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Abstract 
This study evaluated strategies targeting disinfection byproduct (DBP) mitigation using TiO2 photocatalysis with 
varying influent water quality. A Purifics Photo-CAT Lab reactor was used to assess total trihalomethane (TTHM) 
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and haloacetic acid (HAA) formation as a function of photocatalytic treatment using water from a conventional 
coagulation/flocculation/sedimentation process, granular activated carbon filtration, and a DBP hot spot in the 
water distribution system. Regardless of influent water quality, photocatalysis reduced DBP precursors; 
however, low-energy limited photocatalysis (<5 kW h m−3), exacerbated the production of TTHMs and HAA5s 
beyond initial levels. Accordingly, limited photocatalysis is not a suitable option when TTHMs and HAA5s are a 
concern, regardless of the level of pretreatment. Limited photocatalysis yields incomplete oxidation, wherein 
larger, more aromatic, humic organic compounds are broken into smaller molecular weight, less aromatic, and 
less humic moieties, which have considerable potential to produce DBPs. More complete mineralization of DBP 
precursors is obtained using extended photocatalysis (80–160 kW h m−3), which substantially decreases DBP 
precursors as well as TTHM and HAA5 concentrations. In order to balance DBP mitigation, energy, and chemical 
usage, targeted use of TiO2 photocatalysis is necessary in a water treatment train (e.g., extended photocatalysis 
at a distribution system hot spot, where the volumetrically high energy requirements may be justifiable). 

Graphical abstract 
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1. Introduction 
The formation of potentially harmful disinfection byproducts (DBPs) occurs when oxidizing disinfectants react 
with natural organic matter (NOM), and is a significant concern in water treatment (Richardson, 2003). 
Increasingly stringent DBP requirements (USEPA, 2006) have led to the reevaluation and investigation of 
strategies to mitigate DBPs and maintain system-wide regulatory compliance. Chlorinated DBPs, of which total 
trihalomethanes (TTHMs) and haloacetic acids (HAA5s) are the most prevalent (Krasner et al., 2006), may be 
avoided by employing alternative disinfectants. However, these may also form DBPs and/or be ineffective 
against certain pathogenic microorganisms (Richardson, 2003, USEPA, 2006). Alternate DBP mitigation strategies 
target removal of precursor NOM, with best available processes identified as enhanced coagulation or softening, 
granular activated carbon (GAC), or membrane filtration (USEPA, 2006, Liu et al., 2008). Innovative technologies 
such as advanced oxidation processes (AOPs) are also being investigated, and are increasingly attractive as they 
have the potential to mineralize NOM rather than merely capturing and transferring it to another phase; 
furthermore, they may not require large chemical doses or pH adjustment and no sludge is formed (Liu et al., 
2008, Thiruvenkatachari et al., 2008). 

AOPs such as TiO2 photocatalysis rely on the production of nonspecific radical species, which are capable of 
oxidizing a wide array of contaminants (Gerrity et al., 2009). During photocatalysis, UV light (λ < 387 nm) is used 



to irradiate a semiconductor photocatalyst in order to produce readily reactive radical species such as OH. The 
heterogeneous nature of the TiO2 also provides a surface for physical adsorption (Huang et al., 2008, Liu et al., 
2008, Tercero Espinoza and Frimmel, 2009), thereby yielding a multi-pronged treatment approach. The efficacy 
of photocatalysis for DBP mitigation depends on the influent concentration and composition of NOM, which 
varies dramatically as initially untreated water undergoes a series of physicochemical treatment operations. 

There is general agreement that the primary DBP precursor NOM fractions are hydrophobic and within the 
apparent molecular weight range of 1–10 kDa (Chow et al., 2005). However, in many cases, hydrophilic 
and lower molecular weight fractions have contributed significantly to DBP formation (Hwang et al., 2001, Liu et 
al., 2008). Photocatalytic treatment tends to shift NOM composition toward these moieties, with Liu et al. 
(2008) reporting a shift in the hydrophilic fraction from 15% to 90% following photocatalytic treatment. 
Accordingly, DBPs are still formed following photocatalysis, and can even be exacerbated beyond initial levels 
(Liu et al., 2008, Gerrity et al., 2009). Gerrity et al. (2009) observed an increase in TTHM formation of up to 75% 
using limited photocatalysis (⩽5 kW h m−3) to treat raw water. When higher energy levels were used, DBP 
formation decreased substantially, e.g., 95% reduction in TTHMs (Gerrity et al., 2009). Unfortunately, this 
improved performance was highly energy intensive, likely rendering it economically prohibitive for high flow 
water treatment applications. 

Optimization of sequential treatment processes using limited energy TiO2 photocatalysis following conventional 
treatment operations such as adsorption and filtration may target the removal/destruction of both hydrophobic 
and hydrophilic fractions to simultaneously minimize DBP formation and system inputs such as chemicals and 
energy (Hua and Reckhow, 2007). This study is the first evaluation of strategies targeting mitigation of TTHMs 
and HAA5s using TiO2 photocatalysis to treat water from a conventional coagulation/flocculation/sedimentation 
process, GAC filter, and a hot spot in the water distribution system. 

2. Materials and methods 
Central Arizona water was collected from different locations in the drinking water treatment train: following 
sedimentation (SW), following GAC filtration (GAC), and from a hot spot in the distribution system (DS) 
characterized by elevated DBP concentrations. The water samples were stored at 4 °C for up to 24 h before 
being treated using photocatalysis. 

2.1. Pilot-scale photocatalysis 
Photocatalysis was performed using the Purifics (London, ON) Photo-CAT Lab reactor, as described by Gerrity et 
al. (2009). The reactor was operated in batch configuration at a process flow rate of 25 L min−1 using 
1 g L−1 suspended reagent-grade Degussa P25 TiO2 (Dusseldorf, Germany), based on previous studies (Liu et al., 
2008, Gerrity et al., 2009). The average intensity of the UV bulbs was approximately 7.0 mW cm−2, as estimated 
using biodosimetry (Gerrity et al., 2008). Energy consumption (UV lamps only, not accounting for pumps, 
controls, etc.) was kept constant for each respective sample by adjusting reaction time to account for changes in 
volume due to sampling. 

Five samples representing increasing levels of photocatalytic treatment were collected for each water source: an 
initial control sample, dark adsorption, and three photocatalytic treatment levels: limited (5 kW h m−3), medium 
(80 kW h m−3), and extended photocatalysis (160 kW h m−3), representing partial, incomplete, and near-
complete oxidation, respectively. The dark adsorption samples (no UV) provided a measure of physical removal 
due to TiO2 adsorption and filtration through the PhotoCAT’s ceramic membrane. 



2.2. Analytical measurements 
A Mettler (Columbus, OH) pH meter was used to measure pH, while turbidity was measured using a Hach 
(Loveland, CO) model 2100P turbidimeter. Control samples were filtered using 0.45 μm Pall (Port Washington, 
NY) Acrodisc® GHP membrane filters to remove particulate matter prior to other analyses. 

2.2.1. DBP precursors 
Ultraviolet absorbance at a wavelength of 254 nm (UV254) was measured using a Hach DR 
5000 spectrophotometer. Samples were acidified with 1 M HCl prior to analysis of dissolved organic 
carbon (DOC) using a Shimadzu (Kyoto, Japan) 5050A Total Organic Carbon Analyzer. Specific ultraviolet 
absorbance (SUVA) was calculated by normalizing UV254 with respect to DOC. Bromide was measured using a 
Dionex (Sunnyvale, CA) DX-120 ion chromatograph. 

2.2.2. DBP formation 
Samples were chlorinated in accordance with a modified simulated distribution system test (SDS-THM, APHA, 
2005) in which chlorine was added to each sample to target a residual of 1 mg L−1 after 24 h at 28 °C. Preliminary 
assessments of all samples were performed to determine the 24-h chlorine demand using a chlorine dosing 
curve. Free chlorine was analyzed using a Hach D4/4000U spectrophotometer and DPD free chlorine reagent 
powder pillows. 

Samples were collected 24 h post-chlorination for DBP analysis. TTHMs are the sum of four species (chloroform, 
bromodichloromethane, dibromochloromethane, and bromoform), which were analyzed in accordance with 
USEPA Method 524.2 using a 4660 concentrator with an Agilent Technologies (Santa Clara, CA) HP 6890 Plus 
GC–MS system. Five HAAs (HAA5s: chloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, 
and dibromoacetic acid) were analyzed in accordance with USEPA Method 552 using an Applied Biosystems 
(Carlsbad, CA) Triple Quadrupole MS (ABI Qtrap) system. 

2.2.3. Organic matter characterization 
The nonfractionated NOM was characterized using molecular weight distributions and UV absorption spectra. 
Apparent molecular weight (AMW) was determined by high-performance size 
exclusion chromatography (HPSEC) with online DOC detection, in accordance with Her et al. (2002). As described 
by Gerrity et al. (2009), samples were analyzed with a Waters (Milford, MA) Alliance 2695 Separations Module 
and a HW-50S Toyopearl (Stuttgart, Germany) polymeric column. The high-performance liquid chromatograph 
was connected to a Sievers (GE Analytical Instruments, Boulder, CO) 800 Portable TOC Analyzer. 

Fluorescence spectroscopy electron emission matrices (EEMs) were performed using a PerkinElmer LS-50B 
luminescence spectrometer with a xenon excitation source. Excitation (λ = 200–400 nm) and emission (λ = 290–
550 nm) slits were set to a 5-nm band pass. No adjustments were made for DOC or ionic strength. Background 
fluorescence determined using nanopure water was subtracted from results, with a minimum allowable reading 
of zero. Fluorescence regional integration (FRI) was used to assess qualitative shifts in NOM composition, as 
described by Chen et al. (2003). Briefly, the EEMs were delineated into characteristic excitation–emission 
regions: Region I – Aromatic protein I, Region II – Aromatic protein II, Region III – Fulvic acid-like, Region IV – 
Soluble microbial byproduct-like, and Region V – Humic acid-like. 

3. Results and discussion 
In general, pH was unaffected by photocatalytic treatment, and ranged from 7.5 to 8.5 for all samples. Initial 
turbidity levels in the SW, GAC, and DS were 0.90, 0.39, and 0.09 NTU, respectively. Following filtration in the 
Photo-CAT system, the turbidity of all samples was <0.25 NTU. 



3.1. DBP precursors 
The removal profiles of the DBP precursors DOC and UV254 are shown in Fig. 1. As illustrated, UV254 exhibited 
greater removal than DOC, with maximum removals of 85–100% and 75–87%, respectively, at 160 kW h m−3. 
Moreover, UV254 is reduced at a faster and more consistent rate than DOC as photocatalytic treatment 
progresses. This contrast in removal efficacy implies that the humic portion of the NOM, which is characterized 
by higher aromaticity and UV254, is targeted during photocatalysis. This result is in agreement with previous 
studies (Huang et al., 2008, Liu et al., 2008, Gerrity et al., 2009), which suggests that the complex and 
heterogeneous composition of NOM is progressively broken into smaller, less aromatic intermediates, whereas 
complete mineralization (signified by loss of DOC) may only be achieved after extended treatment, or not at all 
due to the presence and/or production of refractory compounds. Accordingly, although aromaticity decreases, 
DOC reduction occurs only through physical removal via adsorption (dark adsorption) or as a result of 
mineralization of the organics to CO2 and H2O, which is observed in higher energy samples. 

 
Fig. 1. Removal profile for DOC and UV254. 
 

The adsorption of organic matter onto the surface of TiO2 is believed to be a function of size and hydrophobicity, 
with larger and more hydrophobic compounds adsorbing more readily (Huang et al., 2008, Tercero Espinoza and 
Frimmel, 2009, Philippe et al., 2010a). This supports the relatively large reductions in both DOC and 
UV254 generally observed in the dark adsorption samples. This differential adsorption of NOM onto the catalyst 
surface appears to be responsible for the “preferential photocatalytic degradation” of higher molecular weight 
fractions rather than specific targeting by radical species (Tercero Espinoza and Frimmel, 2009, Philippe et al., 
2010a). Comparing the organic removals for the dark adsorption samples to the limited photocatalysis samples 
(5 kW h m−3), DOC levels remain relatively constant while UV254 generally demonstrates additional reduction. 
Using extended photocatalysis, a substantial fraction of the organic material is mineralized, as evidenced by the 
reduction of DOC and UV254. However, while UV254 is virtually eliminated given sufficient AOP exposure, DOC 
appears to reach a plateau, indicating the presence of a refractory component that resists photocatalytic 
oxidation. 

As a relative index of humic content and aromaticity, SUVA is commonly used as an indicator of the 
effectiveness of enhanced coagulation in the reduction of NOM, DOC, and DBP precursors (Edzwald and 
Tobiason, 1999, Marhaba and Pipada, 2000, Krasner et al., 2006). With increasing photocatalytic treatment, 
SUVA decreased substantially, and since SUVA affords an accurate predictor of TOC reactivity in terms of DBP 
formation (Kitis et al., 2001, Krasner et al., 2006), this suggests that fewer DBPs will be produced. 

Bromide is an important inorganic DBP precursor, and when present in excess of 100 μg L−1, the formation of 
brominated DBPs may be of concern (Zhang et al., 2011). However, in low bromide waters, such as those 
typically encountered in central Arizona, chlorinated species tend to dominate (Richardson et al., 1999). In this 



study, the maximum bromide concentration observed was 32 μg L−1, which substantially limited the formation of 
brominated DBPs. As significant reduction of bromide is difficult and results only from the use of sufficiently 
small-pore-sized membranes (WHO, 2000), photocatalytic treatment minimally impacted bromide levels, as 
expected. 

3.2. DBPs 
The effect of various DBP mitigation strategies on the formation of TTHMs has been more widely studied in 
comparison to the formation of HAA5s (Liu et al., 2008, Bond et al., 2009). In this study, TTHMs and HAA5s were 
evaluated simultaneously, which is valuable as their respective formation potentials may be disproportionately 
affected by variations in the initial concentration and composition of organic matter. For example, hydrophilic 
moieties have been reported to be major precursors of HAA5s, while the hydrophobic fraction is more relevant 
for TTHM formation (Hwang et al., 2001, Liu et al., 2008). 

The 24-h formation of TTHMs, HAA5s, and specific DBPs (DBPs normalized to the DOC concentration, μg mg−1) 
following photocatalytic treatment are shown in Fig. 2. The formation of TTHMs and HAA5s appear to be well 
correlated, which may be the case for uniform treatment conditions and low bromide water sources (Singer, 
1993). While no single species of TTHM appeared dominant, extended photocatalysis consistently reduced 
bromoform levels. As is commonly the case, di- and trichloroacetic acid were the dominant species of HAA5s, 
accounting for 50–100% of all samples (WHO, 2000). The fractions of mono- and dibromoacetic acid were 
consistently reduced with increasing treatment. A shift toward brominated species is often observed following 
treatment processes targeting NOM (WHO, 2000), but was not readily apparent here, likely due to low initial 
concentrations of bromide in the source waters. 

 
Fig. 2. DBP and specific DBP formation [(a) TTHM and (b) HAA5] as a function of source water and extent of 
photocatalytic treatment. 
 

Whereas reductions in the DBP precursors DOC, UV254, and SUVA were consistently observed following 
photocatalytic treatment, DBP concentrations generally increased with filtration (dark adsorption) and limited 
photocatalysis (5 kW h m−3) prior to decreasing in response to higher energy inputs. This suggests that the 
incomplete oxidation products resulting from limited photocatalysis more readily form DBPs regardless of the 
level of water pretreatment. The specific DBP formation data further support this, showing a sharp increase in 



DBP formation compared to DOC concentration under limited photocatalysis conditions. This is significant in 
that it suggests that traditional bulk indicators of DBP formation potential (such as DOC, UV254, and SUVA) may 
not tell a complete story for AOPs such as photocatalysis, which fundamentally shift NOM composition rather 
than physically removing it from the system. 

3.3. Organic matter characterization 
3.3.1. HPSEC 
The effect of photocatalytic treatment on molecular size distribution was measured using HPSEC. Fig. 3 clearly 
illustrates that as photocatalysis proceeds, the amount of organic material decreases (the magnitude of the 
peaks decreases) and the character of the NOM also changes, as expressed through horizontal shifts toward 
smaller AMWs. During photocatalysis, higher molecular weight material is selectively degraded on the basis of 
differential adsorption onto the TiO2 surface, thereby shifting the NOM profile towards more hydrophilic, lower 
molecular weight species, which are further degraded as photocatalysis progresses (Liu et al., 2008, Gerrity et 
al., 2009, Tercero Espinoza et al., 2009, Philippe et al., 2010a, Philippe et al., 2010b). This shift in the character of 
the organic matter may lead to the expectation of fewer DBPs produced since higher molecular weight species 
(1–10 kDa) are commonly believed to be responsible for the production of DBPs (Chow et al., 2005). However, 
studies have reported correlations between the presence of low AMW species and increased TTHM formation 
(Amy et al., 1992, Li and Zhao, 2006, Liu et al., 2008, Gerrity et al., 2009). Concurrent with shifts in molecular size 
distribution in this study, the DBP concentrations initially increase with limited photocatalysis prior to 
decreasing, which indicates that the smaller AMW fractions may be characterized by increased reactivity, a 
hypothesis that is supported by the trend in specific DBP formation illustrated in Fig. 2. 

 
Fig. 3. Size exclusion chromatograms illustrating the progression of mineralization resulting from increasing 
photocatalytic treatment for (a) settled water, (b) granular activated carbon and (c) distribution system. 
 

The relative distribution of AMW fractions is illustrated in Fig. 4. As a function of increasing treatment, the 
smallest AMW fraction (0.1–0.5 kDa) increases dramatically relative to other size fractions. This is accompanied 
by substantial relative decreases in the 1–5 kDa range, while the 0.5–1 kDa range remains relatively constant in 
some waters and decreases in others. Interestingly, the relative fraction of the largest size range included in this 
study (5–10 kDa) increases for all water matrices. One possible explanation for this finding is that a portion of 
the large molecules is refractory and does not undergo photocatalytic degradation. Thus, as treatment 
progresses and NOM is mineralized, that refractory component represents a larger percentage of the remaining 
organic material. 



 
Fig. 4. DOC size distribution resulting from increasing photocatalytic treatment for (a) settled water, (b) granular 
activated carbon and (c) distribution system. 
 

3.3.2. EEM 
Qualitative shifts in NOM composition were evaluated using FRI of EEMs, as described by Chen et al. (2003). Fig. 
5 summarizes the EEM results. Notably, organic matter shifted away from the humic acid-like fraction (Region 
V). This is in agreement with the expectation that larger, more hydrophobic organic species (which are 
characteristic of the largely aromatic humic fraction) more readily adsorb to the surface of the TiO2 particles 
(Huang et al., 2008, Tercero Espinoza and Frimmel, 2009, Philippe et al., 2010a). Sorption causes “preferential 
degradation” of these species since they are in close proximity to the highly reactive (short-lived) radical species 
produced via photocatalysis. However, the shift away from humic materials does not consistently reduce the 
formation of DBPs, as evidenced by the increases observed for limited photocatalysis. Accordingly, the less 
aromatic, more hydrophilic fulvic-acid like fraction can also be a significant contributor to DBP production. 



 
Fig. 5. Relative distribution of fluorescence regional integration of excitation emission matrices as a function of 
source water and extent of photocatalytic treatment. 
 

4. Conclusions 
Advanced oxidation processes such as TiO2 photocatalysis are powerful techniques that can be used in a variety 
of contexts. The use of photocatalysis for targeting DBP reduction is appealing because it is capable of 
mineralizing organic material. However, if not carefully designed and incorporated as part of a treatment 
system, TiO2 photocatalysis could potentially exacerbate DBP formation, considerably increase system energy 
inputs, etc. As shown in this study, when operated under low energy “limited photocatalysis” conditions 
(5 kW h m−3), DBP precursors such as UV254, DOC, and SUVA decrease, but NOM undergoes incomplete 
oxidation, wherein higher molecular weight, aromatic, humic-like material is adsorbed to the TiO2, and is 
rearranged by the photo-radicals, but not completely destroyed. This produces organic species which appear to 
readily react with chlorine and can actually increase the formation of DBPs. This occurs regardless of initial water 
quality (e.g., settled, GAC filtered, or from the distribution system), suggesting that limited photocatalysis is not 
an effective means of mitigating DBPs at any point in the treatment train. Alternately, higher energy “extended 
photocatalysis” (80–160 kW h m−3) can reduce the formation of TTHMs and HAA5s dramatically, but requires 
much more energy, likely making it infeasible for high flowrate water treatment operations regardless of source 
water quality. Accordingly, photocatalysis may be most appropriate for use in targeted applications where high 
energy consumption per volume of water may be less constrictive, e.g., at a distribution hot spot with relatively 
low flowrates or in industrial applications targeting particularly recalcitrant contaminants. 
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