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ABSTRACT

IMPROVING GAS DEMAND FORECAST DURING

EXTREME COLD EVENTS

Babatunde I. Ishola, B.S.

Marquette University, 2016

This thesis explores techniques by which the accuracy of gas demand

forecasts can be improved during extreme cold events. Extreme cold events in

natural gas demand data are associated with large forecast error, which represents

high business risk to gas distribution utilities.

This work begins by showing patterns associated with extreme cold events

observed in natural gas demand data. We present a temporal pattern identification

algorithm that identifies extreme cold events in the data. Using a combination of

phase space reconstruction and a nearest neighbor classifier, we identify events with

dynamics similar to those of an observed extreme event. Results obtained show that

our identification algorithm (RPS-kNN) is able to successfully identify extreme cold

events in natural gas demand data.

Upon identifying the extreme cold events in the data, we attempt to learn

the residuals of the gas demand forecast estimated by a base-line model during

extreme cold events. The base-line model overforecasts days before and

underforecasts days after the coldest day in an extreme cold event due to an unusual

response in gas demand to extreme low temperatures. We present an adjustment

model architecture that learns the pattern of the forecast residuals and predicts

future values of the residuals. The forecasted residuals are used to adjust the initial

base model’s estimate to derive a new estimate of the daily gas demand. Results

show that the adjustment model only improves the forecast in some instances.

Next, we present another technique to improve the accuracy of gas demand

forecast during extreme cold events. We begin by introducing the Prior Day

Weather Sensitivity (PDWS), an indicator that quantifies the impact of prior day

temperature on daily gas demand. By investigating the complex relationship

between prior day temperature and daily gas demand, we derived a PDWS function

that suggests PDWS varies by temperature and temperature changes. We show that

by accounting for this PDWS function in a gas demand model, we obtain a gas

model with better predictive power. We present results that show improved

accuracy for most unusual day types.
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CHAPTER 1

Natural Gas Demand Forecasting

Natural gas demand forecasting involves predicting future values of gas

demand based on observations of historical gas consumption and its predictor

variables. Natural gas distribution companies (utilities) use the predicted values in

their decision-making process. Hence, they need accurate forecasts. This work aims

to help gas utilities by considering methods by which the accuracy of gas demand

forecasts can be improved, especially during periods of extreme cold weather.

In this chapter, we provide background information on natural gas and its

uses, highlight the importance of forecasting gas demand accurately, and point out

how improvement in accuracy impacts the gas utilities. The specific problems this

thesis addresses are introduced. Finally, the organization map of this thesis is

presented.

1.1 Introduction to Natural Gas

Natural gas, being the cleanest and most efficient fossil fuel, is an essential part of

the United States energy industry [12]. Natural gas supplies nearly one-fourth of the

energy used in the United States [3]. Natural gas is an abundant resource across the
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United States, but it is a non-renewable resource. Most of the natural gas consumed

in the U.S. is produced domestically and distributed to the end users by gas

utilities [64]. The utilities are responsible for getting natural gas from production

and distributing it to consumers for residential, commercial, and industrial usage.

This is achieved through massive underground pipeline distribution systems

spanning more than two million miles [43].

Natural gas is an intrinsic part of the nation’s energy supply. Industries, the

largest consumer of natural gas, rely on natural gas for power plants; for electric

load generation; for use as base compound for chemicals and as a manufacturing

feed stock for products such as plastic, fabrics, fertilizer, and pharmaceutical

products; for waste treatment, metal preheating, and industrial boilers [44]. The

commercial users of natural gas includes offices, schools, hotels, churches, hospitals,

and government buildings [44]. In the commercial sector, natural gas is mostly used

for space heating, cooling, cooking, and water heating. Residential consumption of

natural gas is similar to commercial use. Residential users are mainly homes, and

most of natural gas is used in homes for space heating [44]. According to the U.S.

Energy Information Administration (EIA), space heating accounts for 65% of

residential usage in 2014, with up to 56 million households using natural gas for

space heating [65].
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1.2 Importance of Accurate Forecasting

For gas utilities to meet the customer’s gas demand effectively, the utilities must

forecast both the short-term and long-term demand for gas. Short-term forecasts

are important for daily or weekly plans [4, 19], while long-term forecasts help in

making design and long-term plans such as making sure their infrastructure is

capable of handling future expected high demand and having enough gas for

distribution [37, 40]. In both cases, forecasting gas demand accurately is extremely

important to fulfill the end customers’ gas demand.

Gas utilities themselves buy natural gas from gas suppliers, usually by

nominating in advance. The nomination is based on the projected end customers’

demand. The utilities are penalized for under-forecasting or over-forecasting the

nomination, which could translate to millions of dollars in loss for the utilities

and/or increased purchase cost for the consumers. For example, if the utilities

under-forecast the demand, they may be forced buy extra gas at very high spot

market prices. On the other hand, if they over-forecast the demand and nominate

more gas than needed, the utility is penalized for not taking the agreed amount of

gas from the transmission lines. Storing up the extra gas is not always a viable

option, as they also incur extra cost for managing addition storage facilities. These

and other operational factors discussed later in this thesis motivate accurate

forecasting of gas demand.
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1.3 Uses of Natural Gas

In forecasting the amount of natural gas consumers will require each day, it is

important to understand the nature of the end customers’ gas consumption, which

depends on their specific use for natural gas. Industrial use is often fairly constant

or influenced by the industry’s product demand. Industrial consumption usually is

temperature independent. Residential and commercial use is influenced by current

weather conditions, as most gas is used for space heating. Residential and

commercial gas demand is driven by weather factors such as temperature, wind,

dew point, and cloud cover. Of theses factors, temperature is the major determining

factor.

Daily temperature is the most significant factor influencing the day’s

demand. Gas demand increases as the temperature decreases. Homes and

businesses use more natural gas for space heating as it gets colder. The highest gas

demand occurs during the winter (heating season), while the lowest gas demand

occurs during the summer, when no space heating is required. Figure 1.1 shows

typical daily gas consumption data. The data presented in Figure 1.1 are the actual

natural gas consumption data over a period of ten years obtained from a gas utility

in the United States, scaled to protect the identity of the utility. The periodic spikes

in the gas consumption data reflect the high gas demand during the winter. In

Figure 1.2, the daily gas consumption (flow) data is plotted against the
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Figure 1.1: Gas consumption data over a 10 year period

corresponding daily temperature showing the almost-linear relationship between gas

demand and temperature.

1.4 Organization of Thesis

This thesis a sum of efforts towards improving the accuracy of natural gas demand

forecasts during periods of extreme cold events. The work done is presented in

Chapters 2, 3, and 4 as three independent documents. Each is a self-sufficient

document having its own introduction, background, method, discussion, and

conclusion. Each chapter either builds on the previous chapter or explores a
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Figure 1.2: Gas flow against temperature

different method. For the three main chapters, the overall objective is to achieve

improved forecast during extreme cold events. General introductory and concluding

sections are presented in Chapters 1 and 5. A visual layout of the organization of

this thesis is provided in Figure 1.3.

Chapter 2 discusses identifying extreme cold events in natural gas data using

a temporal pattern identification algorithm. Periods of extreme cold events are

characterized by dynamics different from most common days. We present a

semi-supervised identification algorithm that clusters events based on similarity.

Using a combination of a phase space reconstruction technique and a nearest
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Figure 1.3: Thesis layout

neighbour algorithm, we identify other extreme cold events similar to an observed

extreme cold event in the data.

Chapter 3 is an extension of the work in Chapter 2. Chapter 3 discusses how

the extreme cold events identified in Chapter 2 can be used to improve the accuracy

of gas demand forecast during extreme cold events. We present a strategy for

deriving an adjustment to offset the gas estimate for days in an extreme cold event.

By analyzing the forecast residuals for characteristic patterns and learning the

statistics of the residuals, we build an adjustment model that predicts future values

of residuals for approaching extreme events.

Chapter 4 considers the impact of prior day weather on daily gas demand. In
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this chapter, we explore the relationship between prior day temperature and current

day gas demand. We derive an equation describing how prior day weather impacts

demand. We show that by adjusting gas demand model with our prior day impact

factor, the accuracy of the forecast can be improved especially during the unusually

cold days.
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CHAPTER 2

Identifying Extreme Cold Events Using Phase Space Reconstruction

Extreme cold events in natural gas demand are events characterized by

unusual dynamics that makes modeling their behavior a challenging task. Natural

gas utilities have to forecast well ahead the gas demand of their customers during

extreme cold events to ensure adequate plans are in place to fulfil their customers’

demand. To the natural gas utilities, extreme cold events represent high risk events

given the associated huge demand. To improve the accuracy of gas demand forecast

during extreme cold events, it is important to understand the nature of the unusual

dynamics. In this chapter, we aim to identify extreme cold events in historical

natural gas demand data. We present a semi-supervised pattern recognition

algorithm that identifies extreme cold events in natural gas time series data. Using

phase space reconstruction, the input space is mapped into a phase space. In the

reconstructed phase space, events with similar dynamics are close together, while

events with different dynamics are far apart. A cluster containing extreme cold

events is identified by finding the nearest neighbors to an observed cold event. The

learning algorithm was tested on natural gas consumption data obtained from

natural gas local distribution companies. The identified events in each dataset are

considered similar to the observed cold event.
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2.1 Motivation

The most important days in natural gas demand forecasting include the days when

demand is at its peak. It is important to forecast gas demand accurately during this

period because it helps in infrastructure, supply, and operational planning [37]. Gas

demand increases as the temperature decreases, as most gas is used for space

heating [66]. The highest gas demand occurs during extreme cold events. An

extreme cold event is a multi-day event for which the temperature is below a given

threshold (specified by 1-in-n years) for several consecutive days with a

characteristic hysteresis (see Figure 2.1a) in gas demand response. A 1-in-n

temperature denotes the temperature which occurs as infrequently as once every n

years. Extreme cold events represent one of the most challenging days of the year

for operational gas forecasters because their gas delivery systems are operating near

their maximum capacities. Considering the financial implications as well as physical

limits to the amount of gas supply that can be made available during an extreme

cold event, it is important to identify extreme cold events in natural gas demand

data. Identifying these events enables us to conduct a more detailed study of

extreme cold events, to understand the dynamics underplay during such events, and

to develop better models to describe the response in gas demand during extreme

events.
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2.1.1 Behavioral Response

Extreme cold events are characterized by some interesting behaviors. Generally, gas

demand varies almost linearly with temperature. For extreme cold events however,

this relationship becomes non-linear. An unusual response in gas consumption in

the form of hysteresis has been observed during the extreme cold events. Figure 1

shows the plot of daily natural gas consumption (flow) against wind-adjusted

temperature (labeled HDDW), spanning a period of ten years. Figure 2.1b is a

replica of Figure 2.1a with emphasis on the behavior of interest. The straight lines

connect instances of natural gas consumption versus wind-adjusted temperature for

five consecutive days. The days in the series identified by the lines represents the

consumption for days t− 2, t− 1, t, t+ 1, and t+ 2, with t being the coldest day in

the event. The flow for the day after the coldest day (t+ 1) is much higher than the

flow for day t, even though the temperature is warmer. Apparently, people tend to

use more gas even when it is not as cold as the day before.

Part of this response is due to thermodynamic effects, as heat transfer is a

dynamic process. There is a certain time-lag relating the reported (outside)

temperature to the actual temperature (inside the building). The lag factor depends

on the building’s insulation system. Murat [45] provides a good insight into the

effect of thermodynamics on space heating in buildings. Attempts have been made

to model the thermodynamics component by adjusting the forecast model for prior
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(a)

(b)

Figure 2.1: An extreme cold event in natural gas consumption data for a certain

region in the USA. The extreme event identified can be seen to exhibit a hysteresis

effect as a result of unusual (human behavioral) response to extreme temperatures.

The plot in (b) is an enlarged version of (a) with focus on the extreme event.
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day weather effects as shown by [41] and [66]. The hypothesis here is that there is

an unmodeled behavioral component, possibly due to human responses to extreme

temperature and/or temperature changes [15, 16, 32], since the response to extreme

cold events appears different from typical days.

2.1.2 Design Day Analysis

In addition to the behavioral response observed in gas demand, extreme cold events

are associated with huge volume of gas demand due to the extreme low

temperatures. Often, the highest gas demand is seen during extreme cold events.

Due to the extreme weather conditions associated with extreme cold events, gas

utilities are charged by the state commissions to ensure proper planning is put in

place to meet customers’ needs.

Design day analysis helps gas distribution utilities make adequate plans to

meet the demands of their customers during extreme weather conditions. Part of

the planning includes nominating the right amount of gas, and/or having enough

gas in storage facilities. Also, when building gas distribution infrastructure, utilities

need to know how large their distribution pipelines need to be to handle peak

demands. The design of the distribution pipeline in a region is influenced by the

highest probable demand for that region. This highest probable demand for which

the system is designed is termed the design day demand.
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In estimating the design and peak day demand accurately, it is important to

understand the dynamics of demand during extreme cold events and compensate for

the unusual behavioral response in the gas demand model.

2.1.3 Chapter Overview

In Section 2.1.1, we postulated that extreme cold events have different dynamics

than usual days due to the unusual behavioral response. In identifying extreme cold

events, we search for events in the data with similar dynamics to a known extreme

event. The events are treated as temporal patterns.

We identify temporal patterns in natural gas data that correspond to

extreme cold events. This is achieved by clustering the data based on dynamics.

Natural gas demand data is high dimensional data, so that events with similar

dynamics may not occupy the same cluster in the input data space. For effective

clustering, a low-dimensional embedding of the data is performed using phase space

reconstruction [52]. In the reconstructed phase space, events with similar dynamics

are closer to each other, while those with different dynamics are far apart. Extreme

cold events are identified by finding the events that are close to a known extreme

cold event in the reconstructed phase space, using a nearest neighbor algorithm.

In the next section, we discuss important concepts on which the work

presented in this paper is based, such as clustering and phase space reconstruction.
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In Section 2.3, we describe our approach to identifying temporal patterns of extreme

cold events in natural gas time series data. Pseudocode also is presented. In

Section 2.4, we discuss the result of our pattern identification algorithm, and we

present results obtained when the algorithm was evaluated on six gas demand data

sets from different gas utilities.

2.2 Background on Method

This section provides a background on the various techniques used in this chapter.

We will discuss concepts in clustering that are relevant to our specific task. We will

also discuss phase space reconstruction - an approach in pattern recognition provide

a few examples in literature where this approach has been used.

2.2.1 Clustering

Clustering algorithms are used in data mining and pattern recognition tasks where

items are to be separated into groups. Items in the same group are considered

similar, with similarity defined only in the sense of the particular application.

Metrics used in determining similarity include distance (i.e., how close the points

are), density (i.e., how compact points are), and connectivity. When using a

distance function as a similarity metric, it is possible for similar points to be far

apart in the input data-space, especially when dealing with high dimensional data.
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In high dimensional spaces, distances between points are relatively uniform, so the

concept of closeness is meaningless [59]. In clustering such high-dimensional data, it

is customary to perform a low-dimensional embedding, mapping the input data

space into a new space where closeness is properly defined.

2.2.2 Phase Space Embedding

One common technique employed in low-dimensional embedding of high

dimensional data is phase space reconstruction based on Takens [60] time-delay

embedding theorem. Takens’ theorem gives the condition under which a dynamical

system can be reconstructed from a sequence of observations of the state of the

system. Sauer et al. [57] showed that for almost every time delay embedding with

the appropriate selection of embedding parameters (dimension and time-lag), with a

probability of 1, the reconstructed dynamics are topologically identical to the true

dynamics of the underlying system. Hence, the underlying dynamics of a system can

be captured fully in a reconstructed phase space (RPS).

This technique is able to reconstruct the underlying dynamics of any

complex system and map it into a new lower dimensional space. Since the RPS is

equivalent to the true dynamics of the system, points with similar dynamics are

guaranteed to be close in this space, while less similar points are far apart [54, 56].
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2.2.3 Temporal Pattern Identification Using RPS

The RPS approach was demonstrated by [53] to classify heart arrhythmia into one

of four rhythms. An electrocardiogram signal was reconstructed in a phase space.

The reconstructed phase was learned using a Gaussian Mixture Model (GMM) and

classified using a Bayes classifier. Povinelli [53] showed that the RPS-based

approach outperformed other frequency-based methods with an accuracy of up to

95%, compared to the 44% accuracy of the frequency-based method.

While most of the existing applications of the RPS approach deal with

univariate time series where the temporal pattern to be identified appears in the

same feature space, the RPS approach can be extended to multivariate time series.

Zhang et al. [69] in detecting sludge bulking, a primary cause of failure in water

treatment plants, used an RPS-based approach to identify multivariate temporal

patterns characteristics of sludge bulking in sludge volume index (SVI) and

dissolved oxygen (DO) time series. The SVI and DO time series data are embedded

in a multivariate RPS. The embedding dimension and time-lag for each signal was

estimated using global false nearest-neighbors and first minimum auto-mutual

information [1]. A mixture of Gaussian models is used to cluster the multivariate

reconstructed phase space into three distinct classes. The result of the RPS-GMM

approach was compared to other methods and was shown to perform better than

both ANN and Time Series Data Mining [49] approaches by at least 28%.
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2.3 Identifying Extreme Cold Events

The techniques employed in identifying extreme events are similar to those

described in Sections 2.2.1 through 2.2.3. This section discusses how the phase

space reconstruction technique is applied to identify temporal patterns that

correspond to extreme cold events in natural gas data.

Let an event be described as the dynamics between temperature and the

corresponding natural gas demand over a series of five days. An extreme cold event

is a five-day temperature-demand pattern whose dynamics are similar to that of a

chosen target: coldest day in the historical dataset. An event is classified as an

extreme cold event if the pattern associated with the unusual behavioral response

described in Section 2.1.1 is detected. The natural gas dataset is a multivariate time

series consisting of two separate time series; daily gas demand and daily

temperature time series data. Let st represent natural gas consumption for day t,

and HDDWt be derived from the corresponding (wind-adjusted) temperature. An

extreme cold event is a multivariate temporal pattern, defined as

p = {s1, s2, ..., sq; HDDW1,HDDW2, . . . ,HDDWq} , (2.1)

with p ∈ P ⊆ <2q, q is the length of the temporal pattern. P represents the pattern
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cluster. Given a multivariate time series X = {S(t); HDDW(t)}, t = 1, 2, ..., n, it is

desired to identify all p ∈ P .

To identify all p ∈ P , X is embedded in a multivariate reconstructed phase

space in a way similar to [69]. The pattern cluster P is identified using a nearest

neighbor algorithm in the reconstructed phase space.

2.3.1 Data Preprocessing

The datasets used in this work were obtained from natural gas local distribution

companies (LDC) across the USA. This data has been anonymized to protect the

identity of the LDCs. Each dataset comprises ten years of actual gas consumption

and weather data. The data is normalized prior to constructing a multivariate

embedding. This ensures that st and HDDWt are weighted equally in the

reconstructed phase space such that the range of both S and HDDW is [0, 1].

st =
max(s)− st

max(s)
, (2.2)

HDDWt =
max(HDDW)− HDDWt

max(HDDW)
. (2.3)
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2.3.2 Multivariate Phase Space Embedding

The second step involves multivariate phase space embedding of the normalized

time series data. According to [57], the appropriate selection of embedding

parameters is necessary to ensure the reconstructed space is topologically equivalent

to the original system. Takens’ [60] original work argued that choosing embedding

dimension Q greater than 2m+ 1, where m is the dimension of the system’s original

state space, the time series can be completely unfolded in a phase space.

Abarbanel [1] and Povinelli et al. [50] showed that useful information still can be

extracted from the phase space by choosing a smaller Q. In most common

applications [51, 53, 54, 69, 70], time-lag τ is estimated using the first minimum

auto-mutual information, while dimension Q is estimated using the global false

nearest-neighbor technique. In [51], embedding parameters were selected based on

the of length of the temporal pattern vector to be identified.

Our selection of embedding parameters is application-specific. The

dimension Q of the RPS and the time-lag τ at which to sample the signal are

selected based on our domain knowledge. The selection of τ and q is based on the

length of the temporal pattern vector to be identified. We are interested in bitter

cold events about five days long, so the inter-relationship between flow S and

wind-adjusted temperature HDDW for five consecutive days interests us.

Multivariate embedding is done by augmenting individual univariate RPS.
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Flow time series S(t) is embedded in a univariate RPS with time-lag τ = 1

and dimension Q = q = 5. S maps into <q. The resulting phase space is a row

vector

s = {s1, s2, . . . , si, . . . , sn−τ(q−1)} , (2.4)

si = {Si Si+τ . . . Si+τ(q−1)} , (2.5)

so that

s =



S1 S2 S3 S4 S5

S2 S3 S4 S5 S6

...
...

...
...

...

Si Si+τ . . . Si+τ(q−1)

...
...

...
...

...

Sn−τ(q−1) . . . Sn


.

HDDW(t) is embedded in a univariate RPS with τ = 1 and Q = q = 5 in a way

similar to S(t). The resulting phase space matrix

hddw = {hddw1, hddw2, . . . , hddwi, . . . , hddwn−τ(q−1)} , (2.6)

HDDWi = {HDDWi HDDWi+τ . . . HDDWi+τ(q−1)} . (2.7)

The univariate phase space matrices s and hddw have equal sizes. A

multivariate RPS is formed by concatenating s and hddw such that the resulting

multivariate phase space matrix is
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S1 S2 . . . S5 HDDW1 HDDW2 . . . HDDW5

S2 S3 . . . S6 HDDW2 HDDW3 . . . HDDW6

...
...

...
...

...
...

...
...

...
...

Si . . . Si+τ(q−1) HDDWi . . . HDDWi+τ(q−1)

...
...

...
...

...
...

...
...

...
...

Sn−τ(q−1) . . . Sn HDDWn−τ(q−1) . . . HDDWn



The overall embedding dimension Q is the sum of the embedding dimensions of

both variables, Q =
∑2

i=1 q = 10. Each row of the RPS matrix is a point in

10-dimensional space representing the dynamics of flow and temperature for five

consecutive days.

Figure 2.2 shows a 3-dimensional projection of the 10-dimensional

reconstructed phase space. Only three (namely S(t− 2), HDDW(t− 2), and

HDDW(t− 3)) of the 10 axes are shown for visualization purposes. Figure 2.2 also

shows an event instance e in the time series and its corresponding mapping in the

RPS. The event e shown in the time series plot has been reduced to a point in

10-dimensional space.

2.3.3 Nearest Neighbor Classifier

We desire to find the pattern cluster P that corresponds to extreme cold events.

This is achieved by classifying events into one of two classes: normal and extreme

cold events. Classification is done in the reconstructed phase space obtained in
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Figure 2.2: Reconstructed phase space built from natural gas consumption data.

The overlayed plot (flow vs. HDDW) is an event instance e. In the reconstructed

phase space, the event instance e is represented by the red circle. The reconstructed

phase space is a 10-dimensional phase space with axes S(t), S(t−1), . . . , S(t−4) and

HDDW(t),HDDW(t − 1), . . . ,HDDW(t − 4). The RPS plot shows only 3 of the 10

axes.

Section 2.3.2 using a nearest neighbor (NN) algorithm. This is possible because

closeness can be defined in this new feature space.

Nearest neighbor is a nonparametric classification method based on the

measurement of a point’s similarity to a training set containing patterns for which

class labels are supplied. A nearest neighbor classifier is an instance-based learning

algorithm, i.e., it does not build a model through learning, but rather aggregates the
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values provided by the training patterns in the vicinity of the current point. A

K-Nearest Neighbor (k-NN) classifier assigns a label to a point x in the feature

space based on the class assignment of its k-nearest neighbors. Decision is based on

majority voting. This k-NN algorithm is supervised, requiring all training samples

to have an assigned label.

For an unsupervised task with unlabeled data, the k-NN algorithm no longer

works. Identifying extreme events is an unsupervised task since there are no labeled

datasets. To overcome this challenge, the unsupervised task is turned into a

semi-supervised one by assigning a class label to one of the data points. This point

is referred to as the pivot. The k-NN algorithm is modified to find the k nearest

neighbors to the pivot point (inclusive). The k nearest neighbors discovered by this

k-NN algorithm are assigned the same class label as the pivot. A known extreme

cold event is chosen as the pivot, and the algorithm finds the k closest events to the

extreme cold event. Closeness of a point (to the pivot) is determined by computing

its Euclidean distance d(pivot, event) from the pivot. The smaller the Euclidean

distance, the higher the likelihood of the event being an extreme cold event and vice

versa.

With the modified k-NN classifier described above, choosing the coldest

event in the dataset as the pivot, the k-NN algorithm returned k events that have

the same dynamics as the observed coldest event. The coldest event is found by
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manually searching the reconstructed phase space for the event with the max

HDDWj+ q−1
2

(i.e., lowest third day temperature for five-day events) and assigning it

a class label: extreme event. Since the identification is done in the reconstructed

phase space, the identified extreme events are mapped back to the original time

series.

Figure 2.3 shows the flow and HDDW time series with extreme events

identified by the k-nearest neighbor classifier. In Figure 2.3, k has been chosen as

three for the purpose of presentation. Typical value of k might be about two events

per year of available data. The event identified by the circular marker is the pivot

(coldest) event. The box and ‘X’ markers represent the other extreme events

identified by the algorithm having a similar ‘unusual response’ to the pivot event.

2.3.4 Algorithms

The pseudocode of the RPS-kNN approach described in Sections 2.3.1 through 2.3.3

is provided in Algorithm 1. The identifyExtremeColdEvents function builds a

multivariate RPS by merging two univariate RPS and calls the classifyWithKNN

function to identify the extreme cold events. The formUnivariateRPS function

builds individual RPS using the selected time lag τ and dimension q.
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(a)

(b)

Figure 2.3: Three extreme cold events that have been identified using our RPS-kNN

approach. The rightmost (coldest) event is chosen as the pivot. The two other events

have been identified as the nearest neighbors to the coldest event in the reconstructed

phase space. The plot in (b) is an enlarged version of (a) with focus on the extreme

events.
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Algorithm 1 Reconstructed Phase Space - k Nearest Neighbor (RPS-kNN)

1: function identifyExtremeColdEvents(multivariateTimeseries, k)

2: flow ← extract flow from multivariateTimeseries . Preprocessing

3: HDDW ← extract wind-adjusted temperature from multivariateTimeseries

4: normalizedFlow ← normalize flow

5: normalizedHDDW ← normalize HDDW

6: choose timelag τ and dimension q based on domain knowledge . RPS

7: rpsFlow ← formUnivariateRPS(normalizedFlow, τ , q)

8: rpsHDDW ← formUnivariateRPS(normalizedHDDW, τ , q)

9: rps ← merge rpsFlow and rpsHDDW to form a multivariate rps

10: return extremeColdEvents ← classifyWithKNN(rps, k) . Classification

11: end function

12: function formUnivariateRPS(data, τ , q)

13: reconstructedPhaseSpace ← form a reconstructed phase space of data using

the given τ and q according to equations 2.6 & 2.7

14: return reconstructedPhaseSpace

15: end function

16: function classifyWithKNN(rps, k)

17: xi ← find coldest event and choose as pivot

18: for all event xj in rps do:

19: d(i, j) ← compute the Euclidean distance

20: end for

21: d ← sort(d, asc)

22: indexes ← return the indexes of the first k elements

23: return extremeColdEvents← re-map indexes in the phase space to time series

24: end function
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2.4 Discussion

The RPS-kNN algorithm described in Algorithm 1 was tested on 20 datasets from

different LDCs. Each dataset contains ten years of actual natural gas consumption

data with the corresponding weather information. For each dataset, a multivariate

reconstructed phase space is formed, and the coldest event in each dataset is chosen

as the pivot. With the pivot chosen and k fixed, the k-nearest neighbor classifier

returns the k most similar events to the coldest event. These events are considered

to be the extreme cold events in the dataset. Figure 2.4 shows the events identified

by the RPS-kNN algorithm for six datasets. Only three of the identified events are

shown, for the sake of presentation.

2.4.1 Comparison with Previous Method

Previously, extreme cold events were identified by selecting the k highest flow days

in the historical data. The procedure involves searching through the daily gas

demand data and picking the data point with the highest gas demand. Since

extreme events are temporal data rather than a single data point, the days before

and after the highest flow days were selected to form a temporal data. For instance,

for a five day event, the highest flow day is selected as day 0, the two data points

preceding day 0 are set to days −2 and −1, and the two days after the highest flow

day are set to days 1 and 2. Once the first extreme cold event is selected, the search
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Events that have been identified as extreme cold events in natural gas

consumption data using our RPS-kNN approach. For each plot, only 3 events are

shown for the sake of presentation. Plots (a) through (f) show the identification result

obtained when the RPS-kNN algorithm was executed on six datasets obtained from

different natural gas local distribution companies in the United States. Each of the

dataset used spans a period of ten years.
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is repeated again to find the next extreme cold events. For each search iteration,

previously selected days are excluded from the data. For example, for the first

iteration the search space include all the historical data. The algorithm returns the

indexes of the five days in the highest flow (extreme) event. For the next iteration

(second highest flow events), the search space include all the historical data minus

the five days in first identified event. For the third iteration, days identified in the

first and second iterations are omitted from the data, and so on, until we get to the

kth iteration.

This method of selection of extreme cold events does not consider any

similarity in the dynamics of the identified events, unlike our RPS-kNN approach.

Rather, the k identified events are inspected visually by an expert who determines

based on domain knowledge if those identified events are extreme cold events.

While both methods of identifying extreme cold events are fundamentally

different, we still compare the events identified by both methods. Using both the

RPS-kNN algorithm and the highest-flow method described in this section, setting k

to a constant value, we identify two sets of extreme cold events. We count the

number of instances when both methods identify the same extreme cold events.

This is done for values of k between 10 and 30. The result of this comparison is

shown in Table 2.1. The first row of the Table 2.1 shows, for k = 10, four out of the

ten events returned by both methods are the same.
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Table 2.1: Comparing the extreme cold events identified using the RPS-kNN algo-

rithm with those identified using the highest-flow method

Number of

events

identified

Number of

same

events

Number of

different

events

Ratio of

same

events

Ratio of

different

events

10 4 6 0.40 0.6

12 5 7 0.42 0.58

15 7 8 0.47 0.53

20 9 11 0.45 0.55

30 10 15 0.40 0.60

2.4.2 Future Work

We have presented a pattern recognition technique based on phase space

reconstruction and nearest neighbor algorithm to identify extreme cold events in

natural gas data. Our RPS-kNN algorithm identifies extreme events by searching

for temporal patterns in the data with dynamics similar to an observed extreme

events (pivot event). Since the data is unlabeled, we initialize the algorithm by

setting the pivot event as the coldest day in the historical data. This pattern

identification approach is susceptible to initial condition since it ranks events based

on their similarity to the pivot event that we select. Further study should be carried

out for appropriate selection of the pivot event.

In this chapter, we have limited our consideration to five-day events. Other

types of extreme events such as three-day and seven-day events should be

considered as well. Our RPS-KNN algorithm is easily extensible to extreme events
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with different temporal length. While our algorithm was implemented for temporal

pattern identification, with appropriate modification, it can be extended for

classification task such as classifying extreme cold events into three, five, and

seven-day events.

2.5 Conclusion

In this chapter, we discussed extreme cold events in natural gas demand data and

how they are important to gas forecasters and gas distribution utilities. We pointed

out unusual response that we have observed in gas demand data during extreme

cold events, and we presented our RPS-kNN algorithm as a temporal pattern

identification technique to identify extreme cold events in the gas demand data.

Using the RPS-kNN algorithm, we identified extreme cold events in the data and

compared the results to previous approach. The previous approach to identifying

extreme cold events only considers the flow values while our RPS-kNN approach

considers the flow-temperature dynamics in identifying extreme events.

In the next chapter, we will consider how the extreme cold events identified

using our RPS-kNN algorithm might be used to improve the forecast accuracy of

gas demand model during extreme cold events.
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CHAPTER 3

Improving the Accuracy of Natural Gas Demand Forecasting By
Analysis of Residuals

This chapter is presented as an extension of Chapter 2. In Chapter 2, we

presented a semi-supervised pattern recognition algorithm to identify extreme cold

events in natural gas data. In this chapter, we consider how the identified events can

be used to improve the accuracy of gas demand forecast during extreme cold events.

Having identified temporal patterns corresponding to extreme cold events in

gas data, we extend the work by analyzing the forecast residuals of the identified

events for specific patterns. A residual learning model was developed to adjust the

gas estimate for the unusual response observed during extreme cold events.

Figure 3.1 shows what this chapter hopes to achieve - a new estimate ̂̂s is derived by

adding the estimate r̂ of residual r to the initial estimated flow ŝ.

3.1 Forecasting Extreme Events

In forecasting, extreme events are of special interest usually because they are at the

tails of the historical distribution and difficult to model. To decision makers and

operation managers, extreme events represent high risk events when they have to

make mission-critical decisions. These extreme events are defined by domains and
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Figure 3.1: Adjustment model architecture for extreme cold events. Residual Model

estimates the forecast residuals r̂ for days in an extreme cold event. A new estimate

of gas demand is derived by adjusting the initial estimate ŝ with the residual estimate

r̂.

are different for different domains. In financial forecasting, a trading edge that

allows above normal returns would be termed an extreme event [49]. In flood

forecasting and warning systems, a high impact flood that could cause damage to

lives and property is an extreme event [8, 39]. For natural gas demand forecasting,

periods of extreme cold weather represent extreme events.

3.1.1 Extreme Cold Events

An extreme cold event is a multi-day event for which the temperature is below a

given threshold for several consecutive days with a characteristic hysteresis response

(see Figure 3.2) in gas demand. These periods are associated with very high gas
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demand, making them very important to gas utilities [30]. Extreme cold weather

events occur infrequently. They are usually specified by 1-in-n years, i.e., the event

is seen once in n years. This means that extreme cold events are not sufficiently

represented in historical data. Gas demand also has been reported to respond

differently to weather during periods of extreme cold events [30]. The unusual

response (shown in Figure 3.2) is in the form of hysteresis, resulting possibly from a

behavioral response [28, 32].

This unusual response, combined with the rareness of the events, make it

particularly challenging to forecast. In the next section, we give an overview of the

model used to estimate daily gas demand and analyze the model’s performance

during extreme cold events.

3.1.2 Forecasting Gas Demand

In this section, we will describe a base model used to forecast daily gas demand.

The base model is an ensemble of multiple linear regression (MLR) and artificial

neural networks (ANN). The MLR model uses 13 input features which include

HDDW, change in temperature from previous day (∆HDD ), day of week, and

autoregressive terms (lagged temperature and demand variables) [66]. The ANN

model uses the same input features as the MLR model. The ensemble model was

trained on 10 years historical data obtained from gas utilities in the USA. Testing
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was done on the remaining 10 years. The performance of the ensemble model was

evaluated using mean absolute percentage error (MAPE). Because we are interested

in the model’s performance on extreme cold events, the model’s estimate was

plotted and overlaid on the actual demand. It is observed that this model has a

consistent pattern in the error for days in the extreme cold event. For days before

the coldest day in the event, the base model over-forecasts gas demand, and it

under-forecasts days after the coldest day.

Figure 3.3 shows an extreme cold event. If t is the index of the coldest day in

the extreme cold event, on days t, t− 1, and t− 2, the dashed line (base estimate) is

above the straight line (actual consumption), which means the demand forecast is

more than the actual consumption for days before the coldest day. For days t+ 1

and t+ 2, the dashed line is below the straight line, which means that the gas

demand forecast is less than the actual consumption for days after the coldest day.

We will look more closely at the characteristics of the residuals in Section 3.2.2.

3.1.3 Quantifying Deviation

The work presented in this chapter offers a strategy for adjusting the base model

estimate to improve the accuracy of the gas demand forecast. This strategy involves

quantifying the deviation of the model (which is a result of unmodeled behavioral

components) from the actual demand during extreme events. A computational



37

Figure 3.2: An extreme cold event in natural gas demand data. The extreme event

identified can be seen to exhibit a hysteresis effect as a result of unusual response to

extreme temperatures. It is expected that the highest flow is seen on day t (being

the coldest day). However, the next day (day t+ 1) has a much higher flow than the

coldest day. Days t+2 and t−1 have approximately the same temperature, but their

gas demands are almost 100 Dth apart.

model is built based on the statistics of this deviation to estimate the forecast

residual during extreme cold events. This model is employed to estimate an

adjustment to the underlying base model (see Figure 3.1).
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Figure 3.3: Performance of the base model during an extreme cold event. The base

model (identified by the dashed line) over-forecasts gas demand for days before the

coldest day t and under-forecasts for days after.

3.1.4 Section Overview

Section 3.2 gives a theoretical basis for the methods used in this chapter.

Section 3.3 describes our adjustment model architecture to improve the estimate of

gas forecast during extreme cold events. To estimate the adjustment during extreme

cold events, the extreme cold events are first identified, as outlined in Section 3.3.1.

Upon identifying the extreme events, the characteristics of the residuals (of

identified events) are learned. Section 3.3.3 describes the two different residual

models used in estimating the residuals. The model described in Section 3.3.3 to
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estimate residuals is used in Section 3.3.4 to forecast adjustments to the initial

forecast ŝ. Section 3.4 discusses the contribution of this work and offers

recommendations to extend the work.

3.2 Background on Methods

This section provides a background on relevant time series and modeling concepts

used in this work. We discuss nonlinear dynamic systems and the challenges they

pose in modeling. We also explore previous work in which analysis of model

residuals are used to improve the accuracy of time series forecasting. Lastly, we

introduce the basic concepts of Partial Least Square (PLS) regression and discuss

conditions under which PLS may be a better predictive model than the Ordinary

Least Square method.

3.2.1 Nonlinear Dynamic Systems

Nonlinear dynamic systems exhibit complex and seemingly unpredictable

behavior [6, 10]. While these systems are deterministic, they often appear chaotic

when observed in time series space. Forecasting such time series is a challenging

task because chaotic systems are seemingly random in the time series domain.

Many real systems exhibit this chaotic behavior such as a simple pendulum [36] or a

person walking [10]. This form of complex behavior is seen also in natural gas
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demand data. Natural gas has been shown to have significantly different responses

to different weather conditions [30].

3.2.2 Residual Analysis

In time series forecasting, a residual r is the difference between the observed value

of the dependent variable y and its estimate ŷ , i.e., r = y − ŷ . Often, the residuals

of forecasts are expected to follow a normal distribution with zero mean, and they

often are assumed to have constant variance (homoscedasticity). If the residuals

have a mean far from zero, then the model is said to be biased. Normally

distributed residuals with zero mean should only be expected if the regression model

has captured the input-output relationship of the underlying system sufficiently. In

addition to being unbiased, a good regression model is expected to produce a

residual that is uncorrelated, either with itself (auto correlation) or with other

variables (cross correlation). If the residual shows correlation, bias, or patterns,

then one or more predictors are not captured by the model.

Analyzing the residuals of the forecast obtained using the gas model

described in Section 3.1.2, we obtain the plots shown in Figures 3.4a to 3.4d. The

residual time series in Figure 3.4a shows a repeating pattern of high residuals during

the heating season. The normality test in Figure 3.4b suggest the residuals do not

follow a normal distribution. Figure 3.4c shows that the residual time series is
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correlated at a lag of one, even though the model contains an autoregressive

component. Figure 3.4d shows the residual time series plotted against the estimate

of our base model. We observe that the variance of the residuals varies with the

values of the gas demand estimate. High values of the demand estimates are

associated with large residual variances, while small demand estimates are

associated with small residual variances. This behavior of the residuals violates the

homoscedasticity assumption.

Statistical models developed to forecast time series data often overlook the

characteristics of residuals [6]. Decisions regarding the selection of predictors, model

order (in the case of mathematical modeling), and hyper-parameters (such as

number of hidden neurons in a neural network) are based on ‘educated guesses’ and

domain knowledge. It is impossible for any heuristic model to capture the complete

characteristics of the time series data. It is often advised while validating models to

inspect the residual plot for patterns. If the residuals of a time series prediction

exhibit any discernible patterns, then crucial information can be learned from the

residuals [6, 7]. Ardalani [6] demonstrated this by learning predictive information

from the residual time series. In [6], future values of a chaotic time series were

predicted by a neural network, and the model residuals were analyzed for chaotic

behavior. The residuals from the initial prediction are treated as a new time series

and learned using a time-delayed neural network. The network predicts the residual,
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(a) Residual time series shows consistent pat-
tern of high residuals during a certain period
of the year

(b) Normality test shows that the distribu-
tion of the residuals deviates from a normal
distribution

(c) Residual time series is autocorrelated at
lag = 1

(d) Residuals suggest heteroscedasticity. The
variance of the residuals varies by the values
of the gas demand estimate

Figure 3.4: Testing the residuals of the gas forecast model. The residuals fails nor-

mality, correlation, and homoskedasticity assumptions, suggesting unmodeled com-

ponents.



43

which is added to the initial prediction. This residual modeling approach was

demonstrated to improve the accuracy of chaotic time series prediction by testing

the approach on a Sunspot time series and two other publicly available chaotic time

series [6].

The concept of learning to predict residual values to improve the accuracy of

time series forecasting is only valid if the residual time series can be shown to follow

a pattern. In the Sunspot example considered in [6], the residual was shown to be

chaotic. To apply the residual learning approach to improve the accuracy of gas

demand forecast, we have to demonstrate first that the forecast residuals have some

pattern.

In Section 3.1.2, we introduced a base ensemble model to forecast daily gas

demand. We also showed patterns (in the form of hysteresis) observed in the

historical data during extreme cold events (see Figure 3.2). The rare nature of the

extreme cold events makes it difficult for our base model to capture this pattern

adequately, resulting in high forecast error during extreme cold events. Since the

pattern is not captured by the model, the forecast residuals during extreme cold

events are expected to reflect this pattern. Considering the noisy nature of the

residual time series, coupled with the fact that the hysteresis pattern only occurs

during extreme cold events, analysis of residuals in the context of residual learning

is limited to days of extreme cold events.
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Limiting the analysis of the residuals to extreme cold events poses a new

challenge to modeling the residuals. Because extreme cold events occur infrequently,

they are sparsely represented in the data. This means the amount of data on which

to learn residuals is small.

3.2.3 Partial Least Squares

In predictive modeling, it often is desired to have a small feature-to-instance ratio.

For instance, if the number of features is more than the number of observations in

the training data, the model is likely memorize the data and is unable to generalize

well on test data. For systems with large number of predictor variables (features),

feature selection or dimensionality reduction becomes necessary [46]. Partial Least

Squares (PLS) is a regression technique that combines dimensionality reduction and

multiple linear regression, making it suited for modeling systems with large

feature-to-instance ratios [38, 46, 63].

PLS works by constructing a smaller set of predictor variables (called

components) and performs least squares regression on these components. The

components are derived by finding linear combinations of input features that best

explain the variance in the response variable [2, 46, 63].

To illustrate the performance of the Partial Least Squares regression on a

dataset with small feature-to-instance ratio, we use the housing data set obtained
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from the University of California Irvine Machine Learning Repository [11, 55]. The

data contains information about housing values in suburbs of Boston. The data has

506 instances, with 13 input features and one predictor variable (value of homes).

The data was divided into training and testing data. To demonstrate the capability

of PLS, we selected 20 data points randomly as training data to have small

feature-to-instance ratio. The remaining 486 instances were used for testing.

The number of PLS components was determined using 5-fold cross-validation

on the training data (20 data points). Based on the cross-validation error, the

optimum number of component is six. Using this number of components, a new

PLS model was built on the whole training data set. The learned PLS model is used

to predict the value of homes in the test data.

The performance of the PLS model on test data was compared to MLR and

ANN models. The MLR and ANN models were trained on the same 20 data points

as the PLS model. Using the Mean Absolute Percentage Error as performance

metric, the PLS model has a MAPE of 27.62%, MLR 39.41%, and ANN 44.83%.

From the result obtained, it is clear that the PLS model has a better predictive

ability than MLR and ANN for data with small feature-to-instance ratio.
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3.3 Estimating Forecast Adjustment to Extreme Cold Events

We have shown in Sections 3.1.2 and 3.1.3 that extreme cold events exhibit behavior

that is not accounted for in our base model, leading to the characteristic pattern

seen in the residuals. In this section, we will discuss how residual analysis is used

adjust the demand forecast to compensate for unmodeled components. The analysis

is restricted to extreme cold events, since the pattern of hysteresis in the residuals is

observed only during extreme cold events. Our goal is to derive an adjustment to

offset the errors seen in the initial gas estimate on days in an extreme cold event

and to show that the revised estimate improves the forecast accuracy during

extreme cold events. We desire to derive an estimate r̂ of the residuals r and add

that value to the base model’s flow estimate ŝ to arrive at a new estimate of gas

demand ̂̂s = ŝ + r̂.

We assume the historical gas demand forecast ŝ, produced by the base model

is given, from which the residual r = s − ŝ is derived. The historical gas data used

in this work, obtained from gas utilities across the US, spans data from 2003 to

2015. Data from 2003 to 2013 were used for all training and validation purposes,

while the last two years of data were used for testing purposes.

Our task is to derive r̂ for days in an extreme cold event. Our algorithm

(Adjustment Model) to achieve this is presented in the block diagram shown in
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Figure 3.5. Since we are interested in learning residuals for extreme events only, the

procedure starts with identifying the events of interest (Step 1), followed by

estimating the residuals for days in the identified events (Steps 2 and 3), adjusting

the base model forecast ŝ based on the residual estimate r̂ (Step 4), and finally

fine-tuning the model (Step 5):

• Step 1: Identify extreme cold events

• Step 2: Calculate residuals of identified events

• Step 3: Learn residual of identified events

• Step 4: Adjust base model estimate

• Step 5: Optimize model parameters

Each of these steps will be discussed in the following subsections.

3.3.1 Identifying Extreme Cold Events

In Section 3.1.1, we introduced the nature of the extreme cold events observed in

natural gas demand data and showed how extreme cold events exhibit dynamics

different from usual days. To identify extreme cold events in the data, we find

temporal patterns in the data with dynamics similar to an observed extreme cold
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Figure 3.5: Block diagram for the Adjustment Model to improve the accuracy of nat-

ural gas demand forecast on extreme cold events. The base model produces the initial

forecast. Extreme cold events are sampled from the data, and their corresponding

residual are learned. An estimate of the residual is used as an adjustment to the

initial base model estimate to derive the new demand estimate.
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event. This was achieved using a combination of reconstructed phase space (RPS)

and a k-nearest neighbour classifier (kNN) [30].

If we define an event by the interaction between temperature and the

corresponding demand for five consecutive days, an event is classified as an extreme

cold event if the pattern associated with the unusual behavioral response shown in

Figure 3.2 is detected. The gas demand data is taken as a multivariate time series

X consisting of daily gas demand s and daily (wind-adjusted) temperature HDDW.

Let st represent gas demand, and HDDWt be the corresponding (wind-adjusted)

temperature for day t. An extreme cold event is a multivariate temporal pattern,

defined as

p = {s1, s2, ..., s5; HDDW1,HDDW2, . . . ,HDDW5} , (3.1)

with p ∈ P ⊆ <10. P represents the pattern cluster. The identification problem is

stated thus: Given a multivariate time series X = {S(t); HDDW(t)}, for

t = 1, 2, ..., n, where n is the is length of X, it is desired to identify all p ∈ P.

To identify all p ∈ P, X is embedded in a multivariate reconstructed phase

space. A reconstructed phase space allows us to reconstruct the underlying

dynamics of any time series data, given the appropriate selection of embedding

parameters (dimension and time-lag) [57]. Since our goal is to cluster data based on

dynamics, reconstructing the data in a phase space makes that possible. In the

reconstructed phase space, events with similar dynamics are close to each other.
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Figure 3.6: Three extreme cold events that have been identified using our RPS-kNN

approach. The rightmost (coldest) event is chosen as the pivot. The two other events

have been identified as the nearest neighbors to the coldest event in the reconstructed

phase space.

Pattern cluster P is identified by finding k nearest neighbors to an observed extreme

cold (pivot) event in the reconstructed phase space.

Choosing embedding dimension of five and time lag of one, the gas demand

data is reconstructed in a phase space. With k set to 20, our RPS-kNN algorithm

returned 20 extreme cold events. The complete details of the event identification

step appears in [30]. The result of the identification step is shown in Figure 3.6.

Only three events are shown in Figure 3.6 for the purpose of presentation.
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3.3.2 Calculating Residuals of Identified Events

Having identified the extreme cold events in the data, the next step involves

calculating the residuals of the forecast (r = s − ŝ) for days in the identified events.

The historical actual demands s are known. The historical estimates of the demand

ŝ, derived from the base model are known also. We refer to ŝ as the base estimate.

Previously, an extreme event has been defined as a temporal pattern

spanning five consecutive days. The forecast residuals r on day i for all days in the

identified event are expressed as ri = si − ŝi where i = {t− 2, t− 1, t, t+ 1, t+ 2},

such that rt is the forecast residual for day 3 in a 5-day extreme cold event, and

usually, the coldest day in an event. Likewise, rt+1 is the residual for a day after the

coldest day, and rt−1 is the forecast residual one day before the coldest day. The

historical residuals ri are calculated for all days in the extreme events identified in

Step 1 of the Adjustment Model in Figure 3.5.

The next step involves estimating the future values of residuals during

extreme cold events. Analysis of the residual is done to understand the behavior of

unmodeled dynamics. Understanding the characteristics of the residuals of the base

model during extreme cold events is a precursor to deriving an adjustment to the

base estimate.
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3.3.3 Learning Residuals of Identified Events

Having obtained the residuals of the forecast for days in the identified extreme

events, we build a computational model that learns the properties of the forecast

residuals for the days in an extreme cold event. The learned residual model is used

to estimate future values of residuals r̂ for days in an up-coming extreme event.

In predicting the residuals, two models are were developed. The first is a

simple model that calculates the historical mean of the residuals and uses that mean

as the expected value of the residual. The second model is a more flexible model

that attempts to learn the relationship between residuals and selected features using

Partial Least Squares (PLS) regression. The learned PLS model is used to predict

future values of the residuals.

Expected Value Model

After calculating the residuals, the percentage residuals and average residuals by

day are plotted in Figure 3.7. We observe that on days t+ 1 and t+ 2 (days after

the coldest day), the mean values of the residuals are positive. For days t− 2 and

t− 1 (days before coldest day), the residuals are negative. The expected value

approach uses this mean value as the estimate of the residuals.

For each day, a distribution of the residuals for all identified events is built.
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Figure 3.7: Percentage residuals by day for ten identified extreme cold events.

Figure 3.8 shows the histograms for all five days in the events. For day t, We

estimate the residual r̂i using the expected value E[ri] of each distribution.

ri = si − ŝi , (3.2)

r̂i = E[ri] . (3.3)

Partial Least Squares Model

The Expected Value model uses only the statistics of the residuals to estimate

future values of residuals r. In this section, we attempt to build a residual model
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Figure 3.8: Histograms of the residuals ri for days in the identified extreme cold

events. The Expected Value for each day is estimated from the mean of the distribu-

tion. Day t represents the third day in a 5-day event (often the coldest day). Days

t+1 and t+2 represent days after the coldest day, while days t−1 and t−2 represent

days before the coldest day.

that is feature dependent. However, we have two major challenges. We are limited

by the number of samples available, i.e., the number of extreme cold events

identified. Also, it is not evident what predictor variables to use.

To tackle the first challenge, we use a Partial Least Squares model to learn

the characteristics of the residual. We showed in Section 3.2.3 that a PLS model is

able to learn on a small sample size. In the event identification step, we set k = 20,

so that our sample size equals 20 cold events. Points in the reconstructed phase

space derived in Section 3.3.1 are used as input features to the PLS model. Points
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in the RPS were chosen as input features since they are a representation of the state

of the system. For each identified event, we have ten input features, which are the

components of the event in the 10-dimensional reconstructed phase space. The

residual r is the response variable. The PLS residual model is learned on the

identified events. The learned PLS model is used to estimate future values of the

residuals r̂. The Partial Least Squares regression tool (plsregress) in MATLAB is

used for the analysis in this section.

The PLS model creates a new set of predictors (components) which are

linear combinations of our input features (i.e., points in the RPS). The number of

components was determined through cross validation. From the cross validation plot

in Figure 3.9, as the number of components is increased, the Mean Square Error

(MSE) increases initially up until three components. This means using a PLS model

with fewer than four components would not help. A PLS component of zero seems

to suggest that our adjustment model will not result in any improvement. The PLS

model with seven components (PLS7) gave the least Mean Square Error (MSE) on

validation. The PLS7 model, learned on the residuals of the identified events is used

to estimate future values of residuals r̂.

To estimate the residuals r̂ for each day i in an extreme event, five PLS

models were built using the procedure described in this section, one for each day of
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Figure 3.9: Partial Least Squares model cross validation error. The PLS Model with

seven component gave the least MSE.

an event. All PLS models were trained on the same input features, but with different

residuals. The PLS model for day i was trained on ri and used to estimate r̂i.

3.3.4 Adjusting the Base Model Estimate

From Section 3.3.3, we derived the estimates of the residuals r̂i for all days in an

event. In this section, r̂i is used as adjustment to the initial base estimates ŝi to

derive new estimates of gas demand, ̂̂si = ŝi + r̂i. The adjustment is applied only on

days in an approaching extreme cold event.
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In Section 3.3.3, we estimated residuals using Expected Value (EV) and

Partial Least Squares models. The residuals r̂i produced by both models were used

separately in deriving ̂̂si. The impact of our adjustment was evaluated by

comparing ̂̂si to the actual gas demand si. The Mean Absolute Percentage Errors

(MAPE) between si and ̂̂si for all days i were evaluated.

3.3.5 Optimizing k and number of PLS components

So far, the learning of residuals and performance evaluation has been based on the

events identified in Step 1. The effectiveness of our RPS-kNN algorithm for

identifying extreme cold events is dependent on the value of k. The RPS-kNN

algorithm returns k closest events to an observed extreme cold event. As k

increases, the likelihood of the identified events having similar dynamics to the

observed extreme event decreases [30]. On the other hand, we want k to be large

enough to ensure we have data, so that our adjustments generalize well. The

optimum value of k is chosen such that our adjustment model, built on k identified

events, leads to improved estimates of gas demand during extreme cold events.

Thus, our optimization problem (expressed in Equation (3.4)) becomes finding k

that minimizes the validation MAPE between the si and ̂̂si for day i.

min
k

(
1

k

k∑
j=1

sij − ̂̂sij
sij

)
. (3.4)
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For the PLS-adjustment model, the optimization considers the number of PLS

components (also called latent vectors LV) as well. Let nLV represent the number of

PLS components, the optimization is expressed as,

min
k, nLV

(
1

k

k∑
j=1

sij − ̂̂sij
sij

)
. (3.5)

We set k ranging from 5 to an arbitrarily large value. For the PLS model,

the number of PLS components is set to values ranging from 1 to min(9, k − 1).

Using Equation (3.4) for the EV model and (3.5) for the PLS model, we repeat

Steps 1 to 4 while varying k and nLV . An exhaustive search is performed to find

the best adjustment model. The adjustment model that results in the least MAPE

on validation data is chosen. This is done for all five days in an event, yielding five

adjustment models, one for each day in an event. Figure 3.10 shows cross validation

error for day 3. In Figure 3.10, the optimum k = 11 while the optimum nLV = 4,

selected using Equation (3.5). This combination pair of k and nLV gave the

minimum validation MAPE for k − nLV space searched.

3.3.6 Estimating Adjustment for Future Events

From the last section, we trained and validated forecast adjustment models for

extreme cold events. In this section, the validated models will be used to predict
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Figure 3.10: Partial Least Square cross validation error for optimum k = 11.

forecast residuals for upcoming extreme events. The analysis in this section will be

done only on test data.

The first step in estimating adjustment to an upcoming extreme cold event is

to identify if an upcoming event is classified as extreme cold event. If an upcoming

event is an extreme cold event, then we apply our adjustment model to offset the

base model’s gas estimate; otherwise, we do nothing.

In identifying extreme cold events in the historical data in Section 3.3.1, we

performed an RPS embedding on the historical data and used a nearest neighbor
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Figure 3.11: Expected Value validation error. Until k = 22, the MAPE decreases

as the number of events increases. For values of k above 22, the validation MAPE

continues to increase.

algorithm to identify k events that are closest to an observed extreme cold (pivot)

event in the RPS. The nearest neighbor classifier used the Euclidean distance

function as similarity measure.

To classify an upcoming event, we perform an RPS embedding of the event,

calculate its Euclidean distance relative to the pivot event (used in Section 3.3.1) in

the reconstructed space. If the Euclidean distance is within the Euclidean distance

of the kth event, we classify the event as an extreme cold event.

Our test data consist of actual gas demand s, gas estimate from our base
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model ŝ, and wind-adjusted temperature HDDW from 2013− 2015. Upon

embedding this data in a reconstructed phase space according to the description in

Section 3.3.1, we compute the Euclidean distance from the pivot event for all points

in the RPS. Events whose Euclidean distance fall within the radius of the kth event

centered at the pivot are classified as extreme cold events. For each of the events

identified, we use the validated adjustment models to estimate the expected forecast

residuals r̂ for all days in the event. Since five adjustment models were trained for

each of the five days in an event, the number of events (k) on which the adjustment

models were trained is expected to vary. Although our test data set is fixed

(2013-2015), the number of events identified in the test data also varies for each of

the adjustment models since the k varies.

The estimated residuals r̂ are added to the initial base model’s gas demand

estimate ŝ to arrive at a new gas demand estimate ̂̂s. The performance of the

adjustment model was evaluated by comparing ̂̂s to s using the Mean Absolute

Percentage Error. The results are presented in Tables 3.1 and 3.2. The MAPE

values shown in Tables 3.1 and 3.2 are estimated on the extreme cold events

identified in the test data. Since the identification process is dependent on the k,

the number of test events identified changes with k for each adjustment model. The

base model MAPE is calculated on the same test event as the adjustment model.

From the results obtained, we observe that our adjustment model did not
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Table 3.1: Comparing MAPE of the adjustment models with the MAPE of the base

model for all five days in the identified events

Base Model PLS PLS % Improvement k

Day 1 0.0367 0.0382 -4.09 30

Day 2 0.0230 0.0308 -33.91 19

Day 3 0.0297 0.0258 +13.13 21

Day 4 0.0363 0.0290 +20.11 12

Day 5 0.0369 0.0406 -10.03 30

Table 3.2: Comparing MAPE of the adjustment models with the MAPE of the base

model for all five days in the identified events

Base Model Expected Value EV % Improvement k

Day 1 0.0380 0.0407 -7.11 40

Day 2 0.0221 0.0250 -13.12 5

Day 3 0.0297 0.0300 -1.01 22

Day 4 0.0352 0.0339 +3.69 7

Day 5 0.0370 0.0368 +0.54 25

improve upon the initial gas estimate for all the days in the event. Sometimes it

shows improvement; other times, it increases the forecast error. The PLS model

gave the highest improvement on day three with 13.1% reduction in MAPE, and the

worst performance on day two with 33.9% increase in MAPE on the test data. For

the EV model, the best performance is seen on day four with 3.7% reduction in

MAPE, while the worst performance is seen on day two with 13% increase in

MAPE. Overall, we conclude that our model adjustment technique is unable to

learn effectively the forecast residuals during extreme cold events.
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3.4 Conclusion

In this chapter, we presented a residual learning technique by which the accuracy of

gas demand forecast can be improved during extreme cold events. We started by

establishing a basis for residual analysis. We pointed out a pattern of residuals

observed during extreme cold events. We highlighted two major challenges that

make it difficult to forecast extreme cold events accurately. One, extreme events are

rare and under-represented in the historical data. Two, we showed that extreme

events have dynamics different from usual days, possibly due to human behavioral

response to extreme low temperature. While we acknowledge that it is difficult to

model gas demand accurately during extreme events due to the two reasons

mentioned above, extreme events pose a major business risk to gas utilities. Hence,

the motivation for finding a way of improving the forecast accuracy during extreme

cold events.

To improve the accuracy of gas demand forecast during extreme cold events,

we devised a model adjustment architecture that learns the forecast residuals during

extreme cold events. The learned residual model is used to predict future values of

residuals which are used to offset the initial base model’s estimate of gas demand.

Adjustment models were built for each day in an event on training and validation

data. The adjustment models were tested on extreme cold events identified in the

test data, and their performance was evaluated using the Mean Absolute Percentage
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Error. The result presented in Tables 3.10 and 3.11 showed no conclusive evidence

that our adjustment model architecture will improve the forecast accuracy of future

extreme cold events.

3.4.1 Another forecast improvement technique

In this chapter, we attempted to learn to improve the accuracy of gas estimate

during extreme cold events using a residual learning technique. The result we

obtained was not consistent. In some instances, we obtained increased accuracy;

other instances, the forecast accuracy decreased. In Chapter 4, we will consider

another technique by which the accuracy of gas demand forecast can be improved.

This techniques works by deriving a good approximation of the complex relationship

between temperature and gas demand and uses that information to develop a better

gas estimate model. This technique, discussed in Chapter 4, resulted in consistent

improvement in forecast accuracy not only on extreme cold event but also several

unusual day types.
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CHAPTER 4

Impact of Prior Day Weather Sensitivity on Natural Gas Demand

This chapter presents yet another method by which the accuracy of gas

demand forecasts can be improved. In this chapter, we will consider the impact of

prior day weather on daily gas demand. Our analysis involves deriving a function

that describes this impact factor and building a gas demand model that uses the

information learned from our analysis to improve the accuracy of gas demand

forecasts.

4.1 Motivation

The demand for natural gas demand is driven mostly by temperature. Gas demand

can be divided into two components: baseload and heatload. Baseload demand is

the minimum quantity of natural gas that the gas distribution companies (utilities)

must make available to their customers, independent of temperature. The baseload

is fairly constant, and its uses include cooking, drying, and heating water. Heatload

is the amount of gas needed for space heating during periods of cold weather. The

heatload varies approximately linearly with temperature. As the temperature

decreases, people burn more gas to heat their buildings. Figure 4.1 shows historical
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Figure 4.1: Historical daily gas demand against daily temperature. Gas demand is

temperature independent for temperatures above 65◦F. A Large percentage of gas use

is driven by temperature.

demand of gas plotted against temperature for a typical operating area. Figure 4.1

shows that temperature is highly correlated with gas demand for temperatures

below about 60− 65◦F.

Statistical models used in forecasting daily gas demand use daily temperature

as one of the predictor variables. Often, the temperature variable is transformed to

Heating Degree Day HDD = max(0, Tref − T ). In our case, Tref is chosen as 65◦F so

that for temperatures above 65◦F, HDD = 0. Figure 4.2 shows that gas demand is

nearly linear with HDD . Other predictor variables often used include wind speed,

cloud cover, day of the week, holidays, and trends due to technological, economic,
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Figure 4.2: Historical daily gas demand against daily HDD. Reference temperature

Tref = 65. The red line shows demand linear with HDD

and population growth [47]. Exogenous and autoregressive terms such as prior

day(s) temperature and demand also are used as predictors [35, 66].

Consider a linear regression model ŝ = β0 +
∑m

i=1 βixi that uses m predictor

variables (x) together with the historical demand data to estimate future values (ŝ)

of gas demand (s). The linear regression model assumes a linear relationship

between the response variable (gas demand) and the predictor variables. Figures 4.1

and 4.2 suggest a linear relationship between HDD and gas demand s for

temperatures below 65◦F (positive HDD ), which makes the linear assumption valid

for the HDD variable. If temperature change from the prior day
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∆HDD = HDDtoday − HDDyesterday

is used as one of the predictors, the MLR model also makes an assumption about

∆HDD ’s linearity with gas demand. The exact relationship between ∆HDD and

demand is unknown. Unlike HDD , the linear assumption is not necessarily valid for

∆HDD . In fact, factors such as thermodynamic heat loss in buildings [30, 45] and

behavioral responses [28, 30, 32] suggest a nonlinear relationship between HDD

change and gas demand.

If the nonlinear impact of prior day weather on demand were known, we

could include this relationship into the linear regression model and improve our

forecast accuracy. In this work, we investigate the relationship between temperature

change and daily gas demand using Prior Day Weather Sensitivity (PDWS), an

indicator variable introduced by Kaefer [31]. Analyzing the impact of prior day

weather at different temperatures and different changes in temperature levels, we

derive an equation PDWS = f(HDD ,∆HDD ) relating PDWS to HDD and

∆HDD .

A more robust linear regression model is developed that uses the result of

the PDWS impact factor. This new model is estimated from historical data, and we

show that the PDWS-adjusted LR model yields improved forecasts.

The rest of this chapter is organized as follows. Section 4.2 discusses how gas
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distribution companies use the gas forecast in their operations planning process. In

Section 4.3, we introduce common statistical models used in natural gas forecasting

and highlight the input features that are relevant to this work. In Section 4.4, we

investigate the impact of prior day weather on daily gas demand. The findings from

Section 4.4 are used in Section 4.5 to develop a gas demand model that accounts

appropriately for the prior day weather impact. We show in Section 4.5.2 the

improvement in the forecast due to our contribution. In the concluding section, we

discuss some of the implications of the results presented in this study. We also

discuss how this result might also be used in design day studies. Finally, we offer

recommendations about other variables (aside from temperature and change in

temperature) that could be considered, including how this work can be extended to

other temperature-driven demand such as electricity.

4.2 Operations Planning

In this section, we will discuss how gas demand forecasting is important to the

efficient operation of gas utilities with an emphasis on the business-related risks

associated with forecasting error. We also will consider “design day study” and

“unusual days”, concepts that motivated this work.

Operational planning deals with the application of analytical methods in

decision-making such that risk is minimized, while performance is maximized [68].
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In the natural gas industry, plans regarding supply, distribution, and transmission of

gas, including the design of gas infrastructure, are important to the efficient

operation of the industry. Most of the planning efforts are based on the anticipated

demand of end customers. Hence, natural gas utilities are highly motivated to

forecast their customers’ gas demand accurately.

4.2.1 Gas Nomination

In gas distribution companies, operations managers make short-term and long-term

operation-critical decisions daily. Decisions regarding distribution, purchase, and

storage of gas are made based on anticipated end customer demand, with the aim of

minimizing both risk and operational cost. For instance, operations managers have

to decide the exact quantity of natural gas to buy from the gas suppliers to meet

customers’ daily demand. This often is done by requesting a certain amount of gas

supply in advance. The requested amount is called nomination. If the actual

quantity of gas used turns out to be more or less than the nomination, the gas

distribution utility is charged a penalty.

4.2.2 Flow Control Optimization

Gas control operators in utilities are charged with coordinating the flow of natural

gas in the distribution network in a safe and efficient manner. The gas controllers,
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like the operations managers, need to know in advance the anticipated demand and

the maximum expected flow to regulate the pressure and volume of gas in the

transmission pipeline network. Inability to maintain the pressure and volume of gas

in the distribution network can lead to a loss of service or to a pipeline explosion

that may cause significant damage to lives and property [13].

4.2.3 Design Day

When building natural gas distribution infrastructure, utilities need to know how

large their transmission pipelines need to be to handle peak demands. Since it is

impossible to exceed the physical limit on the amount of gas that can be

transmitted through a pipeline, the design of the natural gas transmission pipeline

in a region is influenced by the highest probable demand for that region. This

highest probable demand for which the system is designed is termed the design day

demand, estimated through long-term forecasts [18].

4.2.4 Unusual Days

While accurate forecasting of daily demand is important to gas utilities, all days are

not equally important. Some days have higher risk than others. For example, many

utilities are not as concerned about forecasting during the summer compared to

during the winter. During the winter, utilities are more worried about exceptionally
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cold days and days with unusual weather patterns than days of normal weather. We

consider unusual day types including: coldest day in a year, colder than normal

days, first cold days, first warm days, colder today than yesterday, and warmer

today than yesterday. Most of the unusual days types are by definition sparse.

Therefore, unusual days are not adequately represented in the historical data.

Models built to forecast gas demand use large historical data sets to predict

future gas demand accurately. Since most of the critical days are not well

represented in the historical data, they become difficult to forecast.

Given the physical and financial risks associated with these decisions,

utilities are always interested in improving the accuracy of gas demand forecasts. In

the next section, we will discuss techniques used in gas demand forecasting and

factors that influence demand of gas.

4.3 Natural Gas Forecasting

Gas utilities employ forecasting experts with domain knowledge in natural gas

forecasting. Gas forecasters develop statistical models to predict gas demand. The

models typically are based on customers’ demand history and factors such as

weather (temperature, wind, dew point, and cloud cover) [47], seasonal factors (day
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of the week and holidays) [66], demographic (population and geographical location),

and economic factors (price of gas and gross domestic product) [17]. Some of the

common models include linear regression [26, 47, 66], nonlinear

regression [5, 14, 67], artificial neural network [9, 34], fuzzy systems [9, 33], or an

ensemble of two or more models [9, 33, 66].

4.3.1 Identifying Predictor-Response Relationships

When using a regression model, the relationship between the predictor and response

variables must be known or approximated. Domain experts often provide good

insight here. Models such as neural networks have the ability to infer

predictor-response relationships [58]. However, neural networks are computationally

intensive, and they are not good at extrapolating, unlike regression techniques.

In forecasting gas demand, linear regression is often used because of its

simplicity and its ability to extrapolate. When using a regression model to forecast

time series data, it is common to plot the response against each of the predictor

variables. From this plot, the predictor-response relationship is inferred. We already

showed in Figure 4.2 that the demand-HDD relationship is linear for natural gas. In

this case, a linear regression model has the form

ŝ = β0 + β1HDD + . . . .
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Similar analysis is done for the other predictors to determine the nature of the

relationship to gas demand. Sometimes, the relationship is simply assumed. For

instance, a holiday effect can be taken as a linear factor or as an adjustment to

day-of-the-week factors.

4.3.2 Other Temperature Variables

While many factors contribute to gas demand, most of the variance in the demand

is explained by temperature variables such as HDD , ∆HDD , and lagged

temperature variables. We already identified the relationship between daily demand

and HDD as linear. In the next section, we will look more closely at ∆HDD and

how it affects gas demand.

4.4 Impact of Prior Day Weather

Natural gas demand is highly correlated with temperature, but the relationship

between temperature and demand is a complex one due to factors such as discomfort

index [62], thermodynamics, and human behavioral response [16]. Daily gas demand

depends not only on the day’s weather condition, but also on the weather condition

of the preceding day(s). For instance, a customer might use more gas than expected

because the previous day was colder than normal. Hong [28] referred to a similar

behavioral response in electric load forecasting as the recency effect. The term
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recency effect is extended from observations in psychology [25], where people tend

to make decisions based on their most recent experience. Also, heat loss in buildings

is a thermodynamic process, and the rate of heat loss depends on the nature of

insulation system installed. Buildings with poor insulation tend to use more gas for

space heating as they lose heat faster than those with good insulation.

4.4.1 Previous Investigations

Many studies have pointed out this nonlinear relationship [28, 35, 42, 66], but no

study has considered the actual form of this nonlinearity. To account for this

nonlinearity in natural gas models, load forecasting experts often employ lagged or

moving average temperature variables [28, 35, 66]. The order of the lag variable

often is obtained by trial and error or by analyzing the autocorrelation at various

lags using the Akaike Information Criteria [42]. However, this technique is

computationally intensive, since every lag has to be checked. While the lagging

approach has been shown to produce better results than a single temperature

component model, even better forecasting accuracy can be achieved if the nature of

the nonlinearity is reflected in our models.
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Tenneti Index of Temperature Sensitivity

To understand the impact of temperature on gas demand forecast, Tenneti [61]

introduced a temperature sensitivity index, which is a quantitative measure that

ascribes a value from 0 to 1 to the contribution of temperature variables in a gas

demand model. A value of 0 denotes the demand is not driven by temperature,

while a value of 1 denotes the gas demand model is very temperature sensitive. In

Tenneti’s work, the temperature index is derived using only the daily temperature,

and does not reflect the effect of prior day(s) weather conditions, but his work is

easily extended to include the temperature-related variables of concern in our work.

Prior Day Weather Sensitivity

Before the advent of forecasting software, some experienced gas forecasters

predicted daily gas demand by drawing a line of best fit through historical data as

illustrated in Figure 4.3. They were aware that the day’s demand is influenced by

the prior day temperature. Their intuition, based on experience and domain

knowledge, was to calculate the difference between today’s and yesterday’s

temperature and to go back one-third of the way from today’s temperature. The

adjusted temperature is used as the actual daily temperature, and the daily gas

demand is estimated from the regression line. In Figure 4.3, if today’s temperature

is 40◦F, the demand should be 570 units. To account for the impact of yesterday’s
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Figure 4.3: Adjusting gas estimate for prior day weather impact. Today is 40◦F,

and the demand estimate is 570 units, according to the regression line. But because

yesterday was 10 ◦F warmer than today, gas demand is re-estimated as 530 units to

account for prior day impact.

temperature, the experienced gas forecaster adjusted the demand to 530 units by

moving down the regression line to a temperature of 37◦F.

Kaefer [31] introduced the Prior Day Weather Sensitivity (PDWS). Similar

to the Tenneti Index, the PDWS is quantitative metric that describes the impact

prior weather conditions have on today’s gas demand. The PDWS is estimated by

fitting a three parameter linear regression model to historical temperature and

consumption data. The three parameter model has current day temperature

(HDDk) and change-in-temperature from previous day (∆HDD k) as the
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independent features and actual gas consumption (sk) as the dependent variable.

The model coefficients are evaluated, and the PDWS is calculated,

ŝk = β0 + β1HDDk + β2∆HDDk , and (4.1)

PDWS = −β2

β1

. (4.2)

Evaluating this impact factor using historical data collected from more than

150 operating areas across the USA, Kaefer [31] showed that for most

temperature-dependent operating areas, the PDWS is between −0.3 and −0.2.

Those values are highly correlated with expert knowledge mentioned previously. In

our framework, the gas forecasters had chosen a PDWS of −1
3
≈ 0.3.

4.4.2 Further Investigations

The PDWS proposed by Kaefer only tells us the impact factor for an operating area

and offers no insight as to whether the effect differs at different temperature levels.

We do not know if the prior day impact is higher or lower during bitter cold

temperatures. Our intuition suggests that people might act differently during a

bitter cold weather or when there is a large swing in temperature. Using a constant
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value of PDWS for all temperature ranges would be inaccurate if this hypothesis is

correct.

We investigate the Prior Day Weather Sensitivity further to explore the

impact of prior day weather on daily gas demand and to provide answers to

questions such as:

• Does PDWS vary by any independent variable?

• How does this independent variable affect the PDWS?

The methods used in this paper to determine the PDWS are an extension of

Kaefer [31]. For this study, we examine the Prior Day Weather Sensitivity at

different values of temperature and change in temperature.

By Temperature

Data: For the analysis in this and the following sections, we use daily natural gas

demand and the corresponding temperature time series data from 2003 to 2015 for

several regions in the United State. The data obtained from actual gas utilities have

been anonymized to protect the identity of the gas utilities. The data is divided into

training and testing sets. Unless otherwise stated, the training set includes 2003 to

2012 data, and the test set includes 2013 to 2015 data. The temperature variables

have been transformed to HDD.
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Procedure: To determine the prior day impact by temperature, we partition the

training data by temperature ranges. We are interested in determining the prior day

impact for only the heating days, so we discard all data points in the training data

with HDD = 0 (non-heating days). For each partition, the PDWS is calculated

from the parameters of Equation (4.2) obtained by fitting the linear regression in

Equation (4.1) to the data points in that partition. This is done by sorting the time

series in ascending order of temperature and sliding through the sorted data using a

rectangular window of length l and lag τ . For each window, the temperature, prior

day temperature, and the corresponding gas consumption are used to build the

model in Equation (4.1), and the PDWS is calculated. Figure 4.4 shows the PDWS

obtained against the average HDD in each window. For Figure 4.4, we used a

window length of 500 and a lag of 50.

Result: The result presented in Figure 4.4 provides us with new insight about

the nature of the impact of prior day weather on daily gas demand. Figure 4.4

shows that PDWS changes by temperature as opposed to being constant, as

suggested by expert knowledge and prior study by Kaefer et al. [31]. The figure also

tells us how PDWS changes by temperature. Figure 4.4 suggests a decaying

exponential relationship between PDWS and HDD, with the impact of prior day
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weather higher at lower HDD (warmer temperatures) and lesser at higher HDD

(colder temperatures). Using an exponential function of the form

PDWS = γ0 + γ1 · eγ2·HDD , (4.3)

Equation 4.3 was fitted to the PDWS vs. HDD curve (blue line). Using nonlinear

least square regression, we estimate the optimum parameters of the exponential

function. The optimal parameters of the exponential function are used to estimate

the PDWS given HDD as shown by the green line in Figure 4.4. The PDWS for was

estimated for larger values of the HDD (not available the training data) to see how

well the exponential function extrapolates. As seen in Figure 4.4, the PDWS levels

off at around −0.1 as HDD approaches large values.

By Temperature and Change in Temperature

We extend the investigation in Section 4.4.2 by assessing the impact of prior day

temperature at different temperature changes. Having obtained evidence that the

PDWS varies by temperature, we want to know if the impact is different with large

or small temperature swings.

Data The same data from the previous analysis is used.
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Figure 4.4: Prior Day Weather Sensitivity varying by temperature. The PDWS plot

suggests PDWS varies exponentially with temperature.

Procedure First, we partition the training data by temperature as in

Section 4.4.2. Each temperature partition is further partitioned by

change-in-temperature from the previous day. The PDWS is calculated the same

way as in Section 4.4.2 from the data in each inner partition. The PDWS is plotted

against the average of the temperatures and the average of the change in

temperature. The surface plot obtained is shown in Figure 4.5.

Result: The surface plot shows that the change in temperature also influences

the impact of prior day temperature. From the surface plot, we observe that the
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PDWS is close to zero at one extreme end of the surface (high HDD and positive

∆HDD ), which suggests the impact of prior day weather is less for this weather

condition. The impact is more at the low values of HDD and negative ∆HDD .

Although there is high variance in the underlying data, looking at the PDWS

surface from the HDD axis, the exponential form can still be observed. On the

∆HDD axis, there seems to be a linear relationship between PDWS and ∆HDD .

As ∆HDD goes from negative to positive, the PDWS increases i.e. the impact of

prior day weather is lesser when there is a positive change in temperature from prior

day than when the temperature change is negative.

To estimate the PDWS as a function of HDD and ∆HDD , we fit a nonlinear

model of the form

PDWS = γ0 + γ1 · eγ2·HDD + γ3 ·
1− eγ4·∆HDD

1 + eγ4·∆HDD
, (4.4)

to the PDWS surface. The HDD component of Equation 4.4 models the exponential

relationship between PDWS and HDD . For the ∆HDD component, we use a

logistic sigmoid function rather than a linear function. The PDWS surface in

Figure 4.5 suggest a linear relationship between PDWS and ∆HDD . However, we

know from domain knowledge that the PDWS can not be greater than zero. Using a

linear function, for large positive values of ∆HDD , the model will extrapolate and

estimate PDWS greater than zero. The same is true for large negative values. A
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linear ∆HDD component will extrapolate to unreasonably small values of PDWS.

For this reason, we use a logistic sigmoid function described in Equation 4.4. This

sigmoid function ensures that the PDWS - ∆HDD relationship is near linear for

values of ∆HDD within a bound, and levels out as ∆HDD goes outside that

boundary. Equation 4.4 ensures that the PDWS model extrapolates well for

extreme values of HDD and ∆HDD .

The coefficient γ of the PDWS model is evaluated through nonlinear

optimization. The value of γ that minimizes the sum squared error between the

estimate of PDWS (Equation 4.4) and actual value of PDWS is returned as the

optimum γ. Figure 4.6 shows the fitted surface. The surface fit is the estimate of

PDWS for different combinations of HDD and ∆HDD . It can be seen how the

model extrapolates for large positive and negative values of ∆HDD .

4.5 Accounting for PDWS in Demand Forecast

The analysis in Section 4.4 provides us with new information about the nature of

the prior day weather sensitivity and how it impacts gas demand. In this section,

we incorporate this finding into a gas forecasting model to predict demand. In the

last section, we estimated PDWS, first as a function of only HDD , then as a

function of both HDD and ∆HDD . In this section, we build gas demand regression
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Figure 4.5: Prior Day Weather Sensitivity vs. temperature and change-in-

temperature. The PDWS surface suggest that PDWS varies linearly with

temperature-change in addition to varying exponentially with temperature.

models based the two PDWS functions derived in Section 4.4.2. The regression

models use the estimate of PDWS as one of the independent variables.

4.5.1 Gas Demand Forecast - Model Description

Four simple linear regression models were built to evaluate the contribution of the

PDWS discussed in Section 4.4.2 on gas demand. All four models are

temperature-only models. The models do not account for trends [19, 29] in the

historical data, nor are seasonal factors such as day of the week accounted for. The
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Figure 4.6: Prior Day Weather Sensitivity surface fit. PDWS is an exponential func-

tion along the HDD axis and a sigmoid function along the ∆HDD axis.

temperature-only models were used so the impact of the temperature can be studied

in isolation. Model #1 (Kaefer) is a three parameter LR model. This model is

based on the assumption that the PDWS is a constant factor according to

Kaefer [31]. Model #2 (Linear) is a four-parameter model based on the discussion

in Section 4.4.2. For this model, it is assumed the PDWS varies linearly with

temperature. Model #3 (Exponential) is a five-parameter model based on PDWS

being a function of temperature only. For this model, the PDWS derived in

Equation (4.3) is used. Model #4 (Exponential-Sigmoid) is also a five parameter

model like Model #3 except that its PDWS is a function of both temperature and
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change in temperature. The PDWS function derived in Equation (4.4) is used in

this model. Let ŝk represent the estimate of natural gas demand for day k; HDDk

represent the corresponding Heating Degree Day, and ∆HDD k represent the change

in Heating Degree Day from the previous day.

#1−Kaefer : ŝk = β0 + β1HDDk + β2∆HDD k , (4.5)

#2− Linear : ŝk = β0 + β1HDDk + β2∆HDD k + β3HDDk ·∆HDD k , (4.6)

#3− Exponential : ŝk = β0 + β1HDDk + β2∆HDD k + β3HDDk ·∆HDD k

+ β4PDWS (HDDk) ·∆HDD k , (4.7)

#4− Exponential-Sigmoid : ŝk = β0 + β1HDDk + β2∆HDD k + β3HDDk ·∆HDD k

+ β4PDWS (HDDk,∆HDD k) ·∆HDD k . (4.8)

4.5.2 Performance Evaluation

The models in Equations (4.5) to (4.8) are trained on ten years of historical demand

and temperature data from 2003 to 2012. The remaining three years of data (2013

to 2015) were held out for testing. The performance of Models #1, #2, #3 and #4

were evaluated on the test data. For this evaluation, Root Mean Square Error

(RMSE) is used as error metric. In Section 4.2.4, we highlighted unusual days as

one of the motivations for this work. For that reason, we compare all models based

on their performance on the various unusual days types.
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First, the Exponential model (#3) is compared against Kaefer (#1) and the

Linear model (#2). The Exponential-Sigmoid model (#4) is also compared against

Models #1 and #2. Figure 4.7 shows the RMSE obtained on the testing set, plotted

by unusual day types (see Section 4.2.4). The bars represent the categories of

unusual days. The bar chart contains four groupings, each representing the forecast

error for Kaefer, Linear, Exponential, and Exponential-Sigmoid models. In

Table 4.1, we highlight a few of the unusual days and compares the RMSE of the

Exponential (#3) against that of the Exponential-Sigmoid (#4) models. The ‘% ⇓’

columns represent the percentage reduction in RMSE between the Exponential,

Exponential-Sigmoid models and the Kaefer model i.e.

#3 (% ⇓) =⇒ Model#1 RMSE − Model#3 RMSE
Model#1 RMSE

∗ 100% and

#4 (% ⇓) =⇒ Model#1 RMSE − Model#4 RMSE
Model#1 RMSE

∗ 100%. Comparing the performance

on the unusual day types shown in Table 4.1, the Kaefer model (#1) has the highest

RMSE for most day types, while #3 and #4 has the least RMSE. For the first five

unusual day types highlighted, both the Exponential (#3) and Exponential-Sigmoid

(#4) models show reduction in forecast error. For the ‘Warmer today than

yesterday’ however, we got increment in forecast error for both models #3 and #4.

So far, we have based our analysis on dataset from one gas utility. To assert

the consistency of our result, we perform the same test on dataset from other gas

utilities. Data from three other gas utilities was obtained in addition to the one
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used in earlier evaluations. The same range of data as in the previous evaluation

was used. Data from 2003 to 2013 were used as training set, 2013 to 2015 data used

for testing. Tables 4.2 and 4.3 shows the percentage reduction in RMSE between

the Kaefer, the Exponential, and Exponential-Sigmoid models for four datasets

obtained from different gas utilities. In Table 4.2, we report the percentage

reduction in RMSE for four operation areas (Op) using the Exponential model.

While, Table 4.3 shows the percentage reduction in RMSE due to the

Exponential-Sigmoid model. Looking at the results presented in Tables 4.2 and 4.3

we can see a consistent reduction in forecast error for all unusual day types except

for the ‘Warmer today than yesterday’ day type.

The most significant performance improvement was observed for ‘Colder

today than yesterday’ days with up to 25% reduction in RMSE for the Exponential

model. The only instance in which our Exponential models performed worse than

the Kaefer model is ‘Warmer today than yesterday’. The same is true for the

Exponential-sigmoid model, with up to 23% reduction in RMSE on ‘Colder today

than yesterday’ and −22% on ‘Warmer today than yesterday’. Adjusting for the

prior day weather sensitivity on ‘Warmer today than yesterday’ day type did not

improve the forecast accuracy but instead increased the forecast error. For most of

the other unusual days, our contribution (which is the Kaefer model adjusted for

prior day impact) lead to reduction in forecast error.
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Figure 4.7: Gas demand forecast RMSE by unusual days. The four bars represent

each of the four models compared side-by-side. The Exponential and Exponential-

Sigmoid models performed better than the Kaefer and Linear models for most of the

unusual days type identified.

Table 4.1: Models Performance by Unusual days. The RMSE of the four models are

being compared. Model 3 (Exponential) and Model 4 (Exponential-Sigmoid) both

have lower RMSE than Model 1 (Kaefer Estimate) and Model 2 (Linear) for most

of the unusual days type.

RMSE (Dth)

Unusual day types # 1 #2 #3 #3 (% ⇓) #4 #4 (% ⇓)

Coldest day 5.76 5.31 5.25 9.0 5.31 7.9

Colder than normal 5.32 4.74 4.66 12.3 4.74 10.7

Warmer than normal 1.72 1.50 1.54 10.5 1.50 13.1

Colder today than yesterday 5.00 3.86 3.73 25.5 3.85 23.1

First cold days 2.90 2.53 2.50 13.8 2.53 12.5

Warmer today than yesterday 3.02 3.72 3.80 -26.1 3.63 -22.0

4.6 Future Work

So far, we have considered the impact of prior day weather on daily gas demand.

We investigated Prior Day Weather Sensitivity and explored two variables on which

PDWS depends. We examined PDWS by temperature (HDD ) and temperature

change (∆HDD ), and we derived PDWS as a function of HDD (Equation 4.3) and

as a function of both HDD and ∆HDD (Equation 4.4). By adjusting a
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Table 4.2: Percentage reduction in RMSE resulting from the Exponential model.

This model took into account PDWS varying exponentially with temperature. The

performance is compared across four gas utilities.

Exponential (#3) - RMSE ⇓ (%)

Unusual day types Op 1 Op 2 Op 3 Op 4 Average

All days 1.94 0.98 1.27 1.33 1.38

Coldest days 8.97 6.87 6.21 4.19 6.56

Colder than normal 12.31 5.5 7.47 5.36 7.66

Warmer than normal 10.5 -0.56 0.45 -3.94 1.61

Windiest heating days 8.28 -2.11 19.35 7.66 8.30

Colder today than yesterday 25.51 19.99 20.15 19.19 21.21

Warmer today than yesterday -26.05 26.04 -14.18 -26.81 -23.27

First cold days 13.77 9.55 10.33 8.98 10.66

First warm days 2.89 1.09 1.46 1.5 1.74

High humidity heating days 4.59 10.15 14.24 8.07 9.26

Low humidity heating days 4.72 -9.04 0.83 -3.79 -1.82

Sunny heating days -1.45 -2.18 1.87 3.54 0.45

Cloudy heating days 1.1 -1.54 0.63 0.93 0.28

three-parameter linear regression model (Kaefer model) with the PDWS (from

Equations 4.3 and 4.4) to arrive two five-parameter LR models (Exponential and

Exponential-Sigmoid model), we showed in Section 4.5.2 that both

Exponential-PDWS models offers significant improvement over the Kaefer model,

especially for the cold unusual days types.

Looking at Tables 4.2and 4.3, we see that our prior-day adjusted models

consistently perform worse than a basic LR model on ‘Warmer today than

yesterday’ day type. Considering the PDWS surface in Figure 4.5, ‘Warmer today

than yesterday’ implies that the ∆HDD is less than zero, so that points in this

space make up the ‘Warmer today than yesterday’ day type. A ‘Colder today than
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Table 4.3: Percentage reduction in RMSE resulting from the Exponential-Sigmoid

model. The Exponential-Sigmoid model accounts for PDWS being a function of both

temperature and temperature-change. The performance is compared across four gas

utilities.

Exponential-Sigmoid (#4) - RMSE ⇓ (%)

Unusual day types Op 1 Op 2 Op 3 Op 4 Average

All days 1.88 1.07 1.27 1.33 1.39

Coldest days 7.91 8.46 5.45 5.17 6.75

Colder than normal 10.74 5.40 5.46 5.06 6.67

Warmer than normal 13.11 2.30 1.52 -1.51 3.86

Windiest heating days 7.86 0.34 16.81 8.06 8.27

Colder today than yesterday 23.1 18.39 16.78 12.07 17.59

Warmer today than yesterday -22.01 -19.25 -4.04 -12.27 -14.39

First cold days 12.53 8.07 8.75 6.19 8.889

First warm days 2.80 0.00 1.68 1.59 1.52

High humidity heating days 4.57 12.55 12.47 5.40 8.75

Low humidity heating days 6.43 -8.01 2.11 -3.79 -0.82

Sunny heating days -1.49 -1.78 1.12 3.86 0.43

Cloudy heating days 1.64 -0.66 0.69 -0.56 0.28

yesterday’ implies that the ∆HDD is greater than zero. Since we obtained evidence

that the our adjustment works for ‘Colder today than yesterday’ but not ‘Warmer

today than yesterday’, introducing a ‘kink’ into the gas demand model at

∆HDD = 0 such that the model has components for both ∆HDD < 0 and

∆HDD > 0, might offer a performance improvement for ‘Warmer today than

yesterday’ day type.

In Section 4.4.2, based on the calculated values of PDWS, we used an

exponential function (Equation 4.3) to relate HDD to PDWS. We know that our

exponential function estimates better than a linear function. Other rational
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functions that fit the data can also be used. However, care must be taken in

ensuring the rational function has reasonable asymptotes. For any chosen rational

function, the horizontal asymptote should describe the behavior of PDWS as HDD

gets large ensuring the PDWS value stays within a reasonable bound.

4.6.1 Investigating other variables

Our analysis, has shown that PDWS varies by HDD and ∆HDD . As

recommendation for future work, other variables can be explored using the same

method to determine if and how they affect the PDWS. For instance, if the prior day

is an holiday, would that impact the prior day weather sensitivity? If it does, would

adjusting for that factor offer any significant improvement to the forecast accuracy.

In this chapter, we only looked at one prior day weather impact on gas

demand. We could also considered the impact of prior x days weather conditions on

daily gas demand. Earlier in Section 4.4.1, we mentioned that higher-order lagged

temperature variables often are used in gas forecasting models. If using a linear

regression model, the coefficient of the lagged temperature is assumed to be

constant with demand. Prior x days could be investigated the same way prior one

day has been investigated in this chapter.
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4.6.2 Application in other temperature-driven demand

Like natural gas demand, electric load depends on largely on

temperature [21, 22, 24, 28, 48]. Hence, models used in forecasting electric load are

similar to gas demand models. In fact, electricity and natural gas are used

interchangeably for space heating. Most models used to forecast electric load also

use lagged temperature variables [20, 27, 28, 35] to account for the complex

interaction between temperature and electric load. The work presented in

this chapter can be extended to electric load forecasting.

We hypothesized in Section 4.4 that the complex relationship between

temperature and demand is due to a possible behavioral response [16, 62] or recency

effect [28], where people make decisions based on recent experience [25], such as a

customer using more gas simply because the previous day was very cold. In this

regard, our work can be applicable in financial forecasting, predicting customer’s

buying patterns, or any other predictive analysis where recency effects can be

observed.

4.7 Conclusion

In this chapter, we presented a method by which the accuracy of natural gas

demand forecast can be improved. We highlighted a number of reasons why an



95

accurate forecast is important to gas utilities. We also pointed out certain days

(such as design day and unusual days) when an accurate forecast is especially

important. By investigating the impact of prior day weather conditions on daily gas

demand using a metric referred to as ‘Prior Day Weather Sensitivity’, we derived

PDWS = f(HDD ) and PDWS = f(HDD ,∆HDD ) (see Equations 4.3 and 4.4),

showing that the impact of prior day weather depends on both the current day

temperature and temperature change from the previous day. Two five-parameter

linear regression models (adjusted for the prior day impact factor) were estimated

from historical gas demand and temperature data. The performance of the

(prior-day adjusted) models were compared to two other linear regression models -

one assumes a constant PDWS, while the other assumes PDWS varies linearly with

temperature. We showed in Tables 4.1, 4.2, and 4.3 that our prior day adjustment

improves the gas estimate with up to 25% reduction in RMSE.
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CHAPTER 5

Research Contributions and Recommendations

This chapter provides a summary of the challenges addressed, ideas

expressed, and techniques employed throughout this work. We provide a recap of

the results from Chapters 2, 3, and 4, stating their contributions to gas demand

forecasting and their value to gas utilities. We offer recommendations on how the

ideas presented in this thesis can be used, extended, or applied to related fields of

forecasting.

5.1 Research Contributions

In this thesis, we explored different approaches by which the accuracy of gas

demand forecast can be improved, especially on days that pose major risks to gas

utilities. The techniques discussed in this thesis are focused on achieving better

forecasts on days with unusual weather patterns, during periods of extreme cold

events. We explored the impact of temperature and human behavioral effects on

daily gas demand and provided means by which their complex interactions can be

incorporated into a gas demand model.

In Chapter 2, we presented a semi-supervised pattern recognition algorithm
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to identify extreme cold events in natural gas demand data. We pointed out an

unusual response in gas demand to temperature during periods of extreme cold

weather and considered why the unusual dynamics is a challenge in forecasting gas

demand. We demonstrated that by performing a low-dimensional embedding of the

gas demand data, we could cluster natural gas data based on similarities in

dynamics. We showed that our RPS-kNN algorithm was able to identify extreme

cold events in the historical gas data. The extreme cold events identified in this

chapter were used in Chapter 3 in an effort to improve gas forecasts during extreme

cold events.

In Chapter 3, we discussed a strategy by which the accuracy of gas demand

forecasts can be improved during periods of extreme cold events. We showed a

characteristic pattern in the forecast residuals for days in an extreme cold event,

and postulated an unmodeled behavioral component. We presented a residual

learning architecture to learn the statistics of the residuals for days in the extreme

events identified by our RPS-kNN algorithm in Chapter 2. The estimates of the

residuals produced by the residual model were used to adjust an initial forecast.

The performance of the adjustment model was evaluated using the Mean Absolute

Percentage Error between the new estimate and actual demand. The adjustment

model’s MAPE was compared to the initial base model estimate. Our adjustment

model performed better for some days in the identified events and performed worse
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on other days. There was no conclusive evidence that our residual learning

technique would improve forecast accuracy during future extreme cold events.

In Chapter 4, we presented a technique to improve the accuracy of gas

forecasts during days with extreme and unusual weather patterns. We outlined

certain day types as unusual days, either because those days are challenging to

forecast (gas demand) or have high business-related risk. We highlighted the

complex relationship between prior day temperature and daily demand, and

analyzed the impact of prior day temperate using PDWS. A previous study [31]

evaluated the PDWS as constant. We showed that the PDWS depends on both

temperature and change-in-temperature. Using the PDWS function we derived, we

developed a gas demand forecast model that uses our PDWS factor. The

performance of our PDWS-adjusted model was compared to other models (without

the PDWS adjustment). We showed a performance improvement due to our PDWS

adjustment. For instance, for the ‘Colder today than yesterday’ day type, we

achieved up to 25% reduction in RMSE.

5.2 Recommendations

In Chapter 2, we identified extreme cold events for the purpose of learning the

statistics of their forecast residuals. While we focused our attention of identification

of certain extreme cold events, the technique developed in this thesis can be
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extended to classifying extreme cold events. We considered only five-day events in

our analysis. However, some extreme cold events could be three or seven-day event.

The RPS-kNN algorithm can be re-purposed for classification task as it can identify

events in similar class based on their flow-temperature dynamics.

The prior day weather sensitivity equation derived in Chapter 4 can be used

in design day studies. In estimating design day gas demand, the design day

temperature and prior day temperature are used. D’Silva in [23] developed an

algorithm to determined the design day temperature by estimating the 1-in-n years

temperature using a nonparametric distribution. The prior design day temperature

is derived from the 1-in-n temperature and the PDWS factor (previously determined

as constant by [31]). In this study, we have shown that the PDWS is not constant,

but varies by temperature. Using the PDWS function derived in Chapter 4, we can

obtain a better estimate of prior design day temperature and improve the design

day gas estimate.

In [31], Kaefer developed a surrogate data selection algorithm to supplement

areas with insufficient data. Kaefer’s surrogate algorithm uses PDWS [31] to select a

subset of donors from a pool of donors. Kaefer’s surrogate selection is based on

constant PDWS. We have shown in Chapter 4 that PDWS varies with temperature

and temperature-change. The surrogate selection algorithm should be modified to

account for the varying PDWS.
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5.3 Concluding Remarks

This thesis explored methods by which the accuracy of gas demand forecast can be

improved during the hard-to-forecast days. Throughout this thesis, we have shown

the unusual dynamics of extreme cold events. In Chapter 2, we demonstrated how

extreme events can be identified using pattern recognition algorithms. In Chapter 3,

we demonstrated how, by learning of forecast residuals during extreme cold events,

the accuracy of forecasts can be improved. In Chapter 4, we showed that the impact

of prior day weather on daily gas demand is not a constant factor but varies with

temperature and temperature-change. We demonstrated how by appropriately

accounting for the prior day impact factor, we improved the accuracy of gas

forecasts for most of the unusual day types.
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