimate Rx through the equation: 

(15) Rx = Q1(𝛬𝛬y1 − 𝜎𝜎𝑤𝑤2 I𝑀𝑀)Q1
𝐻𝐻 , 

which, assuming that the eigenvalues are ordered in a non-increasing manner through a robust decomposition 
method such as a singular value decomposition (SVD), also ensures that the computed eigenvalues are positive 
and the covariance matrix remains positive definite. Due to the underlying assumptions of this model, the space 
spanned by Q1 (and also therefore the space spanned by the signal basis matrix V) is called the signal subspace, 
and the complementary space spanned by Q2 is called the noise subspace, although the noise itself spans the 
entire space. 

This analysis can be used in several ways, including for spectral estimation methods such as MUSIC and 
ESPRIT [21] as well as for signal enhancement [22]. To perform enhancement, we can for example directly 
project the noisy signal onto the signal subspace through x̂ = Q1Q1

𝐻𝐻y, which is equivalent to a least-squares 
error fit. For an arbitrary linear projector: 

(16) x̂ = Hy, 

the error signal is given by: 

(17) 𝑒𝑒 = x̂ − x = H(x + w) − x = (H − I)x + Hw ≜ 𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑤𝑤 , 

where ex is error due to signal distortion and ew the error due to residual noise. Ephraim and van 
Trees [22] derived several linear estimators to allow constraints on the type of error. In each case the form of 
the estimator is that of H = Q1GQ1

𝐻𝐻, where G is a diagonal matrix of modified eigenvalues called the weighting 
matrix. We will focus on the time domain constrained (TDC) estimator given by: 

(18) HTDC: min
𝐻𝐻
𝑒𝑒𝑥𝑥2s.t. 1

𝐾𝐾
𝑒𝑒𝑤𝑤2 < 𝛼𝛼𝜎𝜎𝑥𝑥2, HTDC = Q1

𝛬𝛬𝑥𝑥1
𝛬𝛬𝑥𝑥1+𝜇𝜇𝜎𝜎𝑤𝑤

2 I𝑀𝑀
Q1
𝐻𝐻 = Q1

𝛬𝛬𝑦𝑦1−𝜎𝜎𝑤𝑤
2 I𝑀𝑀

𝛬𝛬y1+(𝜇𝜇−1)𝜎𝜎𝑤𝑤2 I𝑀𝑀
Q1
𝐻𝐻 , 

where 0 ≤ α ≤ 1 is a parameter limiting the residual noise and μ is the resulting transform parameter, which can 
be determined analytically as a Lagrange multiplier or set arbitrarily. 

The well-known linear minimum mean-squared-error (LMMSE) and least-squares (LS) estimators are subcases 
of HTDC. The LMMSE estimator [23] is given by μ = 1: 

(19) HLMMSE = HTDC|𝜇𝜇=1 = Q1
𝛬𝛬𝑦𝑦1−𝜎𝜎𝑤𝑤

2 I𝑀𝑀
𝛬𝛬𝑦𝑦1

Q1
𝐻𝐻 , 

and the simpler least-squares (LS) estimator [24] is given by μ = 0: 

(20) HLS = HTDC|𝜇𝜇=0 = Q1Q1
𝐻𝐻. 

In general, HLMMSE is preferred over HLS because it more accurately weights the contributions of each eigenvector 
to the signal subspace. 

Although the various linear projectors above are derived for application to linear signals and covariance 
matrices, we will see that they apply equally to projection on arbitrary phase spaces. 



4. Generalization to arbitrary lag RPS projection 
4.1. Covariance analysis of global and local phase spaces 
We have already seen that the trajectory matrix Y and data matrix A are equivalent except for the difference 
due to lag value. For arbitrary lag τ, the trajectory covariance matrix RY

𝜏𝜏 is the covariance of the time delay signal 
vector yn: 

(21) RY
𝜏𝜏 =

⎣
⎢
⎢
⎡

𝑟𝑟(0) 𝑟𝑟(𝜏𝜏) ⋯ 𝑟𝑟((𝑑𝑑 − 1)𝜏𝜏)
𝑟𝑟(−𝜏𝜏) 𝑟𝑟(0) 𝑟𝑟((𝑑𝑑 − 2)𝜏𝜏)
⋮ ⋱

𝑟𝑟(−(𝑑𝑑 − 1)𝜏𝜏) 𝑟𝑟(−(𝑑𝑑 − 2)𝜏𝜏) 𝑟𝑟(0) ⎦
⎥
⎥
⎤
≈ 1

𝑁𝑁−(𝑑𝑑−1)𝜏𝜏
YTY. 

For the case of additive noise uncorrelated with the signal, we have RY
𝜏𝜏 = RX

𝜏𝜏 + RW
𝜏𝜏 , just as in Eq. (9), and if the 

noise is white the matrix RW
𝜏𝜏 = 𝜎𝜎𝑤𝑤2 I𝑑𝑑 and the decomposition equations (13)–(15) hold as well. In general, the 

impact of dynamical noise is not purely additive with respect to the covariance matrix, but rather depends on 
the system F and its Jacobian within individual neighborhoods of the attractor. This impact is highly correlated 
and will therefore alter the eigen-decompositions of RY

𝜏𝜏. 

Within a local neighborhood of the embedding space, the original covariance RX
𝜏𝜏 and noisy covariance RY

𝜏𝜏 are 
different from those of the global space, representing the covariance of a subset of the trajectory row vectors 
rather than that of a continuous time series. However, the additivity property of Eq. (9) still holds, so that given 
the same assumptions as for the global case the decomposition equations (13)–(15) are valid and can be used to 
derive projection operators in the same way, with the constraints applying to neighborhoods around individual 
points rather than the entire signal. 

Overall, these covariance matrix properties hold for the general lag case both globally and within local 
neighborhoods. Thus selecting a noise reduction projection can be thought of as a tradeoff between signal 
distortion and residual error. 

4.2. Projection operators 
The optimal projections H with respect to the time delay RPS are the same as those for the subspace method, 
given in Eqs. (18), (19), (20). This results in X̂ = YH𝜏𝜏, where the subscript is used to indicate the lag of the 
trajectory matrix decomposition used to compute the projection matrix. Using the same minimization 
constraints as Ephraim and van Trees [22], the generalizations of Eqs. (18), (19), (20) for the case of arbitrary lag 
covariance matrices are given by: 

(22) HTDC,𝜏𝜏 = Q1
𝛬𝛬y1−𝜎𝜎𝑤𝑤

2 I𝑀𝑀
𝛬𝛬y1+(𝜇𝜇−1)𝜎𝜎𝑤𝑤2 I𝑀𝑀

Q1
𝐻𝐻 , 

(23) HLMMSE,𝜏𝜏 = Q1
𝛬𝛬𝑦𝑦1−𝜎𝜎𝑤𝑤

2 I𝑀𝑀
𝛬𝛬y1

Q1
𝐻𝐻 , 

(24) HLS,𝜏𝜏 = Q1Q1
𝐻𝐻 . 

We see by examination then that as expected the Broomhead–King singular spectrum projection given in 
Eq. (6) is equivalent in the lag one case to global HLS projection. 

The above equations are valid for reconstructed phase spaces from any system. In the case of linear systems, if 
the rank of Ry is known the identification of a model order M to partition the eigenvector and eigenvalue 
matrices is substantially simplified. There are several methods for determination of the model order if this rank 
is unknown, including approaches based on the minimum description length (MDL) principal [25], information 
theoretic metrics [26], or Bayesian estimation [27]. Similar methods, such as the false nearest neighbor 



approach [7], exist for estimating the dimension of nonlinear systems, although these tend to be more heuristic 
than linear methods. 

If the signal is over-embedded, such that the dimension of the RPS is significantly larger than the underlying 
dimension of the space, the eigenvalues will tend to asymptote to σw2, which allows for direct estimation of the 
noise power. The noise power can also often be estimated directly from regions containing noise but no signal. 

5. Time-alignment and averaging to create univariate time-series 
Once linearly transformed, the resulting trajectory matrix X̂ no longer corresponds to a time-delay embedding 
on a single time series, and there is no unique mapping back to a one-dimensional signal. Each column of the 
transformed matrix represents a possible enhanced signal output. There are several methods for creating an 
enhanced time-series from the projected RPS, including selecting a single column from the new trajectory matrix 
or doing a time-aligned averaging of the columns. 

In the work presented here, we use a time-aligned weighted average, with higher weight given to the values in 
the center columns of the matrix and lower weight given to the values in the left-most and right-most columns. 
This corresponds to emphasizing the time-centered value of each projected point. Signal points near the 
beginning or end of the trajectory matrix have fewer representatives and are weighted accordingly. To illustrate 
this process, an example trajectory matrix X̂, aligned trajectory matrix X̂aligned, and weighting matrix P are shown 
below for the d = 4, τ = 2 case with 100 points in the time-series. 

X̂T = �

1 2 3 4 5 6 ⋯ 90 91 92 93 94
3 4 5 6 7 8 ⋯ 92 93 94 95 96
5 6 7 8 9 10 ⋯ 94 95 96 97 98
7 8 9 10 11 12 ⋯ 96 97 98 99 100

� , X̂aligned
T

= �
1 2 3 4 5 6 7 ⋯ 94

3 4 5 6 7 ⋯ 94 95 96
5 6 7 ⋯ 94 95 96 97 98

7 ⋯ 94 95 96 97 98 99 100

� , PT

= �
1 1 . 5 . 5 . 25 . 25 . 14 ⋯ . 14

. 5 . 5 . 5 . 5 . 36 ⋯ . 36 . 25 . 25
. 25 . 25 . 36 ⋯ . 36 . 5 . 5 . 5 . 5

. 14 ⋯ . 14 . 25 . 25 . 5 . 5 1 1

�. 

The resulting output time-series is given by: 

(25) x̂ = � p𝑖𝑖.⋅ x̂𝑖𝑖
𝑑𝑑
𝑖𝑖=1 , 

where x̂𝑖𝑖 is the ith column from X̂aligned, pi is the corresponding weight vector from P, and the (.⋅) operator 
represents pointwise multiplication. The rows of the weighting matrix each sum to one. 

There are several benefits to this approach, including reduced overall residual error resulting from averaging the 
error across multiple instances as well as the benefit of having an enhanced time series that exactly matches the 
original in total length. 

As the time lag used in constructing the RPS increases, the benefits of weighted averaging decrease. This is 
caused by an increase in the time range between the centers of the rows being averaged, which causes fast 
moving dynamics to be averaged along with the residual noise and creates a source of additional error not 
originally present. For example, with dimension d = 5 and lag τ = 1, the trajectory matrix rows which include the 
time point 𝑥̂𝑥100 range from x100 = [𝑥̂𝑥96 𝑥̂𝑥97 𝑥̂𝑥98 𝑥̂𝑥99 𝑥̂𝑥100] to x̂104 = [𝑥̂𝑥100 𝑥̂𝑥101 𝑥̂𝑥102 𝑥̂𝑥103 𝑥̂𝑥104], 
with time-alignment windows extending over a five time point range. For the same dimension with lag τ = 20, 



the rows which include the time point 𝑥̂𝑥100 range from x̂100 = [𝑥̂𝑥20 𝑥̂𝑥40 𝑥̂𝑥60 𝑥̂𝑥80 𝑥̂𝑥100] to x̂180 =
[𝑥̂𝑥100 𝑥̂𝑥120 𝑥̂𝑥140 𝑥̂𝑥160 𝑥̂𝑥180], with time-alignment windows extending over an 81 time point range. In 
general, the net alignment window of all matrix rows including a given time index has a range of 1 + (d − 1)τ. 
With the exception of artificially constructed systems designed to have good representation at specific lag 
values, a lag of τ = 1 tends to give the best enhancement results, and this holds up empirically for both linear and 
nonlinear systems across weighting configurations. If the goal is phase space enhancement as opposed to time-
series enhancement, weighted averaging is not needed and any lag can be used. 

6. Nonstationarity issues 
For stationary signals, signal enhancement is accomplished through direct application of the desired linear 
transformation, followed by weighted averaging of the resulting trajectory matrix as just outlined. Global phase 
space projections require only a single transform to the trajectory matrix, whereas local projections require 
identification of neighborhood regions and computation of transformation matrices for each point individually. 

For signals with time-varying generating mechanisms, the situation is much more complex. Since the phase 
space attractor is changing structure over time, an embedding of the entire time series requires a much higher 
dimension, or else local neighborhood regions may include points from multiple temporal contexts, representing 
very different attractor patterns. It is often better to reduce attractor variation due to nonstationarity by 
defining the phase space, within the context of some predefined temporal or window region. To do this, the 
original time-series can be divided up into windows, each of which can be individually projected. 

Since disjoint windows result in edge effects, the most common approach is to use overlapping analysis windows 
which can be recombined through an overlap-add method. In this process, each window is individually 
transformed using its own covariance estimate, projected to the desired dimension, and then re-combined with 
adjacent windows. Triangular windows and Hanning windows are both commonly used for this purpose, since 
when overlapped by exactly 50% these particular window types maintain a net additive weight of unity 
throughout. 

A second stationarity issue that affects local projections is the mechanism for maintaining neighborhood region 
information. This process is computationally intense, but can be substantially improved by using efficient data 
structures and search algorithms [28]. For nonstationary signals, to regenerate the neighborhood database on a 
point-by-point basis is infeasible, and so again some temporal extent for building that database must be defined. 

In the work presented here, the projection of nonstationary signals such as speech waveforms is done using 50% 
overlap Hanning windows. For global projection, the entire window is projected and an enhanced signal is 
reconstructed with weighted time-alignment, then the enhanced windows are recombined using the overlap-
add technique. For local projection, we have created an approach that we call the “double-windowing method”, 
where an outer window is used to build a neighborhood region database, and then the signal within a centered 
inner window is projected point-by-point using its neighbors with respect to this database. This allows each 
point to be individually transformed and to have temporally appropriate neighbors, but without the large time 
complexity associated with searching for neighbors at each projection. The window is stepped to give a 50% 
overlap of the inner windows, which are recombined using the overlap-add technique. Block diagrams of the 
overall enhancement process for global and local projection methods are given in Fig. 1. 



 
Fig. 1. Block diagrams of the global and local projection methods. 
 

7. Experimental results 
To illustrate the impact of altering the weighting matrix on projection methods, we have compared the 
performance of the HTDC across values of μ ranging from 0.0 (the HLS projection, a.k.a. Broomhead–King SSA 
projection) to 1.0 (the HLMMSE projection). Experiments include global and local projection methods applied to 
data generated from the Henon map, given by: 

𝑥𝑥𝑛𝑛+1 = 1 − 𝑎𝑎𝑥𝑥𝑛𝑛2 + 𝑏𝑏𝑥𝑥𝑛𝑛−1, 

as well as to speech waveform data taken from the TIMIT data set [29]. 

To evaluate the results and illustrate the impact of moving from the LS to the LMMSE projections, we extend 
Eq. (17) for the purpose of calculating signal distortion and noise residual on RPS transformations. Using Eq. (25), 
the time-aligned weighted error signal can be decomposed as: 

(26) e = x̂ − x = � p𝑖𝑖 .⋅ (H𝑖𝑖 − I)x𝑖𝑖 + � p𝑖𝑖.⋅ H𝑖𝑖w𝑖𝑖 ≜ e𝑥𝑥 + e𝑤𝑤, 

where Hi is the ith row of the transform matrix and x and w the original signal and added noise signal, 
respectively. The essence of (26) is that total signal distortion and total noise residual can be determined using 
the same weighted time-aligned sum as the signal, with modified projection operators (H − I)x and Hw, 
respectively. We can then use mean-square signal distortion ∥ex∥, mean-square noise residual ∥ew∥, and mean-
square total error ∥e∥ as metrics to evaluate the noise reduction process for a particular set of implementation 
parameters. To eliminate scaling effects, the results given here are normalized by dividing these quantities by 



the energy of the clean signal ∥x∥. In addition, along with normalized total error we include the common metric 
of signal-to-noise ratio (SNR): 

(27) SNR = 10log10 �
∑𝑥𝑥𝑛𝑛2

∑(𝑥𝑥𝑛𝑛−𝑥̂𝑥𝑛𝑛)2
� = 10log10 �

∥x∥
∥e∥
�. 

The original SNR for all examples is 0 dB, so that the final SNR also indicates net improvement. 

Parameters used for the Henon map are a = 1.4, b = 0.3 (with corresponding Lyapunov exponents of λ ≈ 0.42, 
−1.62). For the Henon map, there is no windowing, i.e. a single window is used for the entire 3000-point signal 
(an additional 500 points of the signal are discarded to ensure signal convergence to the attractor). The initial 
embedding dimension is 5 for global projection and 20 for local projection, with a final projection dimension of 3 
for both. Ten signals are generated with different initial conditions, and the results are averaged across the 
examples. 

For the speech data, the initial embedding dimension is 20, and the projection dimension is 5. Speech windows 
are 256 points, with 128 points overlap. Ten different examples are used, and the results averaged across 
examples as with the Henon map. For both the Henon map and the speech data, the neighborhood region of a 
point is defined as the set of the nearest 25 points in the trajectory matrix. 

Results are shown in Table 1, Table 2, using the algorithms outlined in Fig. 1 and the HTDC projection from 
Eq. (22), with additive white noise at 0 dB SNR. The evaluation metrics include normalized mean square signal 
distortion ∥ex∥/∥x∥, normalized mean square noise residual ∥ e𝑤𝑤 ∥/∥ x ∥, normalized mean square total error 
∥e∥/∥x∥, and SNR, as outlined above. 



Table 1. Projection results for Henon map with 0 dB SNR additive white Gaussian noise 

μ Global 
projection d = 5 → 3 

   Local 
projection d = 20 → 3 

   
 

Normalized signal 
distortion ∥ex∥/∥x∥ 

Normalized noise 
residual ∥ew∥/∥x∥ 

Normalized 
total error 

 Normalized signal 
distortion ∥ex∥/∥x∥ 

Normalized noise 
residual ∥ew∥/∥x∥ 

Normalized 
total error 

 
   

∥e∥/∥x∥ SNR 
(dB) 

  
∥e∥/∥x∥ SNR 

(dB) 
0.0 .188 .409 .598 1.24 .395 .131 .434 3.63 
0.1 .262 .238 .498 3.03 .378 .127 .414 3.84 
0.2 .343 .161 .505 2.98 .393 .128 .427 3.70 
0.3 .382 .131 .518 2.86 .395 .126 .430 3.66 
0.4 .436 .101 .533 2.74 .387 .134 .423 3.70 
0.5 .486 .077 .561 2.51 .385 .130 .421 3.76 
0.6 .503 .070 .574 2.42 .398 .131 .432 3.65 
0.7 .523 .063 .586 2.32 .394 .139 .428 2.69 
0.8 .553 .053 .603 2.20 .390 .130 .423 3.74 
0.9 .586 .045 .632 2.00 .392 .126 .434 3.73 
1.0 .585 .044 .628 2.02 .398 .129 .429 3.68 

 

Table 2. Projection results for speech signals with 0 dB SNR additive white Gaussian noise 

μ Global 
projection d = 20 → 3 

   Local 
projection d = 20 → 3 

   
 

Normalized signal 
distortion ∥ex∥/∥x∥ 

Normalized noise 
residual ∥ew∥/∥x∥ 

Normalized 
total error 

 Normalized signal 
distortion ∥ex∥/∥x∥ 

Normalized noise 
residual ∥ew∥/∥x∥ 

Normalized 
total error 

 
   

∥e∥/∥x∥ SNR 
(dB) 

  
∥e∥/∥x∥ SNR 

(dB) 
0.0 .037 .239 .255 6.37 .150 .238 .373 4.40 
0.1 .039 .191 .214 6.95 .149 .232 .367 4.46 
0.2 .041 .163 .190 7.34 .149 .232 .366 4.48 
0.3 .045 .142 .176 7.62 .150 .230 .364 4.49 
0.4 .046 .124 .161 7.92 .150 .227 .361 4.52 
0.5 .050 .111 .153 8.10 .153 .224 .361 4.54 
0.6 .052 .103 .148 8.23 .152 .223 .358 4.54 
0.7 .055 .095 .143 8.34 .152 .220 .355 4.57 



0.8 .056 .090 .140 8.45 .154 .221 .357 4.55 
0.9 .060 .082 .136 8.58 .155 .216 .353 4.58 
1.0 .063 .078 .135 8.62 .156 .218 .356 4.54 

 



8. Discussion 
In all cases, the change in balance between signal distortion and noise residual components of the overall error 
is evident as μ moves from a LS projection at 0.0 to an LMMSE projection at 1.0. As would be expected this 
change is much more substantial for the global projection method than for local projection, since the smaller 
neighborhood regions are reasonably well approximated by a linear model. The overall error is given by a 
combination of the signal distortion and noise residual, and the best value for μ is a function of the minima, 
maxima, and rate of change for each of these components as μ is varied. With the speech data, the noise 
residual component is dominant, and overall error decreases as μ increases. With the Henon map, the two 
components have different rates of change with respect to μ, and the overall error peaks at about μ = 0.1, at 
which point the noise residual has already dropped significantly but signal distortion has not yet increased as 
much. In general, the adjustment of this parameter to balance distortion and residual may allow for an overall 
improvement with respect to total error for noisy systems. 

There are a number of interesting contrasts between the Henon system task and the speech enhancement task. 
The most clearly evident of these is that for the Henon task, where the signal in question is generated by a 
chaotic dynamical system, the local projection approach to enhancement gives better results, whereas for the 
speech task, where the signals are generated by a mechanism that is relatively well-approximated by linear 
systems, the global projection approach offers substantially better noise reduction. Another contrast is that the 
overall degree of change in distortion/residual balance as μ changes is measurably greater for the speech task. 

9. Conclusions 
We have presented a new approach for generalizing the concept of phase space projection, which can be 
viewed on a global level as an extension of Broomhead–King phase space reconstruction. The approach, based 
on a subspace decomposition approach taken from the statistical signal processing field, has the advantages that 
it incorporates knowledge of the underlying noise statistics into the projection mechanism and that it grants 
explicit control over the balance between the signal distortion and noise residual components of the remaining 
error. Example results on both known dynamical systems and collected signal data corrupted with additive white 
noise illustrate and support the use of this generalized approach. 
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