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ABSTRACT 
CORTICAL OSCILLATIONS DURING A LATERAL BALANCE PERTURBATION  

WHILE WALKING 
 
 
 

Joseph J. Lee, B.S. 

Marquette University, 2016 

 
 
 

The role of sensory systems in the cortical control of dynamic balance was 
examined using electroencephalography (EEG) recordings during balance perturbations 
while walking.  Specifically, we examined the impact of sensory deficits on cortical 
oscillations using vibratory stimuli to suppress sensory feedback and by comparing 
cortical oscillations during balance perturbations while walking in people with sensory 
deficits associated with cervical myelopathy and neurologically intact controls.  Balance 
during walking provides a rich framework for investigating cortical control using EEG 
during a functionally relevant task.  While this approach is promising, substantial 
technical challenges remain in recording and processing EEG in the noisy, artifact laden 
environment associated with walking.  We therefore first investigated the role of sensory 
attenuation in healthy, adult controls within the framework of a simple, motor task.  We 
then examined the effectiveness of using independent component analysis and additional 
machine learning techniques such as clustering and linear classifiers for differentiating 
noise from actual brain activity in EEG signals during walking.  Finally, we examined a 
more complicated experimental framework using a custom cable-servomotor system to 
deliver a lateral pull to the waist of participants with cervical myelopathy while walking 
and measured their cortical activity using high density EEG.   

 
We observed that the attenuation of sensory input in healthy controls induced a 

similar change in beta band modulation as found previously in spinal cord injury for 
simple movements of the ankle.  During walking, large increases in theta band power 
throughout the cortex were observed to modulate with lateral balance perturbations.  
Theta band modulations in the frontal areas of the cortex were significantly delayed in 
time and displayed a more spatially lateralized cortical localization for participants with 
cervical myelopathy compared to age-matched, healthy controls.  The timing of these 
theta power modulations were significantly correlated with the initiation of a widening 
step width correction in response to the balance perturbation.  Our results support a link 
between the modulation of cortical oscillations and sensorimotor integration in simple 
and complex motor paradigms.
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Chapter 1: Introduction and Background 
 
 
 
1.1 INTRODUCTION 
 
 
 
 Cortical oscillations serve an important role in the neural control of balance 

during walking.  The intuitive ease with which we normally walk is underlain by 

complex interactions between automated patterns from the spine and the active 

supraspinal integration of sensory afferents used for motor planning and execution.  

Innate limb mechanics combined with rhythmic firing from the spinal cord provide an 

elegant mechanism for bipedal locomotion, yet taken alone, fail to explain our ability to 

navigate around the dynamic and often unexpected conditions of the surrounding 

environment.  The necessity for this direct input from the cortex during walking is made 

especially evident after disruptions to supraspinal contributions such as in patients with 

myelopathy, commonly found to present with significant gait deficits.   Characterizing 

brain activity during a lateral balance perturbation would provide valuable insight in how 

and why the brain utilizes sensory feedback while walking.    

We examined the impact of sensory deficits on cortical oscillations using 

electroencephalography to measure brain activity in both simple volitional movements 

and the framework of a complex, lateral balance control task during walking.  Sensory 

information was manipulated using vibratory stimuli and through the recruitment of 

participants with cervical myelopathy, commonly observed to suffer reduced 

proprioceptive feedback (Clarke and Robinson 1956).  This chapter will provide an 
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overview on the neural control of walking and balance within the context of functional 

neuroimaging and pathology of the spinal cord.  

  
 
 

1.2 CONTROL OF MOVEMENT 
 
 
 
1.2.1 Control of Volitional Movement 
 
 
 

The control of volitional movement in the neocortex occurs in several 

interconnected regions ranging from the various facets of the motor cortex surrounding 

the central gyrus to areas of the parietal cortex.  To what degree and the exact method of 

how these areas cooperate is a complex question.  One of the traditional frameworks of 

cortical motor control is the concept of a motor map linking areas of the primary motor 

cortex to the control of specific parts of the body (Jasper and Penfield 1949).  While a 

rough medial lateral representation (cortical homunculus) has been observed, it is 

generally acknowledged that there is no concise and orderly delineation of M1 regions 

mapping specific parts of the body (Schieber et al. 2001; Lotze et al. 2000; Indovina and 

Sanes 2001).  Instead, a diffuse pattern of neuronal activity in several different brain 

regions has been observed with single unit recordings to possibly encode a wide variety 

of factors including velocity, direction, force and joint angles (Scott and Kalaska 1995; 

Georgopoulos et al. 1992; Georgopoulos et al. 1982; Reina, Moran, and Schwartz 2001). 

Cortical motor control is not an isolated system however, limited to a one-way 

transfer of motor commands to the periphery but a dynamic one, constantly receiving 

sensory feedback.  A diverse array of inputs such as visual and proprioceptive receptors 
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provides the information needed for adaptive movement in changing environments 

(Dietz, Quintern, and Sillem 1987; Patla 1997; Paulus, Straube, and Brandt 1984).  The 

introduction of noise and delayed sensory feedback to this system leads to the need for 

some form of predictive capability within the brain. A popular hypothesis for a forward 

model involves the creation of an efference copy, replicating efferent motor commands, 

to use as an internal model to first predict and then compare to actual sensory feedback 

(Gauthier and Robinson 1975; Feinberg 1978; Bridgeman 1995).   

Errors from this comparison can be used to further refine outbound motor commands 

more efficiently than relying on delayed feedback alone (Shadmehr, Smith, and Krakauer 

2010). 

 
 
 
1.2.2 Control of Walking and Balance 
 
 
 
 Walking in humans comprises a series of elegant solutions to a complex problem, 

consolidating several different mechanism of passive and active control.  Innate 

properties of bipedal limb dynamics modeled as an inverted pendulum can alone account 

for a stable and self-sufficient gait (Collins, Wisse, and Ruina 2001; McGeer 1990; Kuo 

1999).  When combined with rhythmical firing patterns from central pattern generators in 

the spinal cord, these autonomous subcortical structures form the basis for the cyclical 

stepping that encompasses walking (Brown 1914; Whelan 1996; Delcomyn 1980; 

Dimitrijevic, Gerasimenko, and Pinter 1998).  Proprioceptive inputs directly modulate 

these spinal patterns in reflexive pathways for rapid corrections (van Wezel et al. 2000; 

Valero-Cabré, Forés, and Navarro 2004; Zehr and Stein 1999).  Concurrently, the 
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supraspinal integration of sensory afferents provides feedback for adapting to the 

dynamic conditions of the immediate environment (Dietz 1992; Pearson 2004).  

Somatosensory, visual and vestibular afferents are all integrated in the cortex for the 

prediction, planning and assessment of motor responses to external perturbations (J. V. 

Jacobs and Horak 2007; Adkin et al. 2006; Dietz, Quintern, and Sillem 1987).  

Maintaining stability in response to medial lateral perturbations in particular, have been 

theorized to require greater active cortical control (Bauby and Kuo 2000).   

 
 
 
1.2.3 Electroencephalography and Motor Control 
 
 
 

Electroencephalography is a functional imaging technique that measures at the 

most basic level, neuronal current flow generated by excitatory postsynaptic potentials 

(Murakami and Okada 2006).  Due to their electromagnetic sensitivities, EEG tends to be 

more sensitive to radial sources primarily from gyri, with contributions from sulci.  Large 

populations of synchronous neuron activations, typically macrocolumns consisting of 

thousands of pyramidal neurons, are needed before the corresponding voltage potential 

across the scalp can be measured by an EEG electrode (Misulis and Head 2003; Hari and 

Salmelin 1997).  The measurement of a direct analogue to neuron activation, in contrast 

to hemodynamic responses, allows for millisecond temporal resolution, far superior than 

other imaging modalities such as functional Magnetic Resonance Imaging or Positron 

Emission Topography (Logothetis 2003; Logothetis 2002).  Spatial resolution is limited 

however, in light of the ambiguities in solving an inherently underdetermined system and 

the relatively smaller number of measurement points available (Michel et al. 2004).   



11 
  

EEG-based research into motor control does not offer the spatial resolution of 

single unit recordings and must therefore be approached from a different tack.  At the 

most basic level, motor evoked potentials from individual EEG channels have provided 

information on the time course of activation over rough areas of the brain such as the 

sensorimotor cortex - although interpreting the significance of changes in characteristics 

such as peak amplitude and slopes can be nebulous (Toro et al. 1994; Shibasaki et al. 

1980).  Advances in source localization, particularly in new methods for solving the 

inverse problem, have allowed for more accurate localization of neuronal activation 

patterns on the cortex (Baillet 2011; Grech et al. 2008).  Time-frequency analysis offers 

insight into oscillations of specific frequency bands and their dynamic distribution of 

power during a motor task (Pfurtscheller, Stancák, and Neuper 1996; Pfurtscheller and 

Lopes da Silva 1999; Kilavik et al. 2013).  A promising avenue of current research is the 

use of connectivity measures such as phase coherence to not only measure oscillations in 

a given region, but to identify interactions between different brain regions (Siegel, 

Donner, and Engel 2012; Stam et al. 2009).   

 Recording EEG while walking presents several challenging problems related to 

noise in both the technical implementation and the interpretation of results.  Motion 

artifact tied to electrode movement leads to changes in impedance and other 

electromagnetic properties unavoidably correlated in time to gait events such as heel 

strike (Castermans et al. 2014).  Myogenic contamination from the neck and face is 

highly variable due to differences in muscle location, activation timing, and differing 

levels of fatigue (Misulis and Head 2003; Metting van Rijn, Peper, and Grimbergen 

1990; McMenamin et al. 2010).  Currently, this noise has been attenuated primarily 
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through a combination of advances in EEG hardware with the use of active electrodes 

that amplify signals directly at the scalp to minimize line noise and motion artifact, in 

addition to the application of various blind source separation algorithms in offline 

processing (Gwin et al. 2011; Snyder et al. 2015; Wagner et al. 2012).  

 
 
 
1.3 SENSORY MANIPULATION 
 
 
 
1.3.1 Cervical Myelopathy 
 
 
 
 Myelopathy is the broad, overarching term for disorders of the spinal cord.  

Cervical myelopathy typically refers to spondylosis, a chronic degeneration of the spine, 

rather than the acute trauma associated with spinal cord injury (SCI).  Several factors 

likely contribute to the pathophysiology of cervical myelopathy, including stenosis 

resulting from ossification of spinal ligaments, congenital susceptibilities, and repetitive 

injuries to the cervical area of the spine (Baptiste and Fehlings 2006; C.-J. Chen et al. 

2003; Firooznia et al. 1982).  This degeneration leads to a wide range of sensory and 

motor deficits, including the loss of joint position sense, two point discrimination and 

impairment of lower limb vibration perception (Clarke and Robinson 1956; Salvi, Jones, 

and Weigert 2006).   
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1.3.2 Neuroimaging and SCI 
 
 
 

Advances in non-invasive imaging modalities such as fMRI, PET, and EEG have 

allowed for the study of motor control in human SCI.  Broad generalizations of SCI 

literature are difficult due to the variation in motor paradigms, imaging techniques, 

degree and time of injury.  Roughly categorized, the current state of art has focused on 

differences of activation magnitude, spatial representation, and neural synchrony.  

Significant increases in activation magnitude have been found during motor tasks in the 

M1, S1, supplementary motor area (SMA), premotor area (PMA), and parietal cortex 

(Curt et al. 2002; Bruehlmeier et al. 1998; Alkadhi et al. 2004).  Several contradictory 

studies have observed no change or even reduced activations compared to controls during 

movement (Cramer et al. 2005; Castro, Díaz, and van Boxtel 2007; Halder et al. 2006). 

Spatially, the two most prominent trends that have been observed are a posterior shift in 

motor representation and a tendency for cortical activations to be displaced towards the 

deafferented limb representation (Lotze, Laubis-Herrmann, and Topka 2006; Green et al. 

1998).  

Synchronous activity in the human brain has been observed across a wide range 

of frequencies and structural regions (Buzsáki 2004).  Neural oscillations found in the 

beta frequency range (15-30Hz) of electroencephalography (EEG) signals demonstrate a 

distinctive trend over motor areas during movement commands.  Specifically, neurons of 

the motor cortices desynchronize, defined as an event--related decrease in spectral power, 

during movement initiation and are subsequently followed by a significant 

resynchronization (Pfurtscheller 1992; Pfurtscheller and Lopes da Silva 1999).  These 
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oscillatory signals are theorized to mediate coordination of different local networks 

spatially distributed across the brain (Schnitzler and Gross 2005; Kopell et al. 2000).  In 

human spinal cord injury (SCI), this event related desynchronization (ERD) has been 

found to be amplified, along with an attenuation of the event related resynchronization 

(ERS) when compared to controls (Gourab and Schmit 2010).  

 
 
 

1.3.3 Muscle and Tendon Vibration  
 
 
 

Proprioceptive feedback to alpha motor neurons are channeled primarily through 

excitatory Ia afferents from the muscle spindle sensitive to muscle length and inhibitory 

Ib afferents from the golgi tendon organs sensitive to muscle tension (Houk, Rymer, and 

Crago 2013).  Prolonged vibration has been observed to reduce feedback from Ia 

afferents due to a heighted discharge threshold, presynaptic inhibition, and 

neurotransmitter exhaustion (Shinohara 2005).  This attenuation of Ia afferents reduces 

activity of the motor unit pool and thereby reduces maximum voluntary contraction force 

(Yoshitake et al. 2004).  In contrast, brief vibration has been found to increase Ia 

excitatory input to α motor neurons (Roll, Vedel, and Ribot 1989).  Covibration of tendon 

flexor and extensors has been shown to evoke an interesting phenomenon of illusory 

movement (Kavounoudias et al. 2008).  The sensation of movement in a particular 

direction was created solely through vibrating the correct combination of antagonistic 

muscles and tendons at a differential frequency.  Cortically, neuronal activation from 

vibration has been observed to be diffuse across several regions of the brain including 
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somatosensory and thalamic regions (Coghill et al. 1994; Tobimatsu, Zhang, and Kato 

1999). 

 
 
 

1.4 SPECIFIC AIMS 
 
 
 
1.4.1 Aim 1: Attenuation of sensory feedback produces changes in patterns of movement 
related brain activity 
 
 
 
 We propose to alter brain signals in neurologically intact (NI) subjects by 

attenuating proprioceptive feedback in a simple motor paradigm.  Specifically, we will 

utilize prolonged vibration of a tendon or muscle spindle, which has been previously 

demonstrated to depress Ia afferents.  Electroencephalography will assess cortical 

activation patterns of neurologically intact (NI) controls during ankle dorsiflexion.  

Frequency analysis will center on event related desynchronization/resynchronization 

(ERD/ERS), a measure of neuronal synchrony associated with motor commands.  Source 

localization of the EEG signals will offer information on primary motor (M1) and 

somatosensory (S1) cortical activity across the time domain.  We hypothesize that after 

sensory attenuation, brain activity patterns in NI subjects will resemble those observed in 

SCI subjects with reduced proprioceptive feedback due to their impairment under normal 

conditions (i.e. no vibration).  
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1.4.2 Aim 2: Brain activity modulates with lateral balance perturbations while walking. 
 
 
 

Balance during walking provides a rich framework for investigating cortical 

control using EEG during a functionally relevant task compared to simple, isolated 

movements of the foot.  Brain activity was recorded using EEG while participants were 

walking on a treadmill and delivered a medial-lateral pull to the waist using a custom 

cable servomotor setup.   Significant challenges remain however in both the technical 

implementation and interpretation of EEG signals recorded in the noisy environment 

inherent to walking.  We evaluated the feasibility of using independent component 

analysis and additional machine learning techniques such as clustering and linear 

classifiers for differentiating noise from actual brain activity in EEG signals during 

walking.  We hypothesized that cortical oscillations, shown in previous studies to be 

strongly associated with motor control, would shift in magnitude and spatial orientation 

as a function of sensory integration and motor planning and serve as a reference for 

interpreting possible gait related brain activity. 

 
 
 
1.4.3 Aim 3: Sensory deficits in myelopathy participants will lead to a shift in magnitude 
and phasing of balance related cortical oscillations while walking 
 
 
 

Walking while facing an imminent loss of balance requires a complex integration 

of several sensory afferents, in addition to the planning and anticipation of a timely 

executed motor plan.  We believe that the lower limb sensory deficits presenting in 

individuals with myelopathy may provide a framework to address the role of cortical 
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oscillations observed in walking after a lateral balance perturbation.  Using a custom 

cable-servomotor system, we delivered a lateral pull to the waist of participants with 

cervical myelopathy during walking and measured cortical activity using high density 

electroencephalography.  We hypothesized that reduced sensory feedback in a 

challenging, whole body motor task such as maintaining stability in gait would exhibit 

similar changes in magnitude and spatial localization of cortical oscillations previously 

observed after an attenuation of proprioceptive feedback in rudimentary motor paradigms 

isolated to single limbs.  
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Chapter 2: Attenuation of sensory feedback produces changes in 
patterns of movement related brain activity 

 
 
 

2.1 INTRODUCTION 
 
 
 

Disruption of sensory inputs may alter cortical rhythms and drive well-

documented but poorly understood oscillatory changes found in motor commands.  

Neural oscillations have long been theorized to facilitate coordination and 

communication between different cortical regions (Schnitzler and Gross 2005).  Beta 

band activity (15-30 Hz) in particular has been strongly associated with motor control 

(Kilavik et al. 2013).  These neural oscillations in the beta frequencies shift in magnitude 

and spatial orientation after spinal cord injury (SCI), possibly in response to sensory 

deficits (Kokotilo, Eng, and Curt 2009).  We hypothesized that sensory attenuation in 

healthy, adult controls could thereby induce a comparable shift in cortical oscillations 

within the framework of a simple, motor task.   

Synchronous activity in the human brain has been observed across a wide range 

of frequencies and structural regions (Buzsáki 2004; Feige, Aertsen, and Kristeva-Feige 

2000; Gerloff et al. 1998).  Neural oscillations found in the beta frequency range (15-

30Hz) of electroencephalography (EEG) signals demonstrate a distinctive trend over 

motor areas during movement commands.  Specifically, neurons of the motor cortices 

desynchronize, defined as an event--related decrease (ERD) in spectral power, during 

movement initiation and are subsequently followed by a significant resynchronization 

(Pfurtscheller and Lopes da Silva 1999).  These beta band oscillations have been 
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implicated in numerous cortical roles, from a broad association with motor commands to 

specific functions ranging from the processing of sensory inputs to cortical anticipation of 

future events (van Ede et al. 2011; Zhang et al. 2008; Reyns et al. 2008).  While there is 

no definite consensus on a comprehensive framework for these modulations, there is a 

growing agreement towards the role of oscillatory signals in mediating the coordination 

of different local networks spatially distributed across the brain (Laughlin and Sejnowski 

2003; Müller-Putz et al. 2007; Caplan et al. 2003). 

In human incomplete spinal cord injury, event related resynchronization (ERS) 

has been found to be attenuated, along with an amplification of the ERD when compared 

to controls (Gourab and Schmit 2010).  Significant increases in activation magnitude 

were found during motor tasks in sensorimotor areas while several contradictory studies 

have observed no change or even reduced activations compared to controls during 

movement (Alkadhi et al., 2005; Hotz-Boendermaker et al., 2008, Castro et al., 2007; 

Halder et al., 2006).  Spatially, prominent trends have been observed in posterior shifts of 

motor representation and a tendency for cortical activations to be displaced towards the 

deafferented limb representation (Cramer et al., 2005; Green et al., 1998; Lotze et al., 

2006).  Similar disruptions in cortical activity have also been reported in patients with 

various forms of sensory deafferentation  (Kristeva et al. 2006; Reyns et al. 2008; Cassim 

et al. 2001).  The large body of changes in brain activity reported after changes in afferent 

feedback suggests that there is a link between the processing of sensory information and 

modulation of cortical oscillations.   

The objective of this study was to investigate the effects of attenuated 

proprioceptive feedback on EEG signals of healthy control subjects during a simple ankle 
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motor task using prolonged tendon and muscle vibration, previously demonstrated to 

depress Ia afferents (Shinohara 2005).  We hypothesized that the attenuation of sensory 

input would induce a similar change in beta band modulation as found in SCI, consisting 

of an attenuation of ERS, magnified ERD and a posterior spatial shift of activity.  

 
 
 
2.2 METHODS 
 
 
 
2.2.1 Experimental Protocol 
 
 
 

Ten healthy, neurologically intact volunteers participated in this study (5 men, 5 

women, age range: 20-35 years).  Participants came to a university laboratory and 

performed a series of simple movements of the ankle during EEG recordings of brain 

activity.  Vibration and electrical stimulation were applied during the protocol at targeted 

times.  Written informed consent was obtained from all participants and the study 

protocol was approved by the Marquette University Institutional Review Board.  

The targeted movements consisted of a brisk dorsiflexion of the right ankle after a 

visual cue, while seated in a comfortable position.  Four different types of conditions 

were randomly interleaved across 5 blocks and consisted of the following: 1) no vibration 

before the visually cued ankle dorsiflexion, 2) 10 s ± 1 s prolonged vibration of the 

tibialis anterior (TA) before the visually cued ankle dorsiflexion, 3) electrical stimulation 

(e-stim) of the TA, and 4) 10 s ± 1 s vibration of the TA followed by e-stim.  There were 

a total of 50 instances of each condition, separated by a 10 s ± 1 s interval where the 

subject was instructed to remain at rest.  E-stim consisted of a 2 Hz stimulus, 2.5 s 
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duration, (stimulator model D67A, Digitimer  Ltd., Letchworth Garden City, UK) applied 

to the common peroneal nerve were it crosses the head of the fibula.  A bar electrode with 

two 1 cm diameter contacts (2.5 cm between electrodes) was used to deliver a stimulus at 

90% of motor threshold, identified by visual observation of twitch contraction prior to 

beginning the test protocol.  The e-stim was used to produce an evoked potential, in order 

to obtain a measure of the cortical response to the ascending sensory signal.  Vibration 

was applied to the TA at 70 Hz using a custom vibrator consisting of an eccentric mass 

placed on a motor shaft.  The vibrator was strapped over the middle of the tibialis anterior 

using a cohesive bandage.  Vibration was applied to condition the sensory afferents of the 

muscle (Ribot-Ciscar, 1998) so that they would be less responsive during the movement. 

 
 
 

2.2.2 Data Acquisition 
 
 
 

Signals from a 64 channel, active electrode EEG cap (ActiCap, Brainproducts), 

using a modified 10-20 convention and FCz reference, were sampled at 2000 Hz and 

bandpass filtered between 1 and 500 Hz (Synamps 2 amplifier, Compumedics 

Neuroscan).  Electrode impedance was maintained below 20 kΩ using high viscosity 

electrolyte gel (SuperVisc, Brainproducts).  Electromyography (EMG) recordings were 

taken from the TA and the medial gastrocnemius (MG) muscles using wireless electrodes 

(Trigno, Delsys), sampled at 2000 Hz and bandpass filtered between 10-350 Hz.  
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2.2.3 Data Analysis 
 
 
 

Offline data analysis was conducted using the Fieldtrip and EEGLab toolboxes, 

Brainstorm (Tadel et al. 2011), and custom scripts (Matlab, Mathworks).  EEG data were 

re-referenced from the FCz electrode to a whole head average reference and epoched by 

movement onset as defined by TA EMG (5 s before event or vibration and 5 s after) or e-

stim pulse (500 ms before event and 500 ms after).  Epochs with gross artifacts were 

removed according to a z-score threshold above 2 standard deviations of the mean (mean 

4.5/50 epochs across all subjects), while blink artifacts were removed through 

independent component analysis using the extended runica (Makeig, 1996) and ADJUST 

algorithms for determining artifact related components (Mognon, 2010).   

Brain signals associated with dorsiflexion movement were characterized by event-

related desynchronization (ERD) followed by event-related synchronization (ERS) of the 

beta frequency band (13-35 Hz).   A beta band time frequency (TF) decomposition of the 

Cz electrode was calculated using Morlet wavelets.  The TF decompositions were 

smoothed over time using a Savitzky–Golay smoothing filter (2nd order polynomial), 

averaged across epochs and referenced to a baseline rest period before onset of vibration 

or visual cue as a percent change in power.  Local ERD and ERS minima and maxima 

means of individual subject’s TF decompositions were identified using a custom Matlab 

masking algorithm identifying regions of interest consisting of >75% maximum power or 

<50% minimum power. Minimum (ERD) and maximum (ERS) TF power values 

between the no vibration and prolonged vibration conditions were then compared using a 

paired t-test (α = 0.05).  
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Phasing differences across trials may have underlined changes observed in the 

evoked potential following prolonged vibration. In order to better characterize the effect 

of vibration on cortical activity, phase coherence of the E-stim conditions (no 

vibration/prolonged vibration before E-stim) was calculated using an intertrial coherence 

(ITC) method (Tallon-Baudry et al., 1996):  

 
 
 

ITC =

𝑋
𝑋 ∗ 𝑋

!

n!"#$%& ≤ 1,   

where 𝑋 =  Fourier power spectrum (real and imaginary values). 
 
 
 

Maximum ITC values between the no vibration and prolonged vibration conditions were 

compared using a paired t-test (2 tailed, α = 0.05) to evaluate the difference in latencies 

of evoked potentials across trials.  

Possible differences in the motor characteristics of ankle dorsiflexion following 

prolonged vibration were quantified using EMG of the TA and MG. EMG data was 

rectified and the root mean square (RMS) was calculated using a sliding window with 

50% overlap.  Muscle activation was enveloped using a Hilbert and z-transform to find 

EMG amplitudes and latencies. Differences in amplitudes and latencies for the TA/MG 

EMG between the no vibration and prolonged vibration conditions were assessed using a 

paired t-test (α = 0.05).   

The spatial topography of beta band modulations and evoked potentials on the 

cortex were characterized using the Brainstorm toolbox.  Source localizations of 
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ensemble averaged EEG signals onto a common cortical surface (MNI/Colin27 brain, 1 

mm resolution) were prepared using a boundary element method forward model 

(OpenMEEG) and a whitened, minimum-norm inverse solution (Baillet et al., 2001).  

Sources for individual subjects were z-score normalized to a baseline at rest for group 

averages.  Cortical sources for the e-stim conditions with and without prolonged vibration 

were cross-correlated for each vertex of the MNI/Colin27 brain mesh to localize evoked 

potential phasing differences found previously with ITC.  The mean norm of the cross-

correlated e-stim values were calculated from 3 cortical regions of interest (ROI) located 

in the left hemisphere: frontal (caudal middle and superior frontal gyri), sensorimotor 

(precentral, postcentral and paracentral gyri) and parietal (inferior and superior parietal 

gyri), using a gyral based Desikan-Killiany cortical atlas (Desikan et al., 2006).  

 
 
 
2.3 RESULTS 
 
 
 

Prolonged tibialis anterior vibration muted the ERD and ERS signals associated 

with dorsiflexion movements.  Maximum beta band synchrony (ERS) of the group-

averaged Cz electrode was significantly attenuated from 138±51% to 93.8±52% (%Δ in 

power from baseline rest, p=0.0199) after prolonged vibration compared to ankle 

dorsiflexion without vibration (Figure 1).  Maximum desynchrony (ERD) of beta band 

power at movement onset was also observed to be attenuated from 34.1±15% to 

22.1±13% (%Δ in power from baseline rest, p=0.0557) after prolonged vibration.   
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Figure 1. Group averaged time frequency decomposition of the Cz electrode, normalized 

to percent change from baseline rest, of ankle dorsiflexion (A), and ankle dorsiflexion 

after sensory attenuation through prolonged vibration (B).  Dashed line represents 

movement onset as defined by TA EMG.  Maximum and minimum power values of the 

TF decomposition, identified as the mean power of ROI’s consisting of either >75% of 

maximum power or <50% of minimum power, were used in a paired t-test to determine 

significance, while error bars denote standard deviation (C). 
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Despite the changes in the brain signals, the motor output was similar for the 

vibration and no vibration tests.  The corresponding motor output, as measured by EMG 

of the TA and MG presented in Figure 2, was not statistically different in mean or 

variance (t-test/F-test) after vibration in either latency (TA paired t-test/F-test: 

p=0.88/0.26) or amplitude (TA: p=0.31/0.27) across subjects.  Thus, there were no 

apparent differences in the motor output for the vibration and no vibration conditions.  

 
 
 

 

Figure 2. Latency of movement onset after the visual cue as defined by TA and MG 

EMG (left). EMG amplitude of TA and MG during movement (right). 

 
 
 

There were slight changes in the localization of modeled cortical current sources 

with tibialis anterior vibration.  Cortical sources of ankle dorsiflexion during movement 

initiation were localized to frontal, medial motor and sensorimotor areas associated with 
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motor planning, execution and control of the leg (Figure 3A).  These cortical sources 

shifted posteriorly into medial, superior parietal areas during beta band 

resynchronization, shown at the time point corresponding to maximum power in Figure 

3B.  After prolonged vibration, cortical sources were observed to shift posteriorly during 

movement initiation, while largely confined to the same regions during resynchronization 

(Figure 3B).  
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Figure 3. Source localization of ankle dorsiflexion during movement onset (A), 

maximum TF power (B), in addition to movement onset (C) and maximum TF power (D) 

after prolonged vibration. 
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Evoked potentials using electrical stimulation of the TA were measured to 

characterize the effect of prolonged vibration on cortical activity.  Group ensemble 

averaged EEG signals from over the Cz electrode during the e-stim conditions showed 

several positive and negative peaks following stimulation (Figure 4A).  A strong phasing 

of the estim evoked response across trials was observed in the ITC (maximum value: 

0.46) corresponding with the N80 peak (Figure 4B) and was attenuated (paired t-test: 

p=0.052) following prolonged vibration (maximum value: 0.35) (Figure 4C).  Spatial 

localization of the phasing between the e-stim evoked response with and without 

prolonged vibration showed that components of the evoked response phase lagged the 

evoked response after prolonged vibration in the frontal and sensorimotor areas by 

approximately 30 ms (Figure 4D).   
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Figure 4. Grand average (Cz electrode) of the e-stim evoked response with and without 

prolonged vibration (A), intertrial coherence of the e-stim evoked response (B) intertrial 

coherence of the e-stim evoked response after prolonged vibration (C), and grand average 

cross correlation map across regions of interest (D).  
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2.4 DISCUSSION 
 
 
 

Acute changes in patterns of movement related brain activity were observed 

following attenuation of sensory feedback in young, healthy controls.  We measured a 

significantly decreased beta power ERS (increasing power) associated with simple ankle 

dorsiflexion after prolonged vibration of the TA.  These beta band power shifts in 

premotor and sensorimotor cortical oscillations were not accompanied by a change in the 

timing or magnitude of ankle dorsiflexion as measured by EMG.  Prolonged TA vibration 

decreased the inter-trial coherence of evoked potentials indicating that sensory feedback 

was disrupted from increased variance in the timing of afferent sensory information 

processed by the cortex.  Our findings provide evidence towards beta band oscillations 

holding a significant role in the integration of sensory input with cortical motor 

commands.   

Beta band oscillations we measured from our participants were observed to 

modulate with basic, cued ankle dorsiflexion much as expected.  The pronounced 

rebound in beta power following a discrete movement characterizing ERS (along with its 

preceding ERD counterpart) is distinctive in the noisy and often ambiguous nature of 

EEG measurements (Pfurtscheller 1992).  From upper and lower limb movements to 

active, passive, and imagined activations, the distinct reproducibility with which ERS has 

been observed across a wide variety of motor paradigms encourages the idea that this 

prominent feature of motor commands must be of some cortical importance (Müller-Putz 

et al. 2007; Demandt et al. 2012).  Proposed theories are numerous, including the 

inhibition of motor networks to maintain certain motor states (Pfurtscheller, Stancák, and 
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Neuper 1996; Gilbertson et al. 2005), resetting the sensorimotor network in preparation 

for further sensory inputs (Zhang et al. 2008; Gaetz and Cheyne 2006), and even the 

modulation of attention or correctness of movement (van Ede et al. 2011; Koelewijn et al. 

2008).   

The transient nature of the sensory attenuation used in our study and its acute 

effect on beta ERS for healthy, young controls may suggest that these oscillations are 

changing within the confines of a normal, fully functioning mechanism for sensorimotor 

integration rather than permanent changes in brain structure and connectivity from neural 

plasticity.  Attenuated beta ERS in motor commands have been reported in several 

chronic conditions linked to somatosensory deficits such as incomplete spinal cord injury, 

neuropathy, amyotrophic lateral sclerosis, and as a result of normal aging (Bizovičar et al. 

2014; Gourab and Schmit 2010; Labyt et al. 2006; Reyns et al. 2008).  Long term sensory 

deafferentation from these conditions may imply a structural reorganization of cortical 

sensorimotor networks (Feige, Aertsen, and Kristeva-Feige 2000).  However, the 

prolonged vibration we used to attenuate proprioceptive feedback was interleaved with 

“normal” ankle movements, providing a transitory disruption of proprioceptive input, yet 

still leading to a decrease in the beta power ERS observed in healthy, young adults.  

Similar decreases in motor beta oscillations were found after an ischaemic nerve block 

was used to temporarily deafferent healthy controls (Cassim et al. 2001).  A simple 

increase in cortical baseline from prolonged vibration would not account for the 

measured decrease in ERD.  Instead, the immediate modulation of beta power ERS after 

sensory attenuation in otherwise normal subjects and the return back to normal 

magnitudes of beta power during trials without the vibratory stimulus, may support the 
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idea that these oscillatory signals play an active role in mediating the coordination of 

sensorimotor networks.  

Specifically, this increase in cortical beta power may reflect the processing of 

proprioceptive feedback in relation to the execution of a motor command.  Beta power 

modulations have previously been associated with proprioceptive afferents (Gaetz and 

Cheyne 2006; Alegre et al. 2002; Keinrath et al. 2006).  In addition, these oscillations 

have been theorized to underlay the comparison of motor predictions with their respective 

motor outcomes (Arnal and Giraud 2012; Koelewijn et al. 2008; Kristeva et al. 2006).  

Holding an active role in mediating motor plans corresponds to previous observations of 

beta band cortical activity having direct, functional links to movement in both passive 

measurements of EMG coherence and slowing of voluntary movement after direct 

cortical stimulation at these frequency ranges using transcranial magnetic stimulation 

(Kristeva, Patino, and Omlor 2007; Pogosyan et al. 2009).  The short latency and 

continuous feedback of proprioceptive afferents would provide an effective error signal 

that could generalize across a wide variety of conditions.   

Proprioceptive feedback to alpha motor neurons are channeled primarily through 

excitatory Ia afferents from muscle spindles sensitive to muscle length (Houk, Rymer, 

and Crago 2013).  Vibratory evoked potentials have been traced to regions in the 

somatosensory cortex, while oscillations reflecting the frequency of vibration have been 

observed in the prefrontal cortex (Romo et al. 1999; Spitzer, Wacker, and Blankenburg 

2010; Tobimatsu et al. 2000; Tobimatsu, Zhang, and Kato 1999).  Prolonged vibration 

has been observed to reduce feedback from Ia afferents resulting from a number of 

subcortical factors including heighted discharge threshold, presynaptic inhibition, and 
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neurotransmitter exhaustion (Curtis and Eccles 1960; Hayward et al. 1986; Hultborn et al. 

1987).  Cortically, we were able to measure the inter-trial coherence of normally strongly 

phase locked e-stim evoked potentials from the Cz electrode to decrease following 

prolonged vibration.  The decreased coherence was not a result of an attenuation in 

amplitude but because of a phase shift in certain components of the evoked potential 

occurring earlier in the premotor and sensorimotor cortex.  This may suggest that 

prolonged vibration attenuates Ia afferent sensory feedback cortically by increasing the 

variance of feedback over a period of time rather than a simple reduction of firing rate or 

amplitude.   

 Cortical beta band modulations have been well characterized to modulate with 

motor commands.  We observed that attenuation of sensory feedback in young, healthy 

controls leads to a corresponding decrease in beta band synchronization magnitude.  This 

acute, yet temporary change in beta oscillations suggests that these modulations are a 

mechanism for sensorimotor integration, rather than a mere byproduct of cortical activity.   
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Chapter 3: Brain activity modulates with lateral balance 
perturbations while walking 

 
 
 
 3.1 INTRODUCTION 
 
 
 

Cortical oscillations likely mediate the control of human walking during balance 

perturbations to gait (Nielsen and Sinkjaer 2002).  The rhythmical component of walking 

has conventionally been attributed to the spinal cord, with supraspinal structures largely 

relegated to an unclear, ancillary role (Whelan 1996), although rhythmic EEG 

measurements have been made during pedaling (Jain et al. 2013) and stepping on a 

treadmill (Gwin et al. 2011).  In contrast, the control of balance during walking invokes 

networks throughout the nervous system, including the cerebral cortex, providing a 

means for investigating cortical activity during a functionally relevant task (Dijkstra, 

Schoner, and Gielen 1994; Kavounoudias et al. 1999; Johansson, Magnusson, and 

Fransson 1995; Horak 2006).  While technical aspects of recording and processing EEG 

in a noisy walking environment remain challenging, having a recurring, discrete event 

with known associations to cortical activity in the form of a balance perturbation may 

help further refine EEG techniques.  In the current study, we developed a novel technique 

for assessing EEG during a balance perturbation to treadmill stepping and characterized 

the cortical response in young healthy adults.   

A large portion of the control of walking has traditionally been attributed to spinal 

networks.  Evidence ranging from the iconic experiments in the decerebrate cat to 

treadmill stepping in humans with chronic spinal cord injury have illustrated the idea that 

basic motor patterns underlying gait can be produced by central pattern generators within 
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spinal circuits (Brown 1914; Stuart and Hultborn 2008; Calancie et al. 1994).  Realistic 

walking conditions however, necessitate a complex interaction of visual, somatosensory, 

and vestibular feedback mediated by the cortex for maintaining balance in both baseline 

walking and in response to unexpected perturbations (Armstrong and Marple-Horvat 

1996; Peterka 2002; T. H. Petersen et al. 2012).  Lateral stability in particular, requires 

active control of gait and posture in response to dynamic sensory feedback from the ever 

changing walking environment (Bauby and Kuo 2000).  Thus, supraspinal structures that 

integrate sensory information for motor planning are also likely to be involved in 

functional walking.  The cerebral cortex, in particular, might be instrumental in this 

component of walking.   

Several challenges persist in measuring cortical activity with EEG in the noisy 

environment inextricably tied to walking.  Myogenic contamination from the face and 

neck is both unavoidable and highly variable in presentation, influenced by a number of 

factors including muscle location, size, and fatigue  (Misulis and Head 2003; Metting van 

Rijn, Peper, and Grimbergen 1990; McMenamin et al. 2010).  Motion artifact stemming 

from the movement of EEG electrodes and sensor leads results in changes to impedance 

and other electromagnetic properties that are problematically time-locked with gait events 

such as heel strike (Castermans et al. 2014).  Noise has been mitigated using several 

signal processing techniques such as independent component analysis (ICA) or by 

structuring experimental paradigms that integrate walking with cognitive tasks that have 

well characterized cortical activity (Gwin et al. 2011; Wagner et al. 2016).  Refined 

techniques are needed to obtain accurate measures of brain activity during walking.  
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The objective of this study was to examine the effect of a balance perturbation on 

cortical movement-related oscillations during walking.  The perturbation provided a 

framework for testing cortical control of walking, with expected brain activity due to 

processing of multimodal sensory feedback and motor planning to maintain balance.  

Brain activity was measured using EEG while participants walked on a treadmill and a 

medial-lateral pull was applied to the waist using a custom cable servomotor setup.  We 

hypothesized that cortical oscillations, shown in previous studies to be strongly 

associated with motor control, would shift in magnitude and spatial orientation in 

response to the perturbation.  The results were interpreted in the context of brain control 

of dynamic balance.  

  
 
 
3.2 METHODS 
 
 
 
3.2.1 Experimental Protocol 
 
 
 

Ten young, healthy, neurologically intact volunteers able to walk on a treadmill 

participated in this study (5 men, 5 women, age range: 21-31 years).  Participants were 

secured in a fall arrest harness and given time to acclimate to moving on an instrumented 

treadmill (Bertec, Columbus, Ohio).  Brain activity was then recorded using 

electroencephalography (EEG) while participants walked on a treadmill and were given a 

side to side balance perturbation to the waist (Figure 1.). The experimental protocol was 

approved by the Marquette University Institutional Review Board and written informed 

consent was obtained from all participants.  
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There were 60 balance perturbation trials, each starting with a period of standing 

at rest for 10 s, until a visual cue notified the start of the instrumented treadmill (Bertec, 

Columbus, Ohio) up to a self-selected comfortable walking speed (0.94 ± 0.13 m/s).  A 

balance perturbation composed of a medial to lateral pull normalized to 7.5% of 

bodyweight was delivered to the subject’s waist using a custom cable servomotor setup.  

The balance perturbation was timed to a randomly determined right heel strike (RHS) 

from 6 to 10 RHS after the start of the trial (implemented in LabVIEW, National 

Instruments, Austin, TX).  Heel strikes were tracked in real time using dynamic center of 

pressure measurements obtained from the treadmill force plates (Walker 2013).  Another 

visual cue 5 RHS after the perturbation signaled the stop of the treadmill and the end of 

the trial. 
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Figure 1.  Instrumented treadmill and cable servomotor setup (A) and the wall projection 

shown to participants for the laser head tracking trial (B). 

 
 
 
3.2.2 Data Acquisition 
 
 
 
 EEG signals were recorded using a 64 channel active electrode cap setup 

(Acticap, Brainproducts Munich, Germany) arranged in the modified 10-20 convention, 

sampled at 1000 Hz with a FCz reference (Synamps 2 amplifier, Compumedics 

Neuroscan Victoria, Australia) and filtered (bandpassed between 0.3 to 200 Hz and notch 

filtered at 60 Hz to remove line noise).  Electrode impedance was held below 20 kΩ 

using high viscosity electrolyte gel (SuperVisc, Brainproducts).  EMG signals were 
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recorded using wireless electrodes (Trigno, Delysys Natick, MA) from the tibialis 

anterior (TA) and medial gastrocnemius (MG), sampled at 1000 Hz and bandpass filtered 

between 10-350 Hz.  Kinematic data was recorded from the lower extremities at 200 Hz 

with an eight camera Vicon Mx motion capture system using reflective markers arranged 

according to the Plug-in-Gait model (Davis et al. 1991).  Additional markers were used to 

monitor the trajectory of the head.  EMG, kinematic, and force plate data from the 

instrumented treadmill were collected using Vicon Nexus software.  

 
 
 
3.2.3 Data Preprocessing 
 
 
 
 EEG data was preprocessed and analyzed using custom Matlab scripts (Matlab, 

Mathworks), in addition to the Fieldtrip, Brainstorm, and EEGLAB toolboxes 

(Oostenveld et al. 2011; Tadel et al. 2011; Delorme and Makeig 2004).  Extremely noisy 

trials and channels were rejected according to measures of variance and z-score above a 2 

standard deviation threshold.  EEG signals were re-referenced to a whole head average 

reference, bandpass filtered from 1 to 100 Hz (6th order Butterworth), and epoched to the 

beginning of standing at rest and 5 RHS after the balance perturbation of each trial.   

 
 
 
3.2.4 Artifact Characterization and Removal 
 
 
 

Three conditions focusing on different prospective sources of noise were 

conducted for each subject before the main balance perturbation protocol: 1) motion 
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artifact was accentuated by instructing participants to forcibly stomp their feet while 

walking (50 ± 10.4 percent increase in vertical ground reaction forces compared to 

normal walking, paired t-test: p = 0.0003), 2) exaggerated EMG activity of the face and 

neck was examined through a head tracking task where the participant was asked to 

concurrently track a randomized target projected in their forward field of view using a 

head mounted laser (Figure 1B), 3) followed lastly by a normal baseline walking 

condition.  Independent component analysis (ICA) using the AMICA algorithm (Delorme 

et al. 2012) was then used to separate EEG channels within subjects into maximally 

independent components (IC) under the assumption that sources of artifact and true 

cortical activity were linearly mixed.   

 Consistent features in IC power spectrum, dipole location and scalp topography 

were observed across subjects and conditions.  Power spectrums estimated using a 

Welch’s periodogram included characteristics plausibly associated with artifacts, such as 

disproportionately elevated power in higher frequency bands suggesting EMG 

contamination from the neck/face, in addition to spectrums exhibiting large peaks at gait 

stepping frequencies and their corresponding harmonics (Figure 2A).  These features 

were quantified by measuring the slope of the power spectrum and using a peak finding 

algorithm, respectively (2A).  Several IC’s presented improbable sources in the periphery 

or even outside of the cortex itself after single dipole locations were fitted using a 3-shell 

overlapping spheres forward model, ICBM152 brain atlas (Fonov et al. 2009), and 

Fieldtrip’s DIPOLE_FIT function (2B).  Fitting a single dipole to IC’s comprised of 

multiple sources may erroneously localize to a plausible region of the cortex.  Dipoles 

inaccurately spatially averaged between multiple sources of activity were visually 
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identifiable as a spread of local minima and maxima in the IC’s scalp topography (Figure 

2C).  These topography maps were quantified by taking the standard deviation of the 

projected topography’s derivative, which provided a simple approximation of the 

smoothness of the topography’s surface.  
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Figure 2.  Select independent components representative of consistent observations 

across subjects, and their corresponding features in A) power spectrum, with peaks and 

slope denoted in red, B) dipole location in Talairach coordinates marked in green, and C) 

scalp topography (Subject 1 – IC’s 2, 10 and 36, hypothesized to correlate with motion 

artifact, EMG contamination, and true cortical activity are shown from left to right).  
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We hypothesized that these features could be used to separate IC’s into groups 

associated with different aspects of noise such as motion artifact and EMG 

contamination.  Independent components from the walking, stomping, and baseline 

conditions were clustered into groups according to the features we quantified in power 

spectrum, dipole location, and scalp topography using a k-means algorithm (Appendix 

A.1) implemented with the Scikit-learn Python library (Pedregosa et al. 2012).  K-means 

clustering inherently divides datasets into unlabeled groups which must be independently 

categorized.  The ground truth of each unlabeled cluster group was then estimated by 

computing the linear partial correlation (Pearson) between IC’s and a new, separate set of 

features emphasizing motion artifact and EMG contamination.  Specifically, a group’s 

relation to motion artifact was assessed through correlation of head kinematics (head 

markers centroid position, velocity and acceleration) and ground reaction forces recorded 

from the instrumented treadmill (force and moments in the x, y and z directions), while 

their relationship to EMG artifact was evaluated through the correlation of peripherally 

located EEG channels under the assumption that electrodes such as TP9/TP10 (positioned 

over the mastoids) would likely contain higher EMG activity from the eyes, face, and 

neck (Figure 3) (Kline et al. 2015; O’Regan and Marnane 2013).   
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Figure 3.  Electrode montage (modified 10-20 convention), with the peripheral electrodes 

Fp1/Fp2, FT9/FT10, TP9/TP10, PO9/PO10 used for EMG noise correlations denoted in 

orange.  

 
 
 

The k-means clustering algorithm consistently separated IC’s into significantly 

different groups favoring motion artifact correlations, EMG correlations, or neither 

source of noise – implying actual brain activity (Figure 4A).  Partial correlations of the 

ICA components and artifact features were fitted to a repeated measures model using the 

cluster groups as predictor variables. Repeated measures MANOVA was applied 

separately for each cluster and multiple comparisons correction (Tukey-Kramer) was 

performed to determine how they significantly differed within and across the stomping, 

tracking and baseline walking conditions (Appendix A.2).  A greater proportion of these 

IC’s were found to correlate with motion artifact features in the stomping task, while a 

larger segment of IC’s correlated with EMG features in the tracking task (Figure 4).  

Cluster groups were labeled and combined into brain activity, motion artifact, or EMG 

noise as determined from the partial correlations (Figure B). Independent components of 
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the main balance perturbation trials were then classified as belonging to brain activity, 

motion artifact, or EMG noise using a linear support vector machine (SVM) trained 

according to support vectors comprised of the initial, now clustered and labeled, set of 

power spectrum, dipole location, and topography features (Figure C and Appendix A.3). 

  



47 
  

 

Figure 4. Labeling of cluster groups from the Track, Stomp and Baseline pre-trials was 

determined by the partial correlations (strength denoted by greyscale) found between IC’s 

(rows) and motion/EMG artifact features (columns) across all subjects.  Cluster groups 

have been ordered and labeled by correlation similarity for ease of comparison.  
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Figure 5.  A select number of IC features from the stomping pretrial are visualized above, 

consisting of the power spectrum slope, scalp topography smoothness, and whether the 

IC dipole was localized inside the boundaries of a common cortex surface (15,000 

vertices mesh, non-linear ICBM152 brain atlas).  These features, in addition to others not 

visualized here, were clustered using the k-means algorithm, with the different groups 
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denoted by color (A).  The ground truth (i.e. were any of these groups related to motion 

artifact, EMG noise, or real brain activity) of these cluster groups were then determined 

through the analysis of various partial correlations between IC’s and measures such as 

head motion and ground reaction forces from the instrumented treadmill (B).  Cluster 

groups found to be correlated with noise or probable brain activity were used to create 

support vectors to train a linear SVM.  Finally, the trained SVM was used to classify IC’s 

from the main, balance control trials as motion artifact, EMG noise, or brain activity (C). 

 
 
 
3.2.5 Data Analysis 
 
 
 

Independent components classified as brain activity, motion artifact, and EMG 

artifact were grouped together and separately localized back onto the cortical source 

space using a constrained, minimum norm inverse solution, a boundary element method 

forward model (OpenMEEG), and a common cortical surface (15,000 vertices mesh, non-

linear ICBM152 brain atlas).  Three regions of interest (ROI) were selected based on 

combined segmentations from the ICBM152 atlas: frontal (rostral middle, superior, and 

caudal middle frontal regions), sensorimotor (M1S1) (precentral, postcentral and 

paracentral regions), and parietal (superior and inferior parietal, supramarginal, and 

precuneus regions).  Time frequency decompositions of these ROI’s were calculated 

using Mortlet wavelets (1 Hz central frequency, 2s full width half maximum), time 

warped to gait events (consisting of the following events: right heel strike (RHS), right 

toe off (RTO), left heel strike (LHS), left toe off (LTO), start and end of the balance 

perturbation), and smoothed in time using a Savitzky–Golay smoothing filter, before 
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being averaged across epochs.  The time frequency spatial topography of the full cortical 

surface (i.e. each of the 15000 vertices) was calculated across epochs for the theta (5-7 

Hz), alpha (8-12 Hz) and beta bands (15-30 Hz) using averaged time bins (100 evenly 

spaced bins between the start and end of the balance perturbation) to cut down on 

otherwise unwieldy file sizes (>1TB/subject).  Power values of the ROI’s and the 

individual vertices of the spatial topography were referenced to the baseline period of 

standing as a percent change in power.   

 
 
 
3.3 RESULTS 
 
 
 
3.3.1 Motion and EMG Artifact 
 
 
 

Independent components were classified across subjects by SVM, with a majority 

of components assigned as EMG noise (69%), compared to 8% for motion artifact and 

the remaining 23% of components classified as real brain sources (Figure 6).  The 

uniform distribution of classified components across subjects suggests that there was no 

subject specific bias.   
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Figure 6. The number of independent components classified as motion artifact, EMG 

noise, or real brain activity across all 10 subjects (distribution between individual 

subjects denoted by color).  

 
 
 

EMG noise primarily consisted of higher frequency content in the gamma band 

(Figure 7) located posteriorly in the cortex (+49.7% increase in average parietal gamma 

power compared to brain activity, ANOVA: p=0.039).  Motion artifact contained 

extremely high power content in lower frequencies throughout the cortex (+3006% 

increase in average theta power over all ROI’s compared to brain activity, ANOVA: 

p=0.0025), tightly time-locked to heel strike in the theta, alpha and beta bands (10).  The 

timing of motion artifact theta and alpha band peak power was found to be significantly 
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different from brain activity (ANOVA, theta: p = 0.022 and alpha: p = 0.0031) in the 

sensorimotor and parietal areas (Figure 8). 
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Figure 7.  Motion and EMG group ensemble average of the frontal, sensorimotor, and 

parietal ROI’s time frequency decompositions, normalized to percent change from 

baseline rest. Solid line represents the start and end of the balance perturbation, while the 

dotted lines represent right and left heel strike. 
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Figure 8.  Motion artifact time series of the averaged theta, alpha and beta power for the 

frontal, sensorimotor and parietal ROI’s.  Box plots of the peak maximum and minimum 

timings across all subjects are displayed below each time series with median, averages 

and outliers denoted by lines, diamonds and crosses.  The maximum and minimum 

ranges from the real brain activity time series box plots when available (no comparable 

maximum beta and minimum theta activity was observed) are indicated in light and dark 

grey, respectively. 
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3.3.2 Brain Signals 
 
 
 

Consistent patterns of brain activity were observed to be associated with the onset 

of the balance perturbation while walking.  Specifically, balance perturbations during 

walking were associated with cortical power modulations in the theta, alpha and beta 

bands (Figure9).  Theta band power increased greatly in the frontal, sensorimotor and 

parietal ROI’s following the medial-lateral pull to the waist (a respective 88.6 ± 60.2%, 

164 ± 141%, and 129 ± 126% increase in peak power compared to standing at rest, t-test: 

p<0.01), while a consistent pattern of desynchronization (decreasing power) was 

observed in the alpha and beta bands following heel strike.   
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Figure 9. Group ensemble average of the frontal, sensorimotor (M1S1), and parietal 

ROI’s time-frequency decompositions, normalized to percent change from baseline rest.  

The solid line represents the start and end of the balance perturbation, while the dotted 

lines represent right (darker grey) and left (lighter grey) heel strike.  
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Timing and localization of theta, alpha and beta frequencies were characterized 

for the perturbation (Figure 10).  The elevated theta band power observed during the 

balance perturbation appeared to begin in the parietal and sensorimotor areas before 

peaking in the frontal motor planning regions (Figure 6: 3.19 ± 0.15s, 3.23 ± 0.14s, and 

3.32 ± 0.11s respectively), however neither the timing nor magnitude between regions 

were found to be significantly different (ANOVA, timing: p = 0.16 and magnitude: p = 

0.35).  Beta band desynchronizations were found to regularly follow toe off events in the 

gait cycle, while alpha band activity mirrored the timing of theta band resynchronizations 

and beta band desynchronizations (ANOVA, resync: p = 0.13 and desync: p=0.79).  Both 

the theta and alpha band resynchronizations following the pull localized bilaterally across 

the entire cortex, while alpha band desynchronizations displayed laterality towards the 

right hemisphere compared to the bilateral localization in the beta band (Figure 11).   
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Figure 10. Time series of the averaged theta, alpha and beta bands for the frontal, 

sensorimotor and parietal ROI’s. Box plots of the peak theta maximum, beta minimum, 

and alpha maximum/minimum timings for individual subjects are shown below each time 

series with median, averages and outliers denoted by lines, diamonds and crosses, 

respectively.  Solid lines represent the start and end of the balance perturbation, while 

dotted and dashed lines represent heel strike and toe off gait events. 
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Figure 11.  Time frequency spatial topography of the group ensemble averaged theta, 

alpha and beta bands at the 3.1 and 3.6 s time bins - masked to show only the activations 

for the frontal, sensorimotor and parietal ROI’s. 

 
 
 
3.4 DISCUSSION 
 
 
 

Significant theta band power modulations were observed bilaterally throughout 

the cortex following the start of the balance perturbation.  This increase in theta power 

began in the parietal region of the cortex before moving anteriorly to the sensorimotor 

and frontal areas, however the timing was not found to be significantly different.  A 

widespread beta band desynchronization, i.e. a decrease in power compared to standing 

baseline, was observed to modulate with gait cycle events, with timing consistently 



60 
  

trailing toe-off.  These power modulations were different in timing and magnitude when 

compared to motion and EMG artifact.  Differences between the motion and EMG 

artifact themselves were also identified, with a consistent large magnitude motion 

artifact, suggesting great care be taken in deliberately removing motion-related noise 

from EEG recordings during walking.    

The apparent “parietal first” timing of the theta modulation observed in this study 

is consistent with the role of the parietal cortex in integrating vestibular, proprioceptive, 

and visual sensory afferents before committing information anteriorly to the frontal and 

sensorimotor regions (Andersen et al. 1997).  The parietal cortex is strongly associated 

with sensorimotor integration, translating perception into action through the coordination 

of different areas of the brain (Gottlieb 2007).  These regions of the cortex then influence 

the motor response to a loss of stability, whether through the direct selection of optimal 

motor plans or more indirect changes to the general readiness of certain neuronal 

ensembles in preparation for a balance perturbation (J. V. Jacobs and Horak 2007; De 

Waele et al. 2001).  The coarse spatial resolution of EEG, in addition to the smoothing 

applied to the time frequency decompositions may explain the lack of statistical 

significance we observed in this posterior to anterior theta timing.   

We postulate that vestibular afferents, which would be especially pronounced 

during an unstable balance event, likely contribute to the cortex-wide spread of theta 

band power after the balance perturbation.  In animals, there is a strong link between 

theta oscillations and the hippocampus - notably, peripheral vestibular lesions in rats have 

been shown to attenuate the power of these oscillations (Buzsáki 2002; Russell et al. 

2006).  Broad regions of the human cortex spanning the frontal, sensorimotor and parietal 
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areas receive vestibular input, based on brain imaging in conjunction with electrical or 

caloric vestibular stimulation (Brandt, Dieterich, and Danek 1994; Fasold et al. 2002; 

Kahane et al. 2003; De Waele et al. 2001; Blanke et al. 2000).  Similar modulations in 

cortical theta power have also been measured by EEG when stepping off a balance beam 

after a loss of balance, which would elicit comparable changes in sensory afferents (Sipp 

et al. 2013).   

The large, widespread increase in theta band power may therefore reflect cortical 

processing of the abrupt change in sensory feedback, such as vestibular input, caused by 

the balance perturbation (Nielsen and Sinkjaer 2002).  Although the exact timing of the 

pull to the waist was randomized across a period of several gait cycles, participants were 

aware that a perturbation would eventually occur, resulting in an anticipation of the pull 

in the latter portion of the experiment, which has been associated with slow brain 

potentials in other test paradigms (van Boxtel and Brunia 1994).   Elevated cortical theta 

power has previously been observed in a complementary range of tasks including 

working memory, attention, and learning -- favoring complex sensorimotor integration 

paradigms and increasing notably with rising cognitive demands (Bland and Oddie 2001; 

Schacter 1977; Cruikshank et al. 2012; Klimesch 1999).  This range of low frequency 

oscillations has also been measured by ECoG, and strongly correlates with higher 

frequency gamma power in the 80 to 150 Hz range throughout the human cortex, 

suggesting a potential source in the coordination of different areas of the brain (Canolty 

et al. 2006).  Specifically, this coupling of theta - gamma frequency bands may modulate 

cortical excitability states, allowing slow, theta band oscillations a framework to rapidly 
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heighten the readiness of far flung local neuronal ensembles in response to external 

perturbations (Schroeder and Lakatos 2009; Schnitzler and Gross 2005).   

This idea of large scale networks unifying the activity of disparate cortical regions 

is a compelling one and has been dedicated a substantial amount of research, particularly 

the concept of phase synchronization in different frequency bands providing a 

mechanism for linking nodes in a hypothetical cortical network  (Varela et al. 2001).  

Large scale gamma synchronizations related to selective attention have been measured 

240-380 ms after experimental cues, similar in timescale to the cortical activity we 

observed in response to the balance perturbation (Doesburg et al. 2008; Fell et al. 2003).  

Increased high gamma activity in general has been previously reported during walking, 

particularly in sensorimotor areas (Seeber et al. 2014; Seeber et al. 2015).  Direct 

mapping of these connectivity networks as graphs have been observed to display “small 

world” network structures specific to theta and gamma band frequencies, more efficient 

than purely random pairings of graph nodes, and possibly giving rise to a functional 

structure for advance cognitive tasks such as maintaining balance in novel environments 

(Stam 2004; Fries 2009).   

Direct measurement of high gamma power oscillations by EEG during walking 

remains complicated however by signal attenuation and myogenic contamination from 

the face and neck, which produces noise at high gamma frequencies.  The majority of 

independent components across all subjects were consistently classified as EMG noise, 

indicating a wide variability of these artifacts, likely resulting from the continuous 

activation of different facial and neck muscles during gait (Seeber et al. 2015; 

McMenamin et al. 2010).  Perhaps due to this intrinsic variability however, the averaged 
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contribution of EMG artifact components did not appear to be strongly time locked to 

gait events and remained confined to high frequency ranges, simplifying the 

interpretation of lower frequency modulations.  In contrast, the motion artifact group, 

which was correlated to head kinematics and force plate events, comprised a far smaller 

proportion of independent components, yet contained large power magnitudes.  The 

phasing with heel strike in low frequencies implies that mechanical artifacts resulting 

from stepping and head motion are highly stereotyped across gait cycles.  EEG 

recordings from cortically inert participants wearing a silicone cap have also been shown 

to exhibit similar frequency modulations tied to gait events (Kline et al. 2015).  The high 

power of motion-based noise highlights the importance of adequately removing and 

interpreting results in light of these mechanical artifacts. 

Several sophisticated processing techniques have previously been utilized to 

minimize noise in EEG signals of walking, primarily variations of blind source separation 

such as ICA or principle component analysis (PCA) used in the sliding windows of 

artifact subspace reconstruction (ASR) (Wagner et al. 2012; Bulea et al. 2015).  Our 

results may provide some insight into the effectiveness of ICA in separating noise from 

brain activity, which has remained uncertain (Snyder et al. 2015).  Specifically, the 

timing of the increasing theta power modulations after the balance perturbation revealed a 

much wider inter subject variability than the near identical groupings of the motion 

artifact theta modulations across subjects, which also trailed each heel strike, rather than 

solely the balance perturbation.  In higher frequencies such as the beta band, we observed 

the widely reported desynchronization consistently modulating with the gait cycle (Gwin 

et al. 2011; Seeber et al. 2014).  These differences in timing and magnitude across 
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frequencies between independent components classified as brain activity versus artifact 

suggests that ICA may provide an effective method for differentiating noise in walking 

EEG signals. 

 The control of balance during walking has been theorized to require active 

cortical control.  We observed theta band oscillations to modulate with balance 

perturbations consistent with this idea of supraspinal involvement.  These modulations 

were observed to be significantly different in timing, frequency and magnitude compared 

to motion artifact and EMG noise, which we differentiated and classified using a 

combination of ICA, clustering, and SVM’s.  We believe that these techniques may 

further refine current methods used for the attenuation of noise recorded from EEG while 

walking. 
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Chapter 4: Sensory deficits in myelopathy participants will lead to 
a shift in magnitude and phasing of balance related cortical 

oscillations while walking 
 
 
 
4.1 INTRODUCTION 
 
 
 

In this study, we examined the impact of sensory loss on cortical oscillations 

underlying dynamic balance perturbations.  To test the effects of sensory deficits on 

changes in cortical signals, we measured electroencephalography (EEG) during a balance 

perturbation to walking in people with cervical myelopathy, who have both sensory loss 

and deficits in dynamic balance control (Clarke and Robinson 1956).  Increases in the 

theta band power of EEG have previously been measured following a loss of balance in 

healthy individuals (Hülsdünker et al. 2015; Sipp et al. 2013).  The exact role of these 

low frequency oscillations, such as whether this widespread cortical activity is indicative 

of a motor control response or perhaps weighted towards integration of the various 

sensory afferents comprising a balance event, remains unclear.  Exploring how and where 

these oscillations shift following altered sensory feedback in people with myelopathy 

may further discern the role of cortical theta modulations in postural control and their 

interplay with the more autonomous, sub-cortical structures typically associated with 

normal gait.   

Balance-specific cortical oscillations have been observed to be widely distributed 

throughout the cortex.  Frontal regions have been associated with a generalized cortical 

reaction to unexpected changes in sensory signals, often in conjunction with different 

aspects of attention, learning and error feedback (George Mochizuki et al. 2009; Mihara 
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et al. 2008; Adkin et al. 2006).  Posteriorly, the parietal cortex has been theorized to be 

involved in sensorimotor integration, and is likely to be important in balance 

perturbations considering the vestibular, proprioceptive and visual feedback (Gottlieb 

2007; Andersen et al. 1997; Klimesch 1999).  Theta band activity in particular, modulates 

with the loss of balance for both standing and walking. (Hülsdünker et al. 2015; Sipp et 

al. 2013).  The broad distribution of cortical regions involved in dynamic balance and the 

association with theta power fluctuations has resulted in conjecture on the exact nature of 

these oscillations and their role in dynamic balance control.   

Simple volitional movements have well characterized cortical patterns of activity 

consisting of power modulations in specific frequency bands.  Beta band power 

corresponding with basic movements for example, has been thoroughly described in the 

sensorimotor cortex as a series of desynchronization (reduced power) and 

resynchronizations (increased power) (Cassim et al. 2001; Kilavik et al. 2013; 

Pfurtscheller, Stancák, and Neuper 1996; Pfurtscheller and Lopes da Silva 1999).  These 

beta band oscillations decrease in magnitude following the attenuation of sensory 

feedback, from both acute, transient changes using vibration and chronic reduction in 

sensation resulting from spinal cord injury (Gourab and Schmit 2010; Müller-Putz et al. 

2007).  Changes in cortical beta band oscillations following altered sensory feedback may 

also translate to more complicated motor tasks such as maintaining balance after a 

perturbation while walking. 

Walking while facing an imminent loss of balance requires a complex integration 

of several sensory afferents, in addition to the planning and anticipation of a motor plan.  

We believe that the lower limb sensory deficits presenting in individuals with myelopathy 
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may provide a framework to address the role of cortical oscillations observed in walking 

after a lateral balance perturbation.  Using a custom cable-servomotor system, we 

delivered a lateral pull to the waist of participants with cervical myelopathy during 

walking and measured cortical activity using high density EEG.  We hypothesized that 

reduced sensory feedback in a challenging, whole body motor task such as maintaining 

stability in gait would exhibit similar changes in cortical oscillations previously observed 

in simpler motor paradigms isolated to single limbs.  

 
 
 
4.2 METHODS 
 
 
 
4.2.1 Experimental Protocol 
 
 
 

Ten cervical myelopathy subjects (4 males and 6 females, mean age 51.6 ± 13.8), 

all post-surgery and capable of independently walking on a treadmill, and 10 healthy, age 

matched controls were recruited for this study (5 males and 5 females, mean age 50.2 ± 

12.3).  Walking function was evaluated using a 10 meter walk test (myelopathy: 1.35 ± 

0.23 m/s, control: 1.43 ± 0.22 m/s).  Participants began each trial standing at rest for 10 s, 

until a visual cue notified the start of the treadmill up to a self-selected comfortable 

walking speed.  On average, myelopathy participants chose a treadmill walking pace 

50.5% slower than their over ground walking speed (0.66 ± 0.17 m/s).  The walking 

speed for controls was matched to their respective, age matched myelopathy participant 

(mean: 53% slower than their over ground walking speed).   
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 A balance perturbation timed to a random left heel strike 6 to 10 steps after the 

start of the trial normalized to 5% of bodyweight was delivered to the subject’s waist 

using a custom cable servomotor setup (Walker 2013).  This balance perturbation was 

designed to accentuate center of mass sway by pulling the subject laterally away from the 

midline during left and right heel strike (i.e. laterally towards the left after LHS and 

towards the right after RHS) for one gait cycle.  A visual cue after the perturbation 

signaled the stop of the treadmill and the end of the trial.   

 
 
 
4.2.2 Data Acquisition 
 
 
 
 Electroencephalography signals recorded from a 64 channel active electrode cap 

setup (Acticap, Brainproducts: Fs = 1000 Hz, FCz reference) were bandpass filtered 

between 0.3 and 200 Hz, and notch filtered at 60 Hz to attenuate line noise (Synamps 2 

amplifier, Compumedics Neuroscan).  EEG electrodes were arranged in a modified 10-20 

convention and impedances kept below 20 kΩ using high viscosity electrolyte gel 

(SuperVisc, Brainproducts).  Electromyography (EMG) signals were measured from the 

tibialis anterior (TA) and medial gastrocnemius (MG), in addition to force plate 

measurements sampled at 1000 Hz from the instrumented treadmill (Bertec, Columbus, 

Ohio) and kinematic data from an eight camera Vicon motion capture system.   
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4.2.3 EEG Analysis 
 
 
 
 Data were preprocessed and analyzed using custom Matlab scripts (Matlab, 

Mathworks ) and the Fieldtrip, EEGLAB, and Brainstorm toolboxes (Oostenveld et al. 

2011; Delorme and Makeig 2004; Tadel et al. 2011).  Independent component analysis 

(AMICA: Delorme et al. 2012) was applied to the EEG signals to remove blink, EMG 

and motion artifact after classification using k-means clustering and a linear, support 

vector machine (refer to Aim 2 methods). Independent components classified as brain 

signals were localized back together into cortical source space using a boundary element 

method forward model (OpenMEEG) and a constrained, minimum norm inverse solution.  

Three cortical regions of interest (ROI) were selected based on combined segmentations 

from the ICBM152 atlas: frontal (rostral middle, superior, and caudal middle frontal 

regions), sensorimotor (M1S1) (precentral, postcentral and paracentral regions), and 

parietal (superior and inferior parietal, supramarginal, and precuneus regions).  Time 

frequency decompositions of these ROI’s were calculated using Morlet wavelets (1 Hz 

central frequency, 2s full width half maximum), time warped to gait events and smoothed 

in time, before being averaged across epochs.  The spatial topography of the full cortical 

surface (i.e. each of the 15000 vertices) was calculated across frequency bands for the 

theta (5-7 Hz), alpha (8-12 Hz) and beta bands (15-30 Hz) using averaged time bins to 

cut down on otherwise unwieldy file sizes (>1TB/subject).  Power values were then 

referenced to the baseline period of standing rest as a percent change in power.  Multiple 

linear regression of the timing of theta (5-7 Hz), alpha (8-12 Hz), and beta (15-25 Hz) 

power maximum/minimum peaks after the balance perturbation were performed to 
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examine their correlation to different kinematic measures such as time to step width 

correction after perturbation.   

 
 
 
4.2.4 Kinematic Analysis 
 
 
 
 Center of mass (CoM) in the medial-lateral direction was calculated using 

numerical double integration of ground reaction forces (GRF) using the trapezoidal 

method (King and Zatsiorsky 1997).  Double integration of GRF’s has long been 

considered the gold standard in calculating CoM measurements but is often deferred in 

favor of a body segment model using motion capture due to limitations in capture volume 

from floor mounted force plates in a traditional gait lab and the difficulty of accurately 

estimating integration constants (Gutierrez-Farewik, Bartonek, and Saraste 2006).  These 

limitations were ameliorated through the use of an instrumented treadmill offering force 

plate data for the entire length of the trial, in addition to providing known velocities.  The 

integration interval consisted of the medial-lateral zero crossings of the center of pressure 

(CoP), under the assumption that CoP = CoM when the horizontal GRF is equal to zero.  

Integration constants were back calculated from the difference between the 

experimentally recorded CoP and estimated CoM, which were further verified with the 

known velocity of the treadmill.  The initial velocity constant was assumed to be zero 

since each trial began at standing rest.  The effect of the medial-lateral pull on calculated 

ground reaction forces was corrected by subtracting the force profile measured from load 

cells instrumenting the cables at the participant’s waist.   Finally, double integration 

center of mass calculations were validated with CoM measurements extrapolated from 
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the pelvis centroid trajectory determined by motion capture markers and the Vicon Plug-

in-Gait model (mean correlation: 0.94 ± 0.05, p < 0.0001). 

 
 
 

𝐶𝑜𝑀!"#$%&'( = 𝐺𝑅𝐹! 𝑡 𝑑𝑡                                                       (1) 

𝐶𝑜𝑀!"#$%$"& = 𝐶𝑜𝑀!"#$%&'( 𝑡  𝑑𝑡                                           (2) 

  Where the integration constant, v0, was initially set to 0.  
 
 
 

Dynamic balance was characterized by estimating the margin of stability (MoS).  

This measure provides a simple estimate of stability while walking by examining center 

of mass in relation to base of support (BoS) over time (A L Hof, Gazendam, and Sinke 

2005).  Specifically, the dynamic center of mass was extrapolated from CoM position 

along with its associated velocity component, scaled to pendulum (i.e. leg) length, and 

compared to the base of support determined from the CoP (Figure 1).  Situations where 

this extrapolated center of mass (XCoM) strays from the base of support may reflect 

periods of instability while walking (At L Hof 2008). 

 
 
 

𝑀𝑜𝑆 = 𝑀𝑖𝑛(𝐵𝑜𝑆 −  𝐶𝑜𝑀 + 𝑣 𝜔! )             𝜔! =  !
!
            (3) 

Where v = CoM velocity, g = gravitational constant, and l = leg length 
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Figure 1. Example single trial (Myelopathy Subject 1) demonstrating the calculation of 

margin of stability (MoS) from the extrapolated center of mass and base of support. 

 
 
 
4.3 RESULTS 
 
 
 

Theta band power in the 5-7 Hz range was observed to modulate with the balance 

perturbation through an increase in power over the entire cortex for the frontal, 

sensorimotor and parietal regions of interest (Figure  - Control: 81.3 ± 99.3, 82.9 ± 91.6, 

78.2 ± 70.5, t-test p <=0.041. Myelopathy: 89.9 ± 89.1, 98.8 ± 69.6, 89.9 ± 65.3, t-test p 

<= 0.011).  This large increase in theta power following the balance perturbation was 

delayed in the frontal cortical areas of myelopathy subjects (Control: 0.37 ± 0.27 s, 
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Myelopathy 1.27 ± 0.44 s, 2 sample t-test p = 0.00003).  Spatially, this delayed frontal 

theta power was lateralized to the right hemisphere in myelopathy participants compared 

to the more bilateral distribution observed in healthy controls (Figure 2).   
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Figure 2.  Group ensemble average of the time frequency decompositions from the 

frontal, sensorimotor and parietal regions of interest.  Solid lines represent the start and 

end of the balance perturbation, while dashed lines denote heel strikes from the gait 

cycle.   
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Figure 3.  Group ensemble time frequency spatial topographies of the control and 

myelopathy during their respective theta band maximums. 

 
 
 

The myelopathy group was observed to walk with a larger baseline step width 

compared to controls (Control: 171 ± 21 mm, Myelopathy: 211 ± 48 mm, 2 sample t-test 

p = 0.028).  Their base of support remained consistently greater than controls on average, 

only reaching parity during the actual step correction, where participants generally 

widened their step width in response to the balance perturbation (Figure ).  This step 

width correction occurred earlier in controls, typically immediately after the start of the 

perturbation, while myelopathy participants widened their step width after the end of the 
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perturbation (Control: 3.7 ± 0.25 s, Myelopathy: 4.1 ± 0.27 s, 2 sample t-test p = 0.0071).  

The minimum margin of stability after the balance perturbation generally occurred earlier 

in controls, reflecting the trends seen in step width (Control: 4.47 ± 0.18 s, Myelopathy 

4.69 ± 0.25 s, t-test p = 0.043). 
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Figure 4.  The group ensemble base of support (mm) over the course of the balance 

perturbation trial is shown in orange for myelopathy participants and blue for controls.  

The percent change in step width and margin of stability from baseline walking are 
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shown below.  Solid lines indicate the start and end of the balance perturbation, while 

dashed lines represent heel strike gait events. 

 
 
 
  A small, yet significant minority of trials in both groups consisted of a narrowing 

of step width in response to the balance perturbation (Figure ).  A greater proportion of 

trials in the myelopathy group compared to controls were comprised of this decrease in 

base of support (Controls: 28% trials, Myelopathy: 40% trials), however individual 

participants varied greatly in their ratio of widening versus narrowing step width after the 

balance perturbation (Range: 3% - 90% narrowing SW trials).  Controls modulated their 

center of mass with their base of support, while the myelopathy group’s center of mass 

remained consistent regardless of their step width (XCoM widen versus narrow 

correlation, Controls: ρ = 0.77, Myelopathy: ρ = 0.92, p < 0.00001).  Minimum margin of 

stability was delayed in time when step width narrowed in controls (wide/narrow 

minimum MoS 4.39 ± 0.2 s/ 4.75 ± 0.2 s, t-test p = 0.0013), while a greater magnitude 

but no significant difference in timing of minimum MoS was observed in the myelopathy 

group (wide/narrow minimum MoS mean: -67.1 ± 20% / -100.1 ± 28% change from 

baseline, t-test p = 0.0087).   
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Figure 5.  Group ensemble base of support (mm) split into trials where step width either 

widened or narrowed in response to the balance perturbation. The percent change in step 

width and margin of stability from baseline walking are also shown.  Solid lines indicate 
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the start and end of the balance perturbation, while dashed lines represent heel strike gait 

events. 

 
 
 

Time frequency decompositions controlling for step width response remained 

largely similar with the exception of frontal cortical areas in the myelopathy group 

(Figure ).  Theta power modulations in myelopathy participants were observed to largely 

be limited to trials with a widening step width in the frontal cortex.  No correlation in 

narrowing step width trials was observed between the timing of the step width correction 

and the timing of theta power peaks in the sensorimotor and parietal ROI’s.  A weak, yet 

significant positive correlation was found in these widening step width trials between the 

timing of theta band power peaks across all ROI’s and the start of the step width 

correction in response to the balance perturbation (Figure ).   
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Figure 6.  Group ensemble average of the time frequency decompositions from the 

frontal, sensorimotor and parietal regions of interest divided into trials where participants 

widened or narrowed their step width in response to the balance perturbation.  Solid lines 

represent the start and end of the balance perturbation, while dashed lines denote heel 

strikes from the gait cycle.   
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Figure 7.  Correlations from multiple linear regression of the timing of theta band 

modulation peaks in the frontal, sensorimotor and parietal regions of interest and the 

timing of step width corrections for trials with a widening base of support in response to 

the balance perturbation. 
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4.4 DISCUSSION 
 
 
 

Large increases in theta band power throughout the cortex modulated with lateral 

balance perturbations during walking.  Theta band modulations in the frontal areas of the 

cortex were significantly delayed in time and displayed a more spatially lateralized 

cortical localization for participants with cervical myelopathy compared to age and speed 

matched, healthy controls.  Participants generally responded to the lateral pull to the 

waist by either widening or narrowing their step width.  The timing of these theta power 

modulations were significantly correlated with the initiation of a widening step width 

correction in response to the balance perturbation.  We believe these results support a link 

between the modulation of low frequency cortical oscillations and sensorimotor 

integration.  

The increase in theta power, which correlated with the onset of step width 

corrections, may represent the cortical integration of sensory signals used to determine a 

motor response for the lateral pull to the waist.  Maintaining lateral stability has been 

theorized to require greater active cortical control when compared to simple, forward 

gait, which has been observed to retain stabilizing properties from the bipedal motion of 

the limbs themselves (Bauby and Kuo 2000; Slobounov et al. 2008).  This reactive motor 

response to proprioceptive, visual, and vestibular feedback during an ongoing balance 

event could hypothetically range from direct central input to indirect mediation of 

reflexes in the leg and trunk (Nielsen and Sinkjaer 2002).  Previous studies have found 

the excitability of these reflex pathways in the legs to modulate with transcranial 

magnetic stimulation at latencies consistent with cortical involvement, in addition to 
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direct measurements of cortical theta modulations associated with loss of balance using 

EEG (Yang and Stein 1990; N. Petersen et al. 1998; Sipp et al. 2013; Dietz, Quintern, 

and Sillem 1987).   

The delayed frontal theta power modulations we observed in our myelopathy 

group may derive from reduced proprioceptive feedback, commonly presenting as a loss 

of joint position sense, two point discrimination and impairment of lower limb vibration 

perception in cervical myelopathy (Clarke and Robinson 1956).  Normally, prolonged 

downward gaze while walking for healthy, young controls has been shown to be 

unnecessary during an unexpected balance perturbation to acquire sufficient visuospatial 

information for maintaining balance  (Zettel et al. 2005).  A reduction in proprioceptive 

feedback however, may motivate a greater reliance on longer latency visual feedback, 

collaborated by previous observations of myelopathy subjects displaying greater 

instability in walking after reducing visual information by darkening the surrounding 

room (Drew et al. 2008; Dvorak, Sutter, and Herdmann 2003).  Spatially, a visual 

processing bias may also explain the shift in balance related theta power localization we 

found from bilateral, medial areas near the sensorimotor cortex to more lateralized, 

posterior regions of the brain such as the occipito parietal cortex in participants with 

myelopathy (Patla 1997).  Similar reorganizations of cortical activity have been recorded 

after incomplete spinal cord injury, including posterior shifts in motor activations and a 

broader, diffuse topography of motor related beta oscillations  (Gourab and Schmit 2010; 

Raineteau and Schwab 2001; Kokotilo, Eng, and Curt 2009).   

Less precise foot placement, which could reasonably be assumed after reduced 

proprioceptive feedback, has been shown to lead to a wider step width in gait (At L. Hof 
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et al. 2007).  Our myelopathy subjects also had a corresponding delay in minimum 

margin of stability, suggesting that the delayed timing of cortical theta oscillations may 

have resulted from a later loss in balance due to a widened baseline step width.  The 

significantly greater pre-perturbation step width we observed in myelopathy participants 

compared to controls may be a compensatory motor strategy to minimize deficits in 

sensory information by prolonging the window where a motor correction to a 

perturbation could still successfully prevent a fall.  Delayed somatosensory evoked 

potentials in the leg area of the motor cortex have been measured, even in myelopathy 

patients with no clinical signs of lower limb weakness (Masur et al. 1989).  A general 

widening of baseline step width would provide greater leeway in keeping their center of 

mass within the base of support during a lateral perturbation, regardless of any shortfalls 

in motor weakness or sensory feedback (A L Hof, Gazendam, and Sinke 2005).  

Comparable gait abnormalities in step width have previously been found in patients with 

cervical myelopathy and several other populations with neurological impairments 

resulting in motor and sensory deficits such as stroke and multiple sclerosis (Kuhtz-

Buschbeck et al. 1999; Sosnoff, Sandroff, and Motl 2012; G. Chen et al. 2005).   

In general, participants were observed to either widen or narrow their step width 

in response to the lateral balance perturbation, favoring the former.  Trials consisting of a 

widening base of support tended to initiate a step width correction before the start of the 

balance perturbation, implying a degree of anticipation.  Although the exact heel strike 

coupled to the lateral pull was randomized from trial to trial, participants could still 

heighten vigilance and plan for the perturbation in advance, which modulates cortical 

activity in preparation for anticipated instability (Jesse V. Jacobs et al. 2008; G. 
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Mochizuki et al. 2010).  The markedly wider baseline step width in participants with 

myelopathy was in contrast to their tendency to narrow their step width following the pull 

to the waist in a larger percentage of trials compared to controls.  Narrowing the base of 

support would require compensating proximal adjustments such as with the trunk, 

consistent with changes in XCoM in controls but not in our myelopathy subjects (Bloem 

et al. 2000; Horak 2006).  Notably, decreased medial lateral trunk variability has been 

linked to deficits in balance control for older adults (Moe-Nilssen and Helbostad 2005). 

The failure of cortical theta activity to modulate with the balance perturbation in 

narrowing step width trials for our myelopathy participants provides evidence that these 

theta oscillations serve a role in successfully executing an optimal motor response to 

losses in stability.  The inability of our myelopathy participants to adjust their XCoM 

with the direction of their step width correction was also accompanied by the absence of 

an anticipatory stepping correction preceding the balance perturbation and a greater loss 

of stability according to MoS, suggesting that the narrowing of step width in myelopathy 

participants was not an alternative motor strategy but an inaccurate estimation of 

perturbation timing.  Similarly, narrow step width and decreased step width variability 

has previously been associated with the likelihood of falling (Owings and Grabiner 2004; 

Brach et al. 2005; Guimaraes and Isaacs 1980).  A mistiming of the perturbation would 

explain the suboptimal loss in balance found in these narrowing step width trials 

comprised of both a larger magnitude in MoS as well as a delayed return to baseline 

MoS.  Our results support the hypothesis that active cortical control is a necessary part of 

maintaining lateral balance during walking. 
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 In all likelihood, it is a combination of factors reflecting the multifaceted 

requirements of stable walking rather than a singular difference in stepping 

characteristics that explains the changes in cortical oscillations we observed in 

myelopathy participants.  The fear of falling itself for example, has been linked to wider 

step width during baseline gait, and the older age of our participants would be expected to 

contribute to balance deficits as well (Maki and McIlroy 2007; Woollacott and Tang 

1997).  Although we found no significant differences in walking speed from the 10 meter 

walk test, the wider baseline step width in our myelopathy participants would come at a 

substantially increased mechanical and metabolic cost (Donelan, Kram, and Kuo 2001).  

Current standardized functional assessments of myelopathy such as the Nurick scale and 

Japanese Orthopaedic Association (mJOA) scoring system involve coarse, qualitative 

measures of sensory and motor deficits.  Further research into more quantitative measures 

of function in myelopathy patients is needed to reveal the differences we observed in step 

width variability and suboptimal losses of balance (Salvi, Jones, and Weigert 2006).  The 

delay in theta modulation timing and changes in cortical localization we observed in 

myelopathy volunteers for instance may possibly be used as a functional balance metric.  

Training paradigms utilizing a similar lateral perturbation may reveal whether these 

changes can be normalized as patients acclimatize to the balance task or if these cortical 

differences are symptomatic of permanent underlying changes in cortical structure. 
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Chapter 5: Integration of Results 
 
 
 
5.1 SUMMARY  
 
 
 

 Changes in patterns of movement related brain activity were observed following 

attenuation of sensory feedback in simple, volitional movements and within the 

framework of a dynamic balance control task during walking.  We measured a 

significantly decreased beta power ERS (increasing power) associated with simple ankle 

dorsiflexion after prolonged vibration of the TA.  Significant theta band power 

modulations were observed bilaterally throughout the cortex following the start of lateral 

balance perturbations during walking.  These power modulations were different in timing 

and magnitude when compared to spectrograms comprised of independent components 

classified as motion and EMG artifact.  Furthermore, differences between the motion and 

EMG artifact themselves were determined, with the consistent yet extreme magnitude of 

motion artifact time frequency content suggesting great care be taken in deliberately 

removing motion related noise from walking recordings.  Balance related theta band 

modulations in the frontal areas of the cortex were significantly delayed in time and 

displayed a more spatially lateralized cortical localization for participants with cervical 

myelopathy compared to age and speed matched, healthy controls.  The delayed frontal 

theta power modulations we observed in our myelopathy group may derive from reduced 

proprioceptive feedback or simply from a later loss in balance due to a widened baseline 

step width.  We believe these results support a link between the modulation of cortical 
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oscillations and sensorimotor integration, in addition to providing evidence that active 

cortical control is a necessary part of maintaining lateral balance during walking.  

 
 
 

5.2 THE CASE FOR CORTICAL OSCILLATIONS 
  
 
 

So what do these cortical oscillations fundamentally mean? 

 
 
 

Oscillatory activity has been found in virtually every part of the nervous system, 

from subcortical central pattern generators in the spine, to deep brain areas such as the 

thalamus (Jones 2000; Dimitrijevic, Gerasimenko, and Pinter 1998).  Whether in 

primitive assemblies of the brainstem or the most convoluted premotor areas of the 

neocortex, synchronous neuronal activity at various frequencies have been well 

established as a routine and integral working of these structures (Bland and Oddie 2001; 

Maki and McIlroy 2007).  Furthermore, these oscillations have been found to modulate 

with specific, functional actions such as the simple motor execution and more 

complicated responses to a balance perturbation while walking found in this dissertation, 

in addition to the vast amount of other experimental paradigms found in literature 

(Koelewijn et al. 2008; Kilavik et al. 2013; Lee 2003; Hari and Salmelin 1997).   

Taken together, there is strong evidence that these phase synchronizations provide 

a framework for large scale communication of different areas of the brain.  Theta and 

gamma band frequencies specifically, have been mapped to networks exhibiting 

properties of small world networks, a connectivity scheme much more efficient than a 
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purely random pairing of brain regions, and possibly giving rise to a functional structure 

for higher cognitive tasks (Stam 2004; Fries 2009).  The mechanism behind integrating 

different sensory modalities, motor plans and execution needed during the balance 

paradigm of this dissertation is likely found in these widespread cortical oscillations and 

their resulting modulations. 

 
 
 

5.3 FUTURE STUDIES 
 
 
 
 One of the main limitations in the use of myelopathy subjects as a model for 

sensory deficits is the limited nature of existing cervical myelopathy assessments.  

Common metrics such as the Nurick Criteria and the Japanese Orthopaedic Association 

score provide at best, a rough approximation of function, and are based on qualitative 

observations from the patient or physician (Dvorak, Sutter, and Herdmann 2003; Salvi, 

Jones, and Weigert 2006).  The large variability of motor and sensory deficits presenting 

in patients with cervical myelopathy highlights both the difficulty and importance of 

rigorously quantifying functional deficits, especially when inferring possible sources for 

the changes we measured in brain activity (Clarke and Robinson 1956).  Standard metrics 

for other neurological disorders may be adapted such as the Fugl-Meyer test for stroke or 

generalized measures of gait and balance such as the Dynamic Gait Index, Romberg and 

Berg Balance test  (Bogle Thorbahn and Newton 1996; S.L. Whitney, M.T. Hudak, and 

G.F. Marchetti 2000; Fugl-Meyer et al. 1975).   

The balance paradigm consisting of a medial-lateral pull is open to several 

modifications that may provide further insights into cortical balance control.  Simply 
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adding random catch trials where no balance perturbation is applied would provide an 

interesting reference to further investigate motor anticipation and vigilance.  Applying a 

continuous perturbation rather than a discrete, single pull may offer an interesting 

framework to observe cortical adaptations to the medial lateral pull.  Any long term 

adaptations may be also useful in the future for training myelopathy subjects to walk with 

a more efficient, reduced step width than the comparatively wide baseline, step width we 

observed during our study. 

Further possible refinements in the noise reduction techniques we applied include 

both the labeling of clusters and with the classifiers used to segment independent 

components themselves.  Additional types of baseline noise characterization trials may 

provide a more accurate separation of feature clusters, such as the inclusion of a 

continuous lateral perturbation pretrial.  Noise in these baseline trials may also be further 

isolated by having participants wear a nonconductive layer between the EEG electrodes 

and the scalp (Snyder et al. 2015; Kline et al. 2015).  While the performance of various 

types of popular classifiers in small datasets is arguably indistinguishable, there may be 

some value in the use of transparent classifiers such as decision trees, compared to the 

black box nature of the SVM’s we utilized (Meyer, Leisch, and Hornik 2003).  With 

advances in both hardware and cloud storage capacities, the creation of an open access 

database of labeled, experimental EEG data would be cost effective, foster collaboration, 

and facilitate the development and reproducibility of novel methods.  The same principles 

for classifying independent components used in this dissertation could easily be applied 

to a wide variety of different EEG paradigms with access to appropriate training sets.  

Wide enough adoption of providing open access to datasets and the resulting size of 
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available EEG data would also allow new, interesting avenues of study such as non-linear 

classification with neural networks.     

Deep learning neural networks are currently a particularly promising area of 

machine learning, making tangible impacts in varied applications from natural language 

processing to artificial intelligence engines for strategy games.  If oscillatory behavior, as 

this author believes, is indeed a fundamental mechanism for the integration of cortical 

networks, applying such concepts could lead to interesting implications in these neural 

nets composed of many hidden layers.  Mimicking phase synchronizations for instance, 

may open new avenues to allow integration of different models, prevent overfitting, and 

provide a roadmap for a more universal application of neural nets.  
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APPENDICES 
 
 
 
A.1 K-means clustering 
 
 
 

 The K-means algorithm provides a straightforward, yet robust method of 

clustering features according to Euclidean distance. The features we defined in power 

spectrum, dipole location, and scalp topography (Figure 1-2) were first demeaned and 

scaled to unit variance (0 - 1). The initial, a priori number of clusters, k, was then chosen 

based on maximum silhouette score, a measure of how well separated a given number of 

clusters is based on their sample similarity (Figure 1A).  

 
 
 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
(𝑑!" − 𝑑!")

max (𝑑!" , 𝑑!")
 

where dic = mean intracluster distance and dnc = mean nearest cluster distance 

 
 
 

 Starting from this initial cluster number k, we evaluated the correlations between 

ICA components and artifact features of several cluster sizes for all 3 conditions.  Note 

how cluster sizes that are too small or large lead to cohesive groups of features being 

erroneously combined or split up, demonstrating the importance of independently 

assessing the ground truth of cluster labels.  For instance, the group containing motion 

artifact features in the k = 5 condition divides up into multiple cluster groups combined 

with EMG activity in the k = 4 cluster size condition (Figure B).   
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Figure 1.  Mean silhouette coefficients for different cluster sizes for the k-means 

algorithm (A), along with the clustered independent component groups and their 

correlations with motion/EMG artifact features when varying the number of clusters from 

4 to 6 for the baseline walking condition. 
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A.2 Cluster evaluation 
 
 
 

Independent component groups clustered with the k-means algorithm were 

evaluated using a repeated measures MANOVA of the correlations between IC’s and 

artifact features such as head marker velocity or ground reaction forces.  Multiple 

comparisons of different clusters within the stomping, tracking and baseline walking 

conditions indicated that the k-means algorithm separated components into meaningful 

groups related to motion and EMG artifact (Figure 2).   For example, cluster 0 was 

significantly different from all other clusters related to EMG or motion artifact in the 

stomping condition, implying real brain activity, while cluster 4, heavily correlated to 

motion artifact, was found to be significantly different from all other clusters in the 

stomping and baseline walking conditions when only using motion artifact features.  

Multiple comparisons of different clusters across the stomping, tracking and baseline 

walking conditions implied that cluster groups related to similar types of artifact were 

also statistically similar to one another across conditions (Figure 3).  For instance, the 

groups related to motion artifact (S4, T4, W4) were determined to be statistically similar 

across conditions.  These comparisons were then used to combine similar groups across 

conditions into groups of features related to motion artifact and EMG artifact, or real 

brain activity (related to neither source of noise). 
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Figure 2. Repeated measures MANOVA p-values for multiple comparison between the 

correlations (motion, EMG, and all correlations) of different cluster groups within the 

stomping, head tracking and baseline walking conditions. 
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Figure 3.  Repeated measures MANOVA p-values for multiple comparison of cluster 

groups across the different stomping, head tracking and baseline walking conditions. 

 
 
 
A.3 Linear SVM classifier 
 
 
 

A linear, support vector machine was implemented using the Sklearn Python 

library to classify the main balance perturbation trial IC’s as motion artifact, EMG 

artifact, or real brain activity (Figure 4).  Features previously clustered using a k-means 

algorithm and then combined into significant groups related to brain or artifact 

correlations were used as support vectors to train the SVM.  We empirically found 

optimal parameters (error term C, gamma term for non-linear RBF kernel, etc) for the 
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SVM using a grid search and determined that a linear SVM provided a robust classifier 

for EEG independent components.  
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Figure 4.  Example of independent component classification by SVM for a single subject 

(Subject 1). 
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