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Myosin heavy chain isoforms and dynamic 
contractile properties: skeletal versus smooth 
muscle 
 

Thomas J. Eddinger 
Department of Biology, Marquette University, Milwaukee, WI  
 

Abstract 
Myosin, one of the primary contractile muscle proteins, displays molecular, enzymatic, structural, functional and 

regulatory variability. This variability has been shown to account for a significant amount of the functional 

uniqueness of skeletal and smooth muscle. However, the universal generation of force and/or shortening by 

these two muscle types belies the ever-increasing number of known distinct differences that bring this about. 

Thus, the notion that the functional roles of skeletal and smooth muscle, their development and regulation, all 

appear to be uniquely applicable for their physiological purpose no longer appears heretical. This manuscript 

presents a cursory overview of the numerous ways in which these two types of muscle use a host of myosin 

molecules to bring about a common result, force generation and/or shortening. 

https://doi.org/10.1016/S0305-0491(98)00003-0
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1. Myosin classes 
The myosin superfamily has recently been reported to be made up of at least 12 classes of myosin 9, 54, with 

something approaching 100 unique myosins. The commonalty generally required for a protein to be a ‘myosin’ 

includes having a similar protein structure to myosin, primarily of the head, and actin-activated Mg2+ ATPase 

activity. The ‘gold standard’ for comparison is the chicken skeletal myosin, S-1, due to its known 3-D 

structure [45]. Because the S1 head appears to be sufficient to perform translocation of actin and hydrolysis of 

ATP, this region is used to classify myosins. 

The 12 potential classes of myosin currently categorized [54]show major differences while maintaining the ‘core’ 

structural organization of the molecule. Myosin II, or conventional myosin, was the first myosin known and is 

the most studied due to its role in muscle contraction (Fig. 1). This class is composed of two-headed proteins 

with long α-helical coiled tails that form filaments. The major regions of difference for the myosin IIs include the 

carboxyl terminal, the LMM-S2 hinge region, the α-helix in the neck region of the S1 head and the actin and ATP 

loops in the S1 head. Myosin I, or unconventional myosin, is another large class of myosin which is single-headed 

and does not form filaments. It was first identified in Acanthamoeba [44]. These two classes of myosin show the 

greatest phylogenic distribution, with both being present in organisms ranging from yeast to vertebrates [54]. 

The remaining classes of myosin have only more recently been identified with differences which vary from these 

two classes from subtle to extreme. These can include the size, shape and number of S1 heads, the number and 

type of proteins which associate with the head, phosphorylation sites on the head or ‘tail’ and length and 

structure of the tail. 

 
Fig. 1. Generic myosin II. The myosin is composed of two MHC and four MLC (two essential LC and two 
regulatory LC). The MHC can be proteolytically cleaved to generate α-helical light meromyosin (LMM), an S2 α-
helical section and the S1 globular head region. The LCs associate with the ‘neck’ portion of the S1 head, an α-
helical domain that connects the globular S1 amino terminal to the S2 segment. 
 

This review will focus on the myosin heavy chain isoforms (myosin II) present in skeletal and smooth muscles. In 

addition, it will compare the organization and function of these two muscle types and how they may be related 

to these myosin isoforms. Some of these topics will only be addressed in a cursory fashion as they are the 

primary focus of the following articles. 



2. Protein content and myosin isoforms 
Approximately 20% of the wet weight of skeletal muscle is protein and, of this, just over half is myofibrillar 

protein (≈120 mg g−1 muscle). Myosin makes up ≈45% of the myofibrillar protein (≈55 mg g−1 muscle), while actin 

makes up approximately another 20% (≈25 mg g−1 muscle). In contrast, smooth muscle myosin and actin are 

present at ≈15 and 50 mg g−1 muscle, respectively [40]. Thus, smooth muscle contains ≈1/3 of the myosin and 

twice the actin g−1 tissue of skeletal muscle. This causes an apparent problem when one recalls that reported 

tension generation for both smooth and skeletal muscle is ≈2–3×105 N m−2. How does a muscle with roughly 1/3 

the myosin content of skeletal muscle generate the same force? Experiments looking at the duty cycle, or length 

of time myosin is bound to actin, may provide an answer to this question. 

Protein variants with or without unique enzyme activities are referred to here as isoforms to prevent confusion 

of terminology. In skeletal muscle, there are at least nine myosin heavy chain (MHC) and eight myosin light chain 

(MLC) isoforms for which the mRNA and protein sequence is known (Fig. 2) and more which have been 

identified but not sequenced [51]. Extensive work has been done looking at their developmental expression, 

localization and potential function. In smooth muscle, much less is known about the myosin isoforms, but there 

appears to be no shortage of these isoforms either. Fig. 3 shows the MHC and MLC isoforms reported in smooth 

muscle cells. 

 
Fig. 2. List of skeletal MHC and MLC isoforms for which the mRNA and protein sequences are known (modified 
from [51]). 
 



 
Fig. 3. List of smooth muscle MHC and MLC isoforms for which the mRNA and protein sequences are known. 
There is one gene for all the SM MHC isoforms and one gene for both of the MLC17 isoforms. The NM MHC 
isoforms and the LC20 isoforms are each from different genes. SM1 and SM2 refer to the carboxyl terminal SM 
isoforms, while SM1i and SM2i refer to the presence of the amino terminal insert SM isoforms. 
 

In general, there is a great deal more known about the skeletal muscle myosin isoforms and their functional 

significance than there is for smooth muscle. It does not make sense teleologically to have all these different 

isoforms if they do not perform unique functions, but as of the present there is a dearth of evidence for 

functional correlations for the myosin isoforms in smooth muscle. With the application of new experimental 

techniques, possible functional significance may be resolved in the near future. 

3. Muscle organizational differences 
Skeletal muscle has a very well defined anatomical organization. A muscle is composed of single muscle cells, or 

fibers which are surrounded by a connective tissue sheath, the endomysium. These individual cells are grouped 

together by a second connective tissue layer, the perimysium, to form fascicles or bundles of fibers. Finally, all 

the fascicles are grouped together to form the muscle and surrounded by a dense connective tissue layer, the 

epimysium. These fibers can run from one end of the muscle to the other or may extend only a portion of the 

length of the muscle. In most skeletal muscles, the fibers run from the tendinous insertion to the tendinous 

origin of the muscle. These tendons can extend over a significant portion of the muscle, such that it is not 

common for individual fiber lengths to be as long as the total muscle length. In smooth muscle, the muscle cells 

are not as clearly segmented into smaller groups in this fashion. Most smooth muscles form hollow structures, 

with the inner layer generally being of epithelial origin. The smooth muscle cells may all have a similar 

orientation (some blood vessels), or have multiple orientations in layers (i.e. intestine, bladder). The outermost 

layer is connective tissue of varying complexity and organization, depending on the muscle. 

At the cellular level, striated muscle fibers are much larger than SMCs (mm vs. μm in length; 10–100 μm vs. 1–

10 μm in diameter). Skeletal muscle cells are multinucleate with the nuclei located around the cell’s periphery 

just under the sarcolemma. SMCs have a single centrally located nucleus that is often spindle-shaped. It is not 

uncommon to find smooth muscle cells which have multiple ends or are extensively branched ([21], personal 

observation). Skeletal muscle fibers have a highly repetitive filament organization which appears as a striation 

pattern in longitudinal section while SMCs do not. The exact organization of filaments in SMCs is not known. 

Skeletal muscles also have an extensive T-tubule and sarcoplasmic reticular (SR) system, while there is no T-

tubule system and limited SR in smooth muscle. In skeletal muscle, there is innervation of every fiber, which is 

not the case for many smooth muscle tissues. 



Within both skeletal and smooth muscle cells, thick (primarily myosin) and thin (primarily actin) filaments are 

believed to interdigitate to allow tension generation and/or shortening. The gross organization of the thick 

filaments is believed to be very different between these two muscle types. In skeletal muscle, the thick filaments 

are believed to be ‘bipolar’ (Fig. 4A) with the myosin heads of each half sarcomere pointing out towards their Z 

lines. There is a central bare zone where there are no myosin heads. In smooth muscle, the thick filament is 

believed to be ‘side polar’ (Fig. 4B) with all the myosins on one side of the filament facing in one direction and all 

the myosins on the opposite side, facing in the opposite direction 12, 71. There is no central bare zone in the 

side polar filament. This unique filament organization, along with the lack of sarcomeres in SMCs, may in part 

account for the cells ability to shorten to a much greater extent than skeletal fibers. In addition, in isolated SMCs 

shortening has been reported to occur in a cork screw-like fashion, which may be due to contractile filament 

and/or cytoskeletal organization and may also explain some of the differences between these muscle 

systems [68]. 

 
Fig. 4. Models of myosin arrangement in: (A) Skeletal muscle—the myosin molecules form a ‘bipolar filament’ 
with S1 heads facing away from the center of the filament to give the filament symmetry around a transverse 
axis through the middle of the filament. (B) Smooth muscle—the myosin molecules form a ‘side-polar filament’ 
with S1 heads facing in the same direction on each side of the molecule. 

4. Activation 
The primary mechanism of activation for skeletal muscle is via innervation. In SMCs, neurotransmitters also play 

a role, but hormones, ions, metabolites and other receptor agonists may play a more significant role 31, 59, 67. 

Activation in skeletal muscle causes release of Ca2+ from internal SR stores. In smooth muscle, while this 

mechanism also exists, the SMCs are critically dependent on external Ca2+ stores. SMCs can neither generate 

repetitive contractions nor maintain tonic contractions without external Ca2+. In skeletal muscle the primary 

regulation of the contraction results from this intracellular Ca2+ binding to troponin C (TNC). Because TNC is a 

thin filament bound protein, this is often referred to as thin filament regulation. In smooth muscle, there is no 

TNC. The primary method for contractile regulation is for the intracellular Ca2+ to phosphorylate myosin light 

chain 20 (MLC20) by a calmodulin-kinase mechanism [25]. This is often referred to as thick filament regulation. 

The net effect for both muscles is tension generation and/or shortening. Thus, while both muscle types can 

produce tension and/or shortening, if one looks beyond the cursory they find innumerable differences in how 

this is accomplished. This brief summary cannot cover all the significant details and overlooks other possible 

mechanisms which suggest thick filament regulatory mechanisms in skeletal muscle (i.e. myosin 

phosphorylation) and possible thin filament regulatory mechanisms (i.e. calponin/caldesmin) in smooth 

muscle 19, 33, 57, 65, 66. The role of these and other regulatory mechanisms is not as well understood, but will 

undoubtedly add to the complexity and diversity of each of these muscle systems. 



5. Ca2+ sensitivity 
There are four major fiber types in skeletal muscle (I, IIa, IIx and IIb) in animals that express primarily these four 

MHC isoforms 13, 49. In humans, only three major MHCs have been identified in skeletal muscle (I, IIa, IIb). The 

human type IIb gene is very homologous with the rat type IIx gene and there is no isoform homologous to the 

rat IIb MHC in humans 17, 56. Thus, the nomenclature is confusing on this issue with some authors using the 

traditional IIb nomenclature in humans 4, 30and others using the IIx nomenclature [69]. These fiber types show 

a differential sensitivity to Ca2+ concentration (I>Iib>IIa) [51], which is especially apparent at submaximal Ca2+ [7]. 

The tension-pCa curves show a sigmoidal relationship with the type I fibers showing a shallower curve and the 

fast type II fibers showing a much steeper relationship. Other proteins undoubtedly play a role in this difference, 

but skeletal fibers are generally classified by their myosin content. In smooth muscle there is also a sigmoidal 

relationship between Ca2+ and tension, but the curve is shifted to the left relative to skeletal muscle, i.e. SMCs 

are more sensitive to Ca2+ than skeletal fibers [39]. In skeletal muscle, the Ca2+–tension relationship can be 

shifted to the left (increased sensitivity) by phosphorylation of the myosin light chain [62]. In smooth muscle, the 

Ca2+-tension relationship is also affected by the amount of MLC20 phosphorylation. This may be a more 

significant factor in smooth muscle where different agonists work on different Ca2+–phosphorylation 

relationships ([59]). As mentioned above, multiple activation mechanisms are involved in smooth muscle 

activation. 

6. Shortening velocity 
In 1967, Bárány [1]reported that the ATPase of myosin correlated with muscle shortening speed for the 14 

muscles examined. Since then, numerous investigators using various methods, have shown that fibers 

expressing different myosin isoforms have distinct shortening velocities. Skeletal type I fibers are slower than 

type IIa, which are slower than type IIb ([51]). Velocity for these three skeletal fiber types range from ≈0.5–5.0 

muscle lengths s−1 (ML s−1) at 15°C, with a Q10 of ≈2.0. More recent studies of MHC composition in skeletal fibers 

have used immunological and molecular techniques in addition to histochemical and electrophoretic analyses. 

Numerous reports in the literature suggest, that in addition to the four major skeletal fiber types, there is a 

continuum of fibers expressing a mixture of the four skeletal MHC molecules [52]. Single skinned skeletal fiber 

experiments suggest that the type and/or mixture of the MHC isoforms present in a fiber determine its M-

ATPase activity [5]mechanical Vmax [30]and contractile properties (Po, Vo; 23, 69). In contrast, there are also 

reports that variability in maximal shortening velocity of fast fibers can not be explained by MHC coexistence in 

fibers [2]. Complicating factors, including the role of the various MLC and other contractile and regulatory 

protein isoforms, confound these studies as there are reports that these (MLC’s) can modulate shortening 

velocity 3, 6. 

In contrast to skeletal muscle, smooth muscle has a velocity of ≈0.01–0.30 ML s−1, depending on 

phosphorylation levels, or roughly 50–100 times slower than skeletal muscle. Extrapolation to 37°C and full 

phosphorylation would give a shortening of velocity range closer to that of skeletal muscle, but still slower by 

roughly an order of magnitude. This suggests that there are other factors that are significant in the intact 

smooth muscle system [42]. 

Estimates of maximal shortening velocity may also be obtained from force–velocity curves. Under maximal 

activation, there is a single inverse concave relationship between force and velocity for a skeletal fiber (Fig. 5). 

However, this is not the case in smooth muscle. Myosin phosphorylation is a transient event in smooth muscle. 

Unlike skeletal muscle, where there is an all-or-none activation of the fiber, smooth muscle can be activated to 

variable extent depending on the method and duration of activation (see above). Thus, it is rare, if ever, that 

there is full phosphorylation of myosin in SMCs. In addition, the level of phosphorylation changes with time 

following activation. Because myosin phosphorylation is believed to be required to activate smooth muscle and 



is correlated with velocity, the maximum velocity varies with phosphorylation levels. Thus, there is a unique 

force–velocity curve and thus maximal shortening velocity for each phosphorylation level (Fig. 5B). 

Phosphorylation levels change with Ca2+ and thus, do not remain constant during activation. Thus, shortening 

velocity increases immediately following activation until it reaches a peak and then decreases as Ca2+ decreases 

with time following the start of activation [38]. 

 
Fig. 5. Graphs of the force-velocity relationship observed in skeletal and smooth muscles. (A) Skeletal muscle—
the two major types of skeletal fibers are readily separated by these measurements with full activation. Each 
fiber type gives a unique relationship. (B) Smooth muscle—in smooth muscle, the type of activation used can 
lead to different myosin phosphorylation levels which will give a whole series of F–V relationship rather than 
one unique relationship. (There would be a continuum of these curves; only four are shown for clarity.) 
 

Investigators have also used the motility assay to measure myosin function. This method allows one to use 

purified myosin or myosin fragments and control all the known conditions involved in the contraction reaction. 

Sellers et al. [53]have reported that the actin sliding speed (μm s−1, 25°C) is 0.04 for chicken brush border myosin 

I and human platelet myosin II. Turkey gizzard smooth muscle myosin moves actin approximately one order to 

magnitude fast (0.2 μm s−1). Rabbit slow and fast muscle myosin moved actin even faster (0.8 and 4.5 μm s−1). 

The quantitative differences among these myosins appear to be the same regardless of whether the 

experiments are done in permeabilized fibers or on purified proteins. The range of values reported for different 

intact smooth muscles is much greater however, than for that reported on purified proteins. 

There are some significant differences between skeletal and smooth muscle which make these types of 

comparisons suspect. As discussed by Murphy et al. [42], there are additional factors which make maximum 

velocity measurements particularly difficult. Filament lengths, cellular organization, the broad length–tension 

relationship (Section 7), load and phosphorylation levels all affect shortening velocity. Differences in any of 

these (and often none of them are controlled for) can alter shortening measurements. 

There are reports in the literature suggesting correlations between the SM myosin isoforms and function. 

Sparrow et al. 27, 60have published small positive correlations between SM1 MHC (tail isoform) content 

and Vmax in rat myometrial tissue. In conflict with these reports, Cai et al. [8]have recently reported that a 13 

amino acid peptide matching part of the unique SM1 tail decreases contraction velocity in permeabilized SM. 

They suggest that the nonhelical tail portion of the SM MHC may modulate contractility and possibly the latch 

state during shortening with increased SM1 MHC isoform content. In addition, Kelley et al. [28]reported no 

difference in an in vitro motility assay of purified SM1 and SM2 homodimeric myosin molecules. However, if 

there is an intermolecular interaction between neighboring molecules, this method would not detect it. 



There are also reports that the ratio of the myosin light chain 17 (MLC17) isoforms correlates with shortening 

velocity. An increased relative amount of MLC17a has been reported to correlate with increased ATPase 

activity [26]and Vmax [36]. Malmqvist and Arner [32]reported a 7-fold difference in Vmax values from five different 

smooth muscle tissues, which correlated with MLC17 isoforms. They did not measure MHC isoforms in this study 

to see if they had any effect. In contrast to these reports however, Kelley et al. [29]showed that changing the 

relative amount of LC17a on SM myosin does not alter in vitro motility rates. They did report, however, that the 

presence of the insert in the head region of the SM MHC does correlate with in vitro motility, actin movement 

velocities and Mg2+-ATPase activity [29]. More recently, Rovner et al. [46]expressed homogeneous populations 

of SM heavy meromyosin (HMM) with and without the 7AA head insert. They reported a 2-fold higher enzymatic 

activity and in vitro motility for the HMM with the 7AA head insert. They also found no effect of the 

MLC17 isoforms on velocity. Sata et al. [48]generated chimeric myosin made of the skeletal muscle MHC globular 

head and smooth muscle C-terminal S1 head and S2 region and light chains. Their results suggest the C-terminal 

S1 head region confers regulation by LC phosphorylation, while the motor domain regulates the rate of ATP 

hydrolysis. 

7. Length–tension relationship 
The length–tension relationship for skeletal vs. smooth muscle show some distinct differences which are shown 

schematically in Fig. 6. The first major difference entails the passive tension relationship. In skeletal muscle, 

there is very little passive tension at Lo (optimal muscle length for tension production), while in smooth muscle 

there is a significant passive tension component at Lo. This is most likely due to the extensive extracellular 

connective tissue present in smooth muscle tissues. This difference also causes a major difference between the 

skeletal and smooth muscle total tension curves. In skeletal muscle, total tension increases with increasing fiber 

length to a maximum at Lo. At longer lengths, total tension decreases and peak tension is not exceeded until 

non-physiological lengths when the passive tension becomes extremely large. In smooth muscle, the total 

tension curve shows a continuous increase with increasing fiber length. This may be important as it is more 

probable that these cells may reach these long lengths than it is for skeletal muscle fibres. A second major 

difference, that has been exaggerated in the figure for clarity, is the peak of the active curve (Fig. 6). Relative to 

skeletal muscle, the smooth muscle active tension curve has a very broad flat peak 14, 70. This may in part, also 

be due to the extensive connective tissue present in smooth muscle tissue. The normal physiological situation is, 

of course, with the cells in a tissue with the surrounding connective tissue. This broad peak allows smooth 

muscle to generate near maximal force over a greater range of lengths than skeletal muscle. This may again be 

important as smooth muscle cell length may function over a broader range of lengths in physiological conditions 

than skeletal muscle [70]. There is also evidence that there is a mechanism in smooth muscle which allows an 

adjustment of the force generating capacity of a muscle by adjusting intracellular filament organization during 

contraction [22]. 



 
Fig. 6. Schematic graphs of the length–tension relationship in smooth (A) and skeletal (B) muscle. While gross 
appearances are similar, three distinct differences are noted. (1) The active tension curve for smooth muscle has 
a distinctly broader ‘peak’ and shows active force to shorter lengths than the skeletal muscle. (2) The passive 
tension curve in smooth muscle begins at shorter lengths and generates significantly more tension than skeletal 
muscle at comparable lengths. (3) The total tension curve in smooth muscle shows a continuously increasing 
slope, while in skeletal muscle there is a decrease in total tension between ≈1.0 and 1.5 Lo (modified from [38]). 
 

There is some work that has been done on the single SMC level examining the L–T relationship. Unlike skeletal 

muscle, smooth muscle requires rather harsh enzymatic digestions to isolate the single SMCs. There are, 

however, a number of investigators that have been able to get viable isolated SMCs for mechanical 

measurements. Harris and Warshaw [24]have reported measurements on the ascending limb of the L–T curve 

from isolated SMCs. By making a series of force measurements at various cell lengths, they were able to obtain a 

linear relationship from ≈0.6–1.0 optimal cell length, which extrapolated to zero force at 0.4 optimal cell length. 

When the cell was stretched to lengths from 1.0 to 1.4 optimal cell length, no plateau or descending limb was 

observed, but rather a shifting of the L–T curve along the length axis without changing its shape. A possible 

explanation is that there is an adjustment of the filament organization and/or the cytoskeleton, depending on 

the initial length of the cell prior to contraction [22]. Limitations of the experimental design due to a single 

possible activation of each single cell precludes a definitive explanation for these results. Further work is needed 

in this area. 

8. Force production 
Values for tension generation in both smooth and skeletal muscle fall in the range of 1–3×105 N 

m−2 10, 37, 41, 42. Thus, smooth muscle generates similar tensions to skeletal muscle with 1/3 to 1/5 of the 

myosin content. In addition, smooth muscle is much more economical in doing this. Estimates of skeletal and 

smooth muscle efficiency (mechanical work/ATP consumed) show smooth muscle to be only 1/4 as efficient as 

skeletal muscle. In contrast, however, smooth muscle is estimated to be over 300 times as economical (stress 

maintenance/ATP consumed) [38]. This is significant as most smooth muscles do little ‘work’ (force×distance) as 

they maintain tonic conditions at a fixed length over extended periods of time. Skeletal muscles, on the other 

hand, do a great deal of ‘work’ relative to tonic contractions. 

While force production appears to be an easy measurement, there are many considerations that must be taken 

into account. Correct values require that maximum force (N m−2) is generated, the measurements are made in 

the correct force axis, and that extracellular space is accounted for as well as filament length and packing 41, 42. 

Investigators have also looked at force production in single cell preparations. In striated muscle, the four major 

fiber types with unique myosin heavy chain isoforms also show specific forces in the same range as reported for 



whole muscle experiments [23]. Some investigators have reported significantly different force production for 

the different fiber types, while others observe similar specific forces for the different specific fiber types 16, 63. 

In smooth muscle, there are no reports of force production being correlated with smooth muscle myosin 

isoforms. This could be because there is no difference, or it could be because of technical limitations in trying to 

do these experiments. 

There are significant concerns over these single SM cell studies. Isolation of single SM cells requires fairly harsh 

enzymatic conditions. In addition, cell isolation would disrupt any intercellular associations which would include 

mechanical linkages. This could affect intracellular filament organization and thus force generation. Currently, 

there are no data concerning this issue. Force production is also dependent on the length of the cell, the amount 

of phosphorylation and the number of contractile filaments present in the cells. Thus, while single SMC forces in 

the range of 1 μN have been reported, it is difficult to relate this to the whole tissue. All of these issues need to 

be addressed in order for a valid comparison of force between cells and/or tissues from different muscles to be 

made. Experiments performed on myosin molecules avoid some of these issues, but sidestep the fact that in 

vivo, myosin II only produces force when it is part of a filament and thus the structure, organization and number 

of filaments needs to be addressed. 

9. Fiber type distribution 
In skeletal muscle, fiber types have been identified by genetic, physiological, anatomical and biochemical 

criteria. The simplest division is into two categories, generally referred to as slow and fast fibers (or type I and 

type II). Often the fast fibers are further divided to type IIa, IIx and IIb. At a simplistic level, each of these fiber 

types has a unique myosin isoform content. Thus, a type I fiber has type I myosin and a type II fiber has type II 

myosin (IIa, IIx, IIb). Unfortunately, reality is not this simple, and many fibers have been observed expressing 

multiple myosin isoforms [51]. While it is clear that single fibers can be found containing multiple myosin 

isoforms, it may not be clear if this is a rule or an exception. Skeletal muscle is a ‘plastic’ tissue which can adapt 

to the demands placed on it. Developmentally, a given skeletal muscle needs to adapt to its physiological 

situation and skeletal muscles often show fibers with multiple myosin isoforms (in addition to other protein 

isoform shifts). In addition, various perturbations made on mature skeletal muscle (electrical stimulation, 

hormonal changes, physical training and/or inactivation) have all been reported to change myosin isoform 

composition in skeletal muscles and can result in fibers expressing multiple myosin 

isoforms 7, 11, 43, 47, 50, 64, 61, 69. Fibers with multiple isoforms can also be observed in ‘normal’ adult muscle 

however. Thus, either muscle fibers can normally express multiple myosin isoform or they are always in a state 

of transition around some equilibrium point. While fibers expressing multiple myosin isoforms may not be the 

rule, it is definitely not the exception. 

In smooth muscle, evidence for cellular heterogeneity and ‘cell types’ has only more recently begun to emerge. 

With the knowledge of the many smooth and nonmuscle myosin isoforms that can exist in smooth muscle 

tissues, evidence has also been obtained suggesting SM cellular heterogeneity [58]. Small et al. [55]described 

two domains in smooth muscle cells (a contractile domain including myosin and caldesmin and a cytoskeletal 

domain including filamin and desmin) based on immunohistochemistry. Giurato et al. [20]reported unique 

distributions for the NM myosin isoforms in cultured aorta SM cells. Immunohistochemical studies on tissue 

sections 18, 72, 73show populations of cells with unique protein composition that are regionally localized from 

lumen to adventitia of the vessel. 

We have reported intercellular variability between SM cells from vascular arteries [35]. Reverse transcription-

polymerase chain reaction (RT-PCR) was used to amplify the mRNA for the SM1 and SM2 MHC isoforms from 

enzymatically dispersed single SM cells. Carotid tissue samples from five rabbits had a mean SM2/SM1 ratio of 

0.49±0.05, while 59 isolated cells from six rabbit carotids had a mean SM2/SM1 ratio of 0.44±0.29. The range of 



values for the SM2/SM1 ratio from the multicellular tissue samples was from 0.43 to 0.56, while this same range 

from the single cells extended from 0 to 1.8 [35]. These results indicate there is a greater range of variability in 

the amount of the two SM MHCs expressed in single SM cells from a given vessel than between animals. These 

data also suggest that there is cellular heterogeneity in smooth muscles. How this compares to skeletal muscle is 

not currently known. 

The arrangement of these different cells in vascular tissue is also unknown. There are numerous possible 

distributions for these cells. These could include a heterogeneous mosaic pattern similar to that observed in 

skeletal muscle or random pockets of cells. The cells could also be arranged in some type of gradient fashion 

from lumen to adventia [15], which would be consistent with reports of immunohistochemical studies (see 

above). The arrangement of these heterogeneous cells in the vessel may be important for cellular regulation and 

function. This requires further work before hypotheses can be designed and tested. 

We have begun a series of experiments to test for possible correlations between mechanical properties and SM 

MHC isoforms. Single isolated vascular SMCs are used to measure maximum unloaded shortening velocity and 

subsequently used for molecular analysis of their SM MHC protein composition. The single SMCs are 

permeabilized with α-toxin and activated with a cocktail of μM histamine, phenylephrine and Ca2+. For the 28 

cells examined using these procedures, there was no significant correlation between the SM2/SM1 MHC isoform 

ratio and the maximum unloaded shortening velocity of these cells [34]. There is a significant correlation 

between increasing SM1 relative content and the final length to which the cell can shorten. Further studies 

examining for possible correlations with these isoforms and force production, the MHC head isoforms, 

maximum force, and shortening velocity will determine if these variables are correlated. 

Skeletal and smooth muscle appear to be as dissimilar as two muscle types can be. However, there are still 

numerous similarities. While the details have little in common, the overall picture is the same. Contractile 

proteins are regulated to generate force and/or cause cell shortening. New methods and interdisciplinary 

approaches have and will continue to advance our understanding of these two amazing muscle tissues. In the 

final analysis, it is the differences between these muscles that makes them unique and these differences need to 

be understood to interpret how each of these muscle types meets the unique functional demands placed on it 

by the organism. 
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