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Abstract 

 
The first step in the enzymatic cycle of mammalian peroxidases, including 

lactoperoxidase (LPO), is binding of hydrogen peroxide to the ferric resting 

state to form a ferric-hydroperoxo intermediate designated as Compound 0, 

the residual proton temporarily associating with the distal pocket His109 

residue. Upon delivery of this “stored” proton to the hydroperoxo fragment, it 

rapidly undergoes O–O bond cleavage, thereby thwarting efforts to trap it 

using rapid mixing methods. Fortunately, as shown herein, both the peroxo 

and the hydroperoxo (Compound 0) forms of LPO can be trapped by 

cryoradiolysis, with acquisition of their resonance Raman (rR) spectra now 

permitting structural characterization of their key Fe–O–O fragments. Studies 

were conducted under both acidic and alkaline conditions, revealing pH-

dependent differences in relative populations of these intermediates. 

Furthermore, upon annealing, the low pH samples convert to two forms of a 

ferryl heme O–O bond-cleavage product, whose ν(Fe═O) frequencies reflect 

substantially different Fe═O bond strengths. In the process of conducting 

these studies, rR structural characterization of the dioxygen adduct of LPO, 

commonly called Compound III, has also been completed, demonstrating a 

substantial difference in the strengths of the Fe–O linkage of the Fe–O–O 

fragment under acidic and alkaline conditions, an effect most reasonably 

attributed to a corresponding weakening of the trans-axial histidyl imidazole 

linkage at lower pH. Collectively, these new results provide important insight 
into the impact of pH on the disposition of the key Fe–O–O and Fe═O 

fragments of intermediates that arise in the enzymatic cycles of LPO, other 
mammalian peroxidases, and related proteins. 
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Introduction 

Lactoperoxidase (LPO), a secretory glycohemoprotein that 

belongs to the mammalian peroxidase superfamily, plays an important 

role in the innate immune defense system by generating the 

antimicrobial hypothiocyanate ion via oxidation of thiocyanate, 

employing endogenous hydrogen peroxide as the primary oxidant.1,2 

Similar to other mammalian peroxidases and some other heme 

proteins, including cytochrome c,3 the heme group in this enzyme is 

covalently linked to the protein matrix. Recent crystallographic data of 

buffalo and bovine LPOs,4,5 as well as previous magnetic circular 

dichroism6 and NMR studies,7 show that the prosthetic group of LPO is 

a modified derivative of protoheme, known as heme l, which bears 

ester linkages formed between two hydroxymethyl groups of heme l at 

positions 1 and 5 and the protein side chains of glutamate-258 

(Glu258) and aspartate-108 (Asp108), respectively (Figure 1).4-7 

These covalent linkages, present in LPO and other mammalian 

peroxidases, serve to mediate protein-induced strain that results in an 

unusual degree of out-of-plane distortion of the heme prothetic 

groups,4,5 evidence for which had been obtained in earlier 

spectroscopic studies.9,10 

 

 
Figure 1. Scheme of heme l in LPO. 
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The heme iron is coordinated to the imidazole fragment of the 

proximal histidine (His351) as the fifth ligand. Until recently, it had 

been accepted that the proximal histidyl imidazole residue of LPO and 

other mammalian peroxidases are H-bonded to a nearby, strictly 

conserved, Asn residue postulated to serve as an H-bond acceptor,11 

much as occurs for the plant proximal histidyl imidazoles that interact 

with a strictly conserved Asp residue, a strong H-bond acceptor.12,13 

However, inasmuch as the Asn of mammalian proxidases is a much 

weaker H-bond acceptor, it was difficult to rationalize how such a 

configuration could give rise to the strong iron–nitrogen bonds 

documented for LPO and MPO, as measured by crystallographic 

distances and relatively high frequencies for the ν(Fe–NHis) stretching 

modes observed in the resonance Raman spectra.14 Finally, acquisition 

of crucial experimental data and thoughtful analysis of related 

computational results led to a satisfying interpretation that invokes 

cooperative H-bonding interactions of a proximal side Arg-Asn-His 

ensemble that requires a heme-coordinated histidyl imidazolate 

residue, thereby reconciling the substantially elevated ν(Fe–NHis) 

frequencies (Figure 2).11 

 

 
Figure 2. Mechanism of Compound 0 formation in LPO. 

The distal side of LPO contains a relatively constrained ligand 

binding site4,5,8 and houses additional structural features that play 

crucial roles in the peroxidase catalytic cycle, including the imidazole 

of the distal His109 (pKa 5.8)15 and Arg255, the former serving as a 
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general acid–base catalyst needed for the required deprotonation step 

involved in binding of H2O2 and the latter mainly acting to stabilize 

developing negative charge on the terminal oxygen fragment during 

the O–O bond cleavage process (vide infra) (Figure 2). The first step of 

the LPO catalytic cycle is binding of hydrogen peroxide to the ferric 

state to form a fleeting ferric-hydroperoxo intermediate designated as 

Compound 0, temporarily storing the residual proton at the 

deprotonated (i.e., nonionized) His109 residue (Figure 2).16-18 

Subsequent delivery of this stored proton to the terminal oxygen of 

the bound hydroperoxo fragment of LPO Compound 0 triggers rapid 

heterolytic cleavage of the O–O bond, releasing a water molecule and 

forming a two-electron oxidized reactive intermediate, with the 

oxidizing equivalents presumably being initially localized on the heme 

as a ferryl heme π-cation radical, a species typically referred to as 

Compound I in the case of plant peroxidases and other oxidative heme 

enzymes.1-3,16-18 However, in the case of LPO and other mammalian 

peroxidases, this Compound I species spontaneously undergoes an 

internal oxidation–reduction process where the Compound I transient 

oxidizes an aromatic protein residue, thereby producing a ferryl heme 

and a protein-based radical, the latter commonly being designated as 

aa•; typically the radical site involves a tyrosine or tryptophan 

residue.16-19 

 

In the case of LPO and other mammalian peroxidases, this 

overall process occurs with such efficiency that the primary 

intermediate, Compound 0, has eluded definitive structural 

characterization until now. The problem arising is that the primary 

oxidant, H2O2, carries with it into the active site the proton that 

ultimately facilitates the O–O bond cleavage reaction, making it quite 

difficult, using rapid mixing methods, to effectively isolate Compound 

0.20-22 To trap and structurally characterize this key intermediate, a 

method is required that can generate it while also preventing delivery 

of the catalytic (“stored”) proton, a seemingly difficult task. However, 

as is demonstrated in these current studies, the cryoradiolysis 

approach initiated by Symons and extended by others23-25 does provide 

an effective method to generate and trap a hydroperoxo intermediate 

within the LPO active site in the absence of the catalytic proton. In this 

way, the peroxo and/or hydroperoxo derivatives of plant and 

nonmammalian hydroperoxidases,26,27 as well as those of bacterial and 
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animal cytochromes P450 and related enzymes, have been trapped 

and characterized by EPR and ENDOR techniques,28-31 with reports of a 

crystallographically characterized cryoreduced form of a fungal 

peroxidase,32 CYP101,33 myoglobin,34 and a few others.35,36 

 

In brief, the essential concept involved in cryoradiolysis is to 

freeze-trap the relatively stable dioxygen adduct, Fe–O2 [formally 

Fe(III)–(O–O–)], of heme proteins within an aqueous buffer containing 

glycerol or certain other organic compounds; in the case of LPO and 

other peroxidases, this species is designated as Compound III.16-18,37 

Upon irradiation with γ-rays, free-electrons and organic radicals are 

produced, the electrons being mobile, while other movements, 

including proton transport, are more restricted.25 The freeze-trapped 

[Fe(III)–(O–O2–)] peroxo fragment is generated and can be 

spectroscopically characterized.28-31 Careful annealing to higher 

temperatures permits proton transfer that, depending upon the ability 

of a given protein to transport protons to its active site, can lead to 

formation and trapping of the hydroperoxo species (Fe(III)–O–O–H), 

while further annealing can lead to delivery of another proton to 

facilitate the O–O bond cleavage and product formation, as in the case 

of CYP101,28 or possibly to the loss of the bound hydroperoxo 

fragment, an example of which is documented in the case of the 

T252A mutant of CYP101.28 In fact, this cryoradiolysis method, 

combined with the powerful capability of resonance Raman (rR) 

spectroscopy, has been recently applied to generate, trap, and 

structurally characterize the key Fe–O–O and Fe–O–O–H fragments of 

ferric peroxo and hydroperoxo derivatives of several different proteins, 

including human globins as well as bacterial cytochromes P450.38-42 

 

Inasmuch as mammalian peroxidases play critical roles in 

human physiology in both normal and diseased states,43 drawing keen 

interest from the pharmaceutical industry as potential drug targets,43 

they are naturally attractive, but as yet neglected, candidates for 

study by the methods described above. Responding to this 

opportunity, this combination of methods, hereafter referred to as 

rR/cryoradiolysis, is used here to generate and structurally 

characterize, for the first time, the peroxo and hydroperoxo derivatives 

of LPO under varying pH conditions and to document the nature of 

their O–O bond cleavage ferryl heme products, which are seen to differ 
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between acidic and alkaline pH. In the process, earlier studies of the 

rR characterization of LPO Compound III, performed at pH 7.0,44 have 

been extended to samples buffered at pH 5.6 and 8.2, where it is now 

revealed that pH-dependent changes in the linkage between the heme 

iron and the proximal NHis donor group are sufficient to account for 

significant pH-induced alterations in the strength of the Fe–O linkage 

of LPO Compound III, as directly reflected in substantial shifts of the 

ν(Fe–O) stretching mode. This combination of newly acquired data for 

the Compound III, Compound 0, and ferryl heme derivatives of LPO at 

varying pH values, differing in the protonation status of the key distal 

histidine residue, as well as differences in the proximal side “push 

effect” associated with the strength of the Fe–NHis linkage,12,45 provides 

useful insight into the effect of pH on the disposition of the Fe–O–O 

and Fe═O fragments of these species and serves to demonstrate the 

power of this approach for future studies of the active site structures 

of the catalytic intermediates of mammalian peroxidases in the 

presence of natural substrates and potential drug candidates. 

Experimental Methods 

Isolation and Purification of Lactoperoxidase 
 

Lactoperoxidase (LPO) was isolated from unpasteurized bovine 

milk obtained from a local dairy farm using Amberlite CG-50 weak 

cation exchanger resin according to previously published 

procedures.46,47 Isolated raw material was further purified by cation 

exchange chromatography (CM-52), followed by two Bio-Gel P-100 (10 

mM phosphate buffer, pH 6.8) column separations to obtain LPO 

fractions with Rz value (A412/A280) greater than 0.90.18,48 The final Rz 

value of the enzyme was 0.92, and approximately 0.420 g of pure LPO 

was obtained from 60 L of unpasteurized milk. The electronic 

absorption spectrum (Hewlett-Packard 8452A spectrophotometer) of 

the LPO resting state exhibits the Soret band at 412 nm and Q-bands 

at 500, 543, and 590 nm, as well as a ferric-heme charge transfer 

band at 630 nm, in agreement with the previously published data.18,48 

Preparation of Lactoperoxidase Intermediates 
 

Ferric LPO samples were prepared by equilibrating the enzyme 

with 50 mM phosphate or acetate buffers at pH (pD) 8.2 and 5.6, 
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respectively; for example, the pD was adjusted employing pD = 

pH(meter reading) + 0.4 formula. All samples contained 20% (v/v) 

purified glycerol or, when needed, glycerol-(OD)3; the glycerol was 

purified by vacuum distillation. The final concentration of protein was 

300 μM with 0.92 Rz value. The heme concentration was calculated 

according to the millimolar absorptivity at the Soret maximum at 412 

nm, 114 mM–1 cm–1.18,48 Ferrous LPO samples were obtained by 

anaerobic reduction of ferric LPO with approximately 3–4 mol equiv of 

dithionite solution at room temperature, and the reduction was 

confirmed by electronic absorption spectrophotometry (the Q-bands of 

the ferrous form being at 562 and 597 nm).18 The dithionite solution 

was prepared anaerobically and was used fresh, and its concentration 

was determined spectrophotometrically using ε316 = 8500 mM–1 cm–1.49 

The LPO compound III was prepared in NMR tubes connected to the 

Schlenck line by sequential application of vacuum, high purity argon, 

vacuum, and then gaseous oxygen (1 atm of 16O2 or 18O2) to ferrous 

LPO at −10 °C, followed by vigorous mixing with a Vortex apparatus 

for 10 s and then rapid freezing by submersion in liquid nitrogen (77 

K). Dithionite reduction is known to exhibit time-dependent spectral 

changes; for example, the prolonged incubation of ferrous samples 

results in formation of additional ferrous states.14 Thus, the rR spectra 

of ferrous samples (pH 8.5) measured immediately after reduction 

exhibit a dominant ν(Fe–NHis) mode that decreases with time (within 

60 min), and a new ν(Fe–NHis) band at 221 cm–1 appears.14 In the 

present work, care was taken to introduce the O2 and complete mixing 

within a few minutes, to facilitate formation of the single dioxygen 

adduct associated with the form exhibiting the ν(Fe–NHis) mode at 254 

cm–1; that is, the observation of a single ν(Fe–O) mode confirms the 

presence of a single Compound III. The formation of LPO Compound 

III was confirmed by acquiring rR spectra at 77 K with the laser power 

of 1 mW, using the 415 nm excitation line from a Kr ion laser, that is, 

by inspection of the intensity of the ν(Fe–O) mode at 534 cm–1. 

 

The Cryoradiolytic Reduction 

 

The cryoradiolytic reduction of LPO Compound III samples was 

done by exposing the samples to 3.5 Mrad of γ-irradiation from a 60Co 

source at the Notre Dame Radiation Laboratory (University of Notre 
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Dame, South Bend, IN). During irradiation, the samples were 

contained in a modified Dewar vessel and continuously immersed in 

the liquid nitrogen. Annealing was done by immersing a given 

irradiated sample into n-pentane/liquid nitrogen solution at a desired 

temperature for 60 s and then very quickly (<1 s) transferring back 

into the liquid nitrogen vessel. Temperatures of 170 and 180 K were 

chosen as appropriate for conversion of peroxo to hydroperoxo forms, 

based on earlier work with HRP,26 while a temperature of 200 K was 

selected to generate the O–O bond cleavage ferryl heme product.26 

 

The Resonance Raman Measurements 
 

The resonance Raman spectra of LPO Compound III and 

Compound 0 were acquired using a Spex 1269 spectrometer equipped 

with a Spec-10 LN liquid nitrogen-cooled detector (Princeton 

Instruments, NJ). The data were measured with the 415.4 nm 

excitation line from a Kr+ laser (Coherent Innova Sabre Ion Laser). 

The spectra of irradiated samples annealed at 180 and 200 K, where 

the O–O bond cleavage product (ferryl heme) is formed, were 

measured with a 441.6 nm line provided by a He–Cd laser (IK Series 

He–Cd laser, Kimmon Koha CO., Ltd.), an excitation line that is 

appropriate for effective enhancement of this species. The rR spectra 

were collected using back scattering (180°) geometry with the laser 

beam being focused by a cylindrical lens to form a line image on the 

sample.50 The laser power was adjusted to 1 mW or less. All 

measurements were done at 77 K, and the total collection time was 2 

h in the high-frequency region and 2–3 h in the low-frequency region. 

The slit width was set at 150 μm, and the 1200 g/mm grating was 

used. The NMR tubes were positioned into a double-walled quartz low 

temperature cell filled with liquid nitrogen. The sample tubes were 

spun to avoid local heating. Spectra were calibrated with fenchone 

(Sigma-Aldrich, WI) and processed with Grams/32 AI software 

(Galactic Industries, Salem, NH). The difference traces in Figure 7 

were deconvoluted using 50/50% Gaussian/Lorentzian functions 

according to the procedure described in the Supporting Information. 
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Results 

1LPO Compound III 
 

The rR spectra of the 16O2 and 18O2 adducts (Compound III) in 

H2O and D2O buffers, at pH 8.2 and 5.6 in the high-frequency region, 

where heme macrocycle modes occur, are illustrated in Figures S1 and 

S2 of the Supporting Information. There it is shown that no significant 

differences are seen in the rR spectra for these two pH values; that is, 

as expected for a Fe(III)–(O–O–) formulation, in both cases the LPO 

Compound III is in a 6-coordinate low-spin (6cLS) ferric state with 

identical heme macrocyle structures. These rR spectra are in 

agreement with previously published data collected at −45 °C with 

solutions buffered at pH 7.0.44 It is noted that there were no 16O2/18O2 

or H2O/D2O-sensitive modes detected in the high-frequency region 

(bottom two difference traces in Supporting Information Figures S1 

and S2). This observation is consistent with the fact that the ν(O–O) 

stretching mode is commonly not enhanced for histidyl ligated heme 

protein dioxygen adducts,51 although some precedent exists for 

unusual enhancement of these modes in cases where the Fe–O–O 

fragment is distorted by steric restrictions within the distal pocket 

(vide infra).51-53 

 

On the other hand, the ν(Fe–O) stretching modes of the Fe–O–O 

fragment of oxygenated heme proteins are typically enhanced, and 

this behavior is confirmed for these Compound III samples as seen in 

Figure 3, which presents the low-frequency rR spectra of LPO 

Compound III at pH 8.2 and their 16O/18O difference spectra in both 

H2O and D2O buffers. The most intense band at 677 cm–1 is assigned 

to the ν7 heme macrocycle mode, and the modes associated with 

heme peripheral groups are expected in the region of 330–460 cm–1.54-

57 Most importantly, the oxygen-sensitive modes are observed at 534 

and 412 cm–1 in the spectra of 16O2 in H2O and D2O buffers (traces A 

and C in Figure 3). These modes shift by 19 and 9 cm–1 upon 18O2 

substitution (traces B and D and the difference traces in Figure 3) and 

are assigned to the ν(Fe–O) stretching and δ(Fe–O–O) bending modes, 

respectively, noting that (in the absolute spectra) the latter is hidden 

under the intense 413 cm–1 out-of-plane heme mode.9 On the basis of 

the two-body harmonic oscillator approximation, the ν(Fe–O) 
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stretching mode should exhibit a 24 cm–1 downshift upon 18O 

substitution. The unusually small apparent 16O2–18O2 shift (19 cm–1) 

observed here has been previously explained by invoking a “Fermi-

resonance type interaction”44,58-60 between the ν(Fe–18O) stretching 

mode, whose inherent frequency is at 512 cm–1, and the nearby 508 

cm–1 heme mode, whose inherent frequency is verified by inspection of 

traces A and C. The vibrational interaction between these two modes 

results in the upshift of the ν(Fe–18O) mode by 3 cm–1 to 515 cm–1 and 

a 3 cm–1 downshift of the 508 cm–1 mode to 505 cm–1, as can be seen 

in traces B and D and the difference traces in Figure 3, the derived 
16O2–18O2 shift (22 cm–1) of the ν(Fe–O) mode being satisfyingly closer 

to the 24 cm–1 calculated shift. 

 

 
Figure 3. Low-frequency rR spectra of LPO Compound III at pH 8.2, 16O2/H2O (A), 
18O2/H2O (B), 16O2/D2O (C), 18O2/D2O (D), and their difference traces. Spectra 

measured with 415 nm excitation line at 77 K and normalized to the ν7 mode at 677 
cm–1. 

The corresponding spectra of Compound III acquired for 

solutions at pH 5.6 are presented in Figure 4. Although complicated, 

https://dx.doi.org/10.1021/ja5107833
http://epublications.marquette.edu/
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these new spectral data can be readily understood by first noting that 

the presence of the 515/505 pair in trace B, along with the 534 cm–1 

peak in trace A, shows that the species present at pH 8.2 is retained at 

pH 5.6. However, it is noted that a second form is present, as 

evidenced by the new 558 cm–1 feature seen in trace A, which 

disappears and apparently is observed at 534 cm–1 for the sample 

prepared with 18O2, as shown in trace B; that is, the 534 cm–1 feature 

seen in trace A, assigned to ν(Fe–16O) of the form present at pH 8.2, 

cannot contribute intensity near 534 cm–1 for the samples prepared 

with 18O2. Thus, the new form appearing at pH 5.6 exhibits a ν(Fe–16O) 

mode at 558 cm–1 and a ν(Fe–18O) mode at 534 cm–1, a shift that is in 

good agreement with that calculated for a diatomic oscillator. It is 

noted that the difference patterns (two bottom traces in Figure 4) at 

first glance show a confusing ν(Fe–O) difference trace, where there is 

only one positive ν(Fe–16O) stretching mode at 558 cm–1 that is 

seemingly shifted to the negative 515 cm–1 mode, giving an apparent, 

but quite unreasonable, 43 cm–1 downshift. However, this apparent 

anomaly is easily explained by the assignments described above. Thus, 

the ν(Fe–16O) mode of the lower frequency Fe–O–O conformer (at 534 

cm–1) overlaps with the ν(Fe–18O) mode of the higher frequency Fe–O–

O conformer (also at 534 cm–1), resulting in their near cancellation; 

that is, the intensity of the higher frequency conformer is weaker than 

that of the lower frequency conformer, so that there is residual 

positive intensity near 534 cm–1. Finally, it is also noted that the 

difference patterns (two traces at the bottom of Figure 4) show two 

sets of the δ(Fe–O–O) bending modes: the 412 cm–1 feature that shifts 

to 404 cm–1 in the 18O2 sample is identical to that seen previously at 

pH 8.2 and is associated with the lower frequency Fe–O–O conformer, 

and a new δ(Fe–O–O) bending mode at 426 cm–1, with a comparable 8 

cm–1 downshift, that is associated with the higher frequency Fe–O–O 

conformer. 

 

The frequency of the ν(Fe–O) mode strongly depends on the 

character of the heme proximal ligand, and for histidine-ligated heme 

proteins, like LPO and globins, there is an inverse correlation between 

ν(Fe–NHis) and ν(Fe–O2) modes; that is, the greater is the Fe–NHis bond 

strength (i.e., higher ν(Fe–NHis) frequency), the weaker is the Fe–O 

bond strength (i.e., lower ν(Fe–O2) frequency).51,61 Previous rR studies 

of ferrous LPO revealed that at basic pH (8.5) there are two ν(Fe–NHis) 

https://dx.doi.org/10.1021/ja5107833
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/ja5107833#fig4
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modes observed; that is, the dominant one is seen at 254 cm–1 and 

the lower intensity one at 221 cm–1.14 At pH 5.0, these modes had 

reversed intensities; the higher frequency 254 cm–1 mode has smaller 

intensity, and the 221 cm–1 mode becomes dominant.14 The ν(Fe–O) 

stretching mode of Compound III, seen in this present work at basic 

pH at 534 cm–1, is relatively low as compared to other heme proteins 

that contain histidine as a proximal ligand, such as myoglobin and 

hemoglobin (∼572 cm–1); this lowering of the ν(Fe–O) frequency is 

entirely consistent with the more imidazolate-like character of the 

proximal histidine, as reflected in the observed high ν(Fe–NHis) 

frequency of 254 cm–1.62 

 

In summary of this section, earlier rR studies of LPO had shown 

that solutions with pH values near 5 contain two forms of ferrous LPO, 

a dominant form having a relatively weak linkage between the heme 

iron and the proximal histidine, exhibiting a ν(Fe–NHis) frequency of 

221 cm–1, and a less populated form possessing a relatively strong 

linkage, associated with a ν(Fe–NHis) frequency of 254 cm–1. At pH 8.5, 

the same two frequencies were observed, but having opposite relative 

intensities; that is, now the higher frequency mode was much stronger 

than that of the 221 cm–1 feature. Consistent with those results, in the 

present work dealing with Compound III derivatives at these widely 

varying pH values, it is seen that for a low pH value of 5.6, two forms 

of the dioxygen adduct exist, with a dominant one exhibiting a ν(Fe–

O) mode at 558 cm–1 and a lower population of a species exhibiting its 

ν(Fe–O) mode at 534 cm–1. As in the case of the corresponding ferrous 

derivatives, raising the pH of the Compound III form leads to a 

reversal of populations, with the 534 cm–1 species becoming dominant. 

https://dx.doi.org/10.1021/ja5107833
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Figure 4. Low-frequency rR spectra of LPO Compound III at pH 5.6, 16O2/H2O (A), 
18O2/H2O (B), 16O2/D2O (C), 18O2/D2O (D), and their difference traces. Spectra 
measured with 415 nm excitation line at 77 K and normalized to the ν7 mode at 677 
cm–1. 

2LPO Compound 0 
 

On the basis of the results of the relatively few previous rR 

studies of hydroperoxo derivatives of heme proteins,38,39,42 the ν(Fe–O) 

stretching mode of these species is usually observed at ∼25–40 cm–1 

higher frequency than the corresponding mode of the dioxygen adduct 

(Compound III) [Table 1]. It is noted that, for the peroxo and 

hydroperoxo derivatives of globins and other histidyl-ligated heme 

proteins, the ν(O–O) modes are not generally enhanced. However, in 

the cases of the peroxo and hydroperoxo derivatives of cytochromes 

P450, where the trans-axial proximal ligand is thiolate and the 

https://dx.doi.org/10.1021/ja5107833
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associated ν(O–O) modes are resonance enhanced, this mode is 

observed between 750 and 800 cm–1, a region consistent with a bound 

peroxo/hydroperoxo fragment. It is further noted that in recent studies 

of the hydroperoxo derivatives of cobalt-substituted myoglobins,41 the 

ν(O–O) modes were also enhanced, an observation consistent with the 

fact that these modes are strongly enhanced in the corresponding 

dioxygen adducts of cobalt-substituted myoglobin and hemoglobin.59,62 

Upon careful inspection of the data given in Table 1 for the cytochrome 

P450 samples, it can be noticed that there exists an inverse correlation 

between the ν(Fe–O) and ν(O–O) stretching modes; that is, there is a 

strengthening of the Fe–O bond and attendant weakening of the O–O 

bond as one proceeds from the dioxygen adduct to the peroxo and 

then hydroperoxo forms. 

 

Table 1. Summary of Frequencies and 16O2/18O2 and H2O/D2O Isotopic Shifts 

for the Oxy, Peroxo, and Hydroperoxo Species of Native Mb and Its Co 

Substituted Analogues, LPO at Basic and Acidic pH, and Cytochrome P450 and 

Its D251N Mutanta 

  frequency and isotopic shift [cm–1]   

  ν(M–O) 
Δ[16O2/18O2; H2O/D2O] 

ν(O–O) 
Δ[16O2/18O2; H2O/D2O] 

ref 

FeMb 

oxy 578 [−29; 0]   39 

peroxo n.o.   39 

hydroperoxo 617 [−25; −5]   39 

CoMb 

oxy 549 [−24; 0] 1136 [−68; +2] 41 

peroxo n.o. n.o. 41 

hydroperoxo 583 [−28; −5] 851 [−45; −6] 41 

LPO pH 8.2 

oxy 534 [−22; 0]   44, t.w. 

peroxo 570 [−22; 0]   t.w. 

hydroperoxo n.o.   t.w. 

LPO pH 5.6 

oxy 558 [−24; 0]   t.w. 

peroxo n.o.   t.w. 

hydroperoxo 604 [−24; −5]   t.w. 

CYP101 WT 

oxy 546 [−31; 0] 1139 [−66; 0] 42 

peroxo n.o. n.o. 42 

hydroperoxo 559 [−27; −3] 799 [−40; −3] 42 

CYP101 D251N 

https://dx.doi.org/10.1021/ja5107833
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  frequency and isotopic shift [cm–1]   

  ν(M–O) 
Δ[16O2/18O2; H2O/D2O] 

ν(O–O) 
Δ[16O2/18O2; H2O/D2O] 

ref 

oxy 537 [−30; 0] 1136 [−66; 0] 
1125 [−65; +2] 

38 

peroxo 553 [−27; 0] 792 [−38; 0] 38 

hydroperoxo 564 [−28; −2] 774 [−37; −4] 38 

an.o., not observed. t.w., this work. 

 

Compound 0 at pH 8.2 
 

Returning attention to the present work, first it is noted that, as 

expected, all irradiated samples are in the ferric low spin state, as 

judged by positions of oxidation and spin state marker bands seen in 

the high-frequency region (Supporting Information Figure S3). The 

low-frequency region of the rR spectra of the samples obtained after γ-

ray irradiation of the Compound III samples of LPO at pH 8.2 is shown 

in Figure 5. 

 
Figure 5. Low-frequency rR spectra of LPO irradiated Compound III at pH 8.2, 
16O2/H2O (A), 18O2/H2O (B), 16O2/D2O (C), 18O2/D2O (D), and their difference traces. 

Spectra measured with 415 nm excitation line at 77 K and normalized to the ν7 mode 
at 675 cm–1. 
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In the spectrum of the 16O2/H2O sample, a new mode is 

observed at 570 cm–1 that shifts to 548 cm–1 for the sample prepared 

with 18O2 (spectrum B), yielding a slightly small isotope shift of only 22 

cm–1. (The experimental isotopic shifts of the ν(Fe–O) mode, being 

small as compared to its calculated shifts, are usually associated with 

coupling of the ν(Fe–O) mode with underlying heme or proximal trans 

axial ligand modes (as explained above for Comp III). Another possible 

explanation of the smaller 16O2/18O2 shift observed here is that it arises 

from a larger (i.e., more linear) bending angle of the Fe–O–O 

fragment; e.g., significantly larger isotopic shifts were observed for the 

dioxygen complex of heme oxygenase (HO) and were attributed to its 

rather small (heavily bent) Fe–O–O angle.63) This 570 cm–1 value is 36 

cm–1 higher than the corresponding Fe–16O stretching mode of 

Compound III, seen at 534 cm–1, a shift to higher frequency that is 

consistent with the behavior observed for other peroxo/hydroperoxo 

heme proteins listed in Table 1, thereby strongly supporting the 

generation and trapping of a cryoreduced Fe–O–O fragment. The 

samples in D2O buffers (traces C and D) exhibit the same spectral 

pattern as the corresponding samples in H2O buffer, the lack of an H/D 

shift prompting the assignment of this species to the ferric peroxo 

form. It is important to again note that, as in the case of the 

Compound III species discussed above, there are no 16O2/18O2-

sensitive modes observed in the region of 750–800 cm–1, showing that 

the ν(O–O) modes of the peroxo/hydroperoxo species are not 

enhanced for this protein. 

 

The additional sets of 16O2/18O2-sensitive modes at 534 cm–1 

(16O2) and 515 cm–1 (18O2) in both H2O and D2O buffers (difference 

traces at the bottom of Figure 5) are associated with residual 

Compound III precursor (Figure 3), indicating incomplete conversion of 

Compound III to peroxo/hydroperoxo species in the cryoreduction 

process. If it is assumed that the relative cross sections for the ν(Fe–

O) stretching modes of both Compound III and the peroxo form are 

the same, the analysis of the difference traces in Figure 3 would 

indicate that the intensities of positive and negative bands associated 

with peroxo form have roughly twice the intensity of the corresponding 

positive and negative bands associated with Compound III, implying 

that the cryoreduction was ∼60–70% effective. While this estimate is 

admittedly based on an unexplored assumption, it is also worth 

https://dx.doi.org/10.1021/ja5107833
http://epublications.marquette.edu/
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making the important point that the precise degree of conversion does 

not impact the validity of the ν(Fe–O) mode assignment to the peroxo 

species. Attempts were made to generate the hydroperoxo species by 

annealing the trapped peroxo species at 170 and 180 K. At 170 K, the 

intensity of the band assigned to the ν(Fe–O) of the peroxo form had 

diminished significantly with respect to the 534 cm–1 mode of the 

residual Compound III precursor, with no other 18O-sensitive peaks 

being observed. In fact, after annealing at 180 K, the mode associated 

with peroxo species at 570 cm–1 had disappeared completely, and only 

the 534 cm–1 18O-sensitive band of the residual (more stable) 

Compound III remained; that is, there was no conversion to the 

hydroperoxo form upon annealing to 180 K, the eventual fate of this 

ferric peroxo species being discussed later. 

 

Compound 0 at pH 5.6 
 

Having completed an rR spectral characterization of the active 

site structure of peroxo LPO at elevated pH (8.2), attention was 

focused on samples prepared under acidic conditions. Before 

proceeding to discussion of the key features in the low-frequency 

region, it is first noted that the high-frequency spectral region 

indicates that all species present in the irradiated and subsequently 

annealed samples are, as expected, in the ferric low spin state 

(Supporting Information Figures S3 and S4). Now, focusing on the 

spectral region wherein the vibrational modes of the Fe–O–O fragment 

appear, Figure 6 displays rR spectra of irradiated LPO Compound III 

samples prepared at pH 5.6. Only the stronger intensity bands 

sensitive to the 16O2/18O2 substitution can be observed in the absolute 

spectra. Spectrum A shows two 16O2/18O2-sensitive features appearing 

at 570 and 604 cm–1 in the spectra of the 16O2 adducts that shift upon 

employing 18O2 to 548 and 580 cm–1, respectively (spectrum B). It is 

noted that only the 604 cm–1/580 cm–1 pair of bands is sensitive to 

H/D exchange (spectra C and D as well as the difference traces A–B vs 

C–D). However, in addition to these two more obvious pairs of 

features, the two difference traces of Figure 6 (bottom) show evidence 

for the presence of other components in the difference patterns, 

occurring near 534 cm–1/515 cm–1. 

https://dx.doi.org/10.1021/ja5107833
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/ja5107833#notes-1
http://pubs.acs.org/doi/full/10.1021/ja5107833#fig6
http://pubs.acs.org/doi/full/10.1021/ja5107833#fig6


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of the American Chemical Society, Vol 137, No. 1 (2015): pg. 349-361. DOI. This article is © American Chemical 
Society and permission has been granted for this version to appear in e-Publications@Marquette. American Chemical 
Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from American Chemical Society. 

19 

 

 
Figure 6. Low-frequency rR spectra of LPO irradiated Compound III at pH 5.6, 
16O2/H2O (A), 18O2/H2O (B), 16O2/D2O (C), 18O2/D2O (D), and their difference traces. 
Spectra measured with 415 nm excitation line at 77 K and normalized to the ν7 mode 
at 675 cm–1. 

These important new, but complex, difference traces are most 

effectively analyzed with the aid of simulated spectra, as shown in the 

upper (A) part of Figure 7. The top pattern in the figure exhibits the 

sets of (16O2/18O2) paired bands that were needed to produce an 

overall difference pattern that closely matched the experimental; the 

experimental and simulated (orange) differences traces are overlaid 

immediately below the difference trace of simulated components (top 

trace). While three pairs of bands (red, cyan, and magenta) are 

obviously present, it is noted that a fourth pair of weak bands (dark 

blue pair) was required to maximize the fit between simulated and 

observed difference patterns. All of the derived frequencies are listed 
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in Table 1. Referring to the top set of the derived difference patterns, 

the highest energy pair exhibits 16O2/18O2 components at 604/581 cm–1 

(magenta). As seen in Figure 6, this pair exhibits an H/D shift of 4–5 

cm–1 (i.e., shifting to 599/577 cm–1), consistent with its assignment to 

hydroperoxo-LPO. The pair of bands seen at 570/548 cm–1 (red) is 

consistent with assignment to peroxo-LPO, exhibiting the same 

frequencies seen in the cryoreduced samples measured at pH 8.2 with 

no H/D sensitivity (vide supra). The other two pairs of bands detected, 

both associated with LPO Compound III, include the weak difference 

pattern with derived frequencies of 558/534 cm–1 (dark blue) and the 

lowest energy pair having frequencies of 534/515 cm–1 (cyan), the last 

pair corresponding precisely to that seen for LPO Compound III at pH 

8.2; it is again noted that the derived ν(Fe–18O) mode is the result of 

the fitting procedure matching the observed 515 cm–1 peak, but it 

must be recalled that the inherent frequency of this mode is ∼512 cm–

1, its observed frequency being 515 cm–1 due to the interaction with a 

heme mode whose inherent frequency is close to 508 cm–1.44,59 

 

The relative stability of the various forms can be effectively 

determined by conducting controlled annealing experiments whereby 

the temperature is raised from 77 K to higher temperatures, noting 

that the relatively stable Compound III is unlikely to be significantly 

affected throughout the temperature range spanned here (i.e., 77–200 

K). Thus, in Figure 7, the isolated 515 cm–1 feature of LPO–18O2 serves 

as a convenient internal intensity standard throughout the annealing 

excursion. Referring to the middle two traces (B) in Figure 7, focusing 

on the upper difference trace of the simulated components, it can be 

seen that upon raising the temperature from 77 to 170 K, the intensity 

of the peroxo-LPO mode at 570 cm–1 diminishes substantially as 

compared to that of the hydroperoxo-species (at 604 cm–1), the latter 

possessing virtually constant intensity at 77 and 170 K, relative to the 

515 cm–1 internal standard (i.e., 1.00/2.05 vs 1.00/1.98). 

Furthermore, upon warming to 180 K (Figure 7C), the peroxo-LPO 

(570 cm–1) disappears completely, while the hydroperoxo-LPO form (at 

604 cm–1) has diminished only slightly. The important point to 

emphasize is that the loss of intensity of the 570 cm–1 feature, while 

maintaining constant relative intensity of the 604 cm–1 band until 

about 180 K, implies that the peroxo species does not convert to the 

hydroperoxo (Compound 0) species, but independently converts to a 

https://dx.doi.org/10.1021/ja5107833
http://epublications.marquette.edu/
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different form, the nature of which is discussed below. Further 

annealing to 200 K results in almost complete disappearance of the 

hydroperoxo species (trace D, Figure 7). 

 

Figure 7. Deconvoluted difference traces (16O2–18O2 in H2O) of irradiated Compund III 

at pH 5.6 (A), annealed at 170 K (B), annealed at 180 K (C), and annealed at 200 K 
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(D). The upper parts show corresponding extracted Fe–18O and Fe–16O modes 

associated with lower frequency Compound III form (cyan), higher frequency 
Compound III form (dark blue), peroxo form (red), and hydroperoxo form (magenta). 
The bottom traces show overlapped experimental difference traces (black) with 

corresponding fitted curve derived from the components shown in the upper part 
(orange). The PA(515) stands for peak area of mode at 515 cm–1 that was used as 
internal standard used to calculate the changes in peak areas of modes at 548 cm–1 
(representing peroxo species; PA(548)) and 604 cm–1 (representing hydroperoxo form; 
PA(604)). 

 

Summarizing these results at pH 5.6, a lower frequency mode, 

seen at 570 cm–1 and shifting to 548 cm–1 with 18O2, corresponds to 

the ν(Fe–O) stretching mode of the same peroxo form that arises for 

the sample prepared at pH 8.2, as shown earlier. The 604 cm–1 mode 

is 46 cm–1 higher than the new 558 cm–1 mode of the Compound III 

species seen in spectrum A of Figure 4, and in D2O buffer shifts by 5 

cm–1 to lower frequency (599 cm–1). This significant H/D sensitivity 

supports assignment of this 604 cm–1 feature to the ν(Fe–O) mode of a 

new hydroperoxo (Compound 0) species appearing at pH 5.6. As in the 

cases of the irradiated (pH 8.2) samples discussed earlier, although 

carefully checked, there are no (16O2–18O2) difference bands observed 

in the frequency region between ∼750–800 cm–1, where the ν(O–O) 

stretching modes of peroxo or hydroperoxo fragments would be 

expected to occur. The rR spectra of the carefully annealed 

crytotrapped mixture of peroxo-LPO and hydroperoxo-LPO forms 

demonstrate that the peroxo-LPO does not convert to hydroperoxo-

LPO, but decomposes independently throughout the temperature 

range of 170–180 K, at which point only a small percentage of the 

hydroperoxo-species has been lost. 

 

3Ferryl Derivatives Arising from Controlled Annealing To Induce 

O–O Bond Cleavage Reactions. Having fully documented the 

appearance and spectral properties of the peroxo and hydroperoxo 

species in the samples at both pH values, studies were then 

undertaken to clarify the nature of the products formed upon 

controlled annealing of these samples. The first sample investigated 

was the same (pH 5.6) sample annealed at 180 K, whose rR spectrum 

is shown in Figure 7C. That spectrum showed that the peroxo species 

(appearing at 570 cm–1 at 77 K) was totally depleted at 180 K, while 

the (Compound 0) hydroperoxo form (604 cm–1) was almost 

completely retained. As can be seen in Figure 8, top trace, using the 

441.6 nm excitation line, which is known to efficiently enhance Raman 
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lines of the ferryl species, the lost peroxo form has been converted to 

a ferryl heme species, whose 747 cm–1 observed frequency (shifting to 

715 cm–1 upon 18O2 substitution) is entirely consistent with the 

previously assigned ν(Fe═O) stretching frequency of the ferryl 

derivative of LPO in aqueous buffer.64 It is noted that this frequency is 

also consistent with a strong trans-axial Fe–NHis linkage in its ferrous 

form. Thus, the peroxo form that had disappeared by 180 K and the 

ferryl form that had formed by 180 K are both associated with a strong 

trans-axial histidine linkage, that is, ∼254 cm–1.14 

 

As is seen in the traces in the bottom half of Figure 8, upon 

annealing to 200 K, a new set of 16O/18O-sensitive modes with 

components at 783 and ∼748 cm–1 appears in addition to the initially 

formed 747/715 cm–1 component. The difference trace shown at the 

bottom reveals a pattern that is consistent with partial cancellation of 

the ν(Fe═18O) mode of the higher frequency set with the ν(Fe═16O) 

mode of the lower frequency component. This higher frequency set of 

modes, with its ν(Fe16═O) frequency of 783 cm–1, is quite consistent 

with that expected for a ferryl heme bearing a relatively weak trans-

axial Fe–NHis linkage, the species with a ν(Fe–NHis) frequency of 221 

cm–1 dominating the spectrum for ferrous LPO at pH = 5; that is, 

ν(Fe═16O) values of between 780 and 800 cm–1 are typically observed 

for heme proteins whose ν(Fe–NHis) varies from ∼240 to 220 cm–1.14 

Finally, it is noted that for comparable studies conducted for the 

isolated peroxo species trapped at pH 8.2, where there exists a paucity 

of mobile protons, no evidence is obtained for a ferryl species, the 

expected product of O–O bond cleavage. Apparently, in the absence of 

an adequate supply of protons, the ferric peroxo species decomposes 

by an as yet undetermined mechanism; further studies, employing a 

wider range of conditions and a larger number of resonance excitation 

lines, are planned for the future. 
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Figure 8. Low-frequency rR spectra of irradiated LPO Compound III (pH 5.6) annealed 
at 180 K 16O2/H2O (A) and 18O2/H2O (B) and annealed at 200 K 16O2/H2O (C) and 
18O2/H2O (D). The 16O2–18O2 difference traces are shown directly under absolute 
spectra. Spectra were measured with 441.6 nm excitation line and normalized to the 
ν7 mode at 676 cm–1. The spectra shown here were acquired for the same samples 

used to generate the difference traces in Figure 7C; that is, the samples contain both 
the ferryl and the hydroperoxo species, but only the ferryl form is effectively in 
resonance with the 441.6 nm excitation line, noting that relative enhancement of 
heme modes may vary from derivative to derivative and with different excitation lines. 

Discussion 

Faced with the difficulties encountered with rapid mixing 

methods to trap the elusive Compound 0 enzymatic intermediate of 

mammalian peroxidases for definitive structural characterization, here 

cryoradiolytic reduction of the trapped ferrous dioxygen adduct, 

Compound III, is employed to generate the peroxo- and hydroperoxo-

https://dx.doi.org/10.1021/ja5107833
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/ja5107833#fig7


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of the American Chemical Society, Vol 137, No. 1 (2015): pg. 349-361. DOI. This article is © American Chemical 
Society and permission has been granted for this version to appear in e-Publications@Marquette. American Chemical 
Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from American Chemical Society. 

25 

 

LPO (Compound 0) species, the relative populations of which depend 

on the pH. Controlled annealing procedures are used to isolate peroxo 

and hydroperoxo species and to induce O–O bond cleavage, producing 

the ferryl heme intermediates. Resonance Raman spectroscopy is used 

to identify and characterize the Fe–O–O and Fe–O–O–H fragments of 

the Compound III, peroxo, and Compound 0 intermediates, as well as 

the ν(Fe═O) of the ferryl heme O–O bond cleavage products. 

Comparison of acquired data reveals quite dramatic effects of pH on 

the relative strengths of the Fe–O and Fe═O bonds of these species, 

thereby permitting a more rational interpretation of the corresponding 

effects on the reactivity of these species. 

 

Alternate Forms of Compound III 
 

As described earlier in discussing the reaction sequence depicted 

in Figure 2, the distal histidine His109 is typically assigned a pKa value 

of 5.8–6.4,15,65 implying that for the studies conducted here at pH 8.2, 

one would expect that the population of LPO molecules bearing a 

nonprotonated His109 would strongly dominate. Indeed, the rR 

spectral data provide clear evidence that only one Compound III form, 

exhibiting its ν(Fe–16O) mode at 534 cm–1, is observed. The spectra of 

the samples prepared at pH 5.6, on the other hand, demonstrate that 

a second form of Compound III is present, exhibiting its ν(Fe–16O) 

mode at 558 cm–1, signaling a significant increase in the strength of 

the Fe–O bond relative to the species seen at alkaline pH. While it is 

tempting to ascribe this behavior to H-bond donation by the 

protonated distal His109 residue to the Fe–O–O fragment of 

Compound III based on results from previously published work for 

dioxygen adducts of other heme proteins,38,51,66-68 it is difficult to 

accept a suggested H-bond donor effect of this magnitude on the 

ν(Fe–O) mode. For example, in the case of dioxygen adducts of 

myoglobin, where the distal histidine was removed, only slight (<5 

cm–1) shifts of the ν(Fe–O) mode were seen relative to WT Mb.51,66 

Similarly, comparison of a series of cytochrome P450 dioxygen adducts 

with varying degrees of distal side H-bonding configurations, including 

some with H-bond donating substrates, shows that shifts of the ν(Fe–

O) mode attributable to the H-bonding interaction are typically in the 

neighborhood of only 5–10 cm–1, with an interesting and very 

informative detail being that the shift for H-bonding to the terminal 
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oxygen in the Fe–O–O fragment induces upshifts in ν(Fe–O), while H-

bonding to the proximal oxygen caused downshifts of similar 

magnitude.38,51,67,68 

 

Given these reservations about ascribing the unexpectedly large 

positive shifts of the ν(Fe–O) mode solely to distal side interactions, 

further consideration was given to possible pH-induced alterations of 

proximal side architecture that might account for these vibrational 

data. Fortunately, a directly relevant and carefully conducted study on 

the impact of pH changes on the heme-proximal histidine linkage of 

LPO offers some useful insight.14 In that work, Smulevich, Obinger, 

and co-workers show that two ν(Fe–NHis) stretching modes are 

observed, appearing at 221 and 254 cm–1, whose relative intensities 

are pH dependent, with the 254 cm–1 feature dominating at high pH 

(8.5) and the 221 cm–1 band dominating at low pH (5.0). Those 

authors point out that, while the protonation status of the proximal 

histidine undoubtedly plays a crucial role in modulating the donor 

strength, with an “imidazolate” formulation being applicable at alkaline 

pH, other factors, including reorientation of the imidazole plane with 

respect to the four Fe–N bonds of the heme macrocycle, brought about 

by structural rearrangements within the heme pocket, could also alter 

the strength of the Fe–NHis linkage. In any case, the observed variation 

of the ν(Fe–NHis) as a function of pH is an important finding, because 

there exists a well-documented inverse correlation between the 

frequency (bond strength) of the ν(Fe–NHis) mode of the ferrous form 

and the ν(Fe–O) frequencies of various oxy forms of heme 

proteins.51,61 
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Figure 9. Mechanism of formation of Compound III at basic (A) and acidic (B) pH and 
their transition to peroxo (A) and hydroperoxo (Compound 0) (B) forms. 

The potential influence of this correlation in determining the 

status of the trans-axial Fe–O linkages in the present case is outlined 

in Figure 9. At alkaline pH (8.2), the species possessing the strong Fe–

NHis bond, with its ν(Fe–N) mode of 254 cm–1, dominates and is 

correlated with the Compound III form possessing a relatively weak 

Fe–O bond, whose ν(Fe–O) mode occurs at 534 cm–1. Under acidic 

conditions (pH 5.6), a second ferrous LPO species, with a relatively 

weak Fe–NHis bond exhibiting its ν(Fe–NHis) mode at 221 cm–1,14 is also 

present and forms a Compound III species whose ν(Fe–O) mode 

occurs at 558 cm–1. It is also important to point out that this new 

Compound III species formed in acidic conditions not only possesses a 

weakened trans-axial Fe–NHis linkage, but also presumably houses an 

Fe–O–O fragment that is involved in an H-bonding interaction with a 
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protonated His109, the influence of which on its ν(Fe–O) frequency 

would depend on whether the H-bond forms between the proximal or 

terminal oxygen atom of the Fe–O–O fragment.51 67 To the extent that 

deoxyMb and this low-pH form of ferrous LPO both possess similar Fe–

NHis bond strengths, as evidenced by similar ν(Fe–NHis) stretching 

frequencies of ∼221 cm–1, it would be expected that both would exhibit 

similar ν(Fe–O) frequencies in the corresponding dioxygen adducts, 

yet these differ by ∼16 cm–1 (558 cm–1 for frozen LPO Compound III 

and 574 cm–1 for frozen oxyMb).39,41,56 Given the fact that the Fe–O–O 

fragment of oxyMb is known to be stabilized by an H-bonding 

interaction between the terminal oxygen and a distal pocket histidyl 

imidazole group that would lead to an increase in the inherent ν(Fe–O) 

frequency, the 558 cm–1 frequency observed here for the low-pH form 

of LPO Compound III could suggest that the H-bonding interaction of 

the protonated distal His109 is either not properly oriented to interact 

with the terminal oxygen or may even be positioned to interact with 

the proximal oxygen atom of the Fe–O–O fragment, the latter situation 

being known to cause negative shifts of the ν(Fe–O) mode, as was 

clearly seen for the dioxygen adduct CYP17 in the presence of hydroxy 

pregnenolene.67 However, although possible alignment of the His109 

H-bond with the proximal oxygen of the Fe–O–O fragment is 

consistent with the data for this Compound III form, the data for the 

corresponding Compound 0 derivative formed upon cryoreduction are 

entirely consistent with the expected hydroperoxo LPO formulation 

(vide infra). 

 

Characterization and Fate of Compound 0 and Peroxo 

LPO 
 

Cryoreduction of Compound III under alkaline conditions 

produced only peroxo LPO, with an ν(Fe–16O) frequency at 570 cm–1 

that, as expected, is not sensitive to exchange of H2O with D2O (Figure 

9). This frequency shift of 36 cm–1 to higher frequency upon 

conversion of LPO Compound III to its peroxo derivative is in 

reasonable agreement with that expected from consideration of 

previously acquired rR data for globins,69 where the ν(Fe–O) mode for 

the dioxygen adduct occurs near 578 cm–1 while that for the 

corresponding peroxo derivative occurs near 606 cm–1. Interestingly, 

annealing of this frozen solution of trapped peroxo LPO at 180 K leads 
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only to loss of the 570 cm–1 feature without producing any new 
16O2/18O2-sensitive features with excitation at 415 nm, thereby 

demonstrating that conversion to the hydroperoxo form, compound 0, 

does not occur under alkaline conditions; that is, in this situation, 

proton delivery to the heme active site is apparently quite inefficient 

due to the very low concentration of protons. In line with this 

observation is the fact that interrogation of the annealed sample using 

441.6 nm excitation, where any ferryl heme would be detected, failed 

to yield any 16O/18O-sensitive features. A rather extensive amount of 

further work will be required to clarify the fate of the lost peroxo form. 

 

As shown in Figure 6 and described above, cryoreduction of 

Compound III of LPO in frozen solutions under acidic conditions at pH 

5.6 produces a new feature observed at 604 cm–1, which shifts by 5 

cm–1 to lower frequency in solutions prepared in D2O, a result that is 

consistent with its assignment to Compound 0. With the precursor 

(Compound III form) possessing a protonated distal His109 at pH 5.6 

and a ν(Fe–16O) mode at 558 cm–1, the resultant shift of 46 cm–1 upon 

converting from Compound III to Compound 0 is reasonably consistent 

with the corresponding shift seen for globins, where the ν(Fe–O) mode 

of oxyMb shifted from 578 to 617 cm–1 for hydroperoxo Mb.39-41 Thus, 

it is seen that at pH 5.6, two distinct populations of cryoreduced 

species exist, peroxo and hydroperoxo, an observation consistent with 

two populations of each precursor; that is, ferrous LPO exhibited a 

dominant ν(Fe–NHis) mode at 221 cm–1 and a weaker one at 254 cm–1, 

while the two populations of LPO Compound III were confirmed by a 

strong ν(Fe–O) mode at 558 cm–1 and a weak one observed at 534 

cm–1, the latter being associated with the (less populated) form having 

an imidazolate-like proximal histidine with a ν(Fe–NHis) mode of 254 

cm–1. 

 

Before turning attention to the fate of these peroxo and 

hydroperoxo forms upon further annealing, it is interesting to consider 

the implications of these findings under acidic conditions with respect 

to the issue of proton delivery to the bound peroxo-fragment. The rR 

spectra of the Compound III sample (Figure 4) exhibited evidence for 

a non-H-bonded form (ν(Fe–16O) = 534 cm–1) and an H-bonded form 

(ν(Fe–16O) = 558 cm–1), the source of the H-bond being most 

reasonably ascribed to protonated His109. Upon cryoreduction, 
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without further annealing above 77 K, two reduced forms are detected, 

a peroxo species and an H/D-sensitive hydroperoxo species. Now, on 

the basis of consideration of shifts typically observed in conversion 

from dioxy to peroxo/hydroperoxo forms, as well as the observation of 

the telltale shift observed upon deuteration of hydroperoxo forms, the 

most reasonable interpretation of the rR spectral data acquired for 

irradiated samples is that the resulting Compound 0 form, with a ν(Fe–
16O) = 604 cm–1, is derived by direct and quite efficient proton transfer 

from the protonated His109 to an initially formed transient peroxo-

species. This conclusion receives support from consideration of many 

previous cryoradiolysis studies, wherein it is generally possible to trap 

the peroxo forms at 77 K before accessing the hydroperoxo form by 

annealing at higher temperatures, the implication being that facile 

proton transfer at 77 K is likely to originate only from an H-bond donor 

group within the distal pocket. Clearly, this argument is further 

supported by the fact that the trapped peroxo-form in this same 

sample, which arose from reduction of the non-H-bonded Compound 

III, remained unprotonated at 77 K due to the lack of an effective 

active site proton donor. Although the above considerations effectively 

argue for protonation of the terminal oxygen atom of the Fe–O–O 

fragment by protonated His109, it is noted that a recently published 

study of a different peroxidase, cytochrome c peroxidase (ccp), 

employing neutron diffraction methods for the ferric and ferryl species, 

presents effective arguments that (in that enzyme) the protonation of 

the hydroperoxo species (Compound 0) involves a different distal 

pocket residue, probably a protonated arginine (Arg48), with the distal 

histidine remaining protonated following Compound I formation.70 

Assuming those results and arguments are esentially correct, the 

difference from the present work on LPO and those studies on ccp may 

arise from the fact that in the latter work the proton transfer being 

dealt with is that of the key “catalytic” proton to the actual Compound 

0, while that being addressed in the present work is a proton transfer 

step to form a trapped Compound 0 species for structural 

characterization. 

 

Having defined the nature and relative populations of the peroxo 

and hydroperoxo forms trapped at 77 K under acidic conditions, it 

remains only to consider their relative stability as reflected by their 

behavior observed upon controlled annealing. As seen in Figure 7, 
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annealing of this sample resulted in loss of the peroxo-LPO content of 

the sample before any substantial loss of the Compound 0. Inspection 

of Figure 8 provides definitive evidence that the peroxo fragment 

converted to a ferryl species with a ν(Fe–16O) at 747 cm–1; that is, 

both the peroxo form and the resultant ferryl form are associated with 

the population of LPO having a strong Fe–NHis bond, with a ν(Fe–NHis) 

of 254 cm–1. During this process, the Compound 0 form, with its 

weaker trans-axial histidyl ligand, does not undergo O–O bond 

cleavage. Indeed, the O–O bond cleavage for the hydroperoxide form 

associated with the weaker Fe–NHis bond occurs only at 200 K. The 

most reasonable interpretation of this behavior is that upon annealing 

to higher temperatures, where protons become more mobile and enter 

the active site, the stronger “push effect” of the imidazolate-like form 

substantially increases the efficiency of the O–O bond cleavage 

process. While the population expressing a strong push effect is 

depleted by 180 K, the population possessing the weaker Fe–NHis 

linkage was seen to undergo substantial O–O bond cleavage only at 

200 K, the difference in O–O bond cleavage efficiency, as documented 

spectroscopically herein for the first time, directly reflecting the 

dominant influence of the “push” effect relative to the “pull” effect.71,72 

 

Early work by Kimura and Yamazaki73 confirming even earlier 

work by Dunford and co-workers74 shows the rate of the reaction is pH 

independent between about 5 and 11, the rate decreasing relatively 

sharply below pH 5, results that are most reasonably attributed to 

protonation of the distal histidine, which would in turn hamper the 

required deprotonation of the incoming H2O2, presumably the rate-

limiting step. While at pH values between 5 and 9, there are 

apparently different populations of LPO having weak and stronger Fe–

NHis linkages (based on the rR data in ref 14), the corresponding 

effects on the rate of Compound I formation are small relative to the 

effect of distal side protonation. In the present work, to capture the 

peroxo/hydroperoxo intermediates, the reactive Fe(III)–(O–O2–) and 

Fe(III)–(O–OH–) fragments are generated without permitting delivery 

of a “catalytic” proton. This approach permits the determination of the 

effects of proximal side differences on the efficiencies of O–O bond 

cleavage, such differences being masked in solution phase work by the 

slowness of the primary H2O2 binding step. Further definition of these 

processes will require more highly resolved pH variations and 

https://dx.doi.org/10.1021/ja5107833
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/ja5107833#fig8
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of the American Chemical Society, Vol 137, No. 1 (2015): pg. 349-361. DOI. This article is © American Chemical 
Society and permission has been granted for this version to appear in e-Publications@Marquette. American Chemical 
Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from American Chemical Society. 

32 

 

additional annealing temperatures (i.e., between 77 and 180 K), 

whereupon it is anticipated that a new hydroperoxo species will 

emerge, exhibiting a ν(Fe–O) frequency between 580 and 590 cm–1. 

 

Finally, one of the key findings of the present work is the 

demonstration of an essential difference between mammalian 

peroxidases from their counterparts in plants. In the latter case, it is 

known that the strength of the Fe–NHis bond is affected only slightly by 

variations in pH between ∼5–11, as reflected in small (<5 cm–1) 

changes in the ν(Fe–NHis) frequencies.75 On the other hand, as is seen 

here, the pH-induced changes in the ν(Fe–NHis) lead to substantial 

changes in the strengths of the Fe–O bonds of the Compound III and 

all subsequent Fe–O–O and Fe═O intermediates, effects that clearly 

hold implications for differences in the complex reactivity patterns of 

these mammalian enzymes.11,12,17,18 
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