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Abstract: Clinical advances in the treatment of dentoalveolar defects 

continue to evolve with the introduction of new innovations in regenerative 

medicine and tissue bioengineering. Recent developments in tissue 

engineering are aimed at safely and effectively regenerating a damaged or 

necrotic area by replenishing its cells and increasing surrounding gene 

expression. Various techniques have successfully given rise to porous 

scaffolds being used by clinicians to treat the defect and initiate the repair 

process. Tissue reconstruction using bioengineered scaffolds is advantageous 

over traditional autografting, since it prevents the instigation of pain and 

donor site morbidity while ultimately creating both the environment and 

machinery needed to induce cell proliferation, migration, and reattachment 

within the affected area. This review article aims to describe and review the 

available literature regarding the regenerative capacity of natural polymers 

used for the treatment of dentoalveolar defects. The repair mechanisms, 

advantages of protein and polysaccharide derivatives, and the potential of 

stem cell therapy are discussed. 

Bone resorption is a progressive process that complicates 

restoration of edentulous and partially edentulous areas.1,2 Bone loss 

compromises the periodontal health of teeth, complicates placement of 

dental implants3 and in advanced cases may cause remarkable 

changes in facial morphology.4 

Tissue regeneration in the form of grafting using bone 

substitutes is used extensively for patient treatment. Every year in the 

United States, approximately 500,000 bone grafting procedures are 

performed in dental and medical offices. The market for bone 

substitutes used in these procedures is valued near 1 billion dollars.5 
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In 2012, the market for biomaterials used exclusively in dental 

procedures was valued at 222 million dollars, and this number 

continues to grow.6 

With the advent of tissue engineering, specific materials and 

scaffolds have been produced to effectively deliver synthetic and 

biological agents capable of tissue regeneration.7-17 Scaffolds must 

effectively facilitate the early stages of regeneration before 

transitioning to a natural mode of self-repair.18-26 In addition to 

delivering regenerative biomaterials, scaffolds seal off the affected 

area and protect it from infection, restore the extracellular matrix 

(ECM), and induce proliferation and differentiation of cells composing 

the four primary types of dental tissue: bone, cementum, connective 

tissue, and gingival epithelium.27,28 Therefore, scaffolds can be used in 

various dental applications and preprosthetic surgery including guided 

tissue regeneration and treatment of periodontal disease,29 osteogenic 

repair of the alveolar process and bone augmentation procedures to 

increase volume of bone and restore bony defects prior to endosseous 

implant surgery, craniofacial bone defect repair,30 socket preservation 

procedures, and in the treatment of ailing/failing dental implants.31 

In the last decade, the use of bioprinted scaffolds composed of 

natural polymers and stem cells has remarkably allowed for repair of 

an array of defects while mimicking the human ECM.32 The ECM 

contains molecules that contribute to the strength and flexibility of the 

periodontium.33 The presence of growth factors in the matrix is 

important in the process of regeneration, and the combination of 

abundant biomolecules and signaling mechanisms within the ECM 

assists in the differentiation of progenitor cell populations, replenishing 

the mature cells native to a healthy bone and gingival tissue.34,35 

Strong adhesion of cells to ECM proteins holds functional necessity, is 

vital to tissue integrity, and is a significant goal in restoring the 

chemical nature of the environment to be restored and augmented.36 

The focus of this manuscript is to review materials used in 3D 

bioprinting of scaffolds, including polysaccharide derivatives, protein 

derivatives, and stem cells, that can restore the necessary interaction 

between the cells and matrix in preprosthetic surgery requiring tissue 

engineering. Nearly 100 papers in journals from both the United States 

and abroad dating from 1972 until 2015 were used to compile 
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information regarding the application of each polymer in the 

regeneration of dentoalveolar and maxillofacial tissues. Papers 

focusing on biomaterial characteristics and the clinical effects of tissue 

engineering were analyzed alike and cited to write the manuscript on 

this multidisciplinary topic. 

Polysaccharide derivatives 

Chitosan 

Chitosan is a biopolymer obtained from chitin, a nitrogen-

containing polysaccharide derived from glucose. Chitosan is 

biocompatible, flexible, and antibacterial and can accelerate wound 

healing.37 It can be shaped into various structures, including 

microspheres,38 paste,39 sponges,40 and porous scaffolds,41 and 

therefore, it has the potential to be used in tissue engineering.42 Lahiji 

et al43 noted that chitosan can be successfully used as a template for 

bone defect restorations, due to its ability to support viable 

osteoblasts. A study on the effects of chitosan on socket preservation 

after extraction showed that the bone densities in the middle and 

apical sections of the repaired socket were significantly greater in 

chitosan-treated sockets than the untreated, unfilled control group, 

concluding that it can be used for bone repair in the cases of bone 

loss.44 In another study, chitosan was used to restore bony defects in 

the upper tibia of rats. The results showed that compared to the 

control, in which chitosan powder was not used to fill the defect, bone 

repair was significantly expedited in the chitosan group at 1 week and 

4 weeks post-surgery.45 Further attesting to chitosan potential in 

tissue engineering, Muzzarelli et al46 demonstrated that chitosan 

ascorbates produced in the gel form are fit for the regeneration of 

periodontal ligament (PDL) tissues. They also demonstrated that the 

chitosan was gradually reabsorbed in hosts with a satisfactory clinical 

recovery of periodontal defects, where both tooth mobility and pocket 

depths were significantly reduced. 

Because of its biocompatibility and bioactivity, chitosan can be 

combined with several inorganic materials to make 3D microstructures 

to be used as scaffolds. Examples of these inorganic materials include 

bioactive glass, hydroxyapatite, alginate, collagen, and recombinant 
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vectors. Bioactive glass, as the name implies, has excellent bioactivity 

and when added to chitosan membranes would promote guided bone 

regeneration.37 Mota et al37 showed that membranes containing 

chitosan/bioactive glass nanoparticles, in contrast to pure chitosan 

membranes, were able to stimulate the deposition of an apatite layer, 

which highlights the advantages of a composite scaffold. 

Another inorganic material that can be combined with chitosan 

is hydroxyapatite, which is known for its biocompatibility and its 

osteoconductive potential.47,48 Kong et al49 developed a homogenous 

nanohydroxyapatite/chitosan porous scaffold that possessed better 

biocompatibility than a pure chitosan scaffold, while also allowing a 

higher proliferation of cells. In agreement with Kong et al's findings, 

Zhang et al50 concluded that a nanohydroxyapatite/chitosan scaffold 

had better cytocompatibility than a pure chitosan scaffold. 

Other materials have been used to enhance the strength of 

chitosan-based scaffolds. Li et al51 used alginate to construct a 

chitosan/alginate composite with significantly enhanced mechanical 

strength. The chitosan/alginate scaffold allowed seeded osteoblasts to 

attach and proliferate well in culture without the use of an osteogenic 

medium and promoted quicker deposition of minerals compared to 

pure chitosan. 

Zhang et al52 used chitosan/collagen scaffolds to create a porous 

structure that could be loaded with plasmids and adenoviral vectors 

encoding human transforming growth factor-β1 (TGF-β1). Human PDL 

cells were seeded within the scaffold's pores and implanted into 

athymic mice. It was found that no inflammatory reaction or 

extrusions occurred, confirming the biocompatibility of this TGF-β1 

encoding scaffold. This scaffold also showed the highest proliferation 

rate as well as upregulated expression of both type I and type III 

collagen. Moreover, tagged human PDL cells caused surrounding 

tissues to grow within the porous scaffolds. The study concluded that 

the chitosan/collagen composite scaffold encoding TGF-β1 is a 

candidate that could work well for periodontal tissue regeneration. 
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Cellulose 

Cellulose membranes were the first biomaterial employed as 

surgical barriers for guided tissue regeneration, followed by expanded 

polytetrafluoroethylene (ePTFE) and some other biodegradable 

polymers.53-55 Cellulose and ePTFE have been introduced with the 

commercial names of Millipore filter and Gore-Tex as non-resorbable 

biomaterials for cell-occlusive barriers used for tissue regeneration.55 

As a relevant form of cellulose in tissue engineering, microbial 

cellulose (MC) is a polysaccharide that has been developed from 

Acetobacterxylinum.56 In addition to its use in the treatment of 

periodontal defects, guided-tissue regeneration, and preprosthetic 

surgery, MC membranes offer many other applications in regenerative 

medicine, including their use as a graft for dura mater surrounding 

brain tissues.56 MC has been previously used in wound-healing, 

confirming its promise as a product in the biomaterials field.56 MC 

membranes have been employed as a scaffold material to increase cell 

attachment.57 Wan et al58 synthesized a MC membrane coated with 

hydroxyapatite and found that mesenchymal stem cells (MSC) 

attached and proliferated onto the MC membrane with a low 

inflammatory response.58 

In vivo studies using MC demonstrated that MC samples did not 

cause any macroscopic inflammatory responses after 1 and 3 weeks of 

implantation,56 confirming findings from in vitro experiments.58 MC has 

also been used as a physical barrier in periodontal regeneration, to 

separate incised oral epithelial cells and gingival connective tissue 

from the treated root surface, allowing PDL cells to proliferate inside 

the treated area, leading to tissue regeneration.56,59 

Another form of cellulose used in tissue engineering is cellulose 

hydrogels. They have been shown to be biocompatible with connective 

tissues. In vitro experiments on cellulose hydrogels revealed that this 

material has potential to enhance osteoblast cell attachments and 

proliferation for bone tissue engineering.60 
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Protein derivatives 

Collagen 

Collagen, an extremely abundant protein and defining 

component of connective tissue throughout the body, is a potent 

biomaterial with a vast potential for tissue regeneration. Examples of 

collagen's beneficial role during tissue repair include surrounding 

tissue compatibility, biodegradability, induction of epithelial 

regeneration,61 and its low immunogenicity and cytotoxicity.62 More 

specifically, due to its low immunogenicity, collagen fosters the growth 

of a native ECM, is chemotactic for fibroblasts, and induces a cascade 

by which the internal matrix is further developed.63 

Collagen has a strong osteoinductive effect, stimulating 

osteoblast differentiation and proliferation, which would lead to bone 

growth. Collagen also increases gene expression for morphogenic 

proteins, such as BMP.44 To engineer skeletal tissues, a scaffold should 

contain a significant number of progenitor cells in addition to bioactive 

agents that can draw in cells with a restorative functionality to the site 

of damage.64,65 Collagen plays a crucial role in facilitating this biological 

process because it acts as an anchor for the attachment of 

proteoglycans and glycosaminoglycans, improving the overall 

mechanical strength and stability of the regenerated tissue.66 While 

collagen's inductive role in BMP expression has demonstrated a strong, 

notable regeneration of the peri-implant and periodontal defects, 

previous in vivo studies demonstrate that duration of BMP availability 

and activity in scaffolds is limited.67 

The rehabilitative potential of collagen in tissue engineering lies 

primarily in its use for delivering plasmids and adenoviral vectors. For 

example, a study examining the combination of adenovirus encoding 

PDGF-B (AdPDGF-B) with a collagen gel noted an increase in the area 

of cementum, filling of alveolar defects, and an increase in bone 

volume.68 However, the target tissue and type of collagen in the 

scaffold are important factors to consider because different types of 

collagen may provide different degrees of biocompatibility, 

immunogenicity, degradation rates, and different mechanical 

properties of the scaffold.69,70 For example, types I and III collagen are 
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known to make up the PDL,71 and type IV collagen makes up the 

basement membrane of junctional epithelium and the epithelial rests 

of the PDL.72 

Fibrin 

As a natural protein, fibrin is synthesized from fibrinogen, which 

may be autologously harvested from the human body.73 Polymerized 

fibrin is a main constituent of blood clots and has an important 

function in the later wound-healing processes.74 Due to its natural 

ability to enhance cellular interaction and follow scaffold remodeling 

compared to the synthetic scaffolds, fibrin has found a well-established 

application in various areas of research in regenerative dentistry.75 

Fibrin provides a biocompatible carrier for biomolecules and presents a 

substrate for adhesion of tissue-forming cells such as endothelial cells, 

and fibroblasts, which are engaged in angiogenesis and are responsible 

for remodeling of the new regenerated tissues.76 

Fibrin provides suitable locations for cell-substrate binding, and 

therefore it mimics the native tissue77 and allows for remodeling by 

cell-associated proteolytic activity.78 Fibrin gel has been produced 

recently with a shape of three-layered human PDL cell sheets and 

transplanted with a human dentin block subcutaneously into the back 

of a rat. The results of histological evaluations revealed that the 

human PDL cells/dentin blocks stimulated a new cementum-like hard 

tissue on the surfaces of more than 60% of the samples after 6 weeks 

of implantation.79 

Fibrin glue has also been used with periosteal cell/matrix 

hybrids to form new bone at heterotopic sites in nude mice. The 

periosteal cells were mixed with fibrin glue in a syringe, and then the 

cell/matrix-fibrin glue was injected on the dorsum of athymic nude 

mice. After 3 months, histological evaluations confirmed the ability of 

fibrin glue carrier to cause new bone formation.80 

Fibrin enhances the mitogenic response of the periosteum 

during the bone-healing process by trapping and activating platelets 

that cause the secretion of growth factors, such as platelet-derived 

growth factor, transforming growth factor, and insulin-like growth 

factor I.81,82 Choukroun et al83 developed a fibrin matrix known as a 
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platelet-rich fibrin (PRF) in order to hold platelet cytokines and cells 

before releasing them after a predetermined time. Gassling et al76 

showed that PRF is an excellent scaffold material for proliferation of 

human periosteal cells, with a great potential for use in tissue 

engineering; however, the imperative property of PRF is a profit not 

only due to its biocompatibility, but also because of its lower costs.76 

Numerous researchers have confirmed fibrin as an appropriate 

scaffold for adherence, colonization, and profileration of human 

mesenchymal stem cells (HMSC).84,85 Therefore, using fibrin as an 

autologous scaffold for periosteal cell or stem cell transplantation and 

for bone tissue engineering is a promising application; however, its 

fast biodegradability may be a disadvantage for its use as a shape-

specific scaffold in tissue engineering. Thus, optimizing fibrin 

composition is an area requiring further research to acquire a scaffold 

system that provides the best shape integrity.75 

Stem cells 

Preclinical investigations revealed that stem cell delivery can be 

used to create consistent and efficient outcomes in managing dental 

and orofacial defects,86,87 so that some clinical trials employing in vitro 

expanded stem cells have begun or are in progress. The first clinical 

alveolar bone reconstruction was conducted in 2009 using dental pulp 

stem cells (DPSCs). This work proposed that a dental pulp stem 

cells/collagen sponge biocomplex can entirely repair human mandible 

defects and demonstrated that this cell population could be employed 

for the regeneration of organs. In 2011, there was an approved clinical 

study for periodontal regenerative therapy using cell sheet technology. 

The results of this work indicated that the use of autologous PDL cell 

sheets and β-tricalcium phosphate (β-TCP) could restore the defects of 

alveolar bone and PDL tissue.86,87 

Due to the lack of native stem cells, tissue regeneration does 

not naturally occur in bone defects. For this reason, exogenous 

regenerative materials including in vitro manipulated stem cells are 

required to encourage the host cell niche and help tissue repair.88 

Stem cells and/or progenitor cells are typically cultured ex vivo and 

used to treat patients as biological agents.89 A promising source of 

stem cells needs to have high proliferation ability, ability to 
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differentiate into intended types of cells, low antigenicity, and easy 

manipulation into expanded processing. PDL stem cells (PDLSCs), 

stem cells from apical papilla (SCAP), stem cells from human 

exfoliated deciduous teeth (SHED), and bone marrow mesenchymal 

stem cells (BMMSCs) are the common potential cell sources being 

employed in dental tissue engineering.87,89 These cells are isolated 

from the dental tissue, bone marrow, and adipose, and then they are 

proliferated and implanted into the periodontal defect using either 

biomaterial-free or biomaterial-based scaffolds.90 Otherwise, the cells 

may be allogeneic from a cell bank.87 Recent reports have shown that 

MSC have been used for the regeneration of PDL, cementum, and 

alveolar bone in vivo.90,91 

BMSCs can be used practically in periodontal tissue 

engineering.91-93 In one study, biodegradable collagen as the 

biomaterial scaffold supported BMSCs during implantation.94 The 

results of another study on the implantation of cultured human PDL 

stem cells into the produced periodontal defects in rats demonstrated 

that the stem cells were adhered to both the alveolar bone and 

cementum surfaces, and there was an indication of the development of 

a PDL-like structure.95,96 Stem cell therapy will need to consider the 

costs, provide help to patients, satisfy regulatory agencies, meet 

enhanced stem cell supplies, be covered by medical insurance, and 

prove lucrative for pharmaceutical companies to get to the final stages 

of clinical applications.87 

Summary 

The applications of natural polymers have proven to be 

extremely potent in preprosthetic surgery and in periodontal tissue 

regeneration. In every substance, the biocompatibility and induction of 

cell migration and attachment are essential for a successful repair. 

Although minor differences exist between the polysaccharide and 

protein derivatives, the overall goal is that scaffold implantation and 

cellular activity guides regeneration of all components of the 

periodontium. These biological agents target the soft tissue and 

underlying hard tissue, and the addition of a growth factor can further 

stimulate vascularization and osteoprogenitor differentiation, for 

example, to repair the resorbed bone. The mimicry of a native matrix 
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allows for normal biochemical processes. A leading candidate for 

alternative treatment, stem cell therapy, was also examined. In vitro 

testing has shown that stem cells hold great promise for the future of 

regenerative dentistry. All the natural origin polymers covered in this 

mini review (Table 1) are the most widely recognized treatment 

agents, and we have demonstrated comprehensively, with the support 

of material characteristics and clinical applications (Table 2), that the 

potential for each can induce repair of periodontal and craniofacial 

defects. 

Table 1. Summarized material characteristics 

  Chitosan Cellulose Collagen Fibrin 

Advantages –Biocompatible 
–Antibacterial 
–Wound 

healing 

–Enhanced cell 
attachment 
–No 

macroscopic 
inflammatory 
effect 

–Low 
immunogenicity 
–Strong 

osteoconductivity 

–Mimics native 
tissue 

–Enhances 

mitogenic 
response of 

periosteum 

Disadvantages –Poor 
mechanical 
strength 

–Cytotoxic 
effects 

–Poor mechanical 
properties 

–Rapid 
biodegradability 

Suggested 
materials to 
form the potent 

composite 

–Bioactive 
glass 
–

Hydroxyapatite 
–Alginate 

–Collagen 

–
Hydroxyapatite 
–Chitosan 

–Pectin 

–Hydrogel 
–PLGA 
–Hyaluronic Acid 

–Hydroxyapatite 
–Bioglass 

–Collagen 
–Polyurethane 
–Hydroxyapatite 

–Calcium 
Phosphate 

–Polylactide 

Table 2. Summarized clinical applications 

  Chitosan Cellulose Collagen Fibrin 

Clinical mode 
of delivery 

–Nanofiber 
membrane for 
GTR 

–Sponge 
–Electrospun 
nanofibers 
–Bioactive 
coating 

–Surgical barrier 
placement for 
GTR 

–Injectable gels 
–3D scaffold 

–Porous sponge 
implantation 
–3D scaffold 

–Injectable gels 

–Fibrin gel 
–Fibrin glue 
–Fibrin 

microbeads 
–3D scaffold 

On-site 
advantages 

–One of the 
most potent 

curative 
materials used 

–Enhanced 
proliferation of 
human PDL cells 
–Enhanced 

angiogenesis 

–Has a unique 
nanofibrillar 

composition that 
mimics a perfect 

matrix for 
regeneration 
–Allows for rapid 
healing 

–Serves as a 
barrier against 
infection 

–Extremely 
biocompatible 

–Controls 
preodontoblast 

rearrangement 
and their 
adhesion to pulp 
tissue 

–Widely used in 
maxillofacial and 

–Instigates 
hemostasis and 

tissue bonding 
–Minimizes 

blood loss 
–Combats 
bacterial 
infection at the 

site of injury 
–Successful use 
of fibrin-based 
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  Chitosan Cellulose Collagen Fibrin 

alveolar bone 
grafting 

scaffold in 
regenerative 
endodontics 
observed as well 
as regeneration 

of peri-implant 
defects, socket 
preservation, 
and healing of 
sinus 
perforations 

Complications –Uncontrolled 
dissolution in 
some cases 

–Low durability 

under 
compression of 
maxillofacial 
bone 

–Inflammatory 
reaction noted in 
several in vivo 
studies for bone 

engineering 

–Lack of durability 
under 
compression of 
maxillofacial bone 

–Loses capacity to 
maintain space in 
humid 

environment 
–Animal allograft 
of collagen could 
transmit disease 

–Rapid 
shrinkage 
remains a 
serious concern 

for clinicians 
–Requires use as 
a composite 

scaffold to 
overcome low 
mechanical 
strength 

Study type –In vitro 
–In vivo 
–Clinical trial 

–In vitro 
–In vivo 
–Clinical trial 

–In vitro 
–In vivo 
–Clinical trial 

–In vitro 
–In vivo 
–Clinical trial 
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