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Abstract 
The readily prepared [Re2(CO)6(μ-S2NC7H4)2] (1) reacts with Group 8 trimetallic carbonyl clusters to 
yield new mixed-metal tri- and tetranuclear clusters. With [Os3(CO)10(NCMe)2] at 80 °C the tetranuclear 
mixed-metal cluster [Os3Re(CO)13(μ3-C7H4NS2)] (2) is the only isolated product. With Ru3(CO)12 products 
are dependent upon the reaction temperature. At 80 °C, a mixture of tetranuclear mixed-metal 
[Ru3Re(CO)13(μ3-C7H4NS2)] (5) and the triruthenium complex [Ru3(CO)9(μ-H)(μ3-C7H4NS2)] (4) results, 
while at 110 °C a second tetranuclear mixed-metal cluster, [Re2Ru2(CO)12(μ4-S)(μ-C7H4NS)(μ-C7H4NS2)] 
(3), resulting from carbon–sulfur bond scission, is the major product. Reaction of 1 With Fe3(CO)12 at 
80 °C furnishes the trinuclear mixed-metal cluster [Fe2Re(CO)8(μ-CO)2(μ3-C7H4NS2)] (6). The reactivity 
of 6 has been probed with the aim of identifying any metal-based selectivity for carbonyl substitution. 
Addition of PPh3 in presence of Me3NO at 25 °C gives both the mono- and bis(phosphine)-substituted 
derivatives [Os3Re(CO)12(PPh3)(μ3-C7H4NS2)] (7) and [Os3Re(CO)11(PPh3)2(μ3-C7H4NS2)] (8). In 7 the 
PPh3 ligand occupies an axial site on wingtip osmium, while in 8 one PPh3 ligand is equatorially 
coordinated to wingtip osmium and the other is bonded to a hinge osmium. New complexes have been 
characterized by a combination of spectroscopic data and single crystal X-ray diffraction studies. 

Graphical abstract 
A series of mixed Re–M (M = Fe, Ru, Os) clusters have been synthesized from the reactions between 2-
mercaptobenzothiolato dirhenium complex [Re2(CO)6(μ-S2NC7H4)2] and [M3(CO)12−x(NCMe)x] (x = 0, 2). 
The reactivity of the mixed Os–Re cluster with PPh3 is also reported. 

 

1. Introduction 
The chemistry of mixed-metal clusters has been studied in great detail in recent years [1], [2] since 
compounds containing disparate metals in close proximity can be used as models for the surface of 
heterogeneous catalysts [3], [4], [5], [6]. The incorporation of different metal types in clusters may also 
have synergistic effects for catalytic transformation and indeed recently they have been employed in 
homogeneous catalysis [3], [7], [8], [9]. Further, mixed-metal clusters have non-equivalent bonding 
sites and offer the possibility of combining catalytic features of different metal centers [10], [11]. 



The development of suitable synthetic routes to mixed-metal clusters of desired structural and 
reactivity features remains a major challenge. Displacement reactions of metal carbonyl anions with 
metal halides are the most predictable and widely used method. Others routes include the 
combination of a metal carbonyl anion and a neutral metal carbonyl or co-pyrolysis of different 
homometallic carbonyl units. In early nineties, Deeming et al. prepared a series of rhenium–ruthenium 
clusters containing ReRu3, Re2Ru2 and ReRu3 cores in a rather simple way from the reaction of 
[Re2(CO)6(μ-pyS)2] with Ru3(CO)12 in refluxing xylene, thereby establishing that the dinuclear 
[Re2(CO)6(μ-pyS)2] is an excellent source for the incorporation of an [Re(CO)3(pyS)] unit into the 
trimetallic system [12]. More recently we have developed this approach, taking advantage of the 
lability of the metal–sulfur bond in [M2(CO)6(μ-L)2] (M = Re, Mn; L = heterocyclic thiol) [13]. Thus we 
have prepared [CpMoMn(CO)3(μ-CO)(μ-η2-pyS)(μ-η1-pyS)] [14] from the reaction of [Mn2(CO)6(μ-pyS)2] 
and [CpMo(CO)3]2 at 110 °C, obtained a series of Group 6/7 mixed-metal complexes [MMn2(CO)8(μ-
CO)2(μ3-SN2C4H5)] (M = W, Mo, Cr) from reactions of [Mn2(CO)6(μ-SN2C4H5)2] and [M(CO)3(NCMe)3] and 
synthesised Group 7/8 mixed-metal clusters [M3M′(CO)13(μ3-SN2C4H5)] (M = Os, Ru; M′ = Mn, Re) from 
[M3(CO)12−x(NCMe)x] (x = 0, 2) and [M′2(CO)6(μ-SN2C4H5)2] [15], [16] (Chart 1). Further developing this 
approach, herein we describe reactions of the dirhenium 2-mercaptobenzothiazolato complex, 
[Re2(CO)6(μ-S2NC7H4)2] (1), with [M3(CO)10L2] (M = Os, Ru, Fe; L = CO, MeCN) leading to the formation 
of tri- and tetranuclear mixed-metal clusters. We also present some preliminary reactivity studies of a 
mixed rhenium–osmium cluster with PPh3. The striking feature of this study is the formation of mixed-
metal clusters that differ in both nuclearity and structural features when using different Group 8 
carbonyls, which relates to a strong influence of the intrinsic reactivity of the metal carbonyls during 
these transformations. 

 

Chart 1. 

2. Results and discussion 
2.1. Preparation of dirhenium 2-mercaptobenzothiazolato complex [Re2(CO)6(μ-
S2NC7H4)2] (1) 
In a method analogous to that reported by Deeming et al. for the synthesis of the pyridine-2-thiolato 
complex [Re2(CO)6(μ-pyS)2] [13] we prepared [Re2(CO)6(μ-S2NC7H4)2] (1) in 66% yield from the Me3NO-
initiated reaction of Re2(CO)10 with 2-mercaptobenzothiazole at 25 °C. An ORTEP diagram of the 
molecular structure of 1 is depicted in Fig. 1, the caption containing selected bond distances and 
angles. The molecule adopts a chiral structure with C2 symmetry being similar to that of pyridine-2-
thiolato dirhenium complex [Re2(CO)6(μ-MepyS)2] [13]. Each 2-mercaptobenzothiazolato ligand bridges 



the dirhenium center through the sulfur, while the nitrogen coordinates to a single metal atom thus 
forming a four-membered chelate ring. The Re2S2 ring is non-planar with a dihedral angle of 30.25(4)° 
between Re2S planes. The three carbonyls on each rhenium are arranged in a facial fashion and 
assuming the 2-mercaptobenzothiazolato ligand serves as five-electron donor both rhenium centers 
achieves 18-electron configuration without any metal–metal bond [Re(1)···Re(1′) 3.7543(5) Å]. 
Spectroscopic data are consistent with the solid-state structure.

 

 
Fig. 1. ORTEP diagram of the molecular structure of [Re2(CO)6(μ-S2NC7H4)2] (1), showing 50% 
probability thermal ellipsoids. Selected interatomic distances (Å) and angles (°): Re(1)–C(1) 1.905(8), 
Re(1)–C(2) 1.908(7), Re(1)–C(3) 1.929(7), Re(1)–N(1) 2.160(5), Re(1)–S(1) 2.589(2), Re(1)–S(1′) 2.542(2), 
C(1)–Re(1)–C(2) 91.1(3), C(1)–Re(1)–C(3) 89.7(3), C(2)–Re(1)–N(1) 96.0(3), C(3)–Re(1)–N(1) 169.1(3), 
N(1)–Re(1)–S(1′) 87.6(2), S(1′)–Re(1)–S(1) 82.32(5), Re(1′)–S(1)–Re(1) 94.03(5). 

2.2. Synthesis of mixed-metal clusters 
In an attempt to utilize 1 towards the synthesis of a range of mixed-metal clusters it was heated with 
the group 8 carbonyls M3(CO)12 (M = Fe, Ru) and [Os3(CO)10(MeCN)2] with the expectation of forming 
tetranuclear complexes of the type [M3Re(CO)13(μ3-C7H4NS2)]. The results of these studies are 
summarized in Scheme 1. Most successful in this respect was the reaction with [Os3(CO)10(NCMe)2] 
which proceeded smoothly in refluxing benzene to afford [Os3Re(CO)13(μ3-C7H4NS2)] (2) in 61% yield. 
An ORTEP drawing of the molecular structure of 2 is depicted in Fig. 2, the caption containing selected 
bond distances and angles. The molecule contains a tetranuclear core of one rhenium and three 
osmium atoms ligated by thirteen carbonyls and a 2-mercaptobenzothiazolato ligand. The four metal 
atoms form a butterfly skeleton where the rhenium occupies a wingtip position. All carbonyls are all 



terminal. The 2-mercaptobenzothiazolato ligand caps the ReOs2 triangle and contains a non-
crystallographic mirror plane of symmetry. Among the five different metal–metal bond lengths the 
hinge osmium–osmium vector is the shortest, but all distances are within the range expected for 
osmium–osmium and osmium–rhenium single bonds [16], [17], [18]. 

 

Scheme 1. 

 

Fig. 2. ORTEP diagram of the molecular structure of [Os3Re(CO)13(μ3-C7H4NS2)] (2), showing 50% 
probability thermal ellipsoids. Selected interatomic distances (Å) and angles (°): Os(1)–Os(2) 2.8474(7), 
Os(1)–Os(3) 2.8629(7), Os(2)–Os(3) 2.7814(6), Os(2)–Re(1) 2.8939(7), Os(3)–Re(1) 2.9539(7), Os(2)–S(1) 
2.416(3), Os(3)–S(1) 2.406(3), Re(1)–N(1) 2.194(9), Os(2)–Os(1)–Os(3) 58.297(14), Os(3)–Os(2)–Os(1) 
61.130(17), Os(3)–Os(2)–Re(1) 62.693(16), Os(2)–Os(3)–Os(1) 60.573(17), Os(1)–Os(2)–Re(1) 
119.081(18), Os(2)–Os(3)–Re(1) 60.519(17), Os(2)–Re(1)–Os(3) 56.788(14), Os(1)–Os(3)–Re(1) 
116.593(19), Os(3)–S(1)–Os(2) 70.46(7), C(3)–Re(1)–N(1) 174.2(4), S(1)–Os(2)–Os(3) 54.61(6), S(1)–
Os(2)–Os(1) 83.82(6), S(1)–Os(3)–Os(2) 54.93(6). 

The reaction with Ru3(CO)12 was not so clean. When carried out in refluxing benzene, two products 
were isolated, namely the known triruthenium complex [Ru3(CO)9(μ-H)(μ3-C7H4NS2)] [19] (3) and the 
new butterfly cluster [Ru3Re(CO)13(μ3-C7H4NS2)] (4) in 14 and 23% yields, respectively. Cluster 3 has 
previously been reported by Jeannin et al., being obtained from the direct reaction of Ru3(CO)12 and 2-



mercaptobenzothiazole, and was structurally characterized [19]. Here it is formed as a result of 
transfer of the 2-mercaptobenzothiazolato ligand from rhenium to ruthenium. The new mixed-metal 
cluster 4 was the anticipated reaction product and is analogous to 2. It has been characterized by a 
combination of spectroscopic data and single crystal X-ray diffraction analysis. The latter suggests 
that 4 is actually an isomorphous mixture of two isomers – one with rhenium coordinated by nitrogen 
atom and another where rhenium bears four carbonyls and the ratio is approximately 2:1. In the 
ORTEP diagram Re(1) goes with Ru(2) which is 64% (4a) and Ru(1) goes with Re(2) which is 36% (4b) 
(Chart 2). An ORTEP diagram of the major isomer is shown in Fig. 3. The empirical formula in Table 1 is 
for the 64% isomer. Re(1) and Ru(1) are indistinguishable as are Re(2) and Ru(2). In both isomers, the 
four metal atoms form a butterfly skeleton and a 2-mercaptobenzothiolato ligand is facially located on 
the convex side of the cluster, bridging the hinge metal atoms through the exocyclic sulfur atom while 
coordinating to the wingtip rhenium through the nitrogen atom. Both isomers contain a non-
crystallographic mirror plane of symmetry passing through the plane of the heterocyclic ring and also 
containing the wingtip metals of the butterfly. The metal–metal distances are within the expected 
range in both isomers [16]. We believe that the two isomers are present in solution since the 1H NMR 
spectrum shows a series of multiplets in the aromatic region, the pattern being too complex for a 
single species. We have not, however, been able to assign individual resonances and hence the relative 
amounts of each isomer remain unknown. 

 

Chart 2. 

 

Fig. 3. ORTEP diagram of the molecular structure of [Ru3Re(CO)13(μ3-C7H4NS2)] (4), showing 50% 
probability thermal ellipsoids. Selected interatomic distances (Å) and angles (°): Ru(3)–Ru(4) 
2.7841(11), Re(1)–Ru(3) 2.8610(9), Re(1)–Ru(4) 2.8978(9), Ru(3)–S(1) 2.383(3), Ru(4)–S(1) 2.381(2), 
Re(1)–N(1) 2.201(8), C(14)–S(1) 1.752(10), Ru(3)–Re(1)–Ru(4) 57.82(2), Ru(4)–Ru(3)–Re(1) 61.75(2), 
Ru(3)–Ru(4)–Re(1) 60.43(2), S(1)–Ru(4)–Ru(3) 54.28(7), S(1)–Ru(3)–Ru(4) 54.21(6), Ru(4)–S(1)–Ru(3) 
71.51(7), N(1)–Re(1)–Ru(3) 87.2(2). 



Table 1. Crystallographic data and structure refinement for 1, 2, 4, 6, 7 and 8. 
Compound 1 2 4 6 7.0.71CH2CL2 8 
Empirical Formula C20H8N2O6Re

2S4 
C20H4NO13ReR
u3S2 

C20H4NO13ReR
u3S2 

C17H4Fe2NO10R
eS2 

C37H19NO12Os3PReS20.71
CH2Cl2 

C54H34NO11Os3P2

ReS2 
Formula Weight 872.92 1287.2 1019.8 744.23 1581.7 1755.7 
Temp (K) 150(2) 150(2) 100(2) 293(2) 100(2) 100(2) 
Wavelength (A) 0.7107 0.7107 1.5418 0.7107 0.7107 0.7107 
Crystal System Monoclinic Triclinic Monoclinic Orthorhombic Monoclinic Triclinic 
Space Group C2/c PῙ P21/c P212121 P21/c PῙ 
a (Å) 14.343(1) 8.580(1) 9.1775(2) 8.6114(5) 9.186(5) 8.988(3) 
b (Å) 11.9707(8) 9.059(2) 8.5897(2) 9.286(1) 24.18(1) 14.802(4) 
c (Å) 13.693(1) 17.706(3) 32.7982(6) 26.595(2) 18.90(1) 19.424(5) 
α (°) 90 76.174(2) 90 90 90 86.221(4) 
β (°) 93.601(3) 81.430(3) 90.984(1) 90 98.011(8) 86.695(4) 
γ (°) 90 84.969(3) 90 90 90 76.794(4) 
V (Å3) 2346.3(3) 1319.5(4) 2585.2(1) 2126.6(3) 4158(4) 2508(1) 
Z 4 2 4 4 4 2 
Dcalc (Mg m-3) 2.471 3.24 2.62 2.325 2.527 2.325 
µ (Mo Kα) (mm-1) 10.706 19.194 24.999 7.277 12.332 10.192 
 F (0 0 0) 1616 1140 1896 1408 2895 1636 
Crystal size (mm) 0.25 x 0.08 

x0.08 
0.16 x 0.16 x 
0.14 

0.25 x 0.13 x 
0.06 

0.40 x 0.12 x 
0.12 

0.30 x 0.14 x 0.02 0.35 x 0.12 x 0.04 

θ range (°) 2.980 – 
30.46 

2.35 – 28.26 2.69 – 68.06 2.32 – 25.26 1.38 – 31.85 1.42 – 31.97 

Index ranges -15≤h≥20, 
-14≤k≥16, 
-15 ≤ l≥17 

-11 ≤ h ≥11, 
-12 ≤ k ≥11, 
-23 ≤ l ≥ 22 

-10 ≤ h ≥10, 
0 ≤ k ≥ 10, 
0 ≤ l ≥ 39 

0 ≤ h ≥10, 
-11 ≤ k ≥ 3, 
-13 ≤ l ≥ 31 

-13≤ h ≥13, 
0≤ k ≥35, 
0≤ l ≥27 
 

-13≤h≥13, 
-21≥k≥21, 
0≤ l≥ 28 

Reflections Collected 7188 11141 21657 4356 65510 41390 
Independent 
reflections (Rint) 

2883(0.0903
) 

5922(0.0336) 4613(0.0237) 3801(0.0190) 13379(0.0580) 16069(0.0321) 

Max. and min. 
transmission 

0.481 and 
0.294 

0.1741 and 
0.1492 

0.3154 and 
0.0622 

0.4755 and 
0.1589  

0.7905 and 0.1193  0.6860 and 
0.1247 



Data/restraints/param
eters 

2883/0/155 5922/0/356 4613/0/363 3801/0/298 13379/0/542 16069/0/667 

Goodness-of-fit (GOF) 
on F2 

1.019 1.051 1.051 1.02 1.056 1.029 

Final R Indices 
[1>2σ(1)] 

R1 = 0.0438 
wR2 = 
0.1087 

R1 = 0.0432, 
wR2 = 0.1212 

R1 = 0.0439, 
wR2 = 0.1178 

R1 = 0.0308, 
wR2 = 0.0727 
 

R1 = 0.0397, 
wR2 = 0.0858 

R1 = 0.0260, 
wR2  = 0.0568 

R indices (all data) R1 = 0.0539, 
wR2 = 
0.1154 

R1 =0.0489, 
wR2 = 0.1274 

R1 = 0.0440, 
wR2 = 0.1179 

R1 = 0.0406, 
wR2 = 0.0754 

R1 = 0.05560, 
wR2 = 0.0904 

R1 = 0.0335, 
wR2 = 0.0591 

Largest difference in 
peak and hole (e Å -3) 

3.679 and -
3.386 

2.136 and -
4.414 

1.541 and -
1.427 

0.747 and -
1.835 

2.254 and -2.812 1.869 and -1.215 

 

 



Seeking to prepare 4 in higher yields we also carried out the thermolysis of 1 and Ru3(CO)12 in refluxing 
toluene. Now, however, neither 3 or 4 were generated, rather the major product was a tetranuclear 
cluster, tentatively characterized as [Re2Ru2(CO)12(μ4-S)(μ-C7H4NS)(μ-C7H4NS2)] (5) being isolated in 
38% yield. We have been unable to grow crystals of 5 suitable for X-ray diffraction analysis and thus 
this assignment is based solely on spectroscopic and analytical data. Most informatively, the +ve ion 
FAB mass spectrum shows a peak at m/z 1244 consistent with the formula proposed, together with 
further ions due to successive loss of twelve carbonyls. In the IR spectrum only terminal carbonyls are 
seen and the pattern of which is quite different from those of the tetranuclear mixed rhenium–
ruthenium clusters previously reported by Deeming et al. [12] In the 1H NMR spectrum, the 
observation of four doublets and an equal number of triplets shows the presence of two non-
equivalent benzoheterocyclic ligands. We could not, however, differentiate unequivocally between μ-
C7H4NS and μ-C7H4NS2 ligands from the spectrum. A similar situation is seen for the closely related 
complexes, [Re2Ru2(CO)13(μ4-S)(μ-C5H4N)(μ-C5H4NS)] [12b] and [Re2Fe2(CO)13(μ4-S)(μ-C5H4N)(μ-
C5H4NS)] [13b], which differ from 5 by the absence of rhenium–rhenium bond and presence of an 
additional carbonyl ligand. 

Treatment of 1 with two equivalents of Fe3(CO)12 in refluxing benzene led to the isolation of triangular 
mixed-metal complex [Fe2Re(CO)7(μ-CO)3(μ3-C7H4NS2)] (6) in 23% yield. The IR spectrum shows five 
terminal carbonyl bands together with an absorption at 1824 cm−1 indicating the presence of one or 
more bridging carbonyls. In order to fully elucidate the structure a single crystal X-ray diffraction study 
was carried out. An ORTEP diagram of the molecular structure of 6 is depicted in Fig. 4 and selected 
bond distances and angles are listed in the caption. The molecule comprises a triangular array of one 
rhenium and two iron atoms with eight terminal carbonyls and two bridging carbonyls and is capped by 
a triply bridging 2-mercaptobenzothiazolato ligand. One of the bridging carbonyls span the iron–iron 
vector, while the second bridges an iron–rhenium bond, the M–C distances and M–C–O angles 
revealing the asymmetric nature of the latter. The 2-mercaptobenzothiazolato ligand bridges the iron–
iron edge approximately symmetrically [Fe(1)–S(2) 2.284(2) Å and Fe(2)–S(2) 2.272(2) Å], and also 
coordinates to rhenium through the nitrogen atom. The rhenium–iron bond lengths [Re(1)–Fe(1) 
2.8127(10) Å and Re(1)–Fe(2) 2.8317(11) Å] are in between the metal–metal bond distances found in 
Fe3(CO)12 (2.660 and 2.558(1) Å) [20] and Re2(CO)10 (3.042(1) Å) [21], but the iron–iron bond length 
(2.5257(15) Å) is even shorter than the doubly CO-bridged iron–iron edge in Fe3(CO)12. Formation 
of 6 results from the loss of an iron atom and such behavior is not unexpected. 



 
Fig. 4. ORTEP diagram of the molecular structure of [Fe2Re(CO)8(μ-CO)2(μ3-C7H4NS2)] (6), showing 35% 
probability thermal ellipsoids. Selected interatomic distances (Å) and angles (°): Re(1)–N(1) 2.209(6), 
Re(1)–Fe(1) 2.8127(10), Re(1)–Fe(2) 2.8317(11), Fe(1)–Fe(2) 2.5257(15), Fe(1)–S(2) 2.284(2), Fe(2)–S(2) 
2.272(2), Re(1)–C(4) 2.595(8), Re(1)–C(10) 2.723(9), Fe(1)–C(4) 1.855(9), Fe(1)–C(7) 1.953(8), Fe(2)–
C(10) 1.841(9), Fe(2)–C(7) 1.986(7), C(2)–Re(1)–N(1) 175.4(3), N(1)–Re(1)–Fe(1) 86.52(14), Fe(1)–
Re(1)–Fe(2) 53.16(3), S(2)–Fe(1)–Fe(2) 56.11(6), Fe(2)–Fe(1)–Re(1) 63.81(3), S(2)–Fe(2)–Fe(1) 56.57(6), 
Fe(1)–Fe(2)–Re(1) 63.03(3), Fe(2)–S(2)–Fe(1) 67.32(7), Fe(1)–C(4)–Re(1) 76.4(3), Fe(1)–C(7)–Fe(2) 
79.8(3), Fe(2)–C(10)–Re(1) 73.9(9). 

2.3. Reactivity of [Os3Re(CO)13(μ3-C7H4NS2)] (2) towards PPh3 
Since tetranuclear 2, the target product of the reaction of 1 with M3(CO)12, was formed in good yields 
we decided to carry out a preliminary reactivity study in order to ascertain whether simple carbonyl 
substitution would be selectively directed to a single coordination site at a single metal centre. In this 
respect it is worth pointing out that the thirteen carbonyls occupy nine different sites and thus in 
theory simple substitution of a single carbonyl could give rise to eight isomers. Cluster 2 reacts with 
PPh3 at room temperature in the presence of Me3NO to give a mixture of mono- and di-substituted 
products [Os3Re(CO)12(PPh3)(μ3-C7H4NS2)] (7) and [Os3Re(CO)11(PPh3)2(μ3-C7H4NS2)] (8) respectively 
formed in 11 and 42% yields. In a separate experiment we showed that 7 converted into 8 when 
treated with PPh3 in presence of Me3NO under similar conditions (Scheme 2). 



 
Scheme 2. 

It was clear from spectroscopic data that both existed as a single isomer. For example, the 31P{1H} NMR 
spectrum of 7 displays only one singlet, while that of 8 shows two singlets, this latter data suggesting 
that a single metal center was not doubly substituted. On the basis of spectroscopic data however it 
was not possible to know the exact disposition of the phosphine ligands and hence single crystal X-ray 
diffraction analyses were carried out for both the compounds. ORTEP diagrams of the molecular 
structures of 7 and 8 are shown in Fig. 5, Fig. 6, respectively and selected bond angles and distances 
are listed in the captions. In both the core of the molecule remains essentially unchanged from that 
in 2. The single PPh3 ligand in 7 is bound to the wingtip osmium and occupies an axial coordination site. 
This is quite surprising since the bulky tertiary phosphines normally occupy equatorial coordination 
sites of metals, which places them trans to the metal–metal bond. It is also noteworthy that it is bound 
on the same side of the cluster core as the 2-mercaptobenzothiazolato ligand. We assume that this is a 
steric preference. In di-substituted 8 the two phosphine ligands are bound to a hinge and wingtip 
osmium atoms, respectively. Here, however, the phosphine bound to the wingtip osmium occupies an 
equatorial site lying trans to the Os(1)–Os(2) vector, while that coordinated to a hinge osmium atom 
also adopts an equatorial position lying trans to the Os(2)–Os(3) vector. Such an arrangement of two 
phosphine ligands about a triosmium centeris quite common and satisfies the preference to be trans to 
a metal–metal bond while minimizing steric repulsion between them. The osmium–phosphorus 
distance of 2.496(2) Å in 7 is considerably longer than those observed in 8 [2.357(1)and2.398(1)Å]. The 
relative elongation of the former may be a consequence of the need to minimize non-bonded 
interactions between the benzoheterocycle and phosphine and in accord with this we note that the 
P(1)Os(1)C(2) axis is tilted away from the benzoheterocyclic ligand. 



 
Fig. 5. ORTEP diagram of the molecular structure of [Os3Re(CO)12(PPh3)(μ3-C7H4NS2)] (7), showing 50% 
probability thermal ellipsoids. Selected interatomic distances (Å) and angles (°): Os(1)–Os(2) 
2.8884(12), Os(1)–Os(3) 2.9214(12), Os(2)–Os(3) 2.7558(12), Os(2)–Re(1) 2.9338(12), Os(3)–Re(1) 
2.9694(12), Os(2)–S(1) 2.4031(18), Os(3)–S(1) 2.3904(18), Re(1)–N(1) 2.215(5), Os(1)–P(1) 2.496(2), 
Os(2)–Os(1)–Os(3) 56.629(15), Os(3)–Os(2)–Os(1) 62.29(3), Os(3)–Os(2)–Re(1) 62.83(3), Os(2)–Os(3)–
Os(1) 61.08(3), Os(1)–Os(2)–Re(1) 124.186(18), Os(2)–Os(3)–Re(1) 61.52(2), Os(1)–Os(3)–Re(1) 
121.71(2), Os(2)–Re(1)–Os(3) 55.65(2), Os(3)–S(1)–Os(2) 70.19(5), S(1)–Os(2)–Os(3) 54.69(4), S(1)–
Os(2)–Os(1) 75.71(4), S(1)–Os(3)–Os(2) 55.12(4), S(1)–Os(3)–Os(1) 75.24(4), C(9)–Re(1)–N(1) 175.8(2), 
C(2)–Os(1)–P(1) 175.3(2), P(1)–Os(1)–Os(3) 103.15(4). 

 
Fig. 6. ORTEP diagram of the molecular structure of [Os3Re(CO)11(PPh3)2(μ3-C7H4NS2)] (8), showing 50% 
probability thermal ellipsoids. Selected interatomic distances (Å) and angles (°): Os(1)–Os(2) 2.9028(8), 
Os(1)–Os(3) 2.8542(6), Os(2)–Os(3) 2.8117(7), Os(2)–Re(1) 2.9058(5), Os(3)–Re(1) 2.9149(7), Os(2)–S(1) 
2.4140(9), Os(3)–S(1) 2.4275(10), Re(1)–N(1) 2.214(3), Os(1)–P(1) 2.3570(11), Os(2)–P(2) 2.3982(10), 
Os(3)–Os(1)–Os(2) 58.462(15), Os(3)–Os(2)–Os(1) 59.904(7), Os(3)–Os(2)–Re(1) 61.277(16), Os(2)–
Os(3)–Os(1) 61.634(19), Os(1)–Os(2)–Re(1) 114.465(13), Os(2)–Os(3)–Re(1) 60.953(8), Os(1)–Os(3)–
Re(1) 115.692(16), Os(2)–S(1)–Os(3) 71.01(3), C(11)–Re(1)–N(1) 171.03(13), S(1)–Os(2)–Os(3) 54.72(2), 
S(1)–Os(2)–Os(1) 86.40(2), S(1)–Os(3)–Os(2) 54.27(2), P(1)–Os(1)–Os(2) 168.80(2), P(1)–Os(1)–Os(3) 
111.50(3), P(2)–Os(2)–S(1) 96.01(4), P(2)–Os(2)–Os(3) 143.51(2), P(2)–Os(2)–Os(1) 101.43(2). 

3. Conclusions 
In summary, we present here a synthetic approach towards bimetallic clusters taking advantage of the 
relatively weak rhenium–sulfur bond in 1. We believe that this generates transient [Re(CO)3(S2NC7H4)] 
fragments which in turn then react with Group 8 trimetallic carbonyls. In the case of the lightly-
stabilized [Os3(CO)10(MeCN)2] this resulted in the relatively clean formation of tetranuclear 



[Os3Re(CO)13(μ3-C7H4NS2)] (2) with the anticipated butterfly arrangement of metal atoms. More forcing 
conditions were required for the reaction with Ru3(CO)12 and while this lead to the generation of some 
of the desired tetranuclear product, other species resulting from transfer of the 2-
mercaptobenzothiazolato ligand from rhenium to ruthenium and carbon–sulfur bond cleavage meant 
that this route was not perused further. With Fe3(CO)12 the relatively weak nature of the iron–iron 
bonds became a factor and no tetranuclear species could be isolated. Rather, trinuclear [Fe2Re(CO)8(μ-
CO)2(μ3-C7H4NS2)] (6) was isolated. Its mode of formation remains unclear but it is tempting to suggest 
that the desired tetranuclear cluster was initially formed but later scission of an Fe(CO)4 fragment 
proved facile. Our preliminary reactivity study of 2 towards PPh3 shows that while there is a high 
degree of selectivity in carbonyl substitution of heterometallic clusters, the precise product(s) 
generated can be difficult to predict. Thus we see that in the two products isolated here, the 
phosphine in each case occupies a unique coordination site the reasons for which are not always easy 
to determine. Further studies designed to probe the scope and broader applications of this approach 
towards mixed-metal clusters and their selective reactivity patterns are in currently in progress in our 
laboratories. 

4. Experimental 
All reactions were performed under a dry oxygen-free nitrogen atmosphere using standard Schlenk 
techniques. Reagent grade solvents were freshly distilled from appropriate drying agents prior to use. 
Infrared spectra were recorded on a Shimadzu FTIR spectrophotometer. NMR spectra were recorded 
on a Bruker DPX 400 instrument. Elemental analyses were performed by Microanalytical Laboratories, 
University College London. Fast atom bombardment mass spectra were obtained on a JEOL SX-102 
spectrometer using 3-nitrobenzyl alcohol as matrix and CsI as calibrant. The parent carbonyls 
(Re2(CO)10, Fe3(CO)12, Ru3(CO)12, Os3(CO)12) were purchased from Strem Chemicals Inc. and used 
without further purification. Me3NO·2H2O was purchased from Lancaster and water was removed 
using a Dean-Stark apparatus by azeotropic distillation from benzene and the anhydrous Me3NO was 
stored under nitrogen. 2-Mercaptobenzothiazole and triphenylphosphine were purchased from Sigma-
Aldrich Chemical Company and used as received. [Os3(CO)10(NCMe)2] was prepared according to 
literature procedure [22]. 

4.1. Preparation of [Re2(CO)6(μ-S2NC7H4)2] (1) 
A CH2Cl2 solution (20 mL) of Re2(CO)10 (200 mg, 0.306 mmol), 2-mercaptobenzothiazole (103 mg, 
0.616 mmol) and Me3NO (47 mg, 0.625 mmol) was stirred at 25 °C for 72 h. The solution was filtered 
through a short column (2 cm) of silica gel to remove excess Me3NO. The solvent was removed under 
reduced pressure and the residue chromatographed by TLC on silica gel. Elution with 
hexane/CH2Cl2 (4:1, v/v) gave [Re2(CO)6(μ-S2NC7H4)2] (1) (176 mg, 66%) as yellow crystals after 
recrystallization from hexane/CH2Cl2 at 25 °C. Spectral data for 1: Anal. Calc for C20H8N2O6Re2S4: C, 
27.52; H, 0.93; N, 3.21. Found: C, 27.79; H, 1.07; N, 3.31%. IR (νCO, CH2Cl2): 2042 (s), 2027 (vs), 1925 
(s,br) cm−1. 1H NMR (CDCl3, 25 °C): δ 7.68 (d, J = 8.4 Hz, 1H), 7.55 (m, 2H), 7.30 (d, J = 8.4 Hz, 1H). FAB-
MS: m/z 872 [M+]. 



4.2. Reaction of 1 with [Os3(CO)10(NCMe)2] 
A benzene solution (50 mL) of [Os3(CO)10(NCMe)2] (ca. 220 mg, 0.236 mmol) and 1 (100 mg, 
0.114 mmol) was heated to reflux for 2 h. Work-up and chromatographic separation as above afforded 
[Os3Re(CO)13(μ3-C7H4NS2)] (2) (179 mg, 61%) as red crystals after recrystallization from 
hexane/CH2Cl2 at 25 °C. Spectral data for 2: Anal. Calc. for C20H4NO13Os3ReS2: C, 18.66; H, 0.31; N, 1.09. 
Found: C, 18.98; H, 0.37; N, 1.17%. IR (νCO, CH2Cl2): 2110 (m), 2045 (vs), 2027 (m), 2014 (m), 1968 
(w) cm−1. 1H NMR (CDCl3, 25 °C): δ 8.39 (d, J = 8.4 Hz, 1H), 8.30 (d, J = 8.4 Hz, 1H), 7.99 (t, J = 8.4 Hz, 
1H), 7.77 (t, J = 8.4 Hz, 1H). FAB-MS: m/z 1288 [M+]. 

4.3. Reaction of 1 with Ru3(CO)12 at 80 °C 
A benzene solution (20 mL) of Ru3(CO)12 (100 mg, 0.156 mmol) and 1 (70 mg, 0.080 mmol) was heated 
to reflux for 3 h. A similar workup described as above developed four bands on TLC plates. The first 
band was unreacted Ru3(CO)12. The second and third bands gave [Ru3(CO)9(μ-H)(μ3-C7H4NS2)] (3) 
(16 mg, 14%) as red crystals and [Ru3Re(CO)13(μ3-C7H4NS2)] (4) (37 mg, 23%) as pink crystals after 
recrystallization from hexane/CH2Cl2 at 4 °C. Spectral data for 3: Anal. Calc. for C16H5NO9Ru3S2: C, 
26.60; H, 0.69; N, 1.94. Found: C, 26.98; H, 0.81; N, 2.05%. 1H NMR (CDCl3, 25 °C): δ 7.81 (d, J = 8.0 Hz, 
1H), 7.73 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), −12.88 (br,s, J = 8.4 Hz, 1H). 
FAB-MS: m/z 722 [M+]. Spectral data for 4: Anal. Calc. for C20H4NO13Ru3ReS2: C, 23.55; H, 0.39; N, 1.37. 
Found: C, 23.91; H, 0.44; N, 1.43%. IR (νCO, CH2Cl2): 2103 (m), 2094 (w), 2061 (m), 2044 (vs), 2033 (s), 
2012 (m), 1977 (m,br), 1921 (w) cm−1. 1H NMR (CDCl3, 25 °C): δ 8.24 (d, J = 8.4 Hz, 2H), 7.87 (m, 3H), 
7.73 (m, 4H), 7.60 (m, 2H), 7.54 (m, 1H). 

4.4. Reaction of 1 with Ru3(CO)12 at 110 °C 
To a toluene solution (20 mL) of Ru3(CO)12 (73 mg, 0.114 mmol) was added 1 (100 mg, 0.114 mmol) 
and the mixture was heated to reflux for 30 min. The solvent was removed under vacuum and the 
residue separated by TLC on silica gel. Elution with hexane/acetone (9:1, v/v) afforded 
[Re2Ru2(CO)12(μ4-S)(μ-C7H4NS)(μ-C7H4NS2)] (5) (54 mg, 38%) as orange crystals after recrystallization 
from hexane/CH2Cl2 at 4 °C. Spectral data for 5: Anal. Calc. for C26H8N2O12Re2Ru2S4: C, 25.12; H, 0.65; N, 
2.25. Found: C, 25.46; H, 0.72; N, 2.31%. IR (νCO, CH2Cl2): 2051 (vs), 2033 (m), 2006 (s), 1977 (s,br), 1923 
(m,br), 1889 (m,br) cm−1. 1H NMR (CDCl3, 25 °C): δ 8.55 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.89 
(d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.62 (t, J = 8.4 Hz, 1H), 7.53 (t, J = 8.4 Hz, 1H), 7.43 (t, J = 8.4 
Hz, 1H), 7.38 (t, J = 8.4 Hz, 1H). FAB-MS: m/z 1244 [M+]. 

4.5. Reaction of 1 with Fe3(CO)12 
1 (100 mg, 0.114 mmol) was added to a benzene solution (20 mL) of Fe3(CO)12 (116 mg, 0.230 mmol) 
and the mixture was heated to reflux for 1 h. The solvent was removed by rotary evaporation and the 
residue chromatographed by TLC on silica gel. Elution with hexane/acetone (4:1, v/v) developed one 
major and several minor bands. The major band afforded [Fe2Re(CO)8(μ-CO)2(μ3-C7H4NS2)] (6) (39 mg, 
23%) as red crystals after recrystallization from hexane/CH2Cl2 at 4 °C while the minor bands were too 
small for characterization. Spectral data for 6: Anal. Calc. for C17H4Fe2NO10ReS2: C, 27.43; H, 0.54; N, 
1.88. Found: C, 27.72; H, 0.58; N, 1.92%. IR (νCO, CH2Cl2): 2078 (m), 2043 (s), 2026 (vs), 2010 (m), 1950 
(m, br), 1812 (m, br) cm−1. 1H NMR (CDCl3, 25 °C): δ 8.26 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.83 
(t, J = 8.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H). 



4.6. Reaction of 2 with PPh3 
To a CH2Cl2 solution (20 mL) of 2 (100 mg, 0.078 mmol) and PPh3 (41 mg, 0.156 mmol) was added 
dropwise a CH2Cl2 solution (10 mL) of Me3NO (12 mg, 0.159 mmol) and the mixture was stirred at 25 °C 
for 1 h. The solvent was removed in vacuo and the residue separated by TLC on silica gel. Elution with 
hexane/acetone (4:1, v/v) developed two red bands. The minor band afforded [Os3Re(CO)12(PPh3)(μ3-
C7H4NS2)] (7) (13 mg, 11%) while the major band gave [Os3Re(CO)11(PPh3)2(μ3-C7H4NS2)] (8) (57 mg, 
42%) as red crystals after recrystallization from hexane/CH2Cl2 at 4 °C. Spectral data for 7: Anal. Calc. 
for C37H19NO12Os3PReS2: C, 29.21; H, 1.26; N, 0.92. Found: C, 29.49; H, 1.34; N, 0.99%. IR (νCO, CH2Cl2): 
2076 (m), 2027 (vs), 2004 (m), 1945 (m,br) cm−1. 1H NMR (CDCl3, 25 °C): δ 8.41 (d, J = 10.8 Hz, 1H), 7.86 
(d, J = 10.8 Hz, 1H), 7.78 (t, J = 10.8 Hz, 1H), 7.62 (t, J = 10.8 Hz, 1H), 7.52–7.33 (m, 30H). 31P{1H} NMR 
(CDCl3, 25 °C): δ = 7.72 (s). Spectral data for 8: Anal. Calcd for C54H34NO11Os3P2ReS2: C, 36.94; H, 1.95; 
N, 0.78. Found: C, 37.25; H, 2.10; N, 0.84%. IR (νCO, CH2Cl2): 2056 (m), 2016 (vs), 1997 (sh), 1979 (s), 
1960 (m), 1939 (m,br), 1923 (m,br) cm−1. 1H NMR (CDCl3, 25 = °C): δ 8.33 (d, J = 10.8 Hz, 1H), 7.81 
(d, J = 10.8 Hz, 1H), 7.73 (t, J = 10.8 Hz, 1H), 7.53 (t, J = 10.8 Hz, 1H), 7.46–7.29 (m, 30H). 31P{1H} NMR 
(CDCl3, 25 °C): δ = 6.06 (s, 1P), –7.31 (s, 1P). FAB-MS: m/z 1756 [M+]. 

4.7. Conversion of 7 to 8 
Me3NO (1 mg, 0.013 mmol) was added dropwise to a CH2Cl2 solution (15 mL) of 7 (20 mg, 0.013 mmol) 
and PPh3 (4 mg, 0.015 mmol) and the mixture was stirred at 25 °C for 45 min. A similar 
chromatographic separation and work up described as above gave 8 (18 mg, 81%). 

5. X-ray crystallography 
Single crystals were mounted on fibers and diffraction data collected at low temperature (see Table 1) 
on Nonius Kappa CCD (1), Bruker APEX2 CCD (2), Bruker APEX2 CCD (4, 7, 8), Enraf Nonius TurboCAD4 
(6) diffractometers using Mo Kα radiation (λ = 0.71073 Å). Data collection, indexing and initial cell 
refinements were all done using smart [23] software. Data reduction was accomplished 
with saint [24] software and the difabs [25] and sadabs [26] programs were used to apply empirical 
absorption corrections. The structures were solved by direct methods [27] and refined by full matrix 
least-squares [28]. Except in 2, all non-hydrogen atoms were refined anisotropically and hydrogen 
atoms were included using a riding model. Scattering factors were taken from International Tables for 
X-ray crystallography [29]. Additional details of data collection and structure refinement are given 
in Table 1. 

6. Supplementary material 
CCDC 711555, 711556, 711557, 715807, 295429 and 295428 contain the supplementary 
crystallographic data for this paper. These data can be obtained free of charge from The Cambridge 
Crystallographic Data Centervia  
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