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ABSTRACT 

MODELING PYROLYSIS OF LARGE COAL PARTICLES  

WITH MANY SPECIES 

 

 

Jianqing Li, B.S.M.E 

 

Marquette University, 2016 

 

 

Coal currently supplies 40% of the world’s electricity needs, and is one of the most 

important energy sources. As the initial stage of coal combustion, pyrolysis is a thermal 

decomposition process which converts coal into light gases and tars, which are 

subsequently consumed in combustion reactions, as well as solid char.  Recently there has 

been interest in using slow pyrolysis as a stand-alone process for the production of 

chemicals and fuels from large (mm-scale) coal particles.  

 

Simulations can be used to efficiently study the impact of pyrolysis conditions on gas, tar 

and char yields, as well as gas and tar species compositions, which are an important output 

for a coal-to-chemicals process. In order to simulate pyrolysis of large coal particles, the 

Chemical Percolation Devolatilization (CPD) model, which predicts the mass fractions of 

char, tar and light gas, has been modified and improved. A transient multicomponent 

vaporization sub-model has been developed to predict the partitioning of heavy species 

into gaseous tar and liquid metaplast. The Direct Quadrature Method of Moments 

(DQMoM) is introduced as a computationally efficient method to solve for the evolution 

of the distribution of tar species as a function of molar mass, and the full discrete tar species 

distribution can be reconstructed by a novel delumping procedure. Finally, a heat transfer 

model that can predict temperature gradients within the particles has been incorporated 

using the finite volume method to discretize the energy equation, with the improved CPD 

model implemented at every position within the particle. 

 

The results show the necessity of resolving large particles spatially, due to the impact of 

the local temperature evolution on tar and gas mass fractions and the production of certain 

species. Higher pyrolysis temperatures result in increased yields of gas and especially large 

tar species, while decreasing pressures also increase the production of heavier tar species. 

The agreement between the full discrete species model, which solves differential equations 

for every tar species, and DQMoM with delumping, which solves many fewer equations, 

is excellent, while yielding a large improvement in computational efficiency.  
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Chapter I. Introduction 

As one of the most important energy sources, coal currently supplies 40% of the 

world’s electricity needs, making it the primary source for electricity generation (IEA 

2015). Typical air combustion of coal is the most common method used in power plants 

for generating thermal energy and subsequently electric energy, which is used in most 

aspects of our lives. Generally, coal combustion can be divided into two stages: 

devolatilization and char combustion.  

Devolatilization, or pyrolysis, is the initial stage of coal combustion, and is the 

thermal decomposition (without any reaction with oxygen) of coal into volatiles (consisting 

of light gases and heavier tars) their escape from the particle and in some cases, their 

subsequent reaction.5 Pyrolysis can also be used as a stand-alone process, with interest in 

employing large (millimeter scale) coal particles to produce chemicals that could 

subsequently be used for fuels. If pyrolysis chemicals are to be used for making fuels, it is 

important for a pyrolysis model to predict the detailed species composition of the product 

gases. Also, temperature gradients should be considered for such a process, based on the 

relatively large size of the particles. 

The Chemical Percolation Devolatilization (CPD) model has been used in several 

studies to model coal devolatilization (see Chapter II).5 It describes the pyrolysis behavior 

of coal based on the chemical structure of the parent coal and can predict the fraction of 

tar, which is a mixture of large vapor species, and of light gas, which are generated during 

the process of pyrolysis. The general CPD model describes the process of pyrolysis by 
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ignoring any temperature gradients within the particle, since they are typically negligible 

for the small particles employed in coal fired power plants.  

With the goal of modeling stand-alone pyrolysis of large coal particles for 

chemicals production, this thesis presents three improvements to the CPD model. 

1. Internal temperature gradients may play a significant role in the pyrolysis of 

large-scale particles. Being a series of thermochemical decomposition reactions, the rate 

and products of pyrolysis can be influenced significantly by the local temperature.13 Every 

different position inside of a large particle has a unique temperature. So the temperature 

gradient plays an important role in pyrolysis of large scale particle. Thus, compared with 

the general CPD model used for small scale particle, the generation of tar and gas should 

be considered at different positions inside of the large particle due to the temperature 

gradient.  Thus, if we research the pyrolysis of large particles with a spatially varying 

temperature, the accuracy of CPD model can be improved and used on different sizes of 

coal particles. Therefore, based on this motivation, a one improvement to the CPD model 

developed in this thesis is a description of the process of pyrolysis in a large coal particle. 

Based on the heat transfer theory, the conservation equation of thermal energy is used in 

the model to make the temperature a function of position within the particle, instead of a 

single temperature for all points.  

2. A multicomponent vapor-liquid equilibrium (VLE) sub-model is included in the 

existing version of the CPD model. It represents the partition of the molecular fragments 

generated by thermal decomposition into liquid (“metaplast”) species, which remain in the 

particle and eventually solidify, and vapor species, which escape as tar. VLE is a special 

condition that a liquid and its vapor are in phase equilibrium with each other, at the given 
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temperature and pressure.5 However, the previous VLE sub-model incorporated in the CPD 

model has the disadvantage that it is not very easy to combine into a simulation based on 

ordinary differential equations. More importantly, as the developers of the CPD model 

noted, in the original model, V/F, which is the fraction of total vapor produced, is time-step 

dependent, meaning that as the numerical time step increases, V/F increases.22 Therefore, 

an improved VLE model is applied in this thesis to eliminate the time-step dependence and 

improve the accuracy of the model, especially for many discrete species. This modified 

method is based on a transient vaporization process and predicts V/F and the generation of 

discrete tar species, and is more accurate than the previous (time-step dependent) method.  

3. Finally, the original CPD model only predicts the mole fractions of different tar 

species in terms of fragment size separated into very wide molecular weight bins. However, 

it has been proven by the experiment that there are many discrete species generated during 

the process of pyrolysis.13 While the knowledge of detailed species is important for 

pyrolysis for chemicals production, the original CPD model cannot predict the distribution 

of discrete tar species as a function of time and temperature.  

Using the modified VLE model that will be described in Chapter III, it is possible 

to incorporate the generation of arbitrarily many discrete tar species into the CPD model. 

However, it costs too much computational time to solve more than 500 ordinary differential 

equations (ODEs) for each discrete species. Therefore, it is necessary to find an alternative 

way to solve these complicated ODEs. The Quadrature Method of Moments (QMoM) is a 

general method used to evolve distributions, such as the many tar species generated by 

pyrolysis.11,12 The Direct Quadrature Method of Moment (DQMoM) is also an effective 

method developed from QMoM and is employed in this thesis to solve for the distribution 
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of tar species in a computationally efficient manner.2,26 Most importantly, after solving the 

DQMoM model, a novel delumping procedure is applied to recover the data on individual, 

discrete species from the distribution of species solved by DQMoM. In summary, the goal 

of combining the DQMoM and a delumping step is saving the computational time for 

predicting the detailed tar species compared with the CPD model. 

This thesis introduces the three main improvements to the CPD model described 

above and presents result from the improved CPD model. The model is built and simulated 

based on MATLAB and the extension tool named “Sundials IDA Solver”, which can solve 

the Ordinary Differential Equations (ODEs) and the Differential Algebraic Equations 

(DAEs).  

Chapter II contains a literature review for the necessary background. First, general 

information about pyrolysis will be summarized. Also, the general CPD model is reviewed 

to prepare for the following development. The finite volume method and VLE method will 

be reviewed as the background to use in the improved CPD model. Finally, QMoM and 

DQMoM are also introduced as an important part of the background.   

Chapters III presents the improved CPD model. This new model is developed based 

on the original CPD model and incorporates three improvements. The temperature profile 

inside of the particle will be modeled based on the conservation equation, and solved by 

the finite volume method. Then the process of modeling improved CPD model with new 

VLE method will be fully explained. This new VLE method eliminates the time-step 

dependence and describes the process of pyrolysis as a transient and continuous condition.   

Chapter IV introduces the computationally efficient method to solve for discrete tar 

species generated by pyrolysis, using DQMoM with delumping. The DQMoM method will 
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be applied to solve differential equations for the distribution of tar species based on weights 

and nodes of different “lumped” species and the delumping method will then extract the 

discrete species from the result of “lumped” species.  

The results of improved CPD model with VLE method and DQMoM model with 

delumping method are presented and discussed in Chapter V. The results for the change of 

chemical properties, including different kinds of bridges which are broken and generated 

during the process of pyrolysis will be provided. Also the temperature profile solved by 

finite volume method is shown in this chapter. Results for discrete species generated by 

the DQMoM + delumping model will be presented and discussed. What is more, a 

comparison between DQMoM + delumping and the full discrete species model (exact 

compared to DQMoM + delumping) will be made.  

The last part of this thesis is the conclusion and suggestions for future work. These 

include the advantages of the improved CPD model and the ideas to improve model 

efficiency and accuracy in the future. 
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Chapter II. Literature Review 

This chapter is a review of previous studies related to our improved CPD model. 

The goal of the literature review is to present the basics of the CPD model, the finite volume 

method, the vapor-liquid equilibrium sub-model and the DQMoM approach.  

A. Chemical Percolation Devolatilization (CPD) Model 

Pyrolysis is the thermal decomposition process which partitions coal (or other solid 

fuels) into volatiles (light gases and tars) and solid char in the absence of oxygen. During 

pyrolysis, liquid phase fragment molecules are produced by decomposition reactions. 

Some of them vaporize and leave the particle as tar, meanwhile others remain as liquids 

and eventually solidify to form char. Thus, in terms of individual gaseous species, the 

composition and rate of evolution are significant, which will influence the composition of 

products during coal pyrolysis.10 Moreover, to research the details of pyrolysis of large coal 

particles, the process of heat transfer inside of the particle must be considered.24 

There have several different pyrolysis models which have been published. A 

mathematical model which describes the pyrolysis behavior of small scale coal particle has 

been formulated. It uses a constant pyrolysis rate and predicts the behavior of different 

types of coal which have been compared with experiment.3 Another pyrolysis model, 

which uses a single kinetic rate to describe pyrolysis is introduced , using a single Arrhenius 

type rate expression.6 With the analysis of chemical structure of coal being used in the field, 

models based on the coal’s chemical structure were developed and included a flash 

distillation model to describe the partitioning of fragments into tar and liquid using a vapor-

liquid equilibrium process.8 This model is called FLASHCHAIN. 
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The Chemical Percolation Devolatilization model, which is known as the CPD 

model, has proven an accurate and effective model to describe the pyrolysis behavior of 

coal based on the initial chemical structure of the coal.1 5 10 14 Percolation theory is a method 

in statistical physics and mathematics which can describes the behavior and connectedness 

of clusters in a random graph.  

The complex macromolecular structure of coal consists, broadly, of clusters of 

fused aromatic rings connected by bridges and containing dangling side chains, as 

illustrated in Fig. 2-1.5 The thermal decomposition that occurs during pyrolysis breaks 

these bridges and produces molecular fragments of various sizes, which is analyzed and 

simulated using percolation theory. A fragment is a group of species which are generated 

from bridge breaking of cluster and have similar finite molecular weight. Therefore, it is 

very important, in using the CPD model, to know the initial structure of the coal 

macromolecule (in a statistical sense).  

 

Figure 2-1. Representative chemical structures identified in 13C NMR analyses and 

used in the description of coal and coal chars in the CPD model 6. 
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The CPD model therefore requires coal-dependent input parameters taken from 

chemical characteristics of the parent coal, wherever possible. Four of the five coal-

dependent chemical structure parameters in the CPD model can be taken directly from 

NMR analyses of the parent coal, if available. These parameters will be used in calculating 

the parameters of the coal based on the structure, such as the number of initial labile bridges, 

the average mass of a fused ring site and the mass of bridges.5   

Bethe lattice statistics are implemented with analytical mathematical functions to 

describe the evolving structure of the coal during pyrolysis. Bethe lattices are a class of 

lattices which are characterized by a coordination number and a bridge population 

parameter connected only by a single path of bridges and sites.5 In other words, Bethe 

lattices have no loops. In coal pyrolysis, Bethe lattices have an analytical solution for the 

statistics of bridge dissociations and are a tractable method to analyze different cluster sizes 

for molar distribution of tar and light gases fragments.5 

 Using Bethe lattice statistics, the initial coal characterization and a reaction scheme 

to describe the breaking of bridges during pyrolysis, the distribution of fragments as a 

function of size and the fraction of material in the infinite char array are expressed through 

percolation theory. A distinction between low molecular weight aromatic fragments that 

vaporize as tar and high molecular weight fragments that remain with the char in a liquid 

or solid state as metaplast is made using a vapor-liquid equilibrium submodel.5 Parameters 

based on the chemical structure of a particular lignite (low rank coal) particle are shown in 

Table 2-1. All of these parameters will be used in the improved CPD model. 

Recently, a more detailed version of the CPD model has been developed for the 

release of light gas. This model provides expressions for formation of particular light gas 
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species and includes differential equations for each to augment the CPD model.17 These 

equations for light gas species are included in the model developed in this thesis. 

Table 2-1. Parameters used in CPD model 

Notation Definition Value Unit 

P0 The fraction of attachments that are bridges 0.61  

C0 Char bridges 0  

  σ+1 
The average number of attachments (i.e., side chains 

and bridges) per cluster 
4.6 

 

Mdel The average molecular weight per side chain 22 g/mol 

MWcl The average molecular weight per aromatic cluster 267 g/mol 

 

       B. Vapor-Liquid Equilibrium Model 

As mentioned above, to predict the fraction of each fragment size that enters the 

vapor phase (as tar), or which remains in the coal particle as liquid (metaplast) and 

eventually solidifies as char, a vapor-liquid equilibrium sub-model has been incorporated 

in the CPD model.22 The basic idea of this sub-model is to treat the fragments generated 

by bridge breaking as the feed stream in a flash equilibrium process, while using Raoult’s 

law to relate liquid and vapor mole fractions. Raoult’s Law is a thermodynamic expression 

which describes the effect of vapor pressures on gas phase pyrolysis products. Also, 

assuming the mixture is an ideal mixture, the partial pressure Pi of a substance is equal to 

the product of the vapor pressure of the pure substance Pi
v and the mole fraction of the 

substance in the liquid xi: 

 𝑃𝑖 = 𝑦𝑖 ∙ 𝑃 = 𝑥𝑖 ∙ 𝑃𝑖
𝑣 (2.1) 
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where yi is the mole fraction of the species in the vapor phase. 

Next, the approach to flash distillation has been developed by King to model vapor-

liquid equilibrium.31 During the flash process, the feed divides into two separate phases. 

Some fragments vaporize and leave the vessel (particle) as vapor phase tar, others remain 

in the vessel in the liquid phase. Fig. 2-2 shows that the basic idea of the vapor-liquid 

equilibrium in a “flash vessel” in the original CPD model.22  

 

Figure 2-2. “Flash Vessel” used for vapor-liquid equilibrium in the CPD model 

Prior to flash, the feed is a mixture with different fragments, and F is the total moles 

of fragments per cluster before vapor-liquid equilibrium. What is more, fi represents the 

moles of fragment i per cluster before vapor-liquid equilibrium, and zi is the mole fraction 

of each fragment of size i per cluster in the flash vessel prior to flash. Therefore, it has a 

simple relationship that: 

 𝑓𝑖 = 𝑧𝑖 ∙ 𝐹 (2.2) 

 

After the flash process, V is the total moles of fragments in vapor phase, vi is the 

moles of fragment i in vapor phase, and yi is the mole fraction of each fragment in the vapor 

phase. So, like Eq. 2.2, the relationship is: 
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 𝑣𝑖 = 𝑦𝑖 ∙ 𝑉 (2.3) 

 Similarly, L, li, xi represent the total mole of fragment of liquid, moles of liquid 

fragment i, and the mole fraction of each fragment in the liquid phase after vapor liquid 

equilibrium. The equation for the liquid phase is: 

 𝑙𝑖 = 𝑥𝑖 ∙ 𝐿 (2.4) 

 

And F, V, and L are the sum of the fi, vi, and li. For mass conservation, before and 

after the flash process, the total moles of fragment are same. So, 

 𝐹 = 𝑉 + 𝐿 (2.5) 

 

The relationship in Eq. (2.1) between the mole fraction of species in vapor phase yi 

and in liquid phase xi, can be expressed as 5 

 𝑦𝑖 = 𝐾𝑖 ∙ 𝑥𝑖 (2.6) 

 

where the phase equilibrium constant, Ki, accounts for the vapor pressure of a given species, 

and for the numerous species in coal tar, is based on a correlation developed by Unger and 

Suuberg5 as a function of temperature and molecular weight and is given in Chapter 3. 

       C. Energy Equation and the Finite Volume Method 

The CPD model is a local kinetic model which can describe the process of the 

pyrolysis of coal particle in the absence of any heat transfer limitations. This is acceptable 

if the particle size is small enough (for example, less than 100 micrometers for pulverized 

coal combustion conditions), and/or the gradient of temperature can be neglected or is 

irrelevant. On the other hand, if the particle is larger, the temperature inside of the particle 
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varies with the position within the particle, and this effect has to be considered in order to 

obtain an accurate result for the pyrolysis process. Thus, the energy conservation equation 

can be applied with the CPD model to solve for the temperature distribution in large particle. 

The general form of conservation equation of energy is: 

 
(𝜌𝑐𝑝)𝑒𝑓𝑓

𝜕𝑇

𝜕𝑡
+ 𝜌𝑐𝑝𝒖 ∙ ∇𝑇 = ∇ ∙ (𝑘𝑒𝑓𝑓∇𝑇) − ∆ℎ𝑄𝑠𝑜𝑙𝑖𝑑−𝑡𝑜−𝑔𝑎𝑠 (2.7) 

 

The energy equation is a partial differential equation, which has several terms, 

including a convection term and a diffusion term and is difficult to solve analytically. 

Therefore, an appropriate numerical method to solve the differential equation is important 

to get an accurate temperature distribution inside of the particle. The finite volume method 

is a good method to solve differential equations. It is a method for representing and 

evaluating differential equations in the form of algebraic equations. The finite volume 

method can discretize a governing differential equation, yielding an algebraic relation 

connecting the value of dependent variable φ for a group of grid points.18,25  

For one dimensional problem, Fig. 2-3 shows the basic idea of the finite volume 

method.25 The grid point P has two neighboring grid points, E and W. The control volume 

is located between the two dash lines. 

 

Figure 2-3. Grid-point cluster for the one-dimensional problem 
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For example, assume the governing equation is the steady one dimensional heat 

conduction equation: 

 𝑑

𝑑𝑥
(𝑘
𝑑𝑇

𝑑𝑥
) + 𝑆 = 0 (2.8) 

 

This is a second order differential equation. First, for a one dimensional problem, 

the volume of control volume depends on the distance Δx. So, integrate the Eq. 2.8 and 

rearrange the equation: 

 
(𝑘
𝑑𝑇

𝑑𝑥
)
𝑒
− (𝑘

𝑑𝑇

𝑑𝑥
)
𝑤
+∫ 𝑆𝑑𝑥

𝑒

𝑤

= 0 (2.9) 

 

𝑘𝑒 and 𝑘𝑤 are the thermal conductivity coefficients at the point e and w. Then use 

the approximation method of derivative to express the derivative terms in Eq. 2.9. To 

express the variation of the dependent variable between the grid points, the piece-wise 

linear profiles are used to evaluate the derivatives:7 

 𝑘𝑒(𝑇𝑒 − 𝑇𝑝)

(𝛿𝑥)𝑒
−
𝑘𝑤(𝑇𝑝 − 𝑇𝑤)

(𝛿𝑥)𝑤
+ 𝑆̅∆𝑥 = 0 (2.10) 

 

Now Eq. 2.10 is the discretized equation which comes from the differential Eq.  2.8 

for the control volume method. And 𝑆̅ is the average value of S over the control volume.25 

Therefore, if the energy equation is required to solve the temperature distribution 

inside a large-scale particle, it is easier to use the finite volume method to convert the 

difficult differential equation to the discretization equation than solving the differential 

equation directly for arbitrary boundary conditions, initial conditions and potentially 

nonlinear source terms associated with the heat of pyrolysis. After we know the boundary 
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conditions for the discretization equation, the numerical method can solve the equation and 

get an approximation solution.  

       D. Direct Quadrature Method of Moments 

During the process of pyrolysis, many different species are generated as the process 

progresses. In the CPD model, the mole fraction of tar species is calculated by separating 

them into different fragment sizes, using very coarse bins. However, if we want to find the 

actual species distribution within those fragment bins (more than 500 species have been 

generated during a detailed kinetic pyrolysis simulation at MIT using Monte Carlo 

simulation) that escape the particle as tar, the VLE calculation can become very 

computationally expensive. Therefore, an alternative way to solve the problem is to 

represent the numerous tar species as a distribution of molecular weight using a method of 

moments instead of solving ODEs for each species directly.12 Subsequently, a 

reconstruction procedure will be developed to obtain the evolution of each species in a 

computationally efficient manner. 

The continuous thermodynamics theory, which has been developed by Laurent and 

Cotterman, can be used for analyzing pyrolysis.4,13 This theory uses a continuous 

distribution function to describe the chemical composition of a mixture which contains an 

infinite number of components. Furthermore, the equilibrium properties, which are some 

characterizing properties, are described upon extension of well-known thermodynamic 

methods.  

The Quadrature Method of Moment (QMoM) is a general way to solve for the 

evolution of a distribution by tracking several of its moments.11 It derives from the 

conventional moment problem and the moment evolution equations.15 It can be applied for 
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different modeling, such as aerosol dynamics,16 population balance equations,26 and multi-

component spray vaporization.12 The basic QMoM theory will be presented for a 

distribution which evolves according to an ordinary differential equation:26 

 𝜕𝑛(𝜉; 𝑡)

𝜕𝑡
= 𝑆(𝜉; 𝑡) (2.11) 

 

The left hand side function 𝑛(𝜉; 𝑡) is the Number Density Function (NDF), which 

can represent the expected number of particles per unit volume. In terms of mole fraction, 

we can get the similar expression 𝑥(𝜉; 𝑡), where the internal variable 𝜉  represents the 

molecular weights produced by pyrolysis and t represents the time. Therefore, the Eq. 2.11 

can be updated based on mole fraction:26 

 𝑑𝑥(𝜉; 𝑡)

𝑑𝑡
= 𝑆(𝜉; 𝑡) (2.12a) 

 

QMoM applies a moment transform to Eq. (2.12a), which yields   

                 
𝑑𝑚𝑘(𝜉; 𝑡)

𝑑𝑡
= 𝑆𝑘̅̅ ̅(𝜉; 𝑡) (2.12b) 

 

The right hand side is the source term which is a function of mole fraction. It can 

be solved by a Gaussian quadrature formula:26 

 

𝑆𝑘 = ∫ 𝑆(𝜉)𝜉𝑘𝑑𝜉 = ∫ 𝑥(𝜉)𝑓(𝜉)𝑑𝜉

+∞

0

≈ ∑𝑤𝛼𝑓(𝜉𝛼)

𝑛

𝛼=1

+∞

0

 (2.13) 

 

where 𝑤𝛼  and 𝜉𝛼  are respectively the weights (mole fraction) and nodes (molecular 

weights) and n is the number of nodes used for the interpolation. The advantage of QMoM 
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is that any arbitrarily shaped distribution may be employed and the accuracy of the 

quadrature approximation can be improved with only a few nodes.15,26 Also, it can be 

implemented relatively easily numerically. 

Recently, based on the theory of QMoM, another method has been developed, 

which is named Direct Quadrature Method of Moment (DQMoM). It has been used in a 

few different fields, include aerosol particles9 and multicomponent droplet spray 

vaporization.2 The basic idea of DQMoM is similar to the QMoM. Based on the last 

equality in Eq. (2.12b), the mole fraction in QMoM is equivalent to a summation of n Dirac 

delta functions:26 

 
𝑥(𝜉; 𝑡) = ∑𝑤𝛼(𝑡)𝛿[𝜉 − 𝜉𝛼(𝑡)]

𝑛

𝛼=1

 (2.14) 

 

Combine Eqs. 2.12 and 2.14, the partial differential equation based on DQMoM 

can be derived: 

 
∑

𝜕

𝜕𝑡
[𝑤𝛼𝛿(𝜉 − 𝜉𝛼)]

𝑛

𝛼=1

= 𝑆𝑘 (2.15) 

 

The right hand side source term function is the same as in Eq. 2.13 and it also can 

be solved by quadrature approximation. For the left hand side, it can be expended by using 

derivative rules and calculations:26 

 
∑𝛿(𝜉 − 𝜉𝛼) [

𝑑𝑤𝛼
𝑑𝑡
]

𝑛

𝛼=1

−∑𝛿′(𝜉 − 𝜉𝛼) [
𝑑(𝑤𝛼𝜉𝛼)

𝑑𝑡
− 𝜉𝛼

𝑑𝑤𝛼
𝑑𝑡
]

𝑛

𝛼=1

= 𝑆𝑘 (2.16) 

 

Define two notations for convenience: 
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 𝑑𝑤𝛼

𝑑𝑡
= 𝑎𝛼;    

𝑑(𝑤𝛼𝜉𝛼)

𝑑𝑡
= 𝑏𝛼  (2.17) 

 

Then the Eq. 2.16 can be simplified to a linear system of ODEs with the moment 

transfer and the simple rule for Dirac functions. The result is as follow: 

 

(1 − 𝑘)∑ 𝜉𝛼
𝑘

𝑛

𝛼=1

𝑎𝛼 + 𝑘∑𝜉𝛼
𝑘−1

𝑛

𝛼=1

𝑏𝛼 = ∫ 𝑆(𝜉)𝜉𝑘𝑑𝜉

+∞

0

= 𝑆𝑘 (2.18) 

 

From Eq. 2.18, for the value of k=1, 2, 3…, this system can be expanded to matrix 

form and solved, where the source term vector is from using the quadrature.  

In total, comparing QMoM and DQMoM, they are mathematically equivalent. But 

DQMoM has the advantage that it can get the solution without resorting to the Product-

difference algorithm, which may become unstable.14 Moreover, because DQMoM can use 

the matrix to describe the system of original differential equations, it can solve them more 

efficient and inexpensive computationally. More important, DQMoM model has been 

demonstrated to use for continuous thermodynamics problem, and the solution from 

DQMoM model is more accurate and stable than QMoM.9 Therefore, DQMoM will be 

used for coal pyrolysis simulation to get the distributions of tar species generated.   
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Chapter III. The Improved CPD model  

This chapter introduced the improved CPD model for large coal particles. The 

improved model is developed based on the general CPD model and vapor-liquid 

equilibrium theory to describe pyrolysis with transient vaporization of tar. The mole 

fraction of every generated species during pyrolysis can be simulated. What is more, the 

finite volume method is also used to solve the energy conservation equation and get the 

continuous temperature profile, which is used locally in the CPD model. 

A. Model Description 

This model is developed based on a large (mm-scale) lignite particle, which means 

that temperature gradients may influence the process of pyrolysis for typical heating rates. 

Due to the complicated situation in real coal pyrolysis, the particle can be simplified as a 

one-dimensional, spherically symmetric particle. Next, the modeled particle is viewed as 

porous, similar to the real situation. Also, this model can be applied in different types of 

large coal particles, and the necessary input parameters was introduced in Chapter II.  

B. CPD Model 

In this section, the reaction terms in the basic CPD model are presented. The general 

CPD model can describe the initial thermal decomposition of coal into different volatiles, 

including light gases and heavier fragments, and account for partitioning of the fragments 

into vapor (tar) and liquid (which eventually forms char).5 As mentioned above and as 

shown in Fig. 2-1, it is clear that there are different kinds of bridges in the structure of coal. 

Different aromatic clusters are interconnected by the bridges. Bridges can be divided into 

labile and charred bridges. Labile bridges are unstable and break during coal pyrolysis. On 
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the other hand, char bridges are more stable because they can remain intact at a higher 

temperature. So, the characteristics of bridges shows that the temperature can influence 

coal pyrolysis.5 The chemical reaction scheme in the CPD model is shown in Fig. 3-1 and 

discussed next.10  

 

Figure 3-1. Chemical Reaction Scheme in the CPD model 

A labile bridge can break in two different ways to generate two kinds of light gas 

after the stable bridge decomposes to a reactive bridge intermediate, 𝑙∗, which is unstable 

and reacts quickly. In one reaction pathway, it is stabilized to form a char bridge, and the 

kinetic expressions for the evolution of the number of labile bridges and char bridges are: 

 𝑑𝑙

𝑑𝑡
= −𝑘𝑏 ∙ 𝑙 (3.1) 

 𝑑𝑐

𝑑𝑡
=

𝑘𝑏∙𝑙

𝜌+1
  (3.2) 

 

where l and c represent the labile and char bridge, 𝑘𝑏 is the reaction rate of bridge breaking, 

and 𝜌 is composition rate coefficient. Both of them have the units of 1/s.5   

Next, another reaction pathway indicates that the bridge is stabilized to produce 

side chains from the reactive bridge fragment. Then the side chains can be divided into 

precursors for a variety of light gases.5 The kinetic expression for the evolution of the 

number of side chain is: 
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 𝑑𝛿

𝑑𝑡
=
2 ∙ 𝜌 ∙ 𝑘𝑏 ∙ 𝑙

𝜌 + 1
− 𝑘𝑔 ∙ 𝛿 (3.3) 

 

where 𝛿 is the side chain, with 𝑘𝑔 is the reaction rate for the gas release steps, which the 

unit is also 1/s.  

 Furthermore, in Eq. 3.1 to 3.3, 𝑘𝑏 is the reaction rate of bridge breaking, which can 

be expressed as:5 

 
𝑘𝑏 = 𝐴𝑏 ∙ 𝑒𝑥𝑝 (

−𝐸𝑚𝑖𝑛,𝑏

�̅� ∙ 𝑇
) (3.4) 

 
𝐸𝑚𝑖𝑛,𝑏 = 𝐸𝑏 + 𝜎𝑏 ∙ 𝑁 (1 −

𝑙

𝑙0
) (3.5) 

 

where 𝐴𝑏 is the bridge scission frequency factor, 𝐸𝑏is the bridge scission activation energy 

which is normally distributed, and 𝜎𝑏 is standard deviation for distributed 𝐸𝑏. Accordingly, 

the notation N in Eq. 3.5 represents the normal inverse function. It is very useful function 

in statistics field. Parameter 𝐿0 is the initial value of labile bridges. Based on the feature of 

distribution 𝐸𝑏, the use of the normal inverse function can get more accurate results of 𝑘𝑏 

with the time change. 

Due to the labile bridge breaking, some bridge material is stabilized to produce side 

chains δ from the reactive bridge fragments. These can be further divided into precursors 

for a variety of light gases. Based on the Appendix, 17 light gas species are applied in the 

CPD model. The expression of the reaction rate for the gas release, 𝑘𝑔 for each precursors 

is as follows:5 

 
𝑘𝑔,𝑖 = 𝐴𝑖 ∙ 𝑒𝑥𝑝 (

−𝐸𝑚𝑖𝑛,𝑖

�̅� ∙ 𝑇
) (3.6) 
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𝐸𝑚𝑖𝑛,𝑖 = 𝐸𝑖 + 𝐸𝜎,𝑖 ∙ 𝑁 (

𝑔𝑖
2 ∙ 𝑓𝑔𝑖 𝑓𝑔𝑡𝑜𝑡 ∙ (1 − 𝑐0)⁄

) (3.7) 

 

For these two equation, 𝐸𝑖 is the effective activation energy and 𝐸𝜎,𝑖 is the standard 

deviation for each precursor. And 𝐴𝑖 is the frequency factor for each precursors. What is 

more, 𝑓𝑔𝑖 is the functional gas species source fraction, which is different for every single 

precursors and the value can be found in Appendix. Another internal variables, 𝑔𝑖 

represents the amounts of various light gas species and it is a function of labile bridge L, 

initial charred bridge 𝑐0, and the side chains δi. And the mass fraction of light gas is shown 

in Eq. 3.9 

 
𝑔𝑖 = 2 ∙ (1 − 𝐿 − 𝑐0) ∙

𝑓𝑔𝑖
𝑓𝑔𝑡𝑜𝑡

− 𝛿𝑖 (3.8) 

 
𝑓𝑔𝑎𝑠 =

𝑟𝑏𝑎 ∙ 𝑔𝑡𝑜𝑡𝑎𝑙 ∙ (𝜎 + 1)

4 + 2 ∙ 𝑟𝑏𝑎 ∙ (1 − 𝑐0)(𝜎 + 1)
∙ (1 − 𝑓𝑡𝑎𝑟) (3.9) 

 

In Eq. 3.9, 𝑓𝑡𝑎𝑟  is the mass fraction of tar generation which will be solved by 

differential equation later, 𝑟𝑏𝑎 is ratio of mass of bridges to mass of aromatic materials,5 

and 𝜎 + 1 is the average number of attachments mentioned in Table 2-1. On the other hand, 

in the general CPD model, the species which has similar molecular weights are seen as big 

“fragments” and this can be regarded as the “mock” 𝑥𝑖 instead of the discrete species. Each 

fragment has different sizes due to the different structure of the fragments. It can contain 

one aromatic cluster, which means size n=1, or size n=2 fragments represents two clusters 

connected by a labile or char bridge, or n clusters connected by n-1 bridges. And the mass 

of these finite fragment of size n can be calculated based on the general CPD model: 5 
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𝑚𝑓𝑟𝑎𝑔,𝑛 = 𝑛 ∙ 𝑚𝑎 + (𝑛 − 1) ∙ 𝑚𝑏 (

𝑙

𝑝
) +

𝜏 ∙ 𝑚𝑏 ∙ 𝛿𝑡𝑜𝑡
4(1 − 𝑝)

 (3.10) 

 

These fragment are generated by the labile bridge breaking so that it depends on 

the bridge population parameters, labile bridge l and the fraction of intact bridge p, which 

is the summation of the labile bridge and charred bridge. Furthermore, the total mass of 

each cluster is determined by the structure of the cluster:5 

 𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑎 +𝑚𝑏 ∙ (1 − 𝑐0)(𝜎 + 1)/2 (3.11) 

 

where 𝑚𝑎 is the average mass of the fused ring site and 𝑚𝑏  is the mass of bridges. 

Parameter τ in Eq. 3.10 is the number of broken bridges on the perimeter of an s-bridge 

cluster. They are given by:5 

 𝑠 = 𝑛 − 1        𝜏 = 𝑛(𝜎 − 1) + 2 (3.12) 

  

The last part of this section introduces the ordinary differential equations for the 

cross-linked metaplast and the total tar mass fraction. During pyrolysis, much of the 

original coal particle decomposes and is released as volatile matter. The liquid (metaplast) 

that remains in the particle (from the VLE sub-model) is cross-linked to the char matrix 

before pyrolysis ends.5 Based on the mass of fragments, the average molecular weights of 

tar, tar and light gas, and metaplast, are as follows: 

 𝑀𝑊𝑎𝑣𝑔,𝑡𝑎𝑟 =
𝑚𝑓𝑟𝑎𝑔,𝑛 ∙ 𝑦𝑛

1 − 𝑦𝑔𝑎𝑠
 (3.13) 

 𝑀𝑊𝑎𝑣𝑔,𝑡𝑎𝑟,𝑔𝑎𝑠 = 𝑦𝑔𝑎𝑠 ∙ 𝑀𝑊𝑔𝑎𝑠 +𝑚𝑓𝑟𝑎𝑔,𝑛 ∙ 𝑦𝑛 (3.14) 

 𝑀𝑊𝑎𝑣𝑔,𝑚𝑒𝑡𝑎 = 𝑥𝑔𝑎𝑠 ∙ 𝑀𝑊𝑔𝑎𝑠 +𝑚𝑓𝑟𝑎𝑔,𝑛 ∙ 𝑥𝑛 (3.15) 
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So, the ODEs for mass fractions of tar and cross-linked metaplast can be derived: 

 
𝑑𝑓𝑡𝑎𝑟
𝑑𝑡

=
𝑑 (

𝑚𝑡𝑎𝑟
𝑚𝑡𝑜𝑡𝑎𝑙

)

𝑑𝑡
= (1 − 𝑦𝑔𝑎𝑠) ∙

�̇� ∙ 𝑀𝑊𝑎𝑣𝑔,𝑡𝑎𝑟

𝑚𝑡𝑜𝑡𝑎𝑙
 (3.16) 

 
𝑑𝑓𝑐𝑟𝑜𝑠𝑠

𝑑𝑡
= −

𝑑(
𝑚𝑚𝑒𝑡𝑎
𝑚𝑡𝑜𝑡𝑎𝑙

)

𝑑𝑡
= 𝑘𝑐𝑟𝑜𝑠𝑠

𝑚𝑚𝑒𝑡𝑎

𝑚𝑡𝑜𝑡𝑎𝑙
= 𝑘𝑐𝑟𝑜𝑠𝑠

𝐿∗∙𝑀𝑊𝑎𝑣𝑔,𝑚𝑒𝑡𝑎

𝑚𝑡𝑜𝑡𝑎𝑙
  (3.17) 

 

where the unknown variables, 𝑥𝑛  and 𝑦𝑛 , represent the between the mole fraction of 

fragment in vapor phase and in liquid phase, respectively. Similarly,  𝑥𝑔𝑎𝑠  and 𝑦𝑔𝑎𝑠 

represent the mole fraction of light gas in the liquid phase and in the vapor phase. The 

average molecular weight of light gas, 𝑀𝑊𝑔𝑎𝑠, is equal to half the bridge mass 𝑚𝑏/2.5 All 

of these variables can be calculated together with the improved VLE model which will be 

introduced in section E. 

C. Discrete Species Distribution in the CPD Model 

At this point, all the discussion about tar in the original CPD model has been about 

fragments, rather than discrete species.  The final amounts of discrete feed species, fi (see 

Eq. 2.2), generated by bridge-breaking has been obtained by the MIT model mentioned 

above for a single coal under a single condition. Somehow, if one could obtain the discrete 

species generated for any coal at any time, it could be used in the improved VLE sub-model 

described in Section E to get the mole fraction of discrete tar species, yi, at every time step.  

The method that will be outlined in this section to determine the discrete fi at all 

times can be thought of as a framework to demonstrate the improved VLE to be described 

in Section E. In the future, an improved method based on more detailed kinetics of bridge-

breaking and coal structure characterization could be developed to determine all discrete fi.  
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Based on the definition of a fragment, each fragment contains various amounts of 

species with similar molecular weight (a bin) and the number fraction of each fragment 

changes during pyrolysis. Also we know the number fraction of the discrete species at the 

final time for the particular coal studies at MIT. Therefore, if we connect the number 

fraction of fragments with the number fraction of discrete species at the final time, we can 

estimate approximately the number fraction of discrete species generate at every single 

time. The relationship of all the number fraction of discrete tar species between each time 

step to the final time step is: 

 
𝑤𝑗(𝑡) = 𝑧𝑖,𝑓 ∙

𝑤𝑗(𝑡𝑓𝑖𝑛𝑎𝑙)

∑𝑤𝑗,𝑖
 (3.18) 

 

where 𝑤𝑗(𝑡𝑓𝑖𝑛𝑎𝑙) is the number fraction vector of the discrete species at the final time, 

∑𝑤𝑗,𝑖 is the sum of the wj in terms of the size of fragment i at every time step, and 𝑧𝑖,𝑓 is 

the number fraction of each fragment of tar. However, with the time goes by, the size of 

fragments may change according to the CPD model and the range may change at the same 

time. In this work, it is solved by connecting ∑𝑤𝑗,𝑖 with 𝑚𝑓𝑟𝑎𝑔,𝑛. Specifically, the result 

of ∑𝑤𝑗,𝑖 with respect to 𝑧𝑖 is determined by the average of every two neighbor fragments 

at every time step. For example, if the value of 𝑚𝑓𝑟𝑎𝑔 of size 1, 2, and 3 at specific time 

are 300, 600, and 900 g/mol, then the result of ∑𝑤𝑗,𝑖 with respect to 𝑧2 is the sum of w for 

all the discrete species with molecular weight between 450 and 750. Because 𝑚𝑓𝑟𝑎𝑔,𝑛 is 

time dependent, 𝑤𝑗(𝑡) is also time dependent variable. Therefore, the detailed vector for 

𝑤𝑗 at every time step can be derived and will play an important role in the improved VLE 

model. The final amounts of discrete feed species is then fj = 𝑤𝑗𝐹.  
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D. Particle Temperature 

 For pulverized coal combustion and gasification, the influence of temperature can 

be ignored in the general CPD model because the particle size is small enough such that 

spatial variations are negligible. However, a larger particle is considered in this pyrolysis-

only application, and the temperature is different at every position inside of the particle. 

Therefore, temperature gradients inside of the particle should be modeled to describe the 

influence of local temperature on the process of pyrolysis. 

In this improved model, the thermal energy conservation equation is used to 

determine the temperature profile. The thermal energy equation, which is based on Eq. 2.7 

is: 

 
(𝜌𝑐𝑝)𝑒𝑓𝑓

𝜕𝑇

𝜕𝑡
= ∇ ∙ (𝑘𝑒𝑓𝑓∇𝑇) − 𝜌𝑐𝑝𝒖 ∙ ∇𝑇 + 𝐻

𝜕𝜌

𝜕𝑡
 (3.19) 

 

where ρeff is the density of coal particle and cp is the specific heat capacity of coal particle. 

In the porous coal particle, cp is a weighted average of the specific heat capacity of coal 

and air. The first term of right hand side is the heat conduction term, and keff is the effective 

thermal conductivity of the coal particle. The second term on the right hand side is the 

convection term, where u is the velocity of the gas, which has unit of m/s. The last term on 

the right hand side is the heat of reaction generated from the pyrolysis, where H is the heat 

of pyrolysis. 

Because the temperature inside of the particle is a function of distance, r, in one 

dimension from the selected point to the particle center, the finite volume method is applied 

to discretize the heat conduction and convection term. Obviously, the heat conduction term 
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is a second order term. Fig. 3-2 shows the finite volume method used for the discretization 

of the conduction term.  

 

Figure 3-2. Finite volume method in conduction term 

Tj is the temperature of the specific point, j, Tj-1 and Tj+1 are the temperatures at 

neighboring points, while rj, rj-1, and rj+1 are the radial locations of each point, respectively. 

Now define a control volume that the face of the control volume rrj is located between rj-1 

and rj, and another face rrj+1 is located between rj and rj+1. Then Δr is the distance between 

the two faces. Therefore, based on the Eq. 2.8 to 2.10, the term ∇𝑇 in Eq. 3.19 can be 

simply discretized as follow in terms of the control volume which is from rj to rj+1: 

 ∂T

𝜕𝑟
=
𝑇𝑗+1 − 𝑇𝑗

𝑟𝑗+1 − 𝑟𝑗
 (3.20) 

 

Next, integrate over the control volume from rrj to rrj+1: 

 ∂

𝜕𝑟
(
∂T

𝜕𝑟
) =

1

𝑟𝑟𝑗+1 − 𝑟𝑟𝑗
(
𝑇𝑗+1 − 𝑇𝑗

𝑟𝑗+1 − 𝑟𝑗
−
𝑇𝑗 − 𝑇𝑗−1

𝑟𝑗 − 𝑟𝑗−1
) (3.21) 

  

Therefore, the heat conduction term can be discretized based on Eq. 3.20 and 3.21: 

 
∇ ∙ (𝑘𝑒𝑓𝑓∇𝑇) =

1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝑘𝑒𝑓𝑓

𝜕𝑇

𝜕𝑟
) 

= 𝑘𝑒𝑓𝑓 ∙ [
𝑟𝑟𝑗+1
2

𝑟𝑗
2(𝑟𝑟𝑗+1 − 𝑟𝑟𝑗)

∙
𝑇𝑗+1 − 𝑇𝑗

𝑟𝑗+1 − 𝑟𝑗
−

𝑟𝑟𝑗
2

𝑟𝑗
2(𝑟𝑟𝑗+1 − 𝑟𝑟𝑗)

∙
𝑇𝑗 − 𝑇𝑗−1

𝑟𝑗 − 𝑟𝑗−1
] 

(3.22) 
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Similarly, the heat convection term can also apply the finite volume method to 

discretize the 𝛻𝑇 term. Moreover, the product of the convective flux per volume u and the 

gas density inside of the particle ρ is the total convective flux Ntot. The variable ρ at every 

position inside of the particle can be expressed following the ideal gas law: 

 
𝜌𝑗 =

𝑃𝑗

𝑅 ∙ 𝑇𝑗
 (3.23) 

 

R is the gas constant, which the value can be seen as a constant in the model, 286.9 

J/kg-K. On the other hand, Darcy’s Law is applied for determining the convective flux per 

volume u inside of the porous particle: 

 
𝒖 = −

𝐵0
𝜇
∇𝑃 (3.24) 

  

In Eq. 3.24, B0 is the permeability of the coal, which depends on the porosity and 

average pore size, and µ is the viscosity of the gas, which is assumed as a constant in this 

model. Thus the convection term can be discretized based on the finite volume method: 

 
𝜌𝑗𝑐𝑝𝒖 ∙ ∇𝑇 =

𝑟𝑟𝑗+1
2

𝑟𝑗
2(𝑟𝑟𝑗+1 − 𝑟𝑟𝑗)

∙ 𝑐𝑝 ∙ 𝑁𝑡𝑜𝑡𝑗+1 ∙ 𝑇𝑗+1 −
𝑟𝑟𝑗
2

𝑟𝑗
2(𝑟𝑟𝑗+1 − 𝑟𝑟𝑗)

∙ 𝑐𝑝 ∙ 𝑁𝑡𝑜𝑡𝑗 ∙ 𝑇𝑗 (3.25) 

  

Pj in Eq. 3.23 and ∇𝑃 in Eq. 3.24 represent the variable of pressure and the pressure 

gradient inside of the particle. Conservation of mass is applied to solve the pressure at grid 

points inside of the particle:7,25 

 𝑑𝜌

𝑑𝑡
+
1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝜌𝒖) = 𝐻

𝜕𝜌

𝜕𝑡
 (3.26) 
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Using the ideal gas law and basic differentiation rules to rearrange the equation, 

and applying the finite volume method, the discretization of the mass conservation equation 

in terms of pressure can be derived: 

 𝑑𝑃

𝑑𝑡
=

𝑃

𝑅𝑚𝑖𝑥
∙
𝑑𝑅𝑚𝑖𝑥
𝑑𝑡

+
𝑃

𝑇
∙
𝑑𝑇

𝑑𝑡
− 𝑅𝑚𝑖𝑥 ∙ 𝑇 ∙

𝐵0
𝜇
∙ 𝜌𝑔𝑎𝑠 

∙ (
𝑟𝑟𝑗+1
2

𝑟𝑗
2(𝑟𝑟𝑗+1 − 𝑟𝑟𝑗)

∙
𝑃𝑗+1 − 𝑃𝑗

𝑟𝑗+1 − 𝑟𝑗
−

𝑟𝑟𝑗
2

𝑟𝑗
2(𝑟𝑟𝑗+1 − 𝑟𝑟𝑗)

∙
𝑃𝑗 − 𝑃𝑗−1

𝑟𝑗 − 𝑟𝑗−1
) + 𝐻

𝜕𝜌

𝜕𝑡
 

(3.27) 

 

where Rmix is the gas constant of mixture, which is also assumed as a constant in this model 

and variable ρgas is the gas density inside of the particle, which is calculated using Eq. 3.23. 

In terms of the heat of reaction, the term dρ/dt describes the change of coal density 

during the pyrolysis. It is clear that the density of coal decreases with the decomposition 

of the coal structure and the escape of volatiles. The density change can be calculated 

through the CPD model. During the process of pyrolysis, the original coal particle is 

decomposed and releases tar and light gas. Therefore, the density change can be related to 

the rate of change of tar and light gas: 

 𝑑𝜌

𝑑𝑡
= −𝜌0 ∙ (

𝑑𝑓𝑡𝑎𝑟
𝑑𝑡

+
𝑑𝑓𝑔𝑎𝑠

𝑑𝑡
) (3.28) 

 

 A half control volume is applied here to set the boundary condition for the 

temperature equation. For Eq. 3.19, the boundary temperature or heat flux is necessary for 

solving the differential equation. But generally, we have to construct an additional equation 

for getting the boundary temperature because the boundary temperature is not given exactly 

for convective boundary conditions. Therefore, based on the finite volume method, a half 

control volume can be used only on one side of the grid point to integrate the differential 
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equation. Fig. 3-3 shows the half control volume near the boundary. 

 

Figure 3-3. Half control volume near the boundary 

 The gray part is the half control volume. 𝑞𝐵 is the boundary heat flux, which can be 

calculated in terms of  a heat transfer coefficient h and a surrounding fluid temperature 𝑇𝑓: 

 𝑞𝐵 = ℎ(𝑇𝑓 − 𝑇𝐵) (3.29) 

   

 Therefore, using the finite volume method to integrate over this half control volume, 

the boundary temperature 𝑇𝐵 can be evaluated: 

 
(𝜌𝑐𝑝)𝑒𝑓𝑓

𝜕𝑇𝐵

𝜕𝑡
= [

𝑟𝑟𝑗+1
2

𝑟𝑗
2(𝑟𝑟𝑗+1 − 𝑟𝑟𝑗)

∙ ℎ ∙ (𝑇𝑓 − 𝑇𝐵) − 𝑘𝑒𝑓𝑓 ∙
𝑟𝑟𝑗
2

𝑟𝑗
2(𝑟𝑟𝑗+1 − 𝑟𝑟𝑗)

∙
𝑇𝐵 − 𝑇𝑗−1

𝑟𝑗 − 𝑟𝑗−1
] 

(3.30) 

  

After the analysis of every term of the right hand side of Eq.3.19, the non-linear 

energy equation has been successfully transformed to an algebraic equation, which can be 

solved mathematically by numerical methods. Table 3-1 shows the necessary properties 

based on the nature of the coal particle used to get the temperature profile. 
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Table 3-1. Parameters used to calculate the temperature profile. 

Notation Definition Value Unit 

cp,coal Specific heat capacity of coal 1380 J/kg-K 

cp,air Specific heat capacity of air 1080 J/kg-K 

keff Thermal conductivity coefficient of coal 0.4  

Rair Gas constant of air 286.9 J/kg-K 

ρeff Density of lignite particle 833 kg/m3 

 

E. CPD Model with Improved VLE 

The existing VLE model applies a time-lagging method to calculate the partitioning 

of tar and gas species (or fragments) from the “feed” generated by decomposition of the 

original macromolecular structure. The generation of tar and gas in the last time step is 

combined with the metaplast that has accumulated from all previous time steps to calculate 

the moles of fragment i per cluster before vapor-liquid equilibrium, fi.
22 This method has a 

disadvantage in that the equations themselves depend on the numerical time step, and Fig. 

3-4 shows the effect of time step on CPD model.22 

 

Figure 3-4. The effect of time step on CPD model 
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It is obvious that even though different time step does not have a significant effect 

on the mass fraction on tar and gas when large fragment lumps are used, it indeed has a big 

influence on the fraction of total vapor (V/F). With the increase of time step size, the V/F 

increases, which means the V/F is highly time-step dependence. This phenomenon could 

lead to the inaccurate simulation of the pyrolysis when many discrete species are present. 

So, an improved CPD model with the rate-based VLE method will be developed instead of 

the “previous-time-step-based” VLE method. The goal of the improved model is to 

eliminate the time-step dependence and get the more accurate result. Fig. 3-5 shows more 

details about this improved method.  

 

Figure 3-5. Vapor and liquid phase in the “Flash vessel” 

Different species in the coal particle are partitioned into two different phases: some 

species vaporize and go out of the particle and others remains in the particle as liquid. 

Therefore, a “continuous flash vessel” analogy is used to analyze the pyrolysis behavior. 

During this process, applying the mass balance equation for every species, the molar flow 

rate into the system is equal to the molar flow rate out of the system:22 

 𝑑𝐿∗

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
= �̇� − �̇� − 𝑘𝑐𝑟𝑜𝑠𝑠 ∙ 𝐿

∗ (3.31) 
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where �̇� and �̇� are the total flow rate at which the fragments are generated and the vapor 

flow rate of species out of the particle, respectively. And 𝐿∗ represents the liquid remains 

in the vessel. Moreover, V and 𝑘𝑐𝑟𝑜𝑠𝑠 represent the volume of the vapor and the Arrhenius 

rate constant, which are given be:5 

 
𝑉 =

𝑃

𝑛𝑣�̅�𝑇
 (3.32) 

 
𝑘𝑐𝑟𝑜𝑠𝑠 = 𝐴𝑐𝑟𝑜𝑠𝑠exp (

−𝐸𝑐𝑟𝑜𝑠𝑠

�̅�𝑇
) (3.33) 

 

The value of 𝐴𝑐𝑟𝑜𝑠𝑠 and 𝐸𝑐𝑟𝑜𝑠𝑠 depends on the characteristics of coal particle. From 

Eq. 3.31, the differential equation of species i can be derived through inserting the Eq. 2.2, 

2.3, and 2.6 into Eq. 3.31 and rearranging it using the chain rule to give: 

 𝑑𝑥𝑖
𝑑𝑡
= [
(𝑧𝑖 − 𝑥𝑖)�̇�

𝐿∗ + 𝑉 ∙ 𝐾𝑖
+
𝑥𝑖(1 − 𝐾𝑖)�̇�

𝐿∗ + 𝑉 ∙ 𝐾𝑖
−

𝑉 ∙ 𝑥𝑖
𝐿∗ + 𝑉 ∙ 𝐾𝑖

∙
𝑑𝐾𝑖
𝑑𝑡
+
𝑥𝑖(1 − 𝐾𝑖)

𝐿∗ + 𝑉 ∙ 𝐾𝑖

𝑑𝑉

𝑑𝑡
] (3.34) 

 

This is the expression for the mole fraction of each species in the liquid phase. Now 

applying the VLE method, the Eq. 2.6 can be updated based on the size of fragment:5 

 𝑦𝑛 = 𝐾𝑛 ∙ 𝑥𝑛 (3.35) 

 
𝐾𝑛 =

𝑃𝑛
𝑣

𝑃
=
𝛼 ∙ 𝑒𝑥𝑝(−𝛽 ∙ 𝑚𝑓𝑟𝑎𝑔,𝑛

𝛾
𝑇⁄ )

𝑃
 (3.36) 

 

where the parameter Kn is the resulting correlation for coal tars developed by Unger and 

Suuberg.5 𝛼, 𝛽 and 𝛾 are parameters which depends on the characteristics of coal particle, 

and M is the molecular weight of fragment n. Moreover, in terms of different species, Eq. 
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3.35 and 3.36 can not only use for getting the 𝐾𝑛  and 𝑥𝑛  for every fragments or each 

discrete species. 

Next, in terms of 𝑧𝑖 in Eq. 3.34, it represents the number fraction of different size 

of fragments of the feed entering the flash vessel. Moreover, the number fraction of the 

feed can be divided into two parts: the light gas and tar/metaplast. Furthermore, the sum of 

the number of fragments of light gas and tar/metaplast is equal to the total flow rate of 

generated fragments, which is �̇�. 

 
�̇� = ∑𝑧𝑖

′

𝑛

𝑖=1

+ 𝑧𝑔𝑎𝑠
′  (3.37) 

 

where 𝑧𝑖
′  is the mole of each fragment of tar/metaplast and 𝑧𝑔𝑎𝑠

′  is the mole of each 

fragment of light gas. Both of them can be derived from the following differential 

equation:22 

 
𝑧𝑖
′ =

𝑑

𝑑𝑡
(
𝑄𝑖

𝑚𝑡𝑜𝑡𝑎𝑙
) (3.38) 

 
𝑧𝑔𝑎𝑠
′ =

𝑑

𝑑𝑡
(
𝑚𝑔𝑎𝑠/𝑀𝑊𝑔𝑎𝑠

𝑚𝑡𝑜𝑡𝑎𝑙
) (3.39) 

where the 𝑄𝑖 is the number of fragments of size i per cluster in the CPD model, and it 

depends on the percolation theory and use the parameters of s, τ, and p. Also, 𝑚𝑔𝑎𝑠 is the 

mass of gas release per cluster:5 

 𝑄𝑛 = 𝑏𝑛
𝑠𝑖𝑡𝑒𝑝𝑠(1 − 𝑝)𝜏 (3.40) 

 
𝑏𝑛
𝑠𝑖𝑡𝑒 =

1

𝑛
∙
𝜎 + 1

𝑠 + 𝜏
∙
Γ(𝑠 + 𝜏 + 1)

Γ(𝑠 + 1)Γ(𝜏 + 1)
 (3.41) 

 𝑚𝑔𝑎𝑠 = 𝑚𝑏 ∙ 𝑔 ∙ (𝜎 + 1)/4 (3.42) 
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Therefore, the number fraction of each fragment of tar/metaplast and light gas can 

be derived, which is required in Eq. (3.34): 

 𝑧𝑖 = 𝑧𝑖
′/�̇� (3.43)  

 𝑧𝑔𝑎𝑠 = 𝑧𝑔𝑎𝑠
′ /�̇� (3.44) 

 

 

Now, the last unknown variable of source term of Eq. 3.34 is the total flow rate of 

vapor species out of the particle, �̇�. This is determined from the constraint that all gas-

phase mole fractions adds to unity, which means ∑𝑦𝑖 = 1.32 This constraint produces a 

non-linear, index-2 DAE system.20 

Furthermore, Section C has discussed the relationship between the number fraction 

of fragments, zi, and the number fraction of discrete species at every time step, 𝑤𝑗(𝑡). 

Therefore, zi can be replaced by 𝑤𝑗(𝑡) and the ultimate goal has been achieved, which is 

that the governing equation (Eq. 3.34) can be solved for the mole fraction of discrete 

species in the liquid phase at all times. Table 3-2 shows more parameters based on the 

nature of the coal particle used in CPD model and the VLE method.5 
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Table 3-2. Parameters used in CPD model and VLE method 

Notation Definition Value Unit 

Ab Bridge scission frequency factor 2.6×1015 1/s 

Eb Bridge scission activation energy 55400 cal/mol 

σb Standard deviation for distribute Eb 1800 cal/mol 

ρ Composite rate constant kδ/kc 0.9  

Ecross Activation energy for cross-linking in coal 65000 cal/mol 

Across Pre-exponential factor for cross-linking in coal 3×1015 1/s 

�̅� Gas constant in CPD model 1.987 cal/K·mol 

α Coefficient in vapor pressure correlation 87060  

β Coefficient in vapor pressure correlation 299  

γ Coefficient in vapor pressure correlation 0.59  

ma Average mass of the fused ring site 165.8 g 

mb Mass of the bridges 44 g 

 

F. Initial Condition for Improved VLE Model 

 Like the temperature differential equation, we also have to know the boundary 

condition for improved CPD model. In terms of labile bridge and charred bridge, the initial 

value of them based on the characteristics of coal particle are the boundary condition of the 

equation 3.1 and 3.2. Moreover, the initial condition of mass fraction of cross-linked 

metaplast and tar can be set as zero because the pyrolysis does not happen at the beginning 

of the pyrolysis. Last, but not least, the initial condition for discrete species and the 

accumulated liquid species is more complicated to solve. The improved CPD model can 

be solved only the initial conditions are consistent because the new VLE sub-model is an 
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index-2 system of differential algebraic equations (DAEs), which can be expressed as the 

semi-explicit form in terms of 𝑦𝑖
20: 

 𝑑𝑦𝑖
𝑑𝑡
= 𝑓(𝑦𝑖 , �̇�) 

0 = 𝑔(𝑦𝑖) 

(3.45) 

 

The “hidden constraint” for the initial conditions can be obtained by differentiating 

the equation with respect to the variable 𝑦𝑖: 

 
0 = 𝑔𝑦

𝑑𝑦

𝑑𝑥
= 𝑔𝑦𝑓(𝑦, 𝑧) (3.46) 

   

Then the initial value 𝑦0 and 𝑧0 which can satisfy the system of equation 3.46 are 

the consistent initial conditions for this index-2 DAEs system. 

 𝑔(𝑦0) = 0 

𝑔𝑦(𝑦0)𝑓(𝑦0, 𝑧0) = 0     
(3.47) 

 

Therefore, applying equations 3.45 to the CPD model and after the mathematical 

transformation, the consistent initial conditions for discrete species and the accumulated 

liquid species can be calculated from the relations: 

 ∑𝑥𝑖 = 1 

∑𝐾𝑖𝑥𝑖 = 1 

𝐾𝑖
𝑑𝑥𝑖
𝑑𝑡
= 0 

(3.48) 
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With this, all the ODEs for describing the process of pyrolysis based on the general 

CPD model and the generation of the species in terms of fragment or discrete species have 

been introduced. The improved CPD model accounts for heat transfer limitations to 

simulate the pyrolysis at every position in a large-scale coal particle. Moreover, it can 

describe the process of vaporization by using the multicomponent vaporization equations 

described above, which improve the accuracy of existing model due to the elimination of 

the time dependence. Finally, after incorporating the VLE method and connecting the VLE 

method and CPD model, this model can predict the generation of the discrete species at 

every time-step during the process of pyrolysis, which is not possible using the general 

CPD model. 
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Chapter IV. Direct Quadrature Method of Moments for Pyrolysis 

In Chapter III, an improved CPD model with a new VLE method was introduced 

and developed to simulate the process of pyrolysis and the generation of discrete species. 

However, more than 500 hundred of discrete tar species can be generated during pyrolysis, 

and solving ODEs (3.34) for each species, xi, is a little complicated and inefficient, which 

leads to increasing computation time. On the other hand, as section D in Chapter II 

mentioned, the distribution of species x(𝜉) at every single time can be described by using 

the Quadrature Method of Moment (QMoM) or the Direct Quadrature Method of Moment 

(DQMoM). Therefore, the DQMoM model will be applied to solve for the mole fraction 

of “lumped” species characterizing the distribution of xi and then a delumping method 

based on an “integrating factor” is used to obtain the exact mole fraction of each species 

from “lumped” species at every single time.   

The motivation for applying the DQMoM in the CPD model is simplifying the 

calculation process and improving the computational effectivity. Compared with solving 

the difficult non-linear differential Eq. 3.34 by specific ODEs solver 500 times, the right 

hand side of Eq. 3.34 also can be regarded as the source term to be integrated (see Eq. 2.13) 

and solved by quadrature approximation, which is the main goal of DQMoM.  

       A. Weights and Nodes 

The improved CPD model introduced in Chapter III has developed an accurate way 

to solve the mole fraction of all discrete species (Eq. 3.34). On the other hand, the DQMoM 

requires the solution of equations for weights w and nodes ξ of the quadrature 

approximation, where the definition of w and ξ have been introduced in Chapter II. 
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Compared with the Eq. 3.34, the mole fraction of species for each fragment xi and 

molecular weight of each fragment mfrag,n are equivalent with the weight wi and the nodes 

ξi. Therefore, Eq. 2.11 can be rearranged to a differential equation with regarding the right 

hand side of Eq. 3.34 as the source term as follow:26 

 𝑑𝑥(𝜉; 𝑡)

𝑑𝑡
= 𝑆 (4.1) 

 

Based on the Eq. 2.13 to 2.16, Eq. 4.1 can be rearranged to the following form, 

which is the linear system of ODEs:26  

 
(1 − 𝑘)∑𝜉𝑖

𝑘

𝑛

𝑖=1

𝑎𝑖 + 𝑘∑𝜉𝑖
𝑘−1

𝑛

𝑖=1

𝑏𝑖 = 𝑆�̅� (4.2) 

 

where the continuous term dx(𝜉 )/dt has been replaced by the transport equations for 

weights and nodes:26 

 
𝑎𝑖 =

𝑑𝑤𝑖
𝑑𝑡
;  𝑏𝑖 =

𝑑(𝑤𝑖𝜉𝑖)

𝑑𝑡
 (4.3) 

 

Furthermore, it is clear that the total number of variables 𝑎𝑖 and 𝑏𝑖 are 2n, and in 

order to solve this system of ODEs, 2nth equations should be required, which means we use 

moments k=0, 1, 2, …, 2n-1.15 Then all the equations can be reformed based on the matrix 

theory. Evaluating the source term vector as described below, we can get the evolution of 

weights wi and nodes ξi  with the time by solving the system of ODEs in Eq. (4.4). 26 
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(

 
 

1

0

−𝜉
1
2

⋮

−2(1 − 𝑛)𝜉
1
2𝑛−1

⋯

⋯

⋯

⋮

⋯

1

0

−𝜉
𝑛
2

⋮

−2(1 − 𝑛)𝜉
𝑛
2𝑛−1

0

1
2𝜉
1

⋮

(2𝑛 − 1)𝜉
1
2𝑛−2

⋯

⋯

⋯

⋮

⋯

0

1
2𝜉
𝑛

⋮

(2𝑛 − 1)𝜉
𝑛
2𝑛−2

)

 
 

(

 
 

𝑎1
⋮
𝑎𝑛
𝑏1
⋮

𝑏𝑛)

 
 
=

(

 
 
 

�̅�0
�̅�1
⋮

⋮
�̅�2𝑛−2
�̅�2𝑛−1)

 
 
 

 (4.4) 

 

B. Source term 

In the DQMoM, the moment transform of the source term 𝑆�̅� should be evaluated 

with a quadrature approximation. From Eq. 3.34 and Eq. 4.1, the source term 𝑆 for the 

continuous distribution is: 

 
𝑆(𝜉) =

(𝑧(𝜉) − 𝑥(𝜉))�̇�

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)
+
𝑥(𝜉)(1 − 𝐾(𝜉))�̇�

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)
−

𝑉 ∙ 𝑥(𝜉)

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)
∙
𝑑𝐾(𝜉)

𝑑𝑡

+
𝑥(𝜉)(1 − 𝐾(𝜉))

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)

𝑑𝑉

𝑑𝑡
 

(4.5) 

 

Next, in terms of source term 𝑆�̅� in Eq. 4.2, the quadrature approximation for the 

source term will be applied to get a relationship between the S and 𝑆�̅�. The goal of using 

quadrature approximation is to make the 𝑆�̅� closed with the function of weight wi and the 

nodes ξi . Therefore, the quadrature approximation of 𝑆�̅�  can be derived based on the 

QMoM theory introduced in Eq. 2.13: 

 

𝑆�̅� = ∫ 𝜉𝑘 [
(𝑧(𝜉) − 𝑥(𝜉))�̇�

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)
+
𝑥(𝜉)(1 − 𝐾(𝜉))�̇�

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)
−

𝑉 ∙ 𝑥(𝜉)

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)

+∞

0

∙
𝑑𝐾(𝜉)

𝑑𝑡
+
𝑥(𝜉)(1 − 𝐾(𝜉))

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)

𝑑𝑉

𝑑𝑡
] 𝑑𝜉 

(4.6) 
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Now Eq. 4.6 can be divided into several part to match the form of Eq. 2.13, and get 

the interpolation formula of each part. For example, after multiply 𝜉𝑘 by every term of 

right hand side, the second integral term from Eq. 4.6 can be extracted and got its 

interpolation formula as the following steps. Defining 𝐺(𝜉) for convenience: 

 
𝐺(𝜉) =

(1 − 𝐾(𝜉))

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)
 (4.7) 

 

Then the second integral term of the Eq. 4.6 can be simplified through 𝐺(𝜉) and 

replacing 𝑥(𝜉) by a summation which is introduced as Eq. 2.14: 

 

∫ 𝜉𝑘
𝑥(𝜉)(1 − 𝐾(𝜉))�̇�

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)

∞

0

𝑑𝜉 = �̇� ∫ 𝜉𝑘𝐺(𝜉)

∞

0

∑𝑤𝛼𝛿[𝜉 − 𝜉𝛼]

𝑛

𝛼=1

𝑑𝜉 (4.8) 

 

Therefore, the integral form in Eq. 4.8 can be transformed into a weighted 

summation of n terms through the Gaussian quadrature based on Eq. 2.18.  

 

�̇� ∫ 𝜉𝑘𝐺(𝜉)

∞

0

∑𝑤𝛼𝛿[𝜉 − 𝜉𝛼]

𝑛

𝛼=1

𝑑𝜉 = �̇�∑ 𝜉𝛼
𝑘𝑤𝛼𝐺(𝜉)

𝑛

𝛼=1

 (4.9) 

 

Where the variables �̇� in Eq. 4.9 represents the total flow of vapor species out of the 

particle in DQMoM model. The equation of it is similar to the constraint in the improved 

CPD model, and it is calculated by the constraint with the weight: 

 
∑𝑦𝛼

𝑛

𝛼=1

= ∑𝑤𝛼𝐾𝛼 = 1

𝑛

𝛼=1

 (4.10) 
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The accuracy of this equation is quantified by its degree of accuracy and the order 

of the polynomial of integrand functions. The interpolation formula is exact when the order 

of polynomial is smaller than or equal to the degree of accuracy. So in terms of the 

integrand function in Eq. 4.8, the minimum degree of accuracy is three if three nodes are 

used. The higher accuracy the interpolation function has, the more accurate result we can 

get compared with the exact value. 

Similarly, we can use the same method to transform other terms in Eq. 4.6 to a 

summation of n terms by assuming other G function for convenience: 

 
𝐺1(𝜉) =

1

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)
 (4.11) 

 
𝐺2(𝜉) =

1

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)
∙
𝑑𝐾(𝜉)

𝑑𝑡
 (4.12) 

 

Then the other terms of the right hand side in Eq. 4.6 can be transformed: 

 

∫ 𝜉𝑘
−𝑥(𝜉)�̇�

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)

∞

0

𝑑𝜉 = −�̇�∑ 𝜉𝛼
𝑘𝑤𝛼𝐺1(𝜉)

𝑛

𝛼=1

 (4.13) 

 

−∫ 𝜉𝑘
𝑉𝑥(𝜉)

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)

∞

0

𝑑𝐾(𝜉)

𝑑𝑡
𝑑𝜉 = −𝑉∑𝜉𝛼

𝑘𝑤𝛼𝐺2(𝜉)

𝑛

𝛼=1

 (4.14) 

 

∫ 𝜉𝑘
𝑥(𝜉)(1 − 𝐾(𝜉))

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)

∞

0

𝑑𝑉

𝑑𝑡
𝑑𝜉 =

𝑑𝑉

𝑑𝑡
∑ 𝜉𝛼

𝑘𝑤𝛼𝐺(𝜉)

𝑛

𝛼=1

 (4.15) 

 

Now, all the integral terms including 𝑥(𝜉) have been transformed. However, the 

term with 𝑧(𝜉) is not transformed because the feed distribution, 𝑧(𝜉), is just an externally 

imposed source term due to the pyrolysis chemistry; it does not to be solved as part of the 
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VLE method. Moreover, there is no need to use the same 𝑤𝛼 and 𝜉𝛼 in 𝑧(𝜉) because it is 

just a constant after the term with 𝑧(𝜉) get integrated. Thus, to transform this term to the 

simple summation form, an effective way is applying the full details of discrete species on 

𝑧(𝜉) and using the same method introduced in Chapter III to get the mole fraction of each 

species 𝑤𝑗(𝑡) at every time step. 

 

∫ 𝜉𝑘
𝑧(𝜉)�̇�

𝐿∗ + 𝑉 ∙ 𝐾(𝜉)

∞

0

𝑑𝜉 = �̇�∑𝜉𝑗
𝑘𝑤𝑗(𝑡)𝐺1(𝜉)

𝑁

𝑗=1

 (4.16) 

 

In this equation, N is the total number of the discrete species, and 𝜉𝑗
𝑘 is all the 

molecular weights of feed species produced by bridge breaking. Therefore, the source term 

𝑆�̅� has been fully transformed to a summation and is now closed and we can insert it into 

Eq. 4.4 to solve the variables vector and derived the simple differential equation for 𝑤𝑖. 

Then the mole fraction of species for every node can be easily solved. 

As in Chapter III, consistent initial conditions are also very significant for solving 

DQMoM model. Recalling the consistent initial conditions for index-2 DAEs system 

introduced in Chapter III, based on the result shown in Eq. 3.48, we can get the initial 

conditions for 𝑤𝑖: 

 ∑𝑤𝑖 = 1 

∑𝐾𝑖𝑤𝑖 = 1 

(4.17) 

 

Moreover, Eq. 3.46 can be rearranged based on the weight 𝑤𝑖 and the weighted 

nodes 𝑤𝑖𝜉𝑖 separately. For the weight 𝑤𝑖, we can get that: 
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 𝑑𝑔

𝑑𝑤𝑖
∙
𝑑𝑤𝑖
𝑑𝑡

= 0 (4.18) 

 

Similarly, for the weighted abscissas (nodes) 𝑤𝑖𝜉𝑖, the consistent initial condition 

is: 

 𝑑𝑔

𝑑(𝑤𝑖𝜉𝑖)
∙
𝑑(𝑤𝑖𝜉𝑖)

𝑑𝑡
= 0 (4.19) 

 

Then the second equation in equation system 4.17 can be inserted into Eq. 4.18 and 

4.19 instead of function g and the consistent initial conditions can be derived after the 

mathematical transformation: 

 
𝐾𝑖 ∙

𝑑𝑤𝑖
𝑑𝑡

= 0 

−(𝐾𝑖𝑤𝑖) ∙ 𝛽 ∙ 𝛾 ∙ (𝑤𝑖𝜉𝑖)
𝛾−1

𝑇𝑤𝑖
𝛾

𝑑(𝑤𝑖𝜉𝑖)

𝑑𝑡
= 0 

(4.20) 

  

These four equations in 4.17 and 4.20 are the consistent initial conditions for 

DQMoM model. Using these equations can get the initial values of weight and nodes which 

are required to solve the ODEs in DQMoM model. 

       C. Delumping 

While the full discrete version of the improved CPD model solves for every xi, 

DQMoM solves for several nodes and weight to represent the evolving distribution of 𝑥(𝜉). 

The weights, 𝑤𝑖, can be thought of as the mole fractions for each node (molecular weight), 

in other word, for each “lumped” species. So, if we want to know the generation of discrete 
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tar species at every single time, it is necessary to “delump” the discrete species from the 

lumped solution.  

After the mole fraction for every node is solved by DQMoM model, we know 𝑤𝑖 

and 𝜉𝑖  with time, other state variables such as �̇�, as well as all other non-state variables, 

including �̇�𝑡𝑜𝑡, 𝐿
∗, 𝑉 and 𝐾. All of these variables are used for solving Eq. 3.34 for discrete 

species. The value of all these other variables obtained from DQMoM should be very close 

to the result from the full discrete version of the improved CPD model.   

Recall, Eq. 3.34, is a differential equation for 𝑥𝑖. Moreover, it can be rearranged by 

combining all the term of 𝑥𝑖 terms into one: 

 𝑑𝑥𝑖
𝑑𝑡
=

𝑧𝑖�̇�

𝐿∗ + 𝑉 ∙ 𝐾𝑖
+ 𝑥𝑖 [

−�̇�

𝐿∗ + 𝑉 ∙ 𝐾𝑖
−
(1 − 𝐾𝑖)�̇�

𝐿∗ + 𝑉 ∙ 𝐾𝑖
−
𝑉 ∙ 𝑑𝐾𝑖 𝑑𝑡⁄

𝐿∗ + 𝑉 ∙ 𝐾𝑖
+
(1 − 𝐾𝑖) ∙ 𝑑𝑉 𝑑𝑡⁄

𝐿∗ + 𝑉 ∙ 𝐾𝑖
] (4.21) 

 

Unlike using the ODE solver to solve this nonlinear equation as in Chapter III, the 

difficult nonlinear term �̇�  has been solved through the DQMoM method and now the 

equation is linear. Therefore, the integrating factor method will be applied to solve this 

equation once all the other terms are known functions of time after the DQMoM solution. 

In general, if an ODE can be expressed in the form: 

 𝑑𝑥

𝑑𝑡
+ 𝑃(𝑡)𝑥 = 𝑄(𝑡) (4.22) 

 

where the variable y is a function of x. Then the integral factor u(x) can be derived and used 

to solve the Eq. 4.21: 

 
𝑢(𝑡) = exp (∫𝑃(𝑡)𝑑𝑡) (4.23) 
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𝑥 =

∫𝑢(𝑡)𝑄(𝑡)𝑑𝑡 + 𝐶

𝑢(𝑡)
 (4.24) 

where C is determined by the initial value 𝑥0 at t equals 𝑡0. Therefore, compared with Eq. 

4.20 and 4.21, equation 4.20 can be solved by the integrating factor method. Moreover, 

internal variables 𝑧𝑖 should be replaced by 𝑤𝑗(𝑡) to get the result for discrete species. And 

the initial value for discrete species at t=0 is necessary. It is easy to prove that at t=0, the 

value of C equals to the initial value of each discrete species. 

In summary, all discrete mole fraction at all times can be calculated through the 

DQMoM model and a subsequent delumping method. Compared with the full discrete 

model in Chapter III, both can get the distribution of discrete species. However, the 

DQMoM with delumping model can save the computational time because it reduces the 

number of ODEs compared with the full discrete version of the model. Furthermore, 

DQMoM has been proven to be quite accurate in general, and this will be shown to apply 

here as well in Chapter V. Therefore, solving the improved CPD model using DQMoM + 

delumping can get almost the same results as the full discrete species model, while reducing 

computational expense. 
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Chapter V. Results and Discussion 

This chapter presents results from the improved CPD model, which incorporates 

the transient VLE sub-model, using both the full discrete species model and the DQMoM 

model with delumping to compute the detailed species distribution with reduced 

computation time. In the MATLAB code, all of the ordinary differential equations in these 

two models are solved by the ODEs solver “IDA”, which is a C solver applied in MATLAB 

via “mex” function. These two models, the full discrete species model and the DQMoM + 

Delumping model, are used to simulate pyrolysis with various particle sizes and pyrolysis 

temperatures. The evolution of chemical structural properties, tar, gas and char yields, and 

the capability of the model to simulate discrete tar species will be demonstrated and 

discussed. Also, the two versions of the improved CPD model will be compared to each 

other to demonstrate the accuracy of DQMoM + Delumping model, which can save 

significant computational time with respect to the full discrete species model. 

A. Temperature Profile 

The temperature profile within a particle undergoing pyrolysis can be obtained by 

solving the equation of thermal energy conservation, which has been discretized using the 

finite volume method. Based on industrial interest in slow pyrolysis for chemical 

production, Wang introduced a temperature profile for low temperature pyrolysis of lignite 

in an industrial furnace,28 and an experimental investigation of lignite pyrolysis at higher 

temperature has been developed by Paprika.29 Therefore, two different temperature profiles, 

with maximum temperatures of are 785K and 873K, are used into this study to examine 

the dependence of the pyrolysis model on temperature. Fig. 5-1 shows the imposed 
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transient boundary temperature of 0.8mm radius of particle. It is noticeable that this is just 

a zoom in to short times, since the temperature is constant after 7.5 seconds. 

 

Figure 5-1. Boundary condition temperature profile of 0.8mm radius particle 

 

Figure 5-2. Temperature profile of 0.8 mm radius of particle versus different positions 

inside of the particle at various times.  
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Fig. 5-2 shows the temperature profile within a 0.8 mm radius particle at various 

times. The temperature reaches its maximum value, 785K, at every position within 10 

seconds. The temperature inside the particle decreases from the surface to the center of the 

particle, which is reasonable based on the theory of heat transfer. The temperature 

difference between the center and surface of the particle is a bit below 50K and the 

difference between surface and center temperatures becomes smaller and smaller as time 

goes by. However, for a larger coal particle, for example, a particle with radius 4.5 mm, 

the temperature gradient across the particle will become much larger, and the time required 

for the entire particle to reach the maximum temperature will increase. This can be seen in 

Figs. 5-3 and 5-4. 

 

Figure 5-3. Temperature profile of 4.5mm radius of particle at 785K 

Figures 5-3 shows the temperature profile of 4.5 mm radius of particle at 785K. 

The temperature at the center of the particle increases much more slowly than for smaller 
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particles, and the temperature difference between the center and surface of the particle 

before 25 seconds is 150K larger than for smaller particles. Figures 5-4 show temperature 

profiles for the particle from 10 seconds to 90 seconds. The distribution of temperature is 

different from the smaller particle, and the difference between the center and surface is a 

bit larger than smaller particle, but it also decreases as time goes by. This section 

demonstrates the model’s capability to simulate temperature gradients occurring in coal 

particles during pyrolysis. This capability will be used to evaluate whether temperature 

gradients affect the yields of gas and tar and the production of particular tar species.  

 

Figure 5-4. Temperature profile of 4.5 mm radius of particle versus different positions 

inside of the particle at various times 

B. CPD and Chemical Properties 

In this section, the evolution of the coal chemical properties will be examined. 

Based on the CPD model, we can obtain the concentration of labile bridges L, charred 
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bridge c, the mass fraction of tar, 𝑓𝑡𝑎𝑟, the mass fraction of light gas, 𝑓𝑔𝑎𝑠, and the mass 

fraction of solid, 𝑓𝑠𝑜𝑙𝑖𝑑.  The following figures show the change of properties versus time 

at different position for the 0.8 mm radius particle with the temperature profile shown in 

Fig. 5-1. 

 

Figure 5-5. The change of labile and charred bridge versus time at the center and 

surface of the 0.8mm radius of coal particle  

Recall the characteristics of the CPD model introduced in Chapter III: as 

temperature increases, the unstable labile bridges can break in two ways, and can be 

stabilized to form a char bridge via one pathway.5 As seen in Fig. 5-5, at the initial time 

there are labile bridges and no charred bridges. As the temperature increases, at 

approximately 650 K, the number of labile bridges begins to decrease, with the increase of 

charred bridges occurring simultaneously. This represents the beginning of pyrolysis. Also, 
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it is clear that, even for this relatively small particle, pyrolysis begins at the surface of the 

particle first because temperature rises faster at the surface of the particle than at the center.  

However, the final value of the population of labile and charred bridges will be 

same for different locations in the particle, as long as all locations achieve the same 

maximum temperature. Fig. 5-6 proves this, using a different radius particle and the local 

temperature evolution shown in Fig. 5-3. The reason for this is that no matter what the 

position of the particle is, the ratio of rates kδ/kc, which is introduced in Section D of Chapter 

III, is a constant, which leads to the same final state of the particle after the pyrolysis 

finishes. 

 

Figure 5-6. The change of labile and charred bridge versus time at the center and 

surface of the 4.5mm radius of coal particle  

Fig. 5-7 shows the change of mass fraction of tar, gas and solid versus time at 

different positions within the 0.8 mm radius particle at 785K. The mass fraction of tar and 
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gas are calculated by the Eq. 3.15 and 3.16, and the mass fraction of solid is obtained from 

the sum of all the fractions being equal to one.  

 

Figure 5-7. The change of mass fraction of tar, gas and solid versus time at the center 

and surface of the 0.8mm radius of coal particle at 785K  

As Chapter III mentioned, the general CPD model can describe the initial thermal 

decomposition of coal into different volatiles, including light gases and heavier fragments, 

and account for partitioning of the fragments into vapor (tar) and liquid (which eventually 

forms char).5 Fig. 5-7 illustrates this and also matches Fig. 5-6 in that the mass fraction of 

tar and gas increases first at the surface of the coal particle, where the bridges break first. 

The fraction of char can be converted to an equation for the density of coal particle, whose 

evolution is shown in Fig. 5-8.  Also, compared with the mass fraction of tar and gas, the 

mass fraction of solid remaining in the coal particle is larger, for these conditions. 
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Figure 5-8. The change of density of particle versus time at the center and surface of 

the 0.8mm radius of coal particle with 785K highest temperature 

Figs. 5-9 to 5-12 show the change in chemical properties and yields versus position 

at various times for the 4.5 mm radius particle with the temperature profile shown in Fig. 

5-3. Pyrolysis begins from the surface of the particle and with the time goes by, the 

pyrolysis for surface of the particle is almost done, while the pyrolysis for near the center 

of the particle continues. The pyrolysis of the whole particle is almost finished after 90s 

because the population of labile bridge goes to near the zero, which is shown in Fig.  5-9.  
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Figure 5-9. The change of labile bridge versus positions at particular time for the 

4.5mm radius of coal particle with 785K highest temperature 

 

Figure 5-10. The change of mass fraction of tar versus position at particular time for 

the 4.5mm radius of coal particle with 785K highest temperature 
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Figure 5-11. The change of mass fraction of gas versus position at particular time for 

the 4.5mm radius of coal particle with 785K highest temperature 

 

Figure 5-12. The change of density versus positions at particular time for the 4.5mm 

radius of coal particle with 785K highest temperature 
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Fig. 5-10 and 5-11 show that the behavior of tar and gas release is similar; it begins 

at the surface of the particle first, and then the whole particle will release the tar and gas 

with the process of heat transfer. That leads to the decreasing of density from the surface 

to the center, which is shown in Fig. 5-12.  

While the maximum pyrolysis temperature is the most important parameter, the 

temperature-time profile also has an influence on the pyrolysis process. If we regard the 

particle as a point and solve it by using an average temperature, the accuracy of the 

pyrolysis result for whole particle will decrease. However, if two sizes of coal particles are 

pyrolyzed in the same boundary temperature, different regions within the particle will be 

subjected to different temperature-time histories, although the final temperature at each 

position will be the same. Therefore, it is necessary to resolve large particles spatially to 

obtain the result for different positions inside of the particle and then to get results for 

whole particle by numerical integration. Figure 5-13 shows the comparison of the mass 

fraction of tar, gas and solid at the final time for 0.8mm and 16mm radius of coal particle 

at 785K. It is clear that at the similar boundary temperature profile, the generation of tar 

and gas are different for different sizes of particles. What is more, the result proves that the 

pyrolysis chemistry is related to the particle size, and the particle should be resolved 

spatially to get the accurate result for pyrolysis.  
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Figure 5-13. The comparison of the mass fraction of tar, gas and solid at the final time 

for 0.8mm and 16mm radius of coal particle at 785K 

Next, we will examine the dependence of the chemical properties on the maximum 

imposed boundary temperature. The center of the particle is chosen for analysis. Fig. 5-14 

shows the change of labile and charred bridge versus time at the center of the 0.8 mm radius 

of coal particle with the highest temperature of 785K and 873K. 
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Figure 5-14. The change of labile and charred bridge versus time at the center of the 

0.8mm radius of coal particle at 785K and 873K 

Clearly pyrolysis proceeds faster as maximum temperature increases. Also, with 

the higher temperature, labile bridges can break and form charred bridge faster than lower 

temperature. Moreover, the pyrolysis of coal particle can be fully finished faster with the 

population of labile bridge goes to zero at the higher temperature.  

Notably, even though the population of labile and charred bridges are almost 

identical at the end of pyrolysis due to the constant ratio of rates kδ/kc, Fig. 5-15 and 5-16 

indicate that more tar and gas will be generated and released from the coal particle and 

finally the density of the coal particle decreases more as the maximum particle temperature 

increases. The reason is related to the size of fragments generated at different temperatures. 

After a labile bridge is cleaved, two halves of the side chains can stabilize to form 

fragments of large molecular weight. Tar is generated when a fragment has sufficiently low 

molecular weight to vaporize at a given temperature, as explained in Section B, Chapter 
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III. With increasing pyrolysis temperature, the mass of tar fragments becomes smaller, 

which is shown in Fig. 5-17, and they are more easily vaporized from the particle as tar. 

The mass of fragment depends on the expression of mass of fragments shown in Eq. 3.10. 

With the higher temperature, both the ratio of labile bridge and intact bridges L/p, and the 

total number of side chains δtotal, decrease and lead to the decreasing of the mass of tar 

fragment, which is shown in Eq. 3.10. Moreover, the mass fraction of light gas will increase 

with the domination of the increasing of the summation of the light gas formed from side 

chains, 𝑔𝑡𝑜𝑡𝑎𝑙 (Eq. 3.9), which is shown in Fig. 5-18 and finally leads to the decreasing of 

density due to the decreasing solid fraction. Another contribution to the increase of tar is 

that the phase equilibrium constant, Ki, increases with increasing temperature, which also 

causes more liquid phase species to vaporize and increase the yield of tar. 

 

Figure 5-15. The change of mass fraction of tar, gas and solid versus time at the center 

of the 0.8mm radius of coal particle at 785K and 873K 
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Figure 5-16. The change of density of particle versus time at the center of the 0.8mm 

radius of coal particle at 785K and 873K  

 
 

Figure 5-17. The size of fragments (less than 1000 kg/kmol) versus time at the center 

of the 0.8mm radius of coal particle at 785K and 873K 
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Figure 5-18. The change of 𝒈𝒕𝒐𝒕𝒂𝒍 versus time at the center of the 0.8mm radius of coal 

particle at 785K and 873K 

Figures 5-19 to 5-23 show the results for the 4.5 mm radius of the particles to 

support the discussion above. Pyrolysis takes longer with the larger particles, but similar 

to Figs. 5-14 and 5-16, irrespective of the maximum temperature, the final state of the 

bridges is the same. In other words, the maximum temperature determines the speed of the 

bridge breaking, but once pyrolysis starts, the labile bridge will break and eventually go to 

zero with the completion of pyrolysis. However, as in the discussion of Fig. 5-15 and 5-16, 

even though the labile bridges and charred bridges are same at the maximum temperature, 

the mass fraction of fragment depends on the maximum temperature, and then influence 

on the formation and the vaporization of the tar and gas, and leads to the density change of 

the particle after pyrolysis, which is also demonstrated in Fig.5-20 and 5-21. 



63 
 

 

Figure 5-19. The change of labile and charred bridge versus time at the center of the 

4.5mm radius of coal particle at 785K and 873K 

 

Figure 5-20. The change of mass fraction of tar, gas and solid versus time at the center 

of the 4.5mm radius of coal particle at 785K and 873K  
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Figure 5-21. The change of density of particle versus time at the center of the 4.5mm 

radius of coal particle at 785K and 873K  

 

Figure 5-22. The size of fragments (less than 1000 kg/kmol) versus time at the center 

of the 4.5mm radius of coal particle at 785K and 873K 
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Figure 5-23. The change of 𝒈𝒕𝒐𝒕𝒂𝒍 versus time at the center of the 0.8mm radius of coal 

particle at 785K and 873K 

C. Model Validation 

Before the improved CPD model can be used to study the generation of discrete tar 

species, the modeling capabilities shown in the last two sections will be compared with 

experimental data. Therefore, coal pyrolysis experiments that measured spatially-varying 

particle temperatures and overall pyrolysis yields will be used in this section to validate 

our particle-scale model. An experiment which has been performed by Zhang27 with spatial 

resolution of particle temperature is used to compare with our model. In the experiment, 

Zhang and coworkers pyrolyzed 15 mm-radius spherical lignite particles at bulk gas 

temperatures of 713 K and 823 K, respectively. The residual mass fraction (m/m0) and the 

particle center temperature, which have been obtained from the experiment, will be used 

to validate our model. Table 5-1 shows the CPD input parameters used to simulate the 

experiment of Zhang, which were chosen based on the similarity between the lignite used 
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by Zhang and the data of Zap lignite derived from NMR measurement.27 Moreover, this 

validation just validate the modified CPD model and the heat transfer model, and does not 

validate the detailed discrete species model. 

Table 5-1. CPD input parameters for the experiment of Zhang 

𝑝0 𝑐0 𝜎 + 1 𝑀𝑊𝑐𝑙 𝑀𝑊𝛿 

0.63 0.1 5.23 308 46 

 

Figure 5-24 and 5-25 compare simulation and experimental data for residual mass 

fraction and center temperature for pyrolysis of 10 mm and 15 mm radius particle at 713K. 

 

Figure 5-24. Simulation and experimental data for residual mass fraction and particle 

center temperature for pyrolysis of 10 mm radius particle at 713K 
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Figure 5-25. Simulation and experimental data for residual mass fraction and particle 

center temperature for pyrolysis of 15 mm radius particle at 713K 

From the figures, although a deviation is observed, the center temperature of the 

particle has been predicted reasonably, especially given the uncertainty in the input 

parameters for coal particle, the actual chemical structure of the particle, and the exact heat 

transfer coefficient. On the other hand, the result of residual mass fraction does not exactly 

match due to the using of correlation instead of the coal-specific NMR-based parameters. 

This correlation is required for advanced pyrolysis model which can predict the chemical 

structure parameters of coals measured by 13C NMR.30 So, it is reasonable that the result 

from simulation can predict experimental data. Therefore, the ability of the model has been 

proved and it can be used for future pyrolysis research.  
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D. Tar and Discrete Species Generation 

As the Chapter III mentioned, �̇� is the vapor flow rate out of the particle, which 

describes the rate of tar and gas released from the particle, normalized by cluster, with units 

of mol/(cluster·s). Based on Eq. 3.35 and Eq. 3.36, �̇�  may be different for different 

positions inside of the particle because the temperature gradient, which has influence on 

the variable 𝐾𝑖. Fig. 5-26 show the generation of �̇� inside of the 0.8 mm radius particle at 

785K for 1atm pressure condition. 

 

Figure 5-26. The change of �̇� versus time inside of 0.8mm radius particle at 785K for 

1atm pressure condition. 

Fig. 5-26 indicates that the generation of vapor species begins from the surface of 

the particle, and with increasing temperature, more vapor species are generated by 

pyrolysis and exit the particle. However, �̇�  does not increase continuously with 

temperature during pyrolysis. �̇� for every position has a maximum, which means it will 
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decrease after that time, due to the less generation of low molecular weight species that can 

vaporize from the liquid phase and exit the particle. Moreover, it does not increase 

continuously because no more bridges are breaking. 

The impact of pressure on �̇�  can be examined using different pressure 

environments outside the particle. Fig. 5-27 shows the dependence of �̇� on pressure at the 

center of the 0.8 mm radius particle at 785K for 1 atm, 2 atm and 5 atm pressure conditions. 

 

Figure 5-27. Comparison of �̇� at the center of 0.8 mm radius particle at 785K for 1atm, 

2atm and 5atm pressure condition 

The result shows that the different pressure condition has a limited influence on the 

�̇�. The evolution of �̇� during the process of pyrolysis is almost same. Pressure is not an 

important factor which can deeply influence the vapor flow rate of species out of the 

particle, even though increasing pressure can increase a little �̇�. The reason is that �̇� is 

dominated by light gas, which depend on pressure. It is related to side chains and the 
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bridges which depends on the chemical structure.  Therefore, it is possible that the �̇� does 

not change too much with the change of phase equilibrium constant Ki.  

We will now analyze results for the entire particle by integrating with respect to 

radius, either as a function of time or for complete pyrolysis, by also integrating the results 

in time. These spatially-integrated results are more industrially-relevant, given that the 

quantity of interest is often the flux of species or total production of species from the 

particle as a whole. Many pyrolysis processes run to completion and the quantity of interest 

in this case is the final yields of gas, tar species and char, obtained from integrating with 

respect to radius and time.  

First, �̇�𝑡𝑜𝑡𝑎𝑙 for the whole particle can be obtained by using a conversion factor, AB, 

with units of cluster/m3, to convert �̇� from mol/(cluster·s) to mol/m3·s and integrating over 

the particle volume: 

 
𝐴𝐵 = 1000 ×

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑚𝑡𝑜𝑡𝑎𝑙
 (5.1) 

 
�̇�𝑡𝑜𝑡𝑎𝑙 = 4 ∙ 𝐴𝐵 ∙ 𝜋 ∙ ∫ 𝑟2�̇�

𝑅

0

(𝑟)𝑑𝑟 (5.2) 

 

where 𝑚𝑡𝑜𝑡𝑎𝑙 is the total molar mass per cluster, which is shown in Eq. 3.11. In this way, 

Fig. 5-28, which shows the total vapor flow rate of species out of the particle for the whole 

0.8 mm radius particle versus time, can be obtained. 
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Figure 5-28. Total vapor flow rate of species out of the particle for the whole 0.8mm 

radius particle versus time at 785K and 873K 

From this figure, it is seen that the total vapor flow rate of species out of the particle 

(for the whole particle) is a function of temperature. Before 7.5 s, the temperature is the 

same for both of two imposed temperature boundary conditions and �̇� for whole particle is 

same. Based on Fig. 5-1, the temperature does not increase continuously after 7.5s for the 

785 K case and �̇� for whole particle begins to decrease, which is shown as the blue line in 

Fig. 5-28. However, for the 873 K case, the temperature continues to increase beyond 7.5s 

and makes �̇� for whole particle release more than the lower temperature (red line). And it 

also decreases after the temperature reaches the maximum, 873K. Both of them will go to 

near zero finally, which indicates the pyrolysis is almost finished. Moreover, if we integrate 

�̇� over radius and temperature together, we can get the total vapor of all species out of the 

particle for the 0.8 mm radius particle during the entire process of pyrolysis. 
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Figure 5-29. Total vapor of species out of the particle for the whole 0.8mm radius 

particle versus time at 785K and 873K 

 In terms of whole particle scale during the entire pyrolysis, the total vapor flow for 

all species out of the particle is higher with the higher temperature, which is shown in Fig. 

5-29. The reason for that has been discussed that higher temperature can make the 

fragments smaller and more small molecular species can be vaporized, and the increasing 

percentage of total vapor flow is approximately proportional to the sum of increasing 

percentage of tar and gas fraction in Fig. 5-15, which is 27%.  

The full discrete species model can be used to obtain the generation of every 

particular species at every single time or the total vapor released for every particular species. 

The original CPD model cannot predict the detailed tar species, which are very important 

when pyrolysis is used to produce chemicals. Our improved CPD model is simple that a 

simple way of dividing the number fraction of fragments into particular species is used. 

Nevertheless, we developed the capability to model discrete species with computational 



73 
 

efficiency. In what follows, �̇�𝑖  for particular tar species are shown, based on the 

multiplication of �̇� and the mole fraction of the species in the vapor phase.  

 

Figure 5-30. Vapor flow rate of species (Molecular Weight 150 kg/kmol) out of the 

particle for the whole 0.8mm radius particle versus different times at 785K and 873K 

 

Figure 5-31. Vapor flow rate of species (Molecular Weight 542 kg/kmol) out of the 

particle for the whole 0.8 mm radius particle versus different times at 785K and 873K 
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Figure 5-32. Total Vapor of two particular species out of the particle for the whole 

0.8mm radius particle at 785K and 873K 

Also, the total vapor of these two particular species out of the particle for the 0.8 

mm radius particle during the entire process of pyrolysis can be obtained by integrating 

over time as well, as shown in Fig. 5-32. It is clear that higher temperatures increase the 

release of tar species from the particle in general. The reason for that is related to the 

generation of fragments, which has been shown in Fig. 5-18. What is more, the vapor flow 

rate for small molecular weight is higher than large molecular weight. It indicates that small 

molecular weight species Also, the results for the same species can be got from larger 

particles, and the comparison of more individual tar species can be seen in Fig. 5-35. 
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Figure 5-33. Vapor flow rate of species (Molecular Weight 150 kg/kmol) out of the 

particle for the whole 4.5 radius particle versus different times at 785K and 873K 

 

Figure 5-34. Vapor flow rate of species (Molecular Weight 542 kg/kmol) out of the 

particle for the whole 4.5 radius particle versus different times at 785K and 873K 
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Figure 5-35. Total Vapor of several particular species out of the particle for the whole 

4.5mm radius particle at 785K and 873K 

Figures 5-33 and 5-34 shows the vapor flow rate of the same species for a larger 

particle situation. Again, higher temperature accelerates the vapor flow rate, which has 

been just discussed. What is more, from Fig. 5-35, higher temperature can release more 

species out of the particle than lower temperature, especially large molecular weight 

species. The reason for this fact is related to the increasing of Ki with the increasing of 

temperature, which can transfer more liquid phase species into vapor phase and vaporize 

out of the particle. In terms of small molecular weight species, the value of Ki is much 

larger than one for both temperature conditions, which leads to a smaller difference 

between the two cases, which can be seen in Fig. 5-35.  

Next, Figure 5-36 shows the total vapor of particular species out of the 0.8 mm 

radius particle at 785K for different pressure. 
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Figure 5-36. Total vapor of particular species out of 0.8 mm radius particle at 785K 

for 1atm, 2atm and 5atm pressure condition 

 Figure 5-36 proves that the total vapor for tar species is related to the pressure. The 

higher the pressure is, the less the tar species vaporize out of the particle. Moreover, it can 

prove that the similar �̇� under different pressure conditions, which is shown in Fig. 5-27, 

is not dominated by tar species. Therefore, another part of the gas volatiles, light gas, which 

is not related to the pressure, determines the �̇�. 

Figure 5-37 shows the comparison of total production of several species per volume 

which are different molecular weight at the final time for 0.8mm and 16mm radius of coal 

particle at 785K. And the error percentage between the two sizes of particles are shown in 

the figure. It is clear that the smaller size of particle products much more species per 

volume than larger size of particle, and the error becomes larger and larger with the 

increasing of molecular weight of species. Therefore, this is another reason for resolving 
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spatially the particle if we really want to know the accurate generation for particular species 

for different size of the particles. 

  

Figure 5-37. The comparison of total production of particular molecular weight per 

volume at the final time for 0.8mm and 16mm radius of coal particle at 785K 

 Finally, the comparison between the full discrete species model and DQMoM + 

Delumping model will be analyzed. Our ultimate goal is using the DQMoM + Delumping 

model instead of full discrete species model to save the computational time. Therefore, the 

results of key variables, such as �̇�, from the two models should be approximately same.  
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Figure 5-38. Comparison of �̇� at the center and surface of 4.5mm radius particle for 

two models. 

It is clear from Fig. 5-38 that although �̇� in full discrete species model is calculated 

through the exact discrete species (Eq. 3.31), while in DQMoM + Delumping model is 

calculated through the weight and nodes, the result from the two models are almost exactly 

same at different positions inside of the particle.  

After finishing the discussion of discrete species generation of the improved CPD 

model, next two figures will show the result of DQMoM model. As the Chapter IV 

mentioned, DQMoM model uses the weights and nodes instead of the mole fraction and 

the molecular weight of fragment. Figs. 5-39 and 5-40 shows the evolution of the weight 

and node for 0.8mm radius particle. Both of them are well-behaved. Also, it is clear that 

node 1 represents the lump species which has the smallest molecular weight, and the weight 

of node 1 decreases in Fig. 5-39. It means the small molecular weight species vaporizes 

out of the particle, which matches the result shown above. 
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Figure 5-39. Evolution of weight at the center of 0.8mm radius particle for DQMoM 

model. 

 

Figure 5-40. Evolution of node at the center of 0.8mm radius particle for DQMoM 

model. 
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Furthermore, we can compare the individual species mole fractions calculated by 

the two models separately. Recall, the full discrete species model solves the ODEs of every 

species directly, while the DQMoM + Delumping model gets results for every species 

through “delumping” the results of the calculation with only a few weights and nodes. 

 

Figure 5-41. Comparison of species Distribution at the center of 4.5mm radius 

particle at 785K for two models at different times. 
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Figure 5-42. Comparison of species Distribution (Molecular Weight 450-950 kg/kmol) 

at the center of 4.5mm radius particle at 785K for two models at different times. 

Figures 5-41 and 5-42 compare the result of species distribution between the full 

discrete species model and DQMoM + Delumping model. Fig. 5-42 is a “zoomed in” figure 

from Fig. 5-41 for the molecular weight from 450 to 950 kg/kmol. First we compare the 

discrete liquid species distribution within the metaplast at every time step from the full 

discrete species model and DQMoM + Delumping model. Moreover, Fig. 5-41 and 5-42 

select two time steps: 40 seconds, when the pyrolysis just starts and 70 seconds, when the 

pyrolysis almost finishes. It can be seen that the distribution of discrete species changes a 

lot during the process of pyrolysis. The species with large molecular weights has been 

generated during the period of pyrolysis, meanwhile the mole fraction of species with small 
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molecular weights decreases a lot because of the vaporization of the species with small 

molecular weight, which has been proved through Fig. 5-36. 

The molar flux of every species, which is the product of �̇� and the gas-phase mole 

fraction of that species, is more valuable to compare. In terms of detailed chemical kinetic 

mechanisms, the molar flux of each species is more important for simulations than the mole 

fraction of discrete liquid species distribution. Moreover, if the relative error for the flux 

of each species between two models is smaller than 10%, it is reasonable to use the 

DQMoM + Delumping model, which has computational efficiency. The next figures will 

show the discrete species flux for two models at different times and the relative error 

between two models. 

 

Figure 5-43. Comparison of species flux at the center of 4.5mm radius particle at 785K 

for two models at different times. 
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Figure 5-44. Comparison of species flux (Molecular Weight 92-400 kg/kmol) at the 

center of 4.5mm radius particle at 785K for two models at different times. 

 

Figure 5-45. The relative error between the species flux of two models at the center of 

4.5mm radius particle at 785K at different times. 
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Fig. 5-43 shows the comparison of species fluxes for the two models at the center 

of 4.5 mm radius particle at 785K, and Fig. 5-44 is a “zoomed in” figure from Fig. 5-43 

for the molecular weight from 92 to 400 kg/kmol. The agreement is very good for all 

species and all time. Fig. 5-45 shows the relative error for species with absolute flow rates 

in excess of 0.5×10-5 mol/s, and entries which are small than that are neglected. It is clear 

that for all times, the relative error is smaller than 10%. That means the result obtained 

from two models are almost the same. The DQMoM + Delumping model can achieve the 

same accuracy as the full discrete species model by solving only twelve differential 

equations, meanwhile, more than 600 differential equations are solved by the full discrete 

species model.  

Last, but not least, the computational time is also very important for both models. 

Fig. 5-46 shows the comparison of computational time for full discrete species model and 

DQMoM + Delumping model for different temperature.  

 

Figure 5-46. Comparison of Computational time for (1) 0.8mm radius particle for 

different temperatures. (2) 4.5mm radius for different temperatures. 
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The computational time of 0.8 mm radius particle for DQMoM + Delumping is 

approximately 70 minutes, and that for full discrete species model is nearly 375minitus. 

Moreover, for the larger particles, the computational time will be extended due to a longer 

time range and more grid points (and ODEs). So, the computational times of 4.5 mm radius 

particle for DQMoM + Delumping and full discrete species model are nearly 10 hours and 

30 hours. Therefore, from Fig. 5-41 to 5-44, the results from different models can almost 

exactly match each other, and the relative error is smaller than 10%, which means the 

DQMoM + Delumping model can replace the full discrete species model to predict the 

discrete species distribution at every single time with saving almost 80% computational 

time for the 0.8 mm radius particle and 60% for 4.5 mm radius particle. The reason for the 

lower computational efficiency of larger particles is that larger particle uses more grid 

points, which means the computational overhead associated with solving the differential–

algebraic system will be larger. During the calculation process, the computational speed 

will decrease when the pyrolysis starts. However, with the larger particles, the initial time 

for pyrolysis at different grid points is different due to the temperature gradient. Even 

though the pyrolysis finishes at the surface of the particle, the computational speed will not 

increase because the pyrolysis is still going inside of the particle. Therefore, the 

computational efficiency is low from the initial time of pyrolysis at the surface and to final 

time of pyrolysis at the center. 
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Chapter VI Conclusion & Future Work 

A. Conclusion 

A full discrete species model with improved VLE method for full discrete species 

has been developed in this paper. This model can be used to simulate the process of 

pyrolysis and get the detailed discrete species generated. Also, the improved VLE method 

is a continuous method which employs the rate-based flash calculations. Compared with 

the previous CPD model, the improved model can calculate not only the change of 

chemical structure based on fragments and clusters, but also the change of individual 

discrete species during pyrolysis. And it also can predict the behavior of pyrolysis and the 

release of vapor species for the particle scale. What is more, the previous CPD model uses 

the VLE model based on a discontinuous mole-based flash calculation, and it has 

disadvantage on time-step dependence. However, the improved VLE method can eliminate 

the negative influence on time-step dependence, which has highly influence on the fraction 

of total vapor (V/F), and get more accurate result with transient time.   

In this study, the full discrete species model is applied to large-scale particle, which 

the temperature influence inside of it is not negligible due to the size of the particle. 

Therefore, the thermal energy conservation equation has been used in this study to model 

the change of temperature during the pyrolysis, and the finite volume method is applied to 

discretize the terms in the equation and obtain the temperature profile at different positions 

inside of the particle. More importantly, the development of finite volume method on the 

thermal energy conservation equation develops the CPD model from researching one single 
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position to multiple positions, which is very useful to simulate the pyrolysis of large-scale 

coal particle. 

Another improvement in this paper is using the DQMoM model to simulate the 

pyrolysis based on CPD model and then delump the result to get the full discrete species 

generated at every time step. DQMoM method is an effective numerical way to solve the 

problem about the continuous thermodynamics.  Compared with the CPD model, which is 

developed in terms of fragments, DQMoM is developed with the evolution of the nodes 

and weights in equivalent liquid-phase mole fraction distribution. Also, the result of 

DQMoM is based on the “lumped” species which are amounts of species with similar 

molecular weight. Therefore, the delumping method with the using of integrate factor has 

been developed to solve the species equation in terms of every discrete species. In this 

study, the DQMoM + Delumping model is applied to get the distribution of more than 500 

discrete species and the results are almost exactly same with the results solved by full 

discrete species model. And the computational time for DQMoM + Delumping model is 

three times less than the full discrete species model. The DQMoM + Delumping model has 

a big advantage in computation time while providing the same results of discrete species 

with excellent accuracy. 

B. Future Work 

Right now, the number fraction of all discrete species generated at every time step 

(from the original coal structure, prior to vapor-liquid equilibrium) is determined by the 

number fraction of all discrete species at final time obtained from a detailed chemical 

simulation by collaborators at MIT. Thus, this paper employs a simple relationship between 

the number fraction of all discrete species generated at every time step and the final time, 
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and the reality is surely more complicated. Therefore, future work will focus on deriving 

an improved equation based on Eq. 3.18 to describe the more accurate number fraction of 

all discrete species at every time. The current method serves as a placeholder and is used 

to demonstrate the other model developments outlined above. 

Even though DQMoM + Delumping has a significant advantage in computational 

efficiency compared to the full discrete model, the computational time is still too long to 

simulate larger scale particle with more grid points inside of the particle. The reason is that 

at the beginning of the pyrolysis, it costs much time to calculate the �̇�, which is determined 

by the algebraic equation in the DAE system. And the beginning of the pyrolysis at 

different positions inside of the particle is different. That means the process of calculation 

does not become fast until the beginning of the pyrolysis finishes for all positions. In the 

future, the method of integrating the system equations will be optimized to reduce 

computational time.  
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Appendix 

Table A-1. Kinetic Rate Coefficients of Various Light Gas Species (Taken from Bib. 

10) 

Gas 
Primary functional 

group source 
Gas fraction A(s-1) E/R (K) 

CO2 extra loose carboxyl 0.022 0.56×1015 30000±1500 

CO2 loose carboxyl 0.022 0.65×1017 33850±1500 

CO2 tight carboxyl 0.030 0.11×1016 38315±2000 

H2O loose hydroxyl 0.045 0.22×1019 30000±1500 

H2O tight hydroxyl 0.00001 0.17×1014 32700±1500 

CO ether loose ether O 0.060 0.14×1019 40000±6000 

CO ether tight ether O 0.063 0.15×1016 40500±1500 

HCN loose  0.010 0.17×1014 30000±1500 

HCN tight  0.016 0.69×1013 42500±4750 

NH3  0.00001 0.12×1013 27300±3000 

CHx aliphatics H(al) 0.081 0.84×1015 30000±1500 

CH4 extra loose methoxy 0.011 0.84×1015 30000±1500 

CH4 loose methyl 0.011 0.75×1014 30000±2000 

CH4 tight methyl 0.022 0.34×1012 30000±2000 

H aromatic H(ar) 0.016 0.10×1015 40500±6000 

CO extra tight ether O 0.00001 0.20×1014 45500±1500 

S organic  0.038 0.20×1014 40000±5000 
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