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Abstract 

 

Evolutionary methods, such as genetic algorithms (GAs), provide powerful 

tools for optimization of the force field parameters, especially in the case of 

simultaneous fitting of the force field terms against extensive reference data. 

However, GA fitting of the nonbonded interaction parameters that includes 

point charges has not been explored in the literature, likely due to numerous 

difficulties with even a simpler problem of the least-squares fitting of the 

atomic point charges against a reference molecular electrostatic potential 

(MEP), which often demonstrates an unusually high variation of the fitted 

charges on buried atoms. Here, we examine the performance of the GA 

approach for the least-squares MEP point charge fitting, and show that the GA 

optimizations suffer from a magnified version of the classical buried atom 

effect, producing highly scattered yet correlated solutions. This effect can be 

understood in terms of the linearly independent, natural coordinates of the 

MEP fitting problem defined by the eigenvectors of the least-squares sum 

Hessian matrix, which are also equivalent to the eigenvectors of the 

covariance matrix evaluated for the scattered GA solutions. GAs quickly 

converge with respect to the high-curvature coordinates defined by the 

eigenvectors related to the leading terms of the multipole expansion, but 

have difficulty converging with respect to the low-curvature coordinates that 

mostly depend on the buried atom charges. The performance of the 

evolutionary techniques dramatically improves when the point charge 

optimization is performed using the Hessian or covariance matrix 

eigenvectors, an approach with a significant potential for the evolutionary 
optimization of the fixed-charge biomolecular force fields. 

1 Introduction 

Molecular dynamics (MD) simulations is a powerful tool to study 

structure and function of biological macromolecules at the atomic 

level.1-3 The accuracy of MD simulations is highly dependent on the 

molecular mechanics force field used—its functional form, as well as its 

empirical parameters. In traditional macromolecular all-atom force 

fields, the bonded parameters include equilibrium bond distances, 

bond and dihedral angles, along with the corresponding force 
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constants and rotation barriers, while nonbonded interactions are 

typically described by atom-centered point charges and Lennard-Jones 

parameters. These bonded and nonbonded force field parameters are 

fitted against either experimental data or, more commonly, data 

obtained from electronic structure calculations. Generally, force field 

parametrization involves separate optimization of the bonded and 

nonbonded parameters, as it is common in parametrization of the 

classical force field models such as CHARMM,4-6 AMBER,7-9 GROMOS,10 

and OPLS,11,12 as well as in more recent developments.13-17 For 

instance, in parametrization of the nonbonded terms in the popular 

AMBER family of force fields,7,18,19 the point charges are fitted to the 

reference molecular electrostatic potential (MEP) of the molecule, while 

Lennard-Jones parameters are fitted to reproduce the experimental 

bulk properties. However, simultaneous fitting of several parameters 

describing intermolecular interactions (point charges, Lennard-Jones 

parameters, and in the case of polarizable force fields, atomic 

polarizabilities) may significantly improve the accuracy of force field 

description.20,21 These simultaneous optimizations of different force 

field terms can take advantage of extensive training sets that can be 

easily generated using electronic structure calculations and may 

include data on the intermolecular interaction energies.22-26 Moreover, 

in this approach the fitted interaction energy would implicitly include 

the polarization effects, even staying within the fixed point-charge 

force field framework.9,27,28 However, such simultaneous force field 

fitting represents a technically challenging multiobjective optimization 

of the parameters of different physical nature. 

 

Among various optimization algorithms available for this 

purpose, evolutionary methods such as genetic algorithms (GAs) 

provide a powerful technique that can efficiently deal with complex and 

poorly understood search space.29-33 GAs have been successfully used 

in force field development, including fitting of dihedral angle34,35 and 

van der Waals17,25 parameters, atomic polarizabilities,16 

parametrization of coarse-grained36 and reactive37,38 force fields, and 

applied in numerous ad hoc force field parameter optimizations.39-43 

Interestingly, although the assignment of the fixed point charges is a 

critical part of many force fields, the application of GAs and other 

evolutionary/stochastic optimization techniques to the MEP point-

charge fitting has not been explored, to the best of our knowledge. 
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The traditional approach for determining point charges in the 

force field development, usually referred to as the ESP (electrostatic 

potential) method,44 is to fit the point charges against the reference 

quantum mechanical (QM) MEP φQM by minimizing the sum of squared 

residuals φQM–φPC calculated over the N point on a grid: 

 

(1) 

 

where φPC is the potential produced by the point charges: 

 

(2) 

 

Examples of different implementations of this method include 

Merz–Kollman,45,46 CHELP,47 and CHELPG,48 which mainly differ by the 

choice of the reference grid. These approaches typically employ 

Lagrange multipliers to impose a constraint on the overall molecular 

charge and, sometimes, on the molecular dipole moment. 

Alternatively, the χ2 function can be minimized directly using gradient-

based methods with restraint on the total charge and dipole moment.49 

 

Although the atom-centered MEP-derived point charges provide 

a clear interpretation of the electrostatic properties and are 

computationally inexpensive, they can poorly reproduce the 

anisotropic electronic features (e.g., lone pairs, π-systems),50,51 and 

also suffer from several technical difficulties. The optimized values of 

the point charges not only depend on the grid density and size, or the 

spatial orientation of the molecule relative to the Cartesian axes,48,52-56 

they also can be inconsistent even across very similar molecules, at 

odds with the fundamental chemical concept of the transferability of 

atomic properties. Not only the MEP-fitted charges for atoms of a 

common functional group in chemically similar molecules may be very 

different, the charges obtained for the conformers of the same 

molecule often vary by more than one electron unit. Stouch and 

Williams reported57,58 that the disparate charges obtained for directly 

connected atoms in different conformers seem to linearly correlate 
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with each other with high variation (∼1.3 e–) of the charge values on 

the interior, buried atoms (mostly aliphatic carbon atoms), while the 

exterior atoms (mostly hydrogens) vary in a much smaller range (∼0.3 

e–). Later, the large variations of charge values have been rationalized 

by the low statistical contribution of the buried carbons to the overall 

electrostatic potential.59 Furthermore, the ill-conditioned character of 

the MEP fitting problem seems to be exacerbated by the introduction 

of the total charge constraint using Lagrange multipliers that leads to 

the rank deficiency of the least-squares (LS) matrix.53,60 

 

The conformational dependence of the MEP-derived point 

charges has been significantly reduced in the restrained electrostatic 

potential (RESP) method by Bayly et al.59,61 that uses an external 

hyperbolic restraint to force the buried carbon atoms to have small 

point charges, thus decreasing the charge variations across different 

conformers. Although several alternative methods of charge derivation 

have been proposed,47,53,60,62,63 restraining the charges of buried atoms 

to prevent the optimization from converging toward unreasonable 

values and/or to reduce conformational dependence of the charges 

became the most popular in force field development.64-77 In most of 

these methods, besides a constraint on the total charge of the 

molecule, an additional restraining function is added to the LS sum (eq 

1) to keep the buried atom charges close to some predefined values, 

despite its possible negative effect on the dipole moment values and 

the overall quality of MEP.53,78 

 

Considering the challenges presented by the relatively 

straightforward single-objective point charge fitting against the MEP, 

simultaneous optimization of point charges along with other force field 

parameters against a diverse training set could be expected to present 

even more pitfalls. Therefore, in this work we investigate the 

performance of the GA techniques when applied to the MEP point 

charge fitting problem in a case of small model molecules with the 

emphasis on the convergence properties of the algorithm. 
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2 Details of Charge Fitting and Analysis 

Procedures 

Reference MEP 
 

All geometry optimizations were performed at the B3LYP/aug-

cc-pVDZ level,79,80 as implemented in the Gaussian 09 package.81 

Reference MEPs were generated as cubic grids with linear density of 

2.8 points/Å, followed by removal of the points outside of 1.4–2.0 van 

der Waals radii range around each atom. This sampling procedure 

covers the solvent-accessible region of the molecule, in line with 

common charge fitting procedures.59,60 

 

ESP Point Charge Fitting 
 

In the ESP method the solution is obtained by minimizing the LS 

sum (eq 1) that can be rewritten in a more compact algebraic form: 

 

(3) 

 

(4) 

 

(5) 

 

where the vector φ⃗ = (φQM(R⃗1) ... φQM(R⃗N)) consists of the reference 

electrostatic potential calculated at each point of the grid; q⃗ = (q1... 

qM) is a set of point charges; A is the LS matrix with the elements 

corresponding to the inverse distance 1/rij between point i of the grid 

and point charge j in the molecule; vector g⃗ and matrix H are 

gradient vector and Hessian matrix of the LS sum, correspondingly. 

 

Because of the quadratic dependence of the LS sum on the 

charge vector q⃗ the solution to the LS problem can be found by 

setting partial derivatives of χ2 with respect to each point charge to 

zero, which results in the system of linear equations, known as normal 

equations:82 
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(6) 

 

where q⃗* is the solution to the problem which is further referred to as 

ESP charges and used as the reference to compare against the GA-

optimized values. No additional constraints or restraints have been 

imposed to these charges, except for the atom equivalence due to the 

symmetry of the molecule. 

 

Table 1. Parameters and the Genetic Operators Used in the GA Fitting of the 

MEP Point Charges 

parameter description value 

maximum number of 

generations 

convergence criterion 100 

population size number of chromosomes in the population 20–200 

variable range range of charge values used to generate a 
chromosome 

[−1; 1] 

   

operator binary-coded real-coded probability 

crossover two-point83 BLX-α,α = 0.583 0.90 

mutation flip bit29,30 random31 0.03 

selection proportional selection29,30   

 

Point Charge Fitting with Genetic Algorithms (GAs) 
 

In the GA approach, each candidate solution is referred to as a 

chromosome or an individual. A set of chromosomes, called 

population, is evolving during a GA run through an iterative application 

of genetic operators of selection, crossover, and mutation.29,30 Each 

chromosome in the population has an associated fitness function 

value, or a fitness score, that measures how close this candidate 

solution is to the desired optimum solution. The algorithm starts by 

randomly generating the initial population of the chromosomes, 

followed by evaluation of their fitness function values. These scores 

are then used to select chromosomes for further crossover and 

mutation that produce the next generation of the chromosomes. When 

the number of generations reaches a predefined maximum, the 

algorithm stops and the chromosome with the best fitness score in the 

final population is taken as the solution to the optimization problem. 
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The GA parameters used here for the point charge fitting 

against a reference MEP are given in Table 1. Each chromosome 

encoded a set of atom-centered point charges either in a traditional 

binary or real number representation. We found that, as in several 

other cases,84,85 the real-number coding requires a smaller population 

size than the binary coding to achieve the results of the same quality 

(Figures S1–S2 in the Supporting Information). Therefore, the real-

coded chromosomes were used throughout this work. 

 

All point charges have been fitted within the −1 to +1 e range, 

with no additional restraints, unless stated otherwise. The root-mean 

square error (RMSE) was used as the fitness function: 

 

(7) 

 

Thus, the chromosome with the lowest fitness score in the last 

generation was considered as the solution being sought. RMSE has 

been chosen as the fitness function because of its clear statistical 

meaning; however, using either the RMSE or the LS sum χ2 (eq 1) as 

the fitness function in the GA optimizations gives very similar results. 

The average fitness score ⟨f⟩ of a population of size S calculated at 

each generation was used to characterize the convergence of a single 

GA run, while the standard deviation σf was used to characterize how 

diverse or localized are the chromosomes in the population: 

 

(8) 

 

(9) 

 

Covariance Matrix Analysis of GA Solutions 
 

Because of the stochastic nature of the algorithm, several 

independent GA runs were used to assess the quality/scatter of the 

obtained solutions. In most cases, several runs converged to a set of 

widely dispersed solutions. To understand the nature of this dispersion 
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and reveal possible correlations between optimized parameters, we 

computed variance-covariance (or covariance) matrices Σ for each set 

of the obtained GA solutions. The diagonal elements of the covariance 

matrix contain the variances of the charges (eq 10) and the off-

diagonal elements contain the covariances between each pair of 

charges (eq 11): 

 

(10) 

 

(11) 

 

where N is the number of GA runs, qij is the charge on atom j from ith 

GA run, ⟨qj⟩ is charge on atom j averaged over all GA runs. 

Eigenvectors of the covariance matrix form an eigenbasis Σ̃ consisting 

of the orthonormal vectors s⃗i (principal components), along which the 

data are changing with the variance defined by the corresponding 

eigenvalue σi
2: 

 

(12) 

 

(13) 

 

where Σ̃ is the square matrix of size M, defined by the number of point 

charges; σi is standard deviation along eigenvector s⃗i. 

 

Details of Implementation 
 

All charge-fitting procedures were implemented using Python 

programming language within fftoolbox and genetica modules with the 

source code available online at the GitHub repository. The fftoolbox 

module extracts molecular geometry and the reference electrostatic 

potential from the Gaussian cube file and performs a calculation of the 

LS sum over the points in the grid. Besides the atom-centered point 

charges, fftoolbox also supports the optimization of the extra points 

placed out of the atomic centers. The ESP method (eqs 3–6) is 

implemented as a part of fftoolbox with the normal equation solved 

http://dx.doi.org/10.1021/acs.jpca.5b00218
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using the numpy library,86 and the gradient-based optimization of the 

point charges is implemented using the Broyden, Fletcher, Goldfarb, 

Shanno (BFGS) quasi-Newton method using the scipy library.86 GA 

optimization routines are implemented in the genetica module using 

either binary or real-number chromosome representation. The point 

charge optimization can be performed in three coordinate systems: 

point charges, multipole moments, or in the eigenbasis of the LS-sum 

Hessian matrix. Besides a single-objective minimization, genetica also 

supports vector-valued FFs using Vector Evaluated87 GA (VEGA)—an 

extension of the single-objective GA method to support multiobjective 

optimizations. Covariance matrix adaptation evolution strategy (CMA-

ES) optimizations were performed using the cma Python library;88-91 in 

these optimizations, all values of the initial solution were set to zero 

and the initial standard deviation was set to 0.1. Covariance matrix 

calculations as well as all matrix eigendecompositions were performed 

using the numpy library. Graphical representation of the results is 

supported by the matplotlib library.92 

3 GA Charge Fitting for Small Models 

First, we examine the performance of GAs for the MEP point 

charge fitting in a straightforward case of several small molecules with 

only two symmetry-independent charges, but vastly different 

electrostatic properties: water, ammonia, benzene, and methane. For 

these systems, a single GA run with a small population size (<40 

chromosomes) converges to a localized set of solutions within 25–50 

generations, after which the population stabilizes with only small 

fluctuations of the charge values/fitness scores (Figure S1 in the 

Supporting Information). Surprisingly, although all GA runs 

demonstrate robust convergence, independent runs converge to vastly 

different solutions for the same molecule (Figure 1). For instance, 200 

GA runs for CH4 produced solutions with charges on the carbon atom 

qC varying from −0.99 to 0.95 e, while the charge on the hydrogen 

varied from −0.24 to 0.25 e. Similar scatter of the small-population 

GA-derived charge values is observed for other molecules. In the case 

of H2O, NH3, and CH4 the charges of the central, “buried” atoms show 

much larger deviations than the hydrogen atom charges. Although 

highly dispersed, the GA solutions tend to cluster around the solutions 

that correspond to the charges derived with the ESP method, eq 6 
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(shown as yellow dots in Figure 1). Increase of the population size 

decreases the scatter: GA runs with populations greater than 50 

chromosomes yield solutions within ±0.01 e of the ESP values. 

 

 
Figure 1. Distributions of the GA-optimized charges for the model molecules 

with two symmetry-independent charges, obtained from 200 GA runs with 20 

chromosomes in the population. Yellow dots indicate the solutions obtained 
with the ESP method. 

At first glance, these results simply suggest that the MEP point 

charge fitting with GAs is highly inefficient and requires larger 

population sizes. It is, however, intriguing why the small-population 

GA runs quickly converge to nonoptimal solutions that cannot be 

improved upon any further, even in hundreds of additional generations 

(premature convergence). In other words, what is the origin of these 

nonoptimal solutions that trap small-population GA runs? Further 

investigation revealed that there is a perfect (R2 = 1.00) linear 

correlation between the pairs of qX (X = O, N, or C) and qH values 

produced from different GA runs (Figure 2). For each correlation, the 

slopes correspond to the number of hydrogen atoms per atom X in the 

molecule, while the intercept correspond to the overall charge Q = 0.0 

e of the molecule: 

 

(14) 

 

(15) 
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where nX is the number of X atoms, and nH/nX is the number of 

hydrogen atoms per atom X. Indeed, although the GA runs converge 

to dispersed solutions, the zero total charge is always reproduced, with 

standard deviation σ = 0.001–0.01 e. 

 

 
Figure 2. Correlations between the GA-optimized charges for the two-charge model 
molecules obtained from 200 independent GA runs with 20 chromosomes in the 
population; all trend lines have correlation coefficient R2 = 1.00. Yellow dots indicate 
the solutions obtained with the ESP method. 

We further investigated the GA-fitting performance for 

molecules with three symmetry-independent charges on the example 

of mono- and disubstituted methane derivatives CH3X, X = F, Cl, O–, 

and CH2X2, X = F, Cl. Similarly to the two-charge systems, multiple 

small-population GA runs (<100 chromosomes) yield highly scattered 

solutions, which tend to cluster around the ESP values as the 

population sizes increase. However, only GA runs with greater than 

100 chromosomes yield consistent results that match the ESP charges 

within ±0.01 e. The scatter is the largest in the case of the charges on 

the carbon atoms qC; for example, 200 30-chromosome GA runs for 

CH3Cl produce qC values covering the entire −1 to +1 e range, while 

the charge on hydrogen and chlorine vary in much smaller ranges 

(−0.1 to 0.3 e and −0.3 to −0.1 e, respectively). 

 

Table 2. Average Values and the Standard Deviations (in Parentheses) of the 

Monopole and Dipole Moments Computed from the GA-Optimized Point 

Charges for CH3X, CH2X2 (X = F, Cl), and CH3O– Molecules along with the 

Reference Values from DFT Calculations 

molecule monopole (au) dipole (au) DFT dipole (au) 

CH3F 0.002(0.001) 0.782(0.005) 0.771 

CH3Cl 0.000(0.002) 0.827(0.042) 0.794 

CH2F2 –0.002(0.002) 0.814(0.087) 0.803 

CH2Cl2 –0.001(0.003) 0.712(0.047) 0.667 

CH3O– –0.9674(0.006) 0.847(0.018)a 0.772a 
aIn the case of a charged CH3O– molecule, the dipole moment was calculated using the 
standard orientation of the spatial coordinates, as implemented in Gaussian 09. 

http://dx.doi.org/10.1021/acs.jpca.5b00218
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#t2fn1
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Figure 3. Coordinate system for the CH3X and CH2X2 molecules used in eqs 

17 to 19. 

Unlike the two-charge systems, the GA solutions for CH3X, and 

CH2X2 not only reproduce the correct total charge, but also produce 

constant dipole moment values, which are close to the reference DFT 

values (Table 2): the standard deviation σ is in 0.001–0.006 e range 

for the total charge and in 0.005–0.087 au range for the dipole 

moment. Thus, regardless of the population size, the GA-optimized 

point charges satisfy the eqs 16 and 17 for the first two terms of the 

multipole expansion: the monopole/total charge and the dipole 

moment. These equations can be written as dot products between the 

charge vector q⃗ and the corresponding vector u⃗i: 

 

(16) 

 

(17) 

 

where nA is the stoichiometric number of the atom A in the molecule, 

zA is its coordinate along the z axis (oriented along the symmetry axis 

as shown in Figure 3), and qA is its point charge. Geometrically, these 

equations define two planes with the vectors u⃗1 and u⃗2 which are 

orthogonal to the corresponding plane. The GA solutions align along a 

three-dimensional line formed by the intersection of these two planes 

(Figure 4A) which is defined by the cross product vector u⃗3 = u⃗1 × 

u⃗2: 

http://dx.doi.org/10.1021/acs.jpca.5b00218
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#eq17
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#eq19
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#tbl2
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#eq16
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#eq17
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig3
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig4
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(18) 

 

where t is a free parameter, the vector q⃗0 is a set of point charges 

that satisfies eqs 16 and 17. Projections of this three-dimensional line 

give three pairwise linear relationships between each pair of the 

atomic charges (Figure 4B, Figure S3 in the Supporting Information); 

for example, a projection on the (qC, qH) plane results in a linear 

correlation between qC and qH. These pairwise correlations can be 

derived using the geometric parameters (Figure 3) and dipole moment 

values: 

 

(19) 

 

Importantly, there is a good numerical agreement between the 

correlations obtained analytically using the DFT dipole moments and 

from the linear fitting of the scattered GA solutions (Table S2 in the 

Supporting Information). Thus, the linear relationships observed for 

the two- and three-independent charge systems arise because all GA 

solutions satisfy the constant total charge and (for the three-charge 

systems) the dipole moment requirements, while the higher multipole 

moments produced by these solutions are scattered. 

 

 
Figure 4. Correlation between the chloromethane point charges obtained from 200 
independent GA runs shown in three dimensions (A) and as two-dimensional 
projections, i.e., pairwise correlations between charges (B). 

4 Covariance Matrix Analysis of GA Results 

In the trivial case of the two- and three-independent charge 

systems, the scattered nature of the small-population GA-optimized 

point charges can be interpreted using a simple correlation analysis 

(Figures 2 and 4). However, understanding the results for larger, more 

http://dx.doi.org/10.1021/acs.jpca.5b00218
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#eq16
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#eq17
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig4
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#notes-1
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig3
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#notes-1
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig2
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig4
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realistic molecules would require a more general approach, such as the 

analysis of the eigenvectors of the covariance matrix Σ computed for a 

set of GA solutions. We tested this approach by re-examining the 

small-population GA results for the two- and three-charged model 

systems discussed above. 

 

For the two-charge molecules, the covariance matrix 

diagonalization (Table S3 in the Supporting Information) yields one 

vector with almost negligible variance/eigenvalue (σ1
2 < 10–5) and one 

vector with much higher variance (σ2
2 = 0.06–0.19). The first vector 

s⃗1, along which the data does not vary, numerically corresponds to 

the normalized vector u⃗1 that defines the total charge and is 

determined by the stoichiometry of the molecule:

(20)where u⃗1 = (nX nH) and q⃗ = (qX qH). The second vector s⃗2, that 

is, the vector along which the data show a significant variation, 

numerically corresponds to a normalized vector u⃗2 = (nH −nX), also 

determined by the stoichiometry. Thus, the eigenbasis of the 

covariance matrix Σ̃ can be represented as 

 

(21) 

 

The dramatic difference in the data variation along the two covariance 

eigenvectors suggests that the fitness function has very different 

curvatures along these two directions. This curvature of the fitness 

function can be examined explicitly by computing and diagonalizing its 

Hessian matrix or, for simplicity, the Hessian of the LS sum H (eq 5):93 

 

(22) 

 

(23) 

 

As can be seen from Figure 5 and Table S3 in the Supporting 

Information, the Hessian eigenbases H̃ computed for all four two-

charge molecules are numerically identical to the corresponding 

covariance matrix eigenbases Σ̃ and the basis of normalized vectors: 

u⃗i, Ũ: 

http://dx.doi.org/10.1021/acs.jpca.5b00218
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#notes-1
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#eq5
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig5
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#notes-1
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#notes-1
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(24) 

 

 

 
Figure 5. Numerical equivalence of the eigenvectors of the covariance matrix for the 
results of 200 GA runs, the eigenvectors of the least-squares sum Hessian matrix, and 
the normalized vectors u⃗1 and u⃗2, on the example of a water molecule; for other 

model molecules, see Tables S3 and S4 in the Supporting Information. 

There is an inverse relationship between the eigenvalues of the 

fitness function/LS sum Hessian and the covariance matrices: the 

Hessian eigenvector h⃗2 with near-zero eigenvalue/curvature 

corresponds to the covariance eigenvector s⃗2 with a large variance; at 

the same time, the Hessian eigenvector h⃗1 with a large curvature 

corresponds to the covariance eigenvector s⃗1 with near-zero variance. 

The latter high-curvature/small-variance vector is also the vector that 

defines the total charge of the molecule, u⃗1 (eq 20). Thus, the linear 

correlations observed for the GA solutions (Figure 2) arise due to a 

high curvature of the fitness function with respect to the deviation of 

the total charge from the optimal value (zero for the studied 

molecules). 

 

http://dx.doi.org/10.1021/acs.jpca.5b00218
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#notes-1
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#eq20
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig2
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Figure 6. Fitness function profiles for the two-charge model molecules: full profiles 
(3D plots) and the profiles along the zero total charge line (2D plots). Red dots show 

the solutions obtained from GA optimizations (200 runs), and the yellow dots indicate 
the ESP solutions. The arrows indicate the solutions that reproduce the reference 
values of the corresponding nonvanishing multipole moment components from the 
reference DFT calculations. 

The fitness function plots indeed show a dramatic difference in 

the curvatures (Figure 6): when plotted against qX and qH, the fitness 

function has a characteristic “V”-like shape, with the line of zero total 

charge going through the bottom of the valley (eq 20). As evident 

from the 3D plots, changing the central atom charge qX from −1 to 1 e 

can result in up to 300–800 kcal/mol increase of the fitness function. 

At the same time, 2D profiles along the zero total charge line show 1–

2 orders smaller variation of the fitness function values (<60 kcal/mol, 

note the difference in scales for the 3D and 2D plots in Figure 6). The 

actual minimum of the fitness function is determined by the next 

nonvanishing multipole moment(s) indicated by the positions of the 

arrows in Figure 6. 

 

In the case of the three-charge model molecules CH3X and 

CH2X2, diagonalization of the covariance matrices Σ of the scattered 

GA solutions yields two vectors, s⃗1 and s⃗2, along which the variance is 

negligible (σ1,2
2 < 10–5), and the third s⃗3 with much larger variation of 

the data (σ3
2 = 0.1–0.2). As the GA solutions conserve both the total 

charge Q and the dipole moment μz, we can expect that the s⃗1 and s⃗2 

vectors correspond to the vectors u⃗1 = (nX nC nH) and u⃗2 = (nXzX nCzC 

nHzH), eqs 16 and 17, in which case the third vector s⃗3 should be 

collinear with the cross product u⃗3 = u⃗1 × u⃗2, along which the GA 

solutions are distributed. Unlike the s⃗1 and s⃗2 vectors, the u⃗1 and u⃗2 

http://dx.doi.org/10.1021/acs.jpca.5b00218
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig6
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#eq20
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig6
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#fig6
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#eq16
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vectors are generally not orthogonal, but their orthogonality can be 

achieved by appropriately shifting the coordinate origin: 

 

(25) 

 

(26) 

 

(27) 

 

where z0 is the coordinate of the new origin along the z axis. 

As expected, the set of the three orthogonal vectors u⃗i: 

 

(28) 

 

numerically matches, after normalization, with the eigenbasis of the 

corresponding covariance matrix of the GA solutions Σ and the 

eigenbasis of the LS sum Hessian matrix H (Table S4 in the Supporting 

Information): 

 

(29) 

 

Thus, analysis of the covariance matrix provides a convenient and 

general method to understand the nature of the premature 

convergence of the small-population GA point charge optimizations 

that yields highly dispersed suboptimal solutions. 

5 Rotation of the Optimization Coordinates 

As we’ve seen, GA optimizations of point charges tend to quickly 

converge with respect to the leading terms of the multipole expansion 

associated with large curvature of the LS sum, but have difficulty 

navigating toward the minima along the other directions defined by 

the Hessian eigenvectors associated with small curvatures. Thus, the 

http://dx.doi.org/10.1021/acs.jpca.5b00218
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b00218#notes-1
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Hessian/covariance matrix eigenvectors provide a set of linearly 

independent, natural coordinates expressed as linear combinations of 

the point charge coordinates. The latter, on the other hand, represent 

a linearly dependent set of coordinates for the fitness function 

minimization problem. 

 

In fact, optimization in a rotated coordinate system is known to 

dramatically deteriorate the GA convergence.94 This can be illustrated 

on the example of minimization of a simple function of two variables 

(Figure 7A) that has a low curvature along the x-axis and much higher 

curvature along the y-axis, resulting in a “V”-shaped surface similar to 

the fitness function of the two-charge systems (Figure 6). This model 

function does not present a problem for GA optimization in terms of 

the linearly independent parameters x and y, as written in Figure 7A: 

all GA runs quickly converge to the true minimum (zero standard 

deviation of the GA solutions). However, if the coordinate system is 

rotated by angle θ relative to the original axes (Figure 7B), the GA 

performance significantly deteriorates, as is evident from the 

increasing standard deviation, which reaches the maximum for θ = 

45° (Figure 7C). 

 

 
Figure 7. Effect of coordinate rotation on the convergence of GA minimizations on the 
example of a simple model function f of two variables associated with highly different 
curvatures: the model function plotted in the original coordinate system (A) and in the 
coordinate system rotated by 45° (B); the average fmin values obtained from 50 GA 
minimization runs (blue) and the corresponding standard deviations (red) vs the 
rotation angle θ. 

This effect can be understood in terms of the high selective 

pressure along the high-curvature component y. The first chromosome 

to reach the minimum along y, that is, the line at the bottom of the 

valley, will quickly dominate the entire GA population; any new 

chromosome that even slightly deviates in the high-curvature direction 

incurs high fitness penalty and is not propagated to the next 

generation. In the original nonrotated coordinate system, the 

http://dx.doi.org/10.1021/acs.jpca.5b00218
http://epublications.marquette.edu/
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population is free to explore various values of the low-curvature 

parameter x without straying away from the bottom of the valley along 

the coordinate y. However, in the case of a rotated coordinate system, 

the population would produce a viable offspring in the direction of the 

global minimum only if both linearly dependent variables x′ and y′ 

change in a precise way to stay at the bottom of the valley. Since this 

is a low-probability event for a small population, the population stops 

changing once it reaches the minimum along the high-curvature 

direction, even though it may be far from the minimum along the low-

curvature direction. 

 

Table 3. Charge Fitting for Two- and Three-Charge Model Molecules: Average 

Fitness Scores with Standard Deviations (in Parentheses) for the GA 

Optimizations Using the Point Charge Coordinates vs the Coordinates Defined 

by the LS-Sum Hessian Eigenvectors, along with the Fitness Scores of the 

Reference ESP Solutions; All Units Are in kcal/mol 

  200 GA runs, 30 chromosomes   

molecule point-charge coordinates eigenvector coordinates ESP 

H2O 2.91(1.02) 2.66(5.34 × 10–6) 2.66 

NH3 3.89(1.06) 3.34(1.06 × 10–5) 3.34 

C6H6 2.82(1.83) 2.15(1.50 × 10–5) 2.15 

CH4 1.66(0.57) 1.27(1.30 × 10–6) 1.27 

CH3Cl 2.46(0.41) 2.14(4.84 × 10–2) 2.14 

CH2Cl2 2.79(0.42) 2.46(1.95 × 10–5) 2.46 

CH3F 2.26(0.41) 1.89(3.06 × 10–5) 1.89 

CH2F2 2.35(0.64) 1.84(2.17 × 10–5) 1.84 

CH3O– 4.71(0.98) 3.61(5.02 × 10–5) 3.61 

 

This population stagnation/premature convergence of the GA 

optimizations in rotated coordinate systems can be overcome by using 

large populations and/or higher mutation rates, which can lead to a 

significant computational cost. A more appealing solution is to perform 

the optimization in linearly independent coordinates defined by the 

eigenbasis of the LS-sum Hessian H̃. In this case, the chromosomes 

encode a vector n⃗ of M real numbers—the optimization coordinates in 

the basis H̃, while the fitness function is still evaluated in terms of the 

point charges q⃗ (eq 7) obtained using a linear transformation: 

 

(30) 
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We tested this approach for the same two- and three-charge 

model molecules discussed above. With other GA parameters kept 

unchanged, optimizations in the new coordinate system demonstrated 

a much more robust convergence, as they require less than a half of 

the population size to achieve results of the same accuracy. For 

example, in the case of the three-charge CH3X and CH2X2 molecules, 

30 chromosomes were sufficient to converge to solutions that match 

the ESP charges within ±0.01 e, and to completely eliminate the linear 

correlations observed for the direct point charge optimizations (Table 

3, Figure S4 in the Supporting Information). 

 

Thus, the efficiency of the point charge fitting using GAs can be 

dramatically improved by rotating the optimization coordinates using 

the eigenvectors of the LS-sum Hessian. This finding, however, seems 

of little practical value by itself. Indeed, more efficient methods, such 

as ESP, exist for simple point charge fitting against the MEP. On the 

other hand, in a more complex case of simultaneous optimization of 

the point charges along with other force field parameters, evaluation 

of the fitness function Hessian could be much more problematic. 

However, as we already discussed, the covariance matrix of the GA 

solutions is numerically equivalent to the Hessian, and, in fact, this 

useful property of the covariance matrices is utilized in some recently 

developed advanced evolutionary methods such as the covariance 

matrix adaptation evolution strategy (CMA-ES) approach.88-91 

 

Like other evolutionary strategy (ES) techniques, CMA-ES differs 

from less sophisticated classical GA methods in the implementation of 

the crossover and mutation operations; in some cases (CMA-ES 

included), new candidate solutions/offspring are sampled from the 

multivariate normal distribution, rather than produced by the 

traditional crossover operator. However, the most important CMA-ES 

feature in the context of this discussion is that a new set of solutions is 

generated using an approximate covariance matrix, which is updated 

at every step of the optimization. In this respect, CMA-ES is highly 

reminiscent of the quasi-Newton optimization techniques that use an 

approximate Hessian matrix which is updated at every step. Thus, 

although the classical GA approaches do not seem to hold much 

promise for simultaneous fitting of the force field parameters together 
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with point charge values, more sophisticated evolutionary methods like 

CMA-ES may prove successful in this endeavor. 

6 Real-Life Example: Charge Fitting for 1-

Chlorobutane 

We tested the performance of the GA and CMA-ES methods for 

the point-charge fitting problem in the case of five conformers of 1-

chlorobutane, a more realistic example than the two- and three-charge 

models discussed so far. In line with the assumptions made in the 

force field development, the hydrogen atoms within each methyl and 

methylene group were considered equivalent, giving 9 point charge 

values overall to optimize for each conformer; the point charges were 

fitted separately for each conformer. In each case, 200 GA runs with 

populations of 200 chromosomes expectedly produced highly scattered 

solutions with the average fitness score significantly higher than that 

of the reference ESP solutions (Table 4). However, just like in the case 

of the small models, the GA solutions consistently reproduce the total 

charge and the magnitude of the dipole moment (Table S5 in the 

Supporting Information); also, there is a very good correspondence 

between the eigenvectors of the covariance matrix of the GA solutions 

and the LS sum Hessian (Table S6 and Figure S5 in the Supporting 

Information). 

 

The eigenvector that corresponds to the highest curvature 

(∼3600) and the smallest variance (∼10–6) corresponds to the total 

charge; it is identical for all conformers. While in the case of a large 

molecule such as 1-chlorobutane it is less straightforward to derive 

analytical expressions for the other high-curvature/low-variance 

eigenvectors, they seem to correspond to the leading multipole 

moments—the correspondence which is especially clear for the second 

highest-curvature vector (curvature ∼200; variance ∼10–5) that 

defines the main dipole moment component (Figure S5 in the 

Supporting Information).95 As the curvature decreases, the physical 

interpretation of the associated eigenvectors becomes less clear, and 

the similarity between the eigenvectors calculated for different 

conformers decreases, reflecting different electrostatic properties of 

these conformers. The last four eigenvectors have curvatures in the 

0.3–0.03 range and correspondingly large variances, ∼10–2–10–1. 
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These low-curvature/high-variance coordinates have a small 

contribution to the overall MEP, do not seem to be associated with 

particular multipole moments, and primarily depend on the charges of 

the buried carbon atoms (Figure S5 in the Supporting Information). 

 

Table 4. Charge Fitting for 1-Chlorobutane Conformers: Average Fitness 

Scores with Standard Deviations (in Parentheses) for the GA Optimizations 

Using Two Coordinate Systems, Along with the Fitness Scores of the CMA-ES 

and ESP Solutions; All Units Are in kcal/mol 

  200 GA runs, 200 chromosomes     

conformation point-charge coordinates eigenvector coordinates CMA-ES ESP 

anti 1 3.05(0.43) 2.58(0.20) 2.09 2.09 

anti 2 3.02(0.41) 2.57(0.19) 2.13 2.13 

gauche 1 3.06(0.45) 2.61(0.21) 2.12 2.12 

gauche 2 3.08(0.45) 2.58(0.19) 2.10 2.10 

gauche 3 3.15(0.49) 2.62(0.18) 2.14 2.14 

 

The GA optimizations in terms of the variables defined by the 

LS-sum Hessian eigenvectors yielded solutions with much better 

fitness scores (Table 4) and significantly decreased the scatter of the 

solutions (Figure S6 in the Supporting Information). At the same time, 

multiple CMA-ES runs converged to the identical solutions, which are 

also equal—within more than five decimal places—to the ESP values. 

The superb performance of CMA-ES method in this test case suggests 

that it could be a promising global-search evolutionary technique for 

force field development; a detailed discussion of the CMA-ES 

performance for simultaneous optimization of nonbonded force field 

parameters for several model systems will be reported elsewhere. 

7 Variance of the Least-Squares Solution, Hessian 

Eigenvalues, and the Buried Atom Effect 

Besides their importance for the application of evolutionary 

methods in the force field development, the insights into the severe 

convergence problems of the point charge fitting using classical GA 

methods can also be useful to revisit some of the well-known issues 

with the ESP method. The ESP charges can vary depending on the grid 

setup, and often are highly inconsistent for even slightly different 

conformers of the same molecule; the variation is especially large for 

the carbon atoms of methyl and methylene groups—the buried atom 

http://dx.doi.org/10.1021/acs.jpca.5b00218
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effect. These difficulties, commonly ascribed to the rank-deficient 

character of the LS matrix,53,60 can be understood in a new light once 

we recognize that the variation of the ESP solutions has the same 

underlying factors as the much larger scatter of the GA solutions. 

 

In fact, all LS fitting problems, not just the ESP, produce slightly 

different solutions from the LS matrices A that differ by the number of 

grid points, type of the grid, its density, etc. The covariance of these 

solutions, q⃗*, has been shown to be proportional to the inverse of the 

Hessian matrix:96 

 

(31) 

 

Since a matrix inversion does not change the corresponding 

eigenvectors, this covariance matrix also shares the eigenbasis Ũ with 

the covariance matrix of the GA solutions (e.g., eq 29). Thus, the 

variance/scatter of the ESP and GA solutions are related to the same 

fundamental properties of the LS-sum Hessian matrix, whose 

eigenvectors h⃗1 define the natural, linearly independent coordinates 

for the MEP fitting problem. This provides a convenient framework to 

discuss the ill-conditioned nature of the ESP problem, and the buried 

atom effect associated with it. 

 

The numerical instabilities observed for the standard ESP 

implementations can be related to the LS-sum Hessian eigenvectors 

with the highest and the lowest curvatures. For any molecule, the first 

eigenvector h⃗1 defines the total charge coordinate, and the curvature 

along this coordinate is orders of magnitude larger than the curvatures 

along other coordinates. Hence, a very strong total charge restraint is 

naturally built into the ESP problem. Nevertheless, most of the ESP 

implementations introduce an additional total charge constraint using 

Lagrange multipliers,45-48 a redundancy that leads to the known rank-

deficiency of the resulting LS matrix.53,55,60,62 On the other hand, 

optimization in the eigenmode coordinates with the coordinate along 

the h⃗1 vector set to a desired value (e.g., 0 or −1 e) provides a 

straightforward and natural way to ensure the exact overall charge of 

the molecule. 
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On the other hand, the vexing problem of the buried atoms 

arises as a natural consequence of the high-variance coordinates with 

curvatures many orders of magnitude smaller than the curvatures of 

the coordinates associated with the leading multipole moments. These 

low-curvature/high-variance coordinates have a small contribution to 

the MEP and do not significantly affect the overall fitness of a solution. 

Thus, several solutions can have very similar fitness scores because 

they have the same positions along the high-curvature coordinates, 

although their positions along the low-curvature coordinates could be 

quite different. Yet, these very similar solutions would appear very 

different when expressed in terms of the linearly dependent point-

charge coordinates.  

 

Importantly, the lowest-curvature/highest-variation 

eigenvectors have the dominant contributions from the charges on the 

buried carbon atoms, as can be seen in the case of the CH3X and 

CH2X2 molecules and the 1-chlorobutane conformers (Tables S4 and 

S6, and Figure S5 in the Supporting Information). As a result, these 

carbon atoms show the highest variation of the point charges—either 

ESP or GA-optimized—which is further amplified by the 

hydrogen/carbon stoichiometric ratios for the CH3 and CH2 groups, 

when the charge equivalence is applied to the hydrogen atoms. The 

usual approach to prevent the wide variation of the ESP charges on the 

buried carbon atoms is to use additional restraints to keep these 

charges close to a predefined value, such as zero,59 or simply to 

constrain them to zero55 or some chemically reasonable value.57 This, 

however, can negatively affect the overall dipole moment values 

produced by the fitted point charges, as well as the overall quality of 

the fit;53,55,78 a better strategy may involve restraining or constraining 

the values along the low-curvature Hessian eigenmode coordinates. 

8 Conclusions 

Motivated by the idea of using evolutionary approaches for the 

simultaneous optimizations of several types of force field parameters—

including point charges, we explored the performance of the genetic 

algorithm (GA) approach for a simpler problem of point-charge fitting 

against the reference molecular electrostatic potential (MEP). We find 

that unless unreasonably large population sizes are used, the GA 

http://dx.doi.org/10.1021/acs.jpca.5b00218
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optimizations produce highly scattered, but correlated, solutions. 

Analysis of the covariance matrices for these scattered sets of GA 

solutions revealed a remarkable correspondence between the 

covariance matrices and the fitness function Hessian matrix, which 

share the same set of the eigenvectors. This eigenbasis represents a 

linearly independent set of coordinates that are natural for the MEP 

point-charge fitting problem, unlike the linearly dependent point 

charge coordinates. Some of the Hessian/covariance matrix 

eigenvectors define the coordinates related to the leading terms of the 

multipole expansion (the total charge/monopole, dipole moment 

components); these coordinates are associated with high curvature of 

the fitness function and thus negligible variation of the GA solutions. 

On the other hand, other eigenvectors are associated with negligible 

fitness function curvatures and thus large variance. 

 

The huge disparity between the curvatures of the Hessian 

eigenvector coordinates causes premature convergence of the GA 

optimizations performed in terms of the linearly dependent point-

charge coordinates, because of the high fitness penalty for even a 

slight deviation from the minimum along the high-curvature direction 

that effectively prevents the GA population from exploring the fitness 

profile along the low-curvature direction. This leads to a variety of GA 

solutions with highly scattered point charge values and moderately 

low, but not always optimal fitness scores. The severe scatter of the 

GA solutions can be seen as an exaggerated version of the well-known 

buried atom effect, the variation of the ESP charges of the buried 

carbon atoms observed for different grid setups and/or for different 

conformers.97 This effect arises from the coordinates defined by the 

low-curvature Hessian eigenvectors and the fact that the point charges 

are inappropriate, highly linearly dependent (and also redundant)55 

coordinates for the MEP fitting problem. Thus, MEP fitting in 

coordinates defined by the fitness function/LS-sum Hessian eigenbasis 

is essential when using evolutionary methods. In this respect, the 

most promising approach is to take advantage of the correspondence 

between the eigenvectors of the covariance matrix of the solutions and 

the fitness function Hessian matrix, as it is done in advanced 

evolutionary techniques such as covariance matrix adaptation 

evolution strategy (CMA-ES). 
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Besides not being proper quantum mechanically observed 

parameters, atom-centered point charges are not even proper 

variables for the classical MEP fitting problem. At the same time, the 

simplicity and efficiency of the point charge model ensures its 

continuing survival in the field of the biomolecular simulations, at least 

in the short term.9,27,28,98 Thus, the insights revealed by the analysis of 

the GA performance for the point charge fitting problem could prove 

useful for the further development and parametrization of the 

biomolecular force fields using evolutionary methods, as well as other 

optimization techniques. 
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1.#GA#Convergence:#The#Population#Size#Effect#

!
 

Figure S1. GA convergence with 20 chromosomes in the population (a) as compared to 50 chromosomes in the 
population (b). 
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2.#GA#Convergence:#Binary#vs.#RealANumber#Chromosome#Coding##
!

!
Figure S2a. Average fitness scores Af and their standard deviations σf for 200 GA runs as functions of the population size 
f the model molecules with two symmetry independent charges. Real-number representation is compared with binary 
representation of chromosomes. Green dashed line corresponds to the solution found by ESP method. 
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!
Figure S2b. Average fitness scores Af and their standard deviations σf for 200 GA runs as functions of the population size 
for the model molecules with three symmetry independent charges. Real-number representation is compared with 
binary representation of chromosomes. Green dashed line corresponds to the solution found by ESP method. 
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3.#Analysis#of#the#GA#PointACharge#Fitting#Results#
 

!

!
 

Figure S3. Correlations between the GA-optimized charges in CH3X, CH2X2 (X = F, Cl) molecules obtained from 200 
independent GA runs. All trend lines have correlation coefficient R2 = 1.00. All optimizations were performed with 30 
chromosomes in the population. 
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Table S1. Best and average <q> values with corresponding standard deviations σ of point charges and their fitness scores 
f obtained from 200 GA runs using charges and Hessian eigenvectors as optimization coordinates. Results are compared 
with the solutions found by ESP method. All values are in atomic units. 

   

ESP 

 
200 GA Runs 

    
Point-Charge Coordinates 

 
Eigenvector Coordinates 

Molecule 
  

Best <q> σ 
 

Best <q> σ 

H2O 
qO 

 
-0.758 

 
-0.758 -0.529 0.256 

 
-0.758 -0.758 0.000 

qH 
 

0.379 
 

0.379 0.264 0.129 
 

0.379 0.379 0.001 

f × 103 
 

2.935 
 

2.935 7.582 5.523 
 

2.935 0.000 0.000 

NH3 
qN 

 
-0.970 

 
-0.970 -0.588 0.413 

 
-0.970 -0.970 0.001 

qH 
 

0.324 
 

0.324 0.196 0.139 
 

0.324 0.324 0.001 

f × 103 
 

3.686 
 

3.686 8.494 5.126 
 

3.686 3.694 0.039 

C6H6 
qC 

 
-0.125 

 
-0.124 -0.099 0.215 

 
-0.125 -0.121 0.009 

qH 
 

0.125 
 

0.125 0.098 0.219 
 

0.125 0.121 0.009 

f × 104 
 

9.577 
 

9.580 92.772 91.687 
 

9.577 12.163 5.208 

CH4 
qC 

 
-0.616 

 
-0.615 -0.024 0.535 

 
-0.616 -0.602 0.026 

qH 
 

0.154 
 

0.154 0.006 0.134 
 

0.154 0.151 0.007 

f × 104 
 

3.387 
 

3.387 16.757 12.480 
 

3.387 3.805 0.848 

CH3F 

qC 
 

-0.038 
 

0.026 0.129 0.476 
 

-0.038 -0.039 0.007 

qH 
 

0.090 
 

0.072 0.045 0.127 
 

0.090 0.090 0.002 

qF 
 

-0.229 
 

-0.242 -0.263 0.097 
 

-0.229 -0.228 0.003 

f × 103 
 

1.462 
 

1.473 1.965 0.538   1.462 1.468 0.042 

CH3Cl 

qC 
 

-0.560 
 

-0.554 -0.030 0.483 
 

-0.560 -0.560 0.000 

qH 
 

0.225 
 

0.223 0.077 0.136 
 

0.225 0.225 0.001 

qCl 
 

-0.114 
 

-0.115 -0.200 0.076 
 

-0.114 -0.114 0.000 

f × 103 
 

1.593 
 

1.593 2.309 0.716 
 

1.593 1.593 0.000 

CH2F2 

qC 
 

0.251 
 

0.261 0.023 0.127 
 

0.251 0.129 0.039 

qH 
 

0.084 
 

0.080 0.148 0.441 
 

0.084 0.100 0.220 

qF 
 

-0.209 
 

-0.210 -0.158 0.097 
 

-0.209 -0.163 0.078 

f × 103 
 

1.482 
 

1.484 2.254 1.141 
 

1.482 2.830 2.472 

CH2Cl2 

qC 
 

-0.599 
 

-0.553 -0.042 0.500 
 

-0.599 -0.599 0.001 

qH 
 

0.305 
 

0.291 0.131 0.155 
 

0.305 0.305 0.000 

qCl 
 

-0.005 
 

-0.014 -0.111 0.096 
 

-0.005 -0.005 0.000 

f × 103 
 

1.930 
 

1.934 2.699 0.739 
 

1.930 1.930 0.000 
!
! !
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Table S2. Pairwise  linear correlations between the  point charges obtained from 200 GA optimizations  for the  CH3X, 
CH2X2 (X = F, Cl) and CH3O–  molecules compared with the analytically derived relationships (eqs. 18-19 in the main 
text). All values are in atomic units. 

Molecule From GA Analytical 

CH3F 

qC = -3.74qH + 0.30 qC = -3.75qH + 0.29 

qC = -4.94qF – 1.16 qC = -4.99qF – 1.17 

qF = 0.75qH – 0.29 qF = 0.76qH – 0.29 

CH3Cl 

qC = -3.56qH + 0.24 qC = -3.55qH + 0.23 

qC = -6.27qCl – 1.27 qC = -6.41qCl – 1.26 

qCl = 0.57qH – 0.24 qCl = 0.56qH – 0.23 

CH2F2 

qC = -3.48qH + 0.54 qC = -3.50qH + 0.53 

qC = -4.62qF – 0.71 qC = -4.67qF + 0.71 

qF = 0.75qH – 0.27 qF = 0.75qH – 0.27 

CH2Cl2 

qC = -3.20qH + 0.38 qC = -3.22qH + 0.36 

qC = -5.26qCl – 0.62 qC = -5.28qCl – 0.59 

qCl = 0.61qH – 0.19 qCl = 0.61qH – 0.18 

CH3O— 

qC = -4.07qH - 0.24 qC = -4.11qH - 0.29 

qC = -3.69qO – 2.92 qC = -3.71qO – 2.92 

qH = 0.91qO + 0.66 qH = 0.90qO + 0.64 

!
! !
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Table S3. Numerical equivalence between the eigenbasis of the covariance matrix  calculated for 200 independent 20-
chromosome GA runs , !, the eigenbasis  of the LS-sum Hessian matrix, and the analytically generated orthonormal  
basis ! (eq. 28 in the main text). Eigenvalues of the covariance matrix correspond to the variance (in atomic units, !!) 
along each eigenvectors; eigenvalues of the Hessian correspond to the curvatures (in atomic units, ! !!!) along 
corresponding eigenvectors. 

 Methane Ammonia Water Benzene 

 ! 

Variance 5.75E-09 0.19 7.18E-07 0.13 1.15E-06 0.07 1.85E-07 0.06 

qX 0.244 0.970 0.319 0.948 0.450 0.893 -0.717 0.697 

qH 0.970 -0.244 0.948 -0.319 0.893 -0.450 -0.697 -0.717 

 ! 

Curvature 2094.94 0.07 1116.93 1.05 570.33 2.13 9470.55 22.29 

qX 0.244 0.970 0.318 0.948 0.447 0.894 -0.718 0.696 

qH 0.970 -0.244 0.948 -0.318 0.894 -0.447 -0.696 -0.718 

 ! 

qX 0.243 0.970 0.316 0.949 0.447 0.894 0.707 0.707 

qH 0.970 -0.243 0.949 -0.316 0.894 -0.447 0.707 -0.707 
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4.#GA#Point#Charge#Fitting#in#Terms#of#the#Rotated/Eigenvector#Coordinates#
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Figure S4a. Average fitness score and its standard deviation for 200 GA runs performed using the point charge values as 
the optimization coordinates vs. the coordinates defined by the eigenbasis of the LS-sum Hessian matrix; two-charge 
models. 
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Figure S4b. Average fitness score and its standard deviation for 200 GA runs performed using the point charge values as 
the optimization coordinates vs. the coordinates defined by the eigenbasis of the LS-sum Hessian matrix; three-charge 
models. 
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Table S4. Covariance matrix and Hessian matrix eigenbases ! and ! compared with the orthonormal basis ! (eqs. 28-29 in the main text) . Eigenvalues of the covariance matrix 
correspond to the variance (in atomic units, !!) along each eigenvectors; eigenvalues of the Hessian correspond to the curvatures (in atomic units, ! !!!) along the corresponding 
eigenvectors. Covariance matrices are calculated for 200 GA runs with 30 chromosomes in the population. 

 Chloromethane Fluoromethane Methoxide Dichloromethane Difluoromethane 

 ! 

Curvature 1555.96 18.23 0.10 1374.20 14.45 0.09 1375.88 15.79 0.12 1382.94 27.35 0.14 1125.74 22.21 0.10 

qC 0.303 0.059 0.951 0.303 0.101 0.948 0.302 0.165 0.939 0.337 -0.074 0.939 0.336 -0.043 0.941 

qX 0.292 0.944 -0.151 0.293 0.936 -0.194 0.293 0.921 -0.256 0.657 0.732 -0.178 0.662 0.722 -0.203 

qH 0.907 -0.324 -0.269 0.907 -0.336 -0.254 0.907 -0.352 -0.230 0.674 -0.677 -0.296 0.670 -0.691 -0.271 

 ! 

Variance 8.40E-08 8.73E-06 0.12 6.63E-08 5.95E-06 0.11 3.69E-07 4.55E-05 0.14 1.62E-07 8.59E-06 0.11 9.79E-08 9.30E-06 0.15 

qC 0.302 0.064 0.951 0.302 0.102 0.948 0.303 0.163 0.939 0.335 -0.084 0.938 0.336 -0.043 0.941 

qX 0.274 0.950 -0.151 0.288 0.938 -0.193 0.291 0.922 -0.254 0.676 0.715 -0.177 0.664 0.719 -0.205 

qH 0.913 -0.306 -0.269 0.909 -0.331 -0.254 0.908 -0.350 -0.232 0.656 -0.694 -0.297 0.668 -0.694 -0.270 

 ! 

qC 0.3015 0.058 0.9519 0.3015 0.0968 0.9488 0.3015 0.1511 0.9399 0.3333 -0.0604 0.9398 0.3333 -0.041 0.9417 

qX 0.3015 0.9785 -0.1497 0.3015 0.9397 -0.1884 0.3015 0.9206 -0.2534 0.6667 0.7603 -0.1781 0.6667 0.7098 -0.2007 

qH 0.9045 -0.3213 -0.2674 0.9045 -0.369 -0.2535 0.9045 -0.3514 -0.2288 0.6667 -0.6362 -0.2918 0.6667 -0.688 -0.2702 
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5.#1%Chlorobutane#Point#Charge#Fitting#
!

Chart 1. 1-Chlorobutane Conformers Considered, with Atom Numbering 

!
!
!
Table S5. Point charges with corresponding dipole moment  and total charge obtained with CMA-ES/ESP methods as compared with the average and the standard deviation σ of the 
point charges, total charge and dipole moment obtained from 200 independent runs for the five conformers of 1-chlorobutane in point charge coordinates and Hessian eigenvectors 
coordinates. 

 qC4 qH4 qC3 qH3 qC2 qH2 qC1 qH1 qCl Dipole moment, au Total charge, au Fitness, kcal/mol 

 CMA-ES/ESP 

Anti 1 -0.257 0.058 0.186 -0.024 0.052 0.014 -0.141 0.105 -0.193 0.918 0.009 2.094 

Anti 2 -0.229 0.054 0.163 -0.027 0.051 0.015 -0.104 0.096 -0.206 0.995 0.008 2.126 

Gauche 1 -0.134 0.032 0.110 -0.018 0.050 0.011 -0.060 0.088 -0.216 1.006 0.008 2.119 

Gauche 2 -0.203 0.047 0.172 -0.027 0.015 0.007 0.005 0.066 -0.213 0.903 0.009 2.136 

Gauche 3 -0.119 0.027 0.148 -0.038 0.094 -0.010 -0.030 0.072 -0.211 0.906 0.009 2.143 

…continued on the next page 

! !

Anti 1 Anti 2 Gauche 1 Gauche 2 Gauche 3
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Table S5, Continued.  

  qC4 qH4 qC3 qH3 qC2 qH2 qC1 qH1 qCl Dipole moment, au Total charge, au Score, kcal/mol 

 Point-Charge Coordinates  

Anti 1 
<A> -0.030 0.004 0.037 0.009 0.002 0.026 0.005 0.064 -0.215 0.922 0.008 3.054 

σ 0.380 0.100 0.365 0.113 0.369 0.116 0.371 0.113 0.065 0.087 0.008 0.435 

Anti 2 
<A> -0.030 0.008 0.025 0.003 0.027 0.021 0.001 0.069 -0.225 1.015 0.007 3.016 

σ 0.371 0.100 0.341 0.107 0.384 0.123 0.352 0.110 0.060 0.108 0.008 0.405 

Gauche 1 
<A> -0.028 0.006 0.058 -0.007 0.007 0.025 -0.017 0.078 -0.223 1.010 0.008 3.059 

σ 0.379 0.103 0.354 0.106 0.370 0.114 0.364 0.114 0.063 0.110 0.008 0.446 

Gauche 2 
<A> -0.006 0.000 0.036 0.002 0.022 0.011 0.022 0.061 -0.214 0.905 0.009 3.079 

σ 0.374 0.101 0.367 0.111 0.355 0.107 0.351 0.109 0.063 0.081 0.008 0.455 

Gauche 3 
<A> 0.041 -0.007 -0.016 0.006 0.036 0.015 0.008 0.065 -0.212 0.921 0.010 3.148 

σ 0.378 0.101 0.360 0.109 0.344 0.106 0.375 0.118 0.062 0.096 0.009 0.489 

 Eigenvector Coordinates  

Anti 1 
<A> -0.224 0.051 0.138 -0.014 0.081 0.009 -0.147 0.106 -0.192 0.921 0.009 2.576 

σ 0.237 0.059 0.242 0.066 0.243 0.063 0.243 0.069 0.039 0.068 0.006 0.196 

Anti 2 
<A> -0.224 0.053 0.153 -0.024 0.062 0.013 -0.116 0.099 -0.204 1.003 0.008 2.574 

σ 0.254 0.063 0.254 0.064 0.238 0.069 0.207 0.062 0.037 0.082 0.006 0.194 

Gauche 1 
<A> -0.121 0.030 0.091 -0.013 0.046 0.013 -0.060 0.088 -0.214 1.009 0.009 2.605 

σ 0.257 0.064 0.252 0.065 0.240 0.065 0.210 0.064 0.035 0.080 0.006 0.207 

Gauche 2 
<A> -0.225 0.059 0.370 -0.100 -0.276 0.026 0.056 -0.166 -0.290 0.902 0.130 2.394 

σ 0.285 0.071 0.295 0.077 0.266 0.074 0.090 0.065 0.042 0.113 0.046 0.141 

Gauche 3 
<A> -0.081 0.017 0.123 -0.033 0.107 -0.013 -0.035 0.074 -0.213 0.922 0.009 2.621 

σ 0.253 0.063 0.238 0.060 0.246 0.063 0.213 0.061 0.036 0.076 0.006 0.178 

!
!
!
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Table S6. Numerical representation of the eigenbases of the LS-sum Hessian and the covariance matrix for the 200 GA 
runs for the five conformers of 1-chlorobutane. Eigenvalues of the covariance matrix correspond to the variance (in 
atomic units, !!) along each eigenvector; eigenvalues of the Hessian correspond to the curvatures (in atomic units, 
! !!!) along the corresponding eigenvectors. 

Anti 1 

 ! 

Curvature 3612.01 231.01 58.41 31.07 15.20 0.20 0.15 0.06 0.04 

qC4 -0.197 -0.182 -0.004 -0.048 -0.005 0.348 -0.463 0.575 0.510 

qH4 -0.582 -0.656 -0.150 -0.367 0.048 -0.132 0.149 -0.141 -0.110 

qC3 -0.202 -0.021 0.175 0.165 -0.054 0.644 -0.311 -0.171 -0.598 

qH3 -0.404 -0.004 0.723 0.416 -0.188 -0.289 0.079 0.033 0.117 

qC2 -0.200 0.106 -0.128 0.187 0.013 0.492 0.406 -0.460 0.528 

qH2 -0.400 0.191 -0.605 0.574 0.061 -0.246 -0.147 0.099 -0.112 

qC1 -0.194 0.252 0.000 -0.118 0.036 0.219 0.637 0.606 -0.249 

qH1 -0.382 0.599 -0.026 -0.515 -0.377 -0.097 -0.226 -0.156 0.050 

qCl -0.189 0.258 0.201 -0.137 0.901 -0.053 -0.129 -0.082 0.029 

 ! 

Variance 1.24E-06 1.81E-05 8.78E-05 1.53E-04 3.00E-04 2.27E-02 3.05E-02 8.06E-02 1.18E-01 

qC4 0.196 -0.181 0.006 0.053 -0.011 -0.533 0.314 0.672 -0.303 

qH4 0.580 -0.652 -0.098 0.395 0.019 0.190 -0.090 -0.156 0.057 

qC3 0.202 -0.024 0.157 -0.183 -0.039 -0.658 0.095 -0.363 0.570 

qH3 0.404 -0.005 0.671 -0.515 -0.129 0.286 0.019 0.072 -0.130 

qC2 0.202 0.102 -0.144 -0.158 0.036 -0.362 -0.602 -0.282 -0.573 

qH2 0.406 0.182 -0.663 -0.493 0.143 0.179 0.229 0.060 0.104 

qC1 0.193 0.252 0.014 0.118 0.012 0.033 -0.629 0.529 0.457 

qH1 0.381 0.595 0.017 0.455 -0.454 0.017 0.236 -0.140 -0.109 

qCl 0.180 0.284 0.234 0.231 0.868 -0.004 0.133 -0.072 -0.055 

!
! !
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Table S6, Continued. 

 Anti 2 

Curvature 3614.47 230.35 64.53 30.14 9.96 0.19 0.14 0.03 0.06 

 ! 

qC4 0.195 -0.184 -0.005 -0.046 0.012 0.355 0.417 0.539 -0.579 

qH4 0.578 -0.666 0.092 -0.374 -0.046 -0.134 -0.137 -0.116 0.145 

qC3 0.200 -0.017 -0.149 0.184 0.052 0.628 0.337 -0.616 0.115 

qH3 0.398 0.008 -0.634 0.499 0.300 -0.274 -0.096 0.122 -0.019 

qC2 0.201 0.105 0.145 0.169 -0.062 0.507 -0.367 0.485 0.517 

qH2 0.405 0.184 0.637 0.502 -0.186 -0.256 0.143 -0.097 -0.116 

qC1 0.196 0.252 0.001 -0.126 -0.011 0.222 -0.675 -0.231 -0.569 

qH1 0.389 0.562 -0.269 -0.425 -0.433 -0.115 0.242 0.052 0.132 

qCl 0.185 0.312 0.259 -0.312 0.824 -0.029 0.123 0.019 0.091 

 ! 

Variance 1.23E-06 1.96E-05 7.95E-05 1.29E-04 4.07E-04 2.31E-02 3.43E-02 1.27E-01 6.31E-02 

qC4 0.196 0.184 -0.002 0.043 -0.008 -0.480 0.384 -0.561 0.483 

qH4 0.580 0.672 -0.143 0.345 0.029 0.165 -0.127 0.121 -0.116 

qC3 0.203 0.005 0.177 -0.154 -0.028 -0.614 0.299 0.635 -0.182 

qH3 0.408 -0.037 0.713 -0.386 -0.282 0.267 -0.071 -0.128 0.054 

qC2 0.201 -0.107 -0.118 -0.192 0.079 -0.404 -0.420 -0.438 -0.599 

qH2 0.401 -0.180 -0.541 -0.593 0.219 0.235 0.168 0.083 0.155 

qC1 0.193 -0.250 -0.033 0.124 0.004 -0.246 -0.680 0.221 0.558 

qH1 0.384 -0.569 0.159 0.508 0.391 0.118 0.244 -0.058 -0.121 

qCl 0.177 -0.288 -0.327 0.210 -0.844 0.019 0.120 -0.014 -0.090 

!
! !
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Table S6, Continued. 

 Gauche 1 

Curvature 3635.17 179.83 82.72 38.41 10.68 0.23 0.13 0.03 0.07 

 ! 

qC4 0.196 -0.185 0.036 -0.032 0.016 0.404 0.412 0.516 -0.570 

qH4 0.585 -0.663 0.280 -0.253 0.038 -0.154 -0.137 -0.111 0.141 

qC3 0.198 -0.028 -0.185 0.144 0.005 0.552 0.424 -0.618 0.196 

qH3 0.391 -0.074 -0.589 0.604 0.193 -0.234 -0.136 0.126 -0.058 

qC2 0.199 0.155 -0.122 -0.120 -0.097 0.493 -0.305 0.479 0.576 

qH2 0.396 0.397 -0.411 -0.587 -0.260 -0.240 0.121 -0.088 -0.155 

qC1 0.197 0.223 0.168 0.060 0.001 0.345 -0.663 -0.285 -0.489 

qH1 0.397 0.406 0.536 0.406 -0.356 -0.178 0.226 0.069 0.106 

qCl 0.186 0.351 0.201 -0.146 0.870 -0.042 0.121 0.027 0.078 

 ! 

Variance 1.28E-06 2.55E-05 7.25E-05 1.24E-04 4.32E-04 2.06E-02 3.47E-02 6.61E-02 1.28E-01 

qC4 0.195 0.185 0.037 0.034 0.014 0.389 -0.439 0.541 -0.538 

qH4 0.578 0.662 0.295 0.253 0.054 -0.141 0.150 -0.118 0.132 

qC3 0.199 0.029 -0.190 -0.137 0.013 0.494 -0.497 -0.606 0.214 

qH3 0.399 0.076 -0.599 -0.580 0.216 -0.214 0.166 0.123 -0.068 

qC2 0.200 -0.155 -0.119 0.122 -0.109 0.503 0.288 0.450 0.597 

qH2 0.396 -0.385 -0.398 0.595 -0.275 -0.252 -0.106 -0.079 -0.161 

qC1 0.198 -0.223 0.168 -0.066 -0.028 0.420 0.601 -0.308 -0.494 

qH1 0.397 -0.386 0.515 -0.428 -0.374 -0.209 -0.209 0.078 0.107 

qCl 0.190 -0.387 0.224 0.150 0.850 -0.046 -0.106 0.033 0.071 

!
! !
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Table S6, Continued. 

 Gauche 2 

Curvature 3620.41 171.98 84.31 39.25 7.82 0.29 0.13 0.07 0.04 

 ! 

qC4 0.198 -0.184 0.031 -0.034 -0.021 -0.278 -0.525 -0.491 0.575 

qH4 0.589 -0.667 0.259 -0.255 -0.022 0.124 0.171 0.124 -0.125 

qC3 0.199 -0.022 -0.183 0.143 -0.012 -0.436 -0.538 0.144 -0.636 

qH3 0.396 -0.055 -0.576 0.620 -0.178 0.181 0.200 -0.059 0.127 

qC2 0.197 0.161 -0.121 -0.129 0.064 -0.436 0.080 0.707 0.451 

qH2 0.390 0.411 -0.412 -0.576 0.278 0.228 -0.024 -0.202 -0.090 

qC1 0.195 0.228 0.173 -0.002 -0.158 -0.602 0.554 -0.406 -0.142 

qH1 0.390 0.400 0.556 0.405 0.405 0.182 -0.122 0.047 0.020 

qCl 0.189 0.334 0.209 -0.131 -0.835 0.216 -0.192 0.106 0.012 

 ! 

Variance 1.49E-06 3.26E-05 6.07E-05 1.60E-04 8.51E-04 2.18E-02 4.63E-02 7.51E-02 1.55E-01 

qC4 -0.203 -0.180 0.026 -0.026 -0.010 -0.244 -0.592 -0.445 0.563 

qH4 -0.611 -0.657 0.242 -0.248 -0.029 0.112 0.187 0.112 -0.120 

qC3 -0.198 -0.012 -0.180 0.155 0.009 -0.407 -0.518 0.134 -0.673 

qH3 -0.394 -0.023 -0.561 0.638 -0.174 0.166 0.203 -0.056 0.143 

qC2 -0.191 0.164 -0.120 -0.129 0.082 -0.447 0.060 0.719 0.423 

qH2 -0.373 0.408 -0.429 -0.572 0.283 0.234 -0.015 -0.204 -0.081 

qC1 -0.190 0.231 0.170 -0.016 -0.154 -0.632 0.506 -0.439 -0.095 

qH1 -0.382 0.420 0.577 0.375 0.388 0.200 -0.104 0.049 0.010 

qCl -0.183 0.335 0.184 -0.150 -0.841 0.204 -0.187 0.120 -0.004 

!
! !
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Table S6, Continued. 

 Gauche 3 

Curvature 3613.95 196.26 79.13 37.21 10.82 0.29 0.13 0.07 0.03 

 ! 

qC4 0.199 0.182 -0.042 0.004 0.030 0.301 0.512 -0.568 0.499 

qH4 0.594 0.654 -0.310 0.133 0.177 -0.131 -0.162 0.139 -0.109 

qC3 0.198 0.028 0.193 -0.121 -0.071 0.554 0.453 0.262 -0.569 

qH3 0.392 0.061 0.623 -0.554 -0.225 -0.238 -0.153 -0.074 0.108 

qC2 0.197 -0.141 0.112 0.159 -0.007 0.524 -0.321 0.481 0.543 

qH2 0.391 -0.351 0.371 0.698 0.060 -0.239 0.109 -0.121 -0.112 

qC1 0.195 -0.227 -0.161 -0.057 -0.026 0.397 -0.565 -0.559 -0.303 

qH1 0.385 -0.567 -0.397 -0.376 0.373 -0.170 0.198 0.144 0.064 

qCl 0.193 -0.136 -0.379 0.067 -0.877 -0.105 0.099 0.072 0.037 

 ! 

Variance 1.35E-06 2.25E-05 6.83E-05 1.30E-04 3.82E-04 1.38E-02 3.63E-02 5.75E-02 1.36E-01 

qC4 0.201 0.176 0.045 -0.014 0.031 0.291 -0.502 -0.579 0.504 

qH4 0.603 0.635 0.306 -0.162 0.199 -0.128 0.163 0.136 -0.114 

qC3 0.197 0.031 -0.179 0.134 -0.072 0.508 -0.523 0.305 -0.530 

qH3 0.389 0.083 -0.548 0.613 -0.270 -0.212 0.176 -0.084 0.100 

qC2 0.196 -0.144 -0.135 -0.150 0.011 0.523 0.311 0.484 0.543 

qH2 0.389 -0.349 -0.460 -0.641 0.064 -0.250 -0.094 -0.130 -0.113 

qC1 0.192 -0.236 0.160 0.042 -0.017 0.460 0.519 -0.522 -0.355 

qH1 0.377 -0.582 0.406 0.354 0.365 -0.196 -0.187 0.130 0.080 

qCl 0.195 -0.145 0.391 -0.141 -0.863 -0.098 -0.085 0.073 0.045 

!
!
! !
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!

Figure S5. Bar-chart representation of the eigenvectors of the Hessian matrix for five conformers of 1-chlorobutane.  

! !
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!
!
!
! GA, Charge Coordinates GA, Eigenvector Coordinates 

!!

! !

!!

! !
!
!
Figure S6. Standard deviations σ of the charges !  and the corresponding coordinates defined by the LS-sum Hessian 
eigenvectors !  obtained from the solutions of 200 GA performed in terms of the charge coordinates, and in terms of the  
LS-sum Hessian eigenvector coordinates (right). 

!
!
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