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Abstract 
In this short article the following inequality called the “Pitman inequality” is proved for the exchangeable 
random vector (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) without the assumption of continuity and symmetry for each component 𝑋𝑋𝑖𝑖: 
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𝑃𝑃 � � 1
𝑛𝑛∑ 𝑋𝑋𝑖𝑖|≤|𝑛𝑛

𝑖𝑖=1 ∑ 𝛼𝛼𝑖𝑖𝑋𝑋𝑖𝑖|𝑛𝑛
𝑖𝑖=1 � ≥

1
2

   , 

where all 𝛼𝛼𝑖𝑖 ≥ 0 are special weights with ∑ 𝛼𝛼𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 . 

Keywords 
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1. Introduction 

Bose et al. (1993) established the following result: if 𝑋𝑋1 and 𝑋𝑋2 are i.i.d. (independent and identically 
distributed), continuous and symmetric about 𝜃𝜃, then (𝑋𝑋1 + 𝑋𝑋2)/2 is the Pitman-closest estimator of 𝜃𝜃 within 
the class of all the estimators of the form 𝛼𝛼𝑋𝑋1 + (1 − 𝛼𝛼)𝑋𝑋2 for 0 ≤ 𝛼𝛼 ≤ 1. In other words we have 

(1) 𝑃𝑃(|(𝑋𝑋1 + 𝑋𝑋2)/2− 𝜃𝜃| ≤ |𝛼𝛼𝑋𝑋1 + (1 − 𝛼𝛼)𝑋𝑋2 − 𝜃𝜃|) ≥ 1
2

. 

Assume, without loss of generality, that 𝜃𝜃 = 0 and consider the general form 
of (1) where 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 are i.i.d. continuous and symmetric, i.e. 

(2)𝑃𝑃 ��1
𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 � ≤ |∑ 𝛼𝛼𝑖𝑖𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 |� ≥ 1
2

, 

where all 𝛼𝛼𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 . We wish to show that (2) is false for 𝑛𝑛 > 2. Let 𝑛𝑛 = 3,𝛼𝛼1 = 𝛼𝛼2 = 0,𝛼𝛼3 =

1 and let 𝑓𝑓(𝑥𝑥) be a symmetric pdf (probability density function) of the i.i.d. random variables 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3. Let 𝑔𝑔 =
𝑓𝑓 ∗ 𝑓𝑓 be the convolution of f with itself, so 𝑔𝑔 is the pdf of 𝑋𝑋1 + 𝑋𝑋2 and is symmetric as well. It is easy to show 
that 

1 − 𝑃𝑃(|
1
3
�𝑋𝑋𝑖𝑖|≤ |𝑋𝑋3|) = 2
3

𝑖𝑖=1

�  
∞

0
� 𝑓𝑓(𝑣𝑣)𝑔𝑔(𝑢𝑢)𝑑𝑑𝑣𝑣𝑑𝑑𝑢𝑢 = 2
𝑢𝑢 2⁄

−𝑢𝑢/4
� �𝐹𝐹∗ �

𝑢𝑢
2
� + 𝐹𝐹∗ �

𝑢𝑢
4
��

∞

0

𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢, 

where 𝐹𝐹∗(𝑢𝑢) = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑢𝑢
0 . It appears that (2) may be true for many symmetric pdf’s; for example, it is true for 

the standard normal pdf with 𝑛𝑛 = 3,𝛼𝛼1 = 𝛼𝛼2 = 0 and 𝛼𝛼3 = 1. However, consider 

𝑓𝑓(𝑥𝑥) =
1

4(1 + |𝑥𝑥|)3 2⁄ . 

Then, after some computation, for 𝑥𝑥 > 0, 

𝑔𝑔(𝑥𝑥) = −
1

2𝑥𝑥2
+
√1 + 𝑥𝑥(𝑥𝑥2 + 2𝑥𝑥 + 4)

2(𝑥𝑥 + 2)2𝑥𝑥2
. 

It can be shown that 

1 − 𝑃𝑃��
1
3
�𝑋𝑋𝑖𝑖

3

𝑖𝑖=1

� ≤ |𝑋𝑋3|� =
5

12
−

1
8
𝑙𝑙𝑛𝑛3 −

1
4√

2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 �
1
4√

2� −
1

16
𝑙𝑙𝑛𝑛�3√2 + 4� +

5
12√

2 = 0.5281 … >
1
2

. 

The goal here is to prove (2) for an exchangeable random vector (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) with special weights 𝛼𝛼𝑖𝑖 via a 
simple proof and without the assumption of continuity and symmetry. That is, we want to show that for 
exchangeable random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛, 

(3)𝑃𝑃 ��1
𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 � ≤ |∑ 𝛼𝛼𝑖𝑖𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 |� ≥ 1
2

, 



where all 𝛼𝛼𝑖𝑖 ≥ 0 are special weights with ∑ 𝛼𝛼𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 . 

Exchangeability plays an important role in forecasting. Suppose one is interested in forecasting a random 
variable 𝑌𝑌 based on exchangeable or i.i.d. random variables 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑛𝑛. An important problem is to find a best 
predictor of 𝑌𝑌 based on a linear function of 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑛𝑛. It is well known that 𝑍𝑍 = 𝑛𝑛−1 ∑ 𝑍𝑍𝑖𝑖𝑛𝑛

𝑖𝑖=1  is the best 
predictor in the least squares sense. In the sense of Pitman closeness, one may be interested in proving  

𝑃𝑃 ��𝑌𝑌 − 𝑍𝑍� ≤ �𝑌𝑌 −�𝛼𝛼𝑖𝑖𝑍𝑍𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�� ≥
1
2

. 

This is equivalent to (3) with 𝑋𝑋𝑖𝑖 = (𝑌𝑌 − 𝑍𝑍𝑖𝑖). Note that in this case 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 are exchangeable, but not 
necessarily independent. Therefore, it is necessary to consider exchangeable 𝑋𝑋𝑖𝑖’s in (3). 

We refer the interested reader to related works by Balakrishnan et al. (2009), Bose et al. (1993) and Ghosh and 
Sen (1989). We would like to mention here that no results have been reported in the literature 
regarding (1), (3) for exchangeable random vectors. Over the past six decades many researchers have been 
working on projects dealing with exchangeability, which is a weaker assumption than that of i.i.d. The interested 
reader is referred, among others, to the book by Chow and Teicher (1997). 

In Section 2, we state a useful technique called “the equal in distribution technique (EDT)”, which will be 
employed in this short article. Section 3 is devoted to the proof of (3) for 𝑛𝑛 = 2. The final section deals with the 
proof of (3) for 𝑛𝑛 > 2. 

2. The equal in distribution technique (EDT) 
Two vectors 𝑈𝑈 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) and 𝑉𝑉 = (𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑛𝑛) are said to be equal in distribution and denoted 

by 𝑈𝑈 =𝑑𝑑 𝑉𝑉 if they have the same distributions or characteristic functions. It is clear that 

if 𝑈𝑈 =𝑑𝑑 𝑉𝑉 then 𝑔𝑔(𝑈𝑈) =𝑑𝑑 𝑔𝑔(𝑉𝑉) for any measurable function 𝑔𝑔:ℝ𝑛𝑛 → ℝ𝑘𝑘. The EDT plays a significant role in the 
proofs of many results in probability theory. For example, using the exchangeability of (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛), 

i.e. (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) =𝑑𝑑 �𝑋𝑋𝑖𝑖1 ,𝑋𝑋𝑖𝑖2 , … ,𝑋𝑋𝑖𝑖𝑛𝑛� for any one of the 𝑛𝑛! permutations of (1,2, … ,𝑛𝑛), we conclude that 

(i) the 𝑋𝑋𝑖𝑖’s are identically distributed; 

(ii) (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚) is exchangeable for 2 ≤ 𝑚𝑚 ≤ 𝑛𝑛; 

(iii) � 𝑋𝑋𝑗𝑗 =𝑑𝑑
𝑚𝑚

𝑗𝑗=1
� 𝑋𝑋𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=1
 for 1 ≤ 𝑚𝑚 ≤ 𝑛𝑛. 

In particular, (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) is exchangeable if and only if 

(𝑋𝑋1 − 𝜃𝜃,𝑋𝑋2 − 𝜃𝜃, … ,𝑋𝑋𝑛𝑛 − 𝜃𝜃) is exchangeable. 

Remark 1 
We would like to mention here that although (3) is true for any convex combination of 𝑋𝑋𝑖𝑖’s when n=2 (see 
Section 3 below), it is not true when 𝑛𝑛 > 2, even in the case of symmetry, as the following example shows. 
Therefore, in proving (3) for 𝑛𝑛 > 2 we have to restrict the 𝛼𝛼𝑖𝑖’s to certain “special weights”. 

Example 1 
Let 𝛼𝛼1 = 1 and 𝛼𝛼𝑖𝑖 = 0, 𝑖𝑖 = 2,3, … ,𝑛𝑛 in (3). Then 

∑i=jnP(|1n∑i=1nXi|≤|Xj|)≥1, 



�𝑃𝑃
𝑛𝑛

𝑖𝑖=𝑗𝑗

��
1
𝑛𝑛
�𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� ≤ �𝑋𝑋𝑗𝑗�� ≥ 1, 

since for every 𝜔𝜔 there is a 𝑗𝑗 such that �𝑋𝑋𝑗𝑗(𝜔𝜔)� ≥ |𝑋𝑋𝑖𝑖(𝜔𝜔)| for all 𝑖𝑖 = 1,2, … ,𝑛𝑛. Since the 𝑋𝑋𝑖𝑖’s are exchangeable, 
we obtain 

(4) 𝑃𝑃 ��1
𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 � ≤ |𝑋𝑋1|� ≥ 1

𝑛𝑛
. 

To show that 1
𝑛𝑛

 in (4) is optimal, we let 𝑒𝑒𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑛𝑛, denote the standard unit vectors in ℝ𝑛𝑛. Let 𝑃𝑃 be the 

probability measure with mass 1
𝑛𝑛

 at each 𝑒𝑒𝑖𝑖. Let 𝑋𝑋𝑖𝑖:ℝ𝑛𝑛 → ℝ be the ith projection map. Then, the 𝑋𝑋𝑖𝑖’s are 
exchangeable and 

𝑃𝑃��
1
𝑛𝑛
�𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� ≤ |𝑋𝑋1|� = 𝑃𝑃(𝑒𝑒1) =
1
𝑛𝑛

. 

Note that if we take 2𝑛𝑛𝑒𝑒𝑖𝑖’s and −𝑒𝑒𝑖𝑖’s, the random variables 𝑋𝑋𝑖𝑖  will be symmetric as well. 

3. Proof of (3) for 𝑛𝑛 = 2 and 𝛼𝛼1 + 𝛼𝛼2 = 1 
Applying the two-variable function 

𝑔𝑔(𝑎𝑎1, 𝑎𝑎2) = (𝛼𝛼1𝑎𝑎1 + 𝛼𝛼2𝑎𝑎2,𝛼𝛼2𝑎𝑎1 + 𝛼𝛼1𝑎𝑎2) 

on both sides of (𝑋𝑋1,𝑋𝑋2) =𝑑𝑑 (𝑋𝑋2,𝑋𝑋1), by the 𝐸𝐸𝐸𝐸𝐸𝐸 we obtain 

(𝛼𝛼1𝑋𝑋1 + 𝛼𝛼2𝑋𝑋2,𝛼𝛼2𝑋𝑋1 + 𝛼𝛼1𝑋𝑋2) =𝑑𝑑 (𝛼𝛼1𝑋𝑋2 + 𝛼𝛼2𝑋𝑋1,𝛼𝛼2𝑋𝑋2 + 𝛼𝛼1𝑋𝑋1). 

Now, setting 𝑈𝑈1 = 𝛼𝛼1𝑋𝑋1 + 𝛼𝛼2𝑋𝑋2 and 𝑈𝑈2 = 𝛼𝛼2𝑋𝑋1 + 𝛼𝛼1𝑋𝑋2 we have (𝑈𝑈1,𝑈𝑈2) =𝑑𝑑 (𝑈𝑈2,𝑈𝑈1). Applying the 

function ℎ(𝑎𝑎1, 𝑎𝑎2) = |𝑎𝑎1| − |𝑎𝑎2| on both sides of (𝑈𝑈1,𝑈𝑈2) =𝑑𝑑 (𝑈𝑈2,𝑈𝑈1), by the 𝐸𝐸𝐸𝐸𝐸𝐸 we obtain |𝑈𝑈1| − |𝑈𝑈2| =𝑑𝑑 |𝑈𝑈2| −
|𝑈𝑈1|, i.e. |𝑈𝑈1| − |𝑈𝑈2| is symmetric. Using the fact that 𝑈𝑈1 + 𝑈𝑈2 = 𝑋𝑋1 + 𝑋𝑋2, we have 

𝑃𝑃(|(𝑋𝑋1 + 𝑋𝑋2)/2| ≤ |𝛼𝛼1𝑋𝑋1 + 𝛼𝛼2𝑋𝑋2|) = 𝑃𝑃(|𝑈𝑈1 + 𝑈𝑈2| ≤ 2|𝑈𝑈1|) ≥ 𝑃𝑃(|𝑈𝑈1| + |𝑈𝑈2| ≤ 2|𝑈𝑈1|) = 𝑃𝑃(|𝑈𝑈1| − |𝑈𝑈2| ≥ 0)

=
1
2

. 

Thus, (3) is proved for 𝑛𝑛 = 2 with 𝛼𝛼1 + 𝛼𝛼2 = 1. 

4. Proof of (3) for n>2 
We will prove (3) for 𝑛𝑛 = 3 and 𝑛𝑛 = 4 for some specific weights 𝛼𝛼𝑖𝑖. For n=3, we prove (3) when one of the 
weights is the average of the other two weights. 

Theorem A 
If (𝑋𝑋1,𝑋𝑋2,𝑋𝑋3) is exchangeable, then 

(5) 𝑃𝑃 ��1
3
∑ 𝑋𝑋𝑖𝑖3
𝑖𝑖=1 � ≤ �2

3
𝛼𝛼𝑋𝑋1 + 1

3
𝑋𝑋2 + 2

3
𝛽𝛽𝑋𝑋3�� ≥

1
2

, 

where 0 ≤ 𝛼𝛼 ≤ 1 and 𝛼𝛼 + 𝛽𝛽 = 1. 

 



Proof 
Let 

𝐸𝐸1 =
2
3
𝑋𝑋1 +

1
3
𝑋𝑋2,𝐸𝐸2 =

2
3
𝑋𝑋3 +

1
3
𝑋𝑋2, 

Then 

1
3
�𝑋𝑋𝑖𝑖

3

𝑖𝑖=1

=
1
2
�𝐸𝐸𝑗𝑗

2

𝑗𝑗=1

. 

Clearly 

𝛼𝛼𝐸𝐸1 + 𝛽𝛽𝐸𝐸2 =
2
3
𝛼𝛼𝑋𝑋1 +

1
3
𝑋𝑋2 +

2
3
𝛽𝛽𝑋𝑋3. 

The pair (𝐸𝐸1,𝐸𝐸2) is exchangeable. To show this, we observe that by exchangeability 

(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3) =𝑑𝑑 (𝑋𝑋3,𝑋𝑋2,𝑋𝑋1). 

Define the function 𝑔𝑔:ℝ3 → ℝ2 as follows: 

𝑔𝑔(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) = �
2
3
𝑢𝑢1 +

1
3
𝑢𝑢2,

2
3
𝑢𝑢3 +

1
3
𝑢𝑢2� . 

Then EDT implies that (𝐸𝐸1,𝐸𝐸2) is exchangeable. 

Now, inserting 𝐸𝐸1 and 𝐸𝐸2 in the left hand side of (5), by the case 𝑛𝑛 = 2, we have 

𝑃𝑃 ��
𝐸𝐸1 + 𝐸𝐸2

2 � ≤ |𝛼𝛼𝐸𝐸1 + 𝛽𝛽𝐸𝐸2|� ≥
1
2

. 

Remark 2 

Theorem A can easily be generalized for any odd integer 2𝑛𝑛 + 1 > 3. 

For 𝑛𝑛 = 4, we prove (3) when any pair of weights is the same as the weights of the other pairs. Due to 

exchangeability, it suffices to consider 𝛼𝛼1 = 𝛼𝛼2 = 𝛼𝛼
2

,𝛼𝛼3 = 𝛼𝛼4 = 𝛽𝛽
2

 and 𝛼𝛼 ≠ 𝛽𝛽 with 𝛼𝛼 + 𝛽𝛽 = 1. 

Theorem B 
If (𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4) is exchangeable, then 

(6) 𝑃𝑃 ��1
4
∑ 𝑋𝑋𝑖𝑖4
𝑖𝑖=1 � ≤ �𝛼𝛼

2
𝑋𝑋1 + 𝛼𝛼

2
𝑋𝑋2 + 𝛽𝛽

2
𝑋𝑋3 + 𝛽𝛽

2
𝑋𝑋4�� ≥

1
2

, 

where 0 ≤ 𝛼𝛼 ≤ 1,𝛼𝛼 ≠ 𝛽𝛽 and 𝛼𝛼 + 𝛽𝛽 = 1. 

Proof 
Let  

𝐸𝐸1 =
𝑋𝑋1 + 𝑋𝑋2

2
,𝐸𝐸2 =

𝑋𝑋3 + 𝑋𝑋4
2

, 

Then 



1
4
�𝑋𝑋𝑖𝑖

4

𝑖𝑖=1

=
1
2
�𝐸𝐸𝑗𝑗

2

𝑗𝑗=1

. 

Clearly 

𝛼𝛼𝐸𝐸1 + 𝛽𝛽𝐸𝐸2 =
𝛼𝛼
2
𝑋𝑋1 +

𝛼𝛼
2
𝑋𝑋2 +

𝛽𝛽
2
𝑋𝑋3 +

𝛽𝛽
2
𝑋𝑋4. 

The pair (𝐸𝐸1,𝐸𝐸2) is exchangeable. To show this, we observe that by exchangeability 

(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4) =𝑑𝑑 (𝑋𝑋3,𝑋𝑋4,𝑋𝑋2,𝑋𝑋1). 

Define the function 𝑔𝑔:ℝ4 → ℝ2 as follows: 

𝑔𝑔(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4) = �
𝑢𝑢1 + 𝑢𝑢2

2
,
𝑢𝑢3 + 𝑢𝑢4

2
� . 

Then EDT implies that (𝐸𝐸1,𝐸𝐸2) is exchangeable. 

Now, inserting 𝐸𝐸1 and 𝐸𝐸2 in the left hand side of (6), by the case 𝑛𝑛 = 2, we have 

𝑃𝑃 ��
𝐸𝐸1 + 𝐸𝐸2

2 � ≤ |𝛼𝛼𝐸𝐸1 + 𝛽𝛽𝐸𝐸2|� ≥
1
2

. 

Remark 3 
Theorem B can easily be generalized for any even integer 2𝑛𝑛 > 2. 

Remarks 4 
(i) Let 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 be i.i.d. positive continuous random variables, then it is easy to see that for (𝛼𝛼 = 1,𝛽𝛽 =
0) or �𝛼𝛼 = 1

3
,𝛽𝛽 = 2

3
�, (5) becomes equality and hence Theorem A is optimal with 1

2
. (ii) The same can be said 

for Theorem B with four i.i.d. random variables. (iii) Let 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 be i.i.d. with an exponential distribution 
function 𝐹𝐹 with parameter 1

2
(𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−𝑥𝑥/2,𝑥𝑥 > 0).  

Observe that 

1
3
�𝑋𝑋𝑖𝑖

3

𝑖𝑖=1

≤
1
6

(𝑋𝑋1 + 4𝑋𝑋2 + 𝑋𝑋3) 

is the same as 𝑋𝑋1 + 𝑋𝑋3 ≤ 2𝑋𝑋2 and 

𝑃𝑃(𝑋𝑋1 + 𝑋𝑋3 ≤ 2𝑋𝑋2) = 𝑃𝑃(𝐸𝐸) = �
1
8𝐸𝐸
𝑒𝑒−

1
2(𝑥𝑥1+𝑥𝑥2+𝑥𝑥3)𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2𝑑𝑑𝑥𝑥3 =

4
9

. 

This shows that Theorem A is not true if the conditions on the coefficients do not hold. (iv) If we take 
four i.i.d. random variables in (iii) we observe that 

1
4
�𝑋𝑋𝑖𝑖

4

𝑖𝑖=1

≤
1
8

(𝑋𝑋1 + 𝑋𝑋2 + 2𝑋𝑋3 + 4𝑋𝑋4) 

is the same as 𝑋𝑋1 + 𝑋𝑋2 ≤ 2𝑋𝑋4 and 𝑃𝑃(𝑋𝑋1 + 𝑋𝑋2 ≤ 2𝑋𝑋4) = 4
9
. Therefore, Theorem B is not true if the conditions on 

the coefficients do not hold. 
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