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ABSTRACT
DATA FUSION FOR VISION-BASED ROBOTIC

PLATFORM NAVIGATION

Andres F. Echeverri Guevara, B.S.

Marquette University, 2016

Data fusion has become an active research topic in recent years. Growing
computational performance has allowed the use of redundant sensors to measure
a single phenomenon. While Bayesian fusion approaches are common in general
applications, the computer vision community has largely relegated this approach.
Most object following algorithms have gone towards pure machine learning
fusion techniques that tend to lack flexibility. Consequently, a more general data
fusion scheme is needed. The motivation for this work is to propose methods that
allow for the development of simple and cost effective, yet robust visual
following robots capable of tracking a general object with limited restrictions on
target characteristics. With that purpose in mind, in this work, a hierarchical
adaptive Bayesian fusion approach is proposed, which outperforms individual
trackers by using redundant measurements. The adaptive framework is achieved
by relying in each measurement’s local statistics and a global softened majority
voting.

Several approaches for robots that can follow targets have been proposed
in recent years. However, many require the use of several, expensive sensors and
often the majority of the image processing and other calculations are performed
independently. In the proposed approach, objects are detected by several
state-of-the-art vision-based tracking algorithms, which are then used within a
Bayesian framework to filter and fuse the measurements and generate the robot
control commands. Target scale variations and, in one of the platforms, a
time-of-flight (ToF) depth camera, are used to determine the relative distance
between the target and the robotic platforms. The algorithms are executed in
real-time (approximately 30fps). The proposed approaches were validated in a
simulated application and several robotics platforms: one stationary pan-tilt
system, one small unmanned air vehicle, and one ground robot with a Jetson TK1
embedded computer. Experiments were conducted with different target objects in
order to validate the system in scenarios including occlusions and various
illumination conditions as well as to show how the data fusion improves the
overall robustness of the system.



i

ACKNOWLEDGMENTS

Andres F. Echeverri Guevara, B.S.

Foremost, I would like to express my sincere gratitude to my advisor Dr.
Henry Medeiros for always pushing farther and beyond, for having high
expectations, and for always hoping for the best.

I also would like to acknowledge Dr. Robert H. Bishop and Dr. Juan E.
Tapiero. Without them Marquette would have been just an unrealized dream.
Many thanks to my thesis committee: Dr. Medeiros, Dr. Yaz and Dr. Ababei. I
hope this work fulfills your expectations and shows you something new and
interesting.

I would also like to thank all the professors who have taught me
throughout the years. All my accomplishments are thanks to their devotion to
academia.

Thanks also go to the lab members: Tony Hoak, Ryan Walsh and Reza Jalil
Mozhdehi. Who were always helpful with a good idea, a thought, an advice,
especially in those moments of need.

My most sincere gratitude to our sponsor James D. O’Rourke, a passionate
person with a lot of ideas in ”drone” matters. Many of his insights are embodied
in some of this research.

Last, but not least, to my parents, family, and friends. Also, to Magda who
has been my companion for a long time now.



ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Target Following with Robotic Platforms . . . . . . . . . . . . . . . 5

2.2 Data Fusion for Target Tracking . . . . . . . . . . . . . . . . . . . . 7

3 TARGET FOLLOWING WITH A PORTABLE GROUND ROBOT . . . . . 10

3.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Target Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 The Standard Kalman Filter . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Sensor Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 HIERARCHICAL ADAPTIVE BAYESIAN DATA FUSION . . . . . . . . . 24

4.1 Bayesian Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Hierarchical Adaptive Bayesian Data Fusion . . . . . . . . . . . . 25

4.2.1 Local Expert Weighting . . . . . . . . . . . . . . . . . . . 26

4.2.2 Majority Voting . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Adaptive Fusion Center Strategy . . . . . . . . . . . . . . . . . . . 29



iii

4.4 Platform description . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 Pan-Tilt System . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.2 UAV Platform . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5.2 Pan-tilt System . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.3 UAV Platform . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



iv

LIST OF FIGURES

3.1 Overall system comprising an iRobot Create 2 platform with a
Jetson TK1 board and a Creative Senz3D ToF camera. . . . . . . . . . . . 10

3.2 Small angle approximation justification. . . . . . . . . . . . . . . . . . . . 13

3.3 iRobot platform illustrating the motion control commands. . . . . . . . . 16

3.4 Floor plan sketch showing the robot trajectory. . . . . . . . . . . . . . . . 18

3.5 Screen captures from the experiment illustrating the system’s
robustness to illumination changes due to the learning capability of TLD. 19

3.6 System recovering the target object (recycling bin) after a full
occlusion by another object (large trash bin). . . . . . . . . . . . . . . . . 19

3.7 The target object (backpack) is moved backwards, quickly and
beyond the ToF camera’s range (> 1m), the system is able to respond
smoothly, making use of TLDz, and successfully follows the object. . . . 20

3.8 Quantitative results corresponding to the backpack tracking
experiment shown in Figure 3.7. . . . . . . . . . . . . . . . . . . . . . . . . 21

3.9 The target object (backpack) is moved to the left and to the right. . . . . . 21

3.10 Response of the controller to the angular turn. . . . . . . . . . . . . . . . 22

3.11 Plots showing in detail how the data fusion between the TLD scale
and the ToF measurements works. . . . . . . . . . . . . . . . . . . . . . . 23

3.12 Correlation between the distance and the level of confidence Rvvζ . . . . 23

4.1 Hierarchical Adaptive Bayesian Data Fusion approach. The first
level of the hierarchy consists of experts that provide a local estimate
to the fusion center. The second level is the fusion center. . . . . . . . . . 25

4.2 Mahalanobis distance representation. Point P depicts an outlying
predicted value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



v

4.3 Majority voting representation. Distances di are traced from the
center of each detector. While these distances are shown as the
center distances among detectors (u and v), they also comprise their
heights and widths (h and w). In this scenario, D1 and D2 are close
to each other, while D3 is farther away. The consensus will penalize
D3 in this case, since d1 is the minimum distance. . . . . . . . . . . . . . . 29

4.4 Diagram of the pan-tilt following system. . . . . . . . . . . . . . . . . . . 31

4.5 Diagram of the UAV following system. . . . . . . . . . . . . . . . . . . . 32

4.6 Simulation of a second order system. KFi represents the local
estimate of the signal ysi. The HAB-DF is the only method that is
able to accurately track the signal by fusing the output of each KF in
the first hierarchy. Each sensor suffers from different types of faults:
Gaussian noise, spikes, drifts and shocks (a constant offset for an
given time). Figure (b) shows the covariances of the different signals
that are feed to the fusion center. . . . . . . . . . . . . . . . . . . . . . . . 33

4.7 Pan-tilt system experiment using a face as the target (best seen in
colors). The frames shown here are random frames selected from the
dataset. Each of them presents a different tracking approach. The
target was moving sideways with some vertical disturbances and
gradually increasing the distance from the camera. In (a) HAB-DF is
shown in yellow and DDSTtld is shown in blue because it is lost. . . . . 35

4.8 Average performance. (a) Average JIDX. A decrease in JIDX indicates
a tracking performance degradation. A value of zero indicates a
complete failure in which there is no overlap between the GT and
the detector. (b) Average of Euclidean distance. A value close to zero
means that the GT and the tracker are similar. (c) Success bar graph,
a frame is considered successfully tracked when
JIDX ≥ 0.5 and d ≤ 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.9 Pan-tilt system experiment using a recycling bin as the target (best
seen in colors). The frames shown here are random frames selected
from the dataset. Each of them presents a different tracking
approach. The target was moving sideways with some vertical
disturbances, and a slight change in distance from the camera.
HAB-DF is shown in yellow. In frams 301 and 697 DDSTtld is
shown in blue because it is lost. . . . . . . . . . . . . . . . . . . . . . . . . 38



vi

4.10 Evaluation of the performance of tracking a recycle bin. Figure 4.10a
and Figure 4.10b show that DSSTtld has a degraded performance
(around frames 100-300 and 500-800). This is consistent with
Figure 4.10d, where DSSTtld suffers of a sudden drop of confidence
value resulting in an increment of the covariance that is ruled by the
MD and the majority voting scheme. The HAB-DF has the best
performance among all the approaches as seen in Figure 4.10c.
Moreover, the transition between detectors is soft, allowing for the
smooth motion control that can be seen in Figure 4.10e and
Figure 4.10f. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.11 UAV Trials. Several targets are followed with a small UAV. The top
left figure (frame 1413) shows all the detectors working properly in
the hallway scenario while the HAB-DF fuses their measurements.
During the trial, DSSTtld loses track several times, as illustrated in
frame 2520, while CMT and Struck continue to track and HAB-DF
properly combines their outputs. The figures at the bottom show
similar snapshots for the gym scenario. In the right figure (frame
493), Struck shows significant scale disparity, while the combined
output correctly estimates the size of the target. Frame 3132 shows a
different target in which all three detectors are working albeit with
some positional inaccuracy. The combined estimate is more accurate. . . 41

4.12 Tracking a person in a gym with a UAV. Figures 4.12a, 4.12b, and
4.12c show the behavior of the UAV along the trial. Figure 4.12d
shows the adaptive behavior of the HAB-DF during the experiment. . . 42

4.13 Tracking a person in a hallway with a UAV. Figures 4.13a, 4.13b, and
4.13c show the behavior of the UAV along the trial. Figure 4.13d
shows the adaptive behavior of the HAB-DF during the experiment. . . 43



1

CHAPTER 1

INTRODUCTION

Target tracking using mobile robotic platforms is a well-researched

problem within the computer vision and robotics communities [1, 2, 3, 4, 5, 6, 7].

Object following capabilities are increasingly popular for aerial platforms and

ground vehicles alike [8, 9, 10]. Object/target following is typically an extension

of target tracking in the sense that the tracking error is used as input to a

controller that changes the position of the robotic platform with respect to the

target.

Although in recent years advancements in visual tracking have allowed

the emergence of new robotic platforms capable of following objects with good

results, robustness is still a major concern in the computer vision community.

This is in part due to problems that make it difficult to associate images of a target

in consecutive video frames within an unknown scenario. These problems

include: motion of the object and/or camera, orientation and pose change,

illumination variation, occlusion, scale change, clutter, and the presence of similar

objects in the scene. These common disturbances make tracking with any single

approach unreliable in many short term scenarios and nearly impossible in most

long term applications. While a specific algorithm could work for certain

scenarios, it might not work for others. Based on this paradigm, this thesis

proposes a general tracking approach by fusing several of these algorithms into a

unique output. In the proposed approach, measurements provided by each of the

individual tracking algorithms are processed as a sensor measurement.

In the literature, sensor fusion is also known as multi-sensor data fusion,

data fusion, or combination of multi-sensor information. All of these methods

aim for the same goal of creating a synergy of information from several sources.
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Normally, the observations performed by individual sensors suffer from

inaccuracies. A system with only one sensor that observes a physical

phenomenon generally cannot reduce its uncertainty without relying on extra

sensors. Furthermore, a failure of the sensor leads to a failure of the system as a

whole. Different types of sensors provide a spectrum of information with varying

accuracy levels and the ability to operate under different conditions. There are a

number of benefits to data fusion. First, with redundant information, the

uncertainty can be reduced to increase the overall accuracy of the system. Second,

if a sensor is deemed to be faulty, another sensor might compensate for that fault.

Furthermore, while an algorithm could be more robust, say, to scale changes,

another could be more robust to outlying measurements; a cooperative approach

exploits the best of each method.

This work aims to create a general Bayesian approach for real-time

applications in robotic platforms. The proposed method processes the outputs of

the trackers/detectors as sensor measurements. This framework is founded in the

basis of the bank of Kalman filters with some similarities with mixtures of experts

discussed in [11, 12]. Furthermore, this scheme addresses some common

problems such as data imperfection, outliers and spurious data, measurement

delays, static vs. dynamic phenomena, and others discussed in [13].

A preliminary version of this approach was tested on an autonomous,

low-cost, computationally light target following platform that we developed. The

platform consists of consumer grade portable hardware and uses visual

information to estimate the relative position of the robot and generate the

corresponding control signals. Specifically, the platform is comprised of an iRobot

Create 2 mobile robot, a Creative Senz3D camera, and an Nvidia Jetson TK1

embedded computer. The proposed system is flexible since it imposes no

constraints on the shape or color of the target. This is accomplished using the
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tracking-learning-detection (TLD) [14] algorithm for object detection. The output

of the object detection algorithm, in addition to the depth information from the

3D camera are merged into a single estimate that is then used to track the target

through the image sequence.

The full-fledged data fusion approach was then tested in simulated signals

and on two different robotic platforms: An Unmanned Aerial Vehicle (UAV)

system and a pan-tilt system. These platforms used multiple state-of-the-art

tracking algorithms to estimate the position of the target in an image, robustly

merged the information from all the algorithms, and used the resulting estimate

to control the platform motion. Both systems are capable of following a target.

While similar approaches have used vision-based trackers to control a small UAV

in [15] and [16]. Previous works did not consider the fusion of several methods to

improve reliability over longer time spans.

1.1 Contributions

A new general method is proposed for data fusion, based in the foundation

of Kalman filtering. The approach is not restricted to computer vision, and the

algorithm could be used in any scenario where data from different sources are

available. Contrary to some machine learning approaches, this algorithm does not

need extensive data training. It adapts itself while it runs, relying on the behavior

of the data sources, this was proven in different scenarios, where a simulation

was proposed to validate the method. Additionally, one of the proposed method

was tested in a low cost mobile ground robot, where it was able to successfully

track a target, performing all the computation on-board. Other platforms such as

Pan-Tilt system and UAV were also tested, all of them running in real-time.
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1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents an

overview of some of the relevant works related to this thesis. It first covers the

subject of target following with robotic platforms and then goes on to discuss

some of the work on data fusion with a particular emphasis on vision-based

target tracking approaches. Chapter 3 then presents the design and evaluation of

a low-cost portable ground robotic platform that uses vision-based trackers and

time-of-flight cameras to follow a target. Chapter 4 shows how the algorithms

presented in Chapter 2 were then extended to a more general Hierarchical

Adaptive Bayesian Data Fusion (HAB-DF) method that allows different robotic

platforms to robustly track targets based on information obtained from several

vision-based tracking algorithms. Finally, Chapter 5 presents our final

conclusions and discusses some directions for future work.
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CHAPTER 2

RELATED WORK

2.1 Target Following with Robotic Platforms

There has been significant interest in robotic platforms for object or

pedestrian tracking and following. The design of such platforms usually involves

three main elements: 1) a tracker that is flexible enough to detect and follow

different types of targets, 2) an on-board computing system that is able to perform

intensive computer vision operations in real-time, and 3) a robust depth

estimation mechanism. We discuss each of these elements in more detail below.

Vision-based tracking algorithms for robotic platforms must be flexible

such that only a limited amount of information about the target must be known a

priori. These algorithms must also be robust enough so that the platform can

keep track of the target under a variety of conditions. Many existing platforms

rely on defining some kind of ”unique identifier” for the system to detect and

track. This could be as simple as a specific color or shape [8, 10, 7, 17, 18, 9, 19, 20]

or as intricate as using known markers such as LEDs attached to the target [21].

Although a certain level of robustness can be obtained by such approaches as

long as the assumptions on the appearance of the target and the background are

not violated, they lack the flexibility needed to make such systems practically

useful. Flexibility can be obtained by relying on discriminative trackers that can

be initialized with a target appearance at time t0 and then updated on-the-fly

[22, 23, 24]. These trackers can be endowed with additional robustness by

integrating them with recursive Bayesian estimation methods that can effectively

limit the number of opportunities for the algorithms to make mistakes

[25, 26, 27, 28].
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Regarding the availability of on-board processing capabilities, image

processing is notoriously computationally expensive, especially for high

resolution images. In many robotic tracking systems, image processing is

performed remotely, off-board [4, 8, 10, 19] due to the lack of on-board processing

power. There are only a few systems that present truly autonomous vehicles that

perform all the processing on-board. For example in [5] a low-cost FPGA is used

to increase the efficiency and speed of the image processing algorithms.

FPGA-based systems are, however, intrinsically less flexible than general

computing architectures and cannot, in general, benefit from the widespread

dissemination of algorithms designed for general graphics processing units

(GPUs). The advent of low-power embedded architectures with integrated GPUs,

such as the Nvidia Tegra TK1 SOC1, made it possible for these highly parallel

algorithms to make their way into low-cost robotic applications.

The third major issue in the design of portable target following robotic

systems is the availability of appropriate depth estimation mechanisms. Depth

information is vital for the platform to maneuver in three dimensions and

successfully follow a target. Although estimating the distance between the target

and the robotic platform based on scale variations of the target is a viable option,

such approach tends to be extremely fragile in the presence of relatively small

errors in the estimated target boundaries. Alternative sensing technologies can be

employed in conjunction with traditional vision-based depth estimation to

mitigate this problem. Over the past few years, RGB-D sensors have been widely

used for that purpose [8, 29, 30, 31]. The ideal depth sensor needs to provide

sufficient RGB image resolution and depth information at a feasible cost.

Although structured light sensors such as the Microsoft Kinect or ASUS xTion

tend to perform well in indoors applications, their performance under natural
1http://www.nvidia.com/object/tegra-k1-processor.html
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illumination suffers. More recent sensors based on time-of-flight (ToF)

technology, although still not completely immune to illumination problems, tend

to perform better.

Few autonomous target following systems [32, 2] are flexible enough not

to require ”unique identifiers”, efficient enough to perform all processing and

control operations on-board, and incorporate depth information for robust target

following performance while using relatively low-cost consumer grade hardware.

Similar systems to the one presented in this paper have been proposed, however,

some make use of large robotic platforms [2], expensive sensors [32], or unreliable

sensors [18], and may not be as robust as one based on a Bayesian framework

[20]. Therefore a low-cost, computationally light, robust vision based control

system for an autonomous vehicle is still subject of active research.

2.2 Data Fusion for Target Tracking

This section describes the different sensor fusion and adaptive sensor

fusion approaches, from general algorithms tailored for fusing sensor

measurements to more specific algorithms used in computer vision available in

the literature. This overview covers some of the latest sensor fusion mechanism

mentioned in [13], computer vision benchmarks such as [33] as well as

performance evaluation of some vision-based trackers [34].

Initial ideas of adaptive data fusion began in the 1960s [35], but it was not

until the early 1990s that the concept of fusion started to be fully explored [36],

laying the foundation for adaptive Bayesian approaches using the Kalman filter

(KF) and its variations based on fuzzy logic [37, 38], and more recent techniques

such as the Unscented Kalman Filter (UKF) that uses multiple fading

factors-based gain correction [39]. With recent growth in computational

performance, more robust approaches based on the Particle filter (PF) began to
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emerge [40]. However, both KFs and PFs are known to be susceptible to outliers,

and recent studies have tried to solve this problem by introducing extra

mechanisms to improve overall robustness [41, 42, 43]. More complex and time

consuming algorithms have gone further by considering not only outliers, but

also the type of sensor fault in order to resolve this shortcoming [44].

Additionally, when compared to KFs, PFs are computationally demanding as

they tend to require a large number of particles for improved robustness. For this

reason, they are not popular in applications that involve moderately high

dimensional state spaces.

An adaptive fusion approach with a hierarchical architecture was recently

proposed that not only adapts but also encodes information from the

performance of the sensors [12]. Although these approaches are widely used for

model regression and classification, training could leave unexplored regions,

causing the resulting output to suffer from outlying data. In addition, depending

on the selection of experts, the gating network and the inference model, the

overall system cannot be applied in real time applications [45].

While adaptive data fusion has been well studied and established for

multi-sensor measurements in general, researches in the computer vision

community have gone towards machine learning techniques to incorporate

multiple image characteristics into tracking algorithms. Methods such as PROST

[46], VTD [47], CMT [48], Struck [49], or the well known TLD [22] and its variants

[14, 16] fit this framework. However, the aforementioned algorithms provide

limited mechanisms to incorporate multiple and complementary feature

extraction methods, thereby restricting their practical applicability.

Some of the latest visual fusion tracking approaches suggest fusion at the

bounding box level [50], where information such as pixel coordinates are readily

available. However, to achieve such fusion, offline training and weight finding
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must be carried out. This is achieved using ground truth (GT) information as well

as performance metrics of the dataset used to train the algorithms. More general

fusion approaches have been recently proposed, most of which rely on Sequential

Monte Carlo Bayesian methods such as PFs [51, 52, 53], and are hence too

computationally demanding for real-time control applications.

This work aims to create a general Bayesian approach for real-time

applications in robotic platforms. The proposed method processes the bounding

boxes of the trackers/detectors as sensor measurements. This scheme addresses

some common problems such as data imperfection, outliers and spurious data,

measurement delays, static vs. dynamic phenomena, and others discussed in [13].

Additionally, this approach was tested in simulated signals and several different

robotics platforms. All of which are capable of following a target.
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CHAPTER 3

TARGET FOLLOWING WITH A PORTABLE GROUND ROBOT

This chapter describes the design of our low-cost portable robotic platform

as well as the methods used to estimate the target position and to control the

robot.

3.1 System Description

The system is composed of the following hardware: A Creative Senz3D

ToF camera that is able to capture an RGB and depth image. The camera has a

depth range of approximately 1m and generates range images at 30 f ps.1 A Jetson

TK1 embedded computer is attached to the iRobot Create 2 in order to process the

information collected from the camera and send control commands to the robot.

See Figure 3.1 for an image of the overall system.

Figure 3.1: Overall system comprising an iRobot Create 2 platform with a Jetson
TK1 board and a Creative Senz3D ToF camera.

1Although other ToF cameras such as the classic SR4000 from MESA imaging, the PMD Cam-
Cube 3.0 or SoftKinetic’s DS536A have ranges of up to 5m, the low-cost and lightweight Senz3D
was deemed sufficient for our purposes.



11

3.2 Target Detection

The system uses a C++ implementation of TLD [14] which gives the target

position in the image plane (u and v) and the target size (w and h). One

advantage is that TLD does not require previous information about the target, it

learns the target appearance.

3.3 The Standard Kalman Filter

A thorough derivation of the Kalman filter is beyond the scope of this

paper. A complete derivation of the KF can be found in [54]. The necessary

background information will be presented and then the focus will shift towards

the implementation and fine tuning of the filter.

Before presenting the Kalman filter equations, it is necessary to first define

a state-space model of the system. In this paper, the state vector is x = [u v z u̇ v̇ ż],

where u, v are the pixel-coordinates of the object, z is the distance from the sensor

to the object to be tracked, and u̇, v̇, ż are the velocities in each dimension,

respectively. The object tracking system is then modeled in state space form as:

x(t) = Ax(t− 1) + Bu(t) + w(t) (3.1)

y(t) = Cx(t) + v(t) (3.2)

where (3.1) represents the system dynamics, including the state transition matrix

A, the influence of the control action B and the process noise w, and (3.2) is the

measurement model, which includes the observation matrix C and the

measurement noise v. The process noise is white, Gaussian, with variance Rww

and measurement noise is white, Gaussian with variance Rvv. In other words,

w ∼ N (0, Rww), and v ∼ N (0, Rww).
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The object tracking system is modeled with the following state transition

and measurement matrices:

A =

 I3 I3

03×3 I3

 , B =



02×3

k1 0

0 0

0 k2


, C =

 I2 02×2 02×2

02×2 12×1 02×3

 (3.3)

where Im is a m×m identity matrix and 0m×n and 1m×n are m× n matrices

of zeros and ones, respectively. Matrix A above assumes that the target moves

with a constant velocity such that u̇(t) = u̇(t− 1), v̇(t) = v̇(t− 1) and

ż(t) = ż(t− 1) ∀(t). Matrix B accounts for the effect of the control action of the

PID controller on the velocities of the x and z axes. The rotation of the robot is

accomplished by controlling the displacement in the image ∆u, this relationship

can be considered θ ≈ ∆u since the displacement from one frame to another is

small in comparison to the distance between the robot and the target (see

Figure 3.2). Translation is carried out by attempting to preserve the relative

distance between the robot and the target at the first instant of time. The C matrix

indicates that the measurements available at any given time are the current u, v

coordinates of the object (the output of TLD) and z, the range from the robot to

the object, which is obtained from both the ToF camera and TLD. Matrix C is a

6× 4 matrix whose first two rows correspond to the observations of u and v

provided by TLD and whose last two rows correspond to the distance

measurements obtained by the ToF camera and by the relative scale computed

using TLD. The data fusion between the TLD and ToF measurements will be

covered in detail below.

The standard Kalman filter is comprised of two major components and

three intermediary calculations. The two major components are a prediction step

and an update step. The update step refines, or corrects, the previous prediction.
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u
v

Δu

Δθ

Figure 3.2: Small angle approximation justification.

The three intermediary calculations (innovation, error covariance, and Kalman

gain), are necessary for moving from the prediction step to the update step. Below

are all the necessary equations for implementing the standard Kalman filter:

Prediction:

x̂(t|t− 1) = A(t− 1)x̂(t− 1|t− 1) + Bu (3.4)

P̂(t|t− 1) = A(t− 1)P̂(t− 1|t− 1)A(t− 1)T + Rww(t) (3.5)

Innovation:

e(t) = y(t)− C(t)x̂(t|t− 1) (3.6)

Ree(t) = C(t)P̂(t|t− 1)C(t)T + Rvv(t) (3.7)

K(t) = P̂(t|t− 1)C(t)TRee(t)−1 (3.8)

Update:

x̂(t|t) = x̂(t|t− 1) + K(t)e(t) (3.9)

P̂(t|t) = (I − K(t)C(t))P̂(t|t− 1) (3.10)
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The Kalman filter creates an estimate of the predicted mean and covariance of the

system state, equations (3.4) and (3.5) respectively. For the object tracking

system, this includes the u, v and z coordinates of the object and its velocity in

each direction. Then, using the output of the object detector (only current u, v

coordinates) as measurements and (3.9) and (3.10), an update of the system

mean and covariance is made. This update is theoretically more accurate than the

previous prediction as it makes use of additional information (the new

measurements). In order to perform the update, the innovation e(t), error

covariance Ree(t), and Kalman gain K(t) must be calculated. This is

accomplished through equations (3.6), (3.7), and (3.8), respectively.

3.4 Sensor Data Fusion

There are two main purposes for fusing data measurements in this system.

The first is to increase overall estimation accuracy. The second is to allow the

robot to follow a target even when it goes beyond the threshold of the ToF

camera. The ToF camera is able to measure depth consistently and precisely when

a target is located less than 1m away, however, it becomes very noisy and

unreliable beyond this distance, generating many false measurements. A depth

estimate based on relative scale changes as measured by TLD is used to

compensate for these false measurements, effectively extending the operating

range of the system.

The depth measurement from the ToF camera is calculated by averaging

all the non-zero depth pixels inside the target bounding box (pixels whose depth

cannot be estimated, such as those beyond the camera range, are read with a zero

value). The height and width (h and w) provided by TLD are used to measure the

scale variations of the target and hence provide an indirect depth estimate. The
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scale change of the target is translated to a real distance according to

TLDz = Kz.

√
wimg × himg

w× h
(3.11)

where Kz is a constant obtained by relating the initial depth measurement from

the camera to the initial target bounding box size (w and h) and himg and wimg are

the height and width of the image.

The reliability of the ToF depth measurement is determined according to

the following sigmoidal relationship

Rvvζ = 1− 1
1 + e(η×r0−ζ)

(3.12)

where r0 is the percentage of zero elements in the target bounding box image, η

defines the slope of the function and ζ is the value where the penalization takes

place. The sigmoid function allows the Kalman filter to smoothly transition

between the ToF and the TLD distance measurements using the following 4× 4

covariance matrix

Rvv = diag(Rvvu , Rvvv , RvvToF, RvvTLD) (3.13)

where diag(.) represents a diagonal matrix, Rvvu and Rvvv reflect the uncertainties

in the observation of u and v and RvvTOF and RvvTLD represent the distance

uncertainties as computed by the ToF camera and the TLD scale and are defined

as follows

RvvTOF = κ × Rvvζ (3.14)

RvvTLD = κ × (1− Rvvζ) (3.15)

Hence, as Rvvζ
varies, the confidence level of the system is adjusted so that more

weight is given to the ToF measurements or to the TLD relative scale. κ represents

the penalization amplitude in the sigmoid function.
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3.5 Controller Design

Independent proportional-integral-derivative (PID) controllers are used

for the translational and rotational velocities of the robot. As shown in Figure 3.3,

the translational velocity allows the robot to drive forward or backward, and the

rotational velocity turns it to the left or to the right.

The set-point chosen for moving forward and backward is the initial

distance between the target and the robot in the first measurement. We require

this initial distance to be within the range of the ToF camera so that the TLD scale

measurement can be properly initialized. The PID constants for driving forward

and backward are Kp = 0.82, Ki = 0 and Kd = 0. The set-point for the angular

turn to left or right are the center of the image in the x axis. The constants for this

motion control are Kp = 0.4, Ki = 0 and Kd = 0.03. All the controller constants

were found experimentally so that the robot would show a fast yet smooth

response.

u

v

x

Forward

Backward
Left

Right

Figure 3.3: iRobot platform illustrating the motion control commands.
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In order to decouple the control actions, we implemented a simple

heuristic that checks for the magnitude of the error in the set points and decides

whether to move forward or to turn at each frame based on the largest error. That

is, if the difference between the u coordinate of the target and the corresponding

set point in the center of the image is larger than the difference between the radial

distance from the target to the sensor and its corresponding set point, the rotation

controller is activated. Otherwise, the translation controller is activated. In order

to be able to compare these distances, they are both normalized so that they range

between 0 and 1.

3.6 Experimental Results

We qualitatively evaluated the ability of the system to track a given target

by attaching an object (recycling bin) to another iRobot Create 2 which was

manually controlled while the autonomous robot followed it successfully through

a variety of conditions. A sketch of the map illustrating the trajectory of the robot

is shown in Figure 3.4. As the figure shows, the system autonomously followed

the target for approximately 110m. Screen captures obtained by the robot during

this experiment are shown in Figure 3.5. The values used for each experiment are

the followings: κ = 100, ζ = 12, η = 20,

k1 = k2 = 0.01,Rww = diag(0, 0, 0, 0.1, 0.1, 0.1).

In order to evaluate the ability of the system to recover from full occlusion

while still carrying out smooth depth estimation, we tracked a target object

(recycling bin) sliding across the ground so that another object (large trash bin)

entirely occluded the target. As the screen captures in Figure 3.6 indicate, despite

abrupt variations in depth measurements caused by the occluding object, the

system is able to fully recover from severe occlusions while maintaining its

distance from the target.
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Figure 3.7 demonstrates the system’s ability to respond to a fast moving

target at distances beyond the range of the ToF camera. Figure 3.8 shows

quantitative results regarding this experiments. The top left graph shows the

measured and the estimated pixel positions upos and its set point spu , which is the

center of the camera field of view. The top right graph shows the reference

distance from the target, spz , the measured range from TLDz and ToFz as well as

the fused estimate estz. Finally, in the bottom plots of the figure we can see the

control actions performed in order to move the robot in response to the position

error estimates. As the figure indicates, the linear and angular speed controllers

try to compensate for the estimated errors upos and estz, respectively.2

5.412m

44.6278m

15.24m

3.3274m

Figure 3.4: Floor plan sketch showing the robot trajectory.

Figure 3.9 illustrates the response of the system to fast motions along the u

axis. As the target moves in a certain direction, the robot moves to compensate

for that. As the figure shows, when the target stops moving (from around

iteration 500 to 590 and 700 to 750), the robot motion quickly stabilizes with the

target near the set point. Note that the small bias in position could be easily

compensated by further tuning the rotation controller.
2Note that the set points spu and spz correspond to the desired target position with respect to

the robot, not to the actual robot position. The controllers use the set points to move the robot so
that the different between the estimated position and the set point is minimized.
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FRAME:9506 FRAME:9570 FRAME:9790

FRAME:9815 FRAME:9870 FRAME:9896

Figure 3.5: Screen captures from the experiment illustrating the system’s robust-
ness to illumination changes due to the learning capability of TLD.

FRAME:1371 FRAME:1377 FRAME:1384

FRAME:1391 FRAME:1392 FRAME:1400

Figure 3.6: System recovering the target object (recycling bin) after a full occlusion
by another object (large trash bin).
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FRAME:886 FRAME:906 FRAME:973

FRAME:1018 FRAME:1061 FRAME:1257

Figure 3.7: The target object (backpack) is moved backwards, quickly and beyond
the ToF camera’s range (> 1m), the system is able to respond smoothly, making
use of TLDz, and successfully follows the object.

In order to show the effects of moving the target out of the range of the ToF

camera, we kept the robot static and tracked a target at different distances starting

well within the ToF range and progressing towards the 1m threshold and beyond.

The results of this experiment are shown in Figure 3.11a. The leftmost graph

shows that when the target is within the range of the ToF sensor, the estimate

relies on measurements from TLD and ToF (frames ∼ 100− 200). When the target

is farther than 1m (frames ∼ 350− 650) estimated distance is based almost

entirely on TLD. When the target is moved back to the starting position (frame

∼ 650) the ToF measurements are again considered in the estimate. On the right

plot shows that when the target is near the 1m mark (frames ∼ 350− 500), the ToF

measurements are very noisy and hence relying mostly on TLD is in fact an

appropriate strategy. Figure 3.11b shows the results of a different experiment

with similar behavior.
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Figure 3.8: Quantitative results corresponding to the backpack tracking experi-
ment shown in Figure 3.7.

FRAME:112 FRAME:194 FRAME:660

Figure 3.9: The target object (backpack) is moved to the left and to the right.

The left graph shows that when the target is within the range of the ToF

sensor, the estimated distance is based primarily on the ToF measurements (frame

∼ 80− 200). However, when the target is near 1m (frame ∼ 200− 300), the



22

Figure 3.10: Response of the controller to the angular turn.

estimated distance is between the distance measured with the ToF sensor and that

obtained from TLD. Finally when the target is beyond 1m (frame ∼ 300− 480) the

estimated distance is based almost entirely on TLD. When the target is moved

back to the starting position (frame ∼ 480− 600) the ToF measurements are again

considered in the estimate. The right plot shows that when the target is near the

1m mark (frame ∼ 200− 300), the ToF measurements are very noisy and hence

relying mostly on TLD is in fact an appropriate strategy. Figure 3.11b carried out

a different experiment with similar behavior.

We validate our choice of Rvvζ by illustrating that the percentage of zeros

in the depth image is a viable way to determine the accuracy of the ToF sensor. In

other words, the error between the ToF measurements and actual distance should

increase monotonically as Rvvζ increases. This experiment also consisted of

moving the target object progressively farther away while keeping the robot

static. However, this time the focus was not on the behavior near the threshold of

1m, but on the overall trend of the error as the distance increased. The graph in

Figure 3.12 shows that as the target moves away from the robot, the error

between ToF measurements and the ground truth increases and so does Rvvζ .
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(a) First Experiment

(b) Second Experiment

Figure 3.11: Plots showing in detail how the data fusion between the TLD scale
and the ToF measurements works.

Figure 3.12: Correlation between the distance and the level of confidence Rvvζ .
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CHAPTER 4

HIERARCHICAL ADAPTIVE BAYESIAN DATA FUSION

This chapter discusses our proposed data fusion method. To avoid

confusion, all visual trackers/detectors used in this work that produce a

bounding box such as DSSTtld [16], CMT [48], or Struck [49] will be called

detectors from this point forward. These algorithms are processed as sensors that

cast measurements. The method proposed in this work, which we call

Hierarchical Adaptive Bayesian Data Fusion (HAB-DF), is the main tracker that

processes such measures.

The approach proposed in this thesis is a variation of the framework

commonly known as mixture of experts [45], which are organized in levels or

hierarchies that converge in a gating network. This work substitutes that gating

network with a Bayesian approach that adapts online. Therefore, no training is

necessary. In addition, this method is organized in two levels or hierarchies: the

experts and the fusion center. Each expert module, Ki, i = 1, ...n, works

asynchronously from the other modules. Usually, a bank of estimators is applied

when the sensors differ in model, as each suffers from different failure types. In

this particular case, the experts are KFs, inspired in part by [11] and [12].

Figure 4.1 shows the representation of the approach.

In the hierarchical model, each expert is equipped with an outlier detection

mechanism that calculates a reliability score. The fusion center merges the

outputs of each expert by adopting a weighted majority voting scheme.

4.1 Bayesian Filtering

A KF explained in 3.3 is used. The state vector is now given by x = [u v h w

u̇ v̇ ḣ ẇ], where u, v are the pixel coordinates of the center of the target, h and w
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K1
K2
K3

Kn

b
b
b

KF
Fusion Center

Figure 4.1: Hierarchical Adaptive Bayesian Data Fusion approach. The first level of
the hierarchy consists of experts that provide a local estimate to the fusion center.
The second level is the fusion center.

are its height and width, respectively. u̇ v̇ ḣ ẇ are the velocities in each dimension.

Also, the matrix A was chosen to adopt the the random acceleration model.

Matrices A, B and C are defined below:

A =

 I4 I4

04 I4

 , B =



02×4

k1 0

0 0

0 k2


, C =



13×1 03×3 03×6

03×1 13×1 03×8

02×2 12×1 02×7

02×3 12×1 02×6


(4.1)

This model is used for the UAV and the pan-tilt system. However, the

UAV does not take into consideration matrix B due to the high coupling amongst

controllers. Moreover, the matrix C considers the fusion amongst detectors and is

used in the fusion center.

4.2 Hierarchical Adaptive Bayesian Data Fusion

In order to reduce the sensor fusion uncertainty, two approaches have been

implemented. One cares about the reliability of the measurement, delivering a

local estimate based on the Mahalanobis distance [55]. The other is a global

approach based on majority voting. The overall approach is divided into a
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two-level hierarchy: experts and the fusion center. While each expert uses

position and speed for accuracy, the fusion center only fuses direct measurements

such as position, but still predicts speeds for better results in subsequent frames.

Furthermore, the concept is not limited to KFs. Any Bayesian estimator can be

used to accomplish fusion. Nevertheless, KFs are known for being efficient, fast,

and ideal for real-time applications.

4.2.1 Local Expert Weighting

Like other filters, KFs are susceptible to abnormally large error in

estimation. This in part is due to KFs not being robust to outliers. Several works

have been proposed to solve this phenomenon [42, 56, 57]. The Mahalanobis

distance (MD) alleviates this issue by providing a measure of how much a

predicted value differs from its expected distribution.

The MD can be easily explained using point P with coordinates (x, y) and a

joint distribution of two variables defined by parameters µ, σx and σy, as shown in

Figure 4.2. The distance is zero if P = µ. The distance increases as P moves away

from µ. Evidently, this method can also be used for more than two dimensions.

Outliers occur due to modeling uncertainties, incorrect

process/measurement noise covariances selection, and other external

disturbances. If the estimation error (the difference between the real state and the

estimated state) of the KF is beyond a certain threshold, the MD can penalize the

expert as being in failure or abnormal mode. Alternatively, one can use the

predicted measurement to determine outliers. This error is then defined as

follows: given a measurement y = [y1 y2 ... yN]
T, the MD from this measurement

to a group of predicted values with mean µ = [µ1 µ2 ... µN]
T and covariance
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b

b

µ

P

σx

σy

b

Figure 4.2: Mahalanobis distance representation. Point P depicts an outlying pre-
dicted value.

matrix C is given by

M(y) =
√
(y− µ)TRee−1(y− µ) (4.2)

Since each expert is equipped with its own MD calculation, an approximated

version is used [58]:

M(y) ≈
N

∑
i=1

(
qi

2

Reei

)1/2

(4.3)

where qi = yi − µi and Reei is the ith value along the diagonal of the innovation

covariance Ree. Eq. (4.3) decreases the computational burden if a considerable

number of experts is needed. Usually, an estimator can be penalized if the MD is

beyond certain threshold. However, doing so yields hard transitions. To soften

this rule, a sigmoid function has been employed:

wM =
1

1 + e(−η×M(y)+ξ)
(4.4)

where ξ is a value chosen using the χ2 distribution based on the number of

degrees of freedom (DOF) of the system and the desired confidence level.

Outliers are identified using Eq. (4.4) where wM represents an expert’s

performance in the form of a local weighting function.
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4.2.2 Majority Voting

Voting is one of the simplest approaches for fusing information [35]. There

are many ways to determine the weights in a majority voting scheme. The

method chosen for this application is a weighted decision that combines the

output of multiple sensors (in this case, information from multiple bounding

boxes). This method begins by calculating the pairwise Euclidean distance

between bounding boxes

di(p, r) = ‖p− r‖ , i = 1, 2, 3, · · · , n (4.5)

where p and r are vectors that represent the coordinates and the size of the

bounding boxes for two different detectors Di and Dj. A statistical descriptor such

as the minimum value can be used to reach consensus among all the detectors

mind = min(di, · · · , dn), i = 1, 2, 3, · · · , n (4.6)

Figure 4.3 shows a scenario in which detector D3 would be penalized

because it is farther from the other two detectors. Note that this scheme imposes

no limit to the number of detectors/sensors that can be used. The only limitation

is computational performance. Although a minimum of three detectors/sensors

is needed so that a consensus can be reached.

To calculate a weight that penalizes detectors for being farther from the

cluster of detectors, instead of using a hard limiter, a hyperbolic tangent is

applied, allowing a soft transition among detectors:

wd = ω0 + ω(1 + tanh(η ×mind − λ)) (4.7)

where ω0 is an initial weight consistent with the observed phenomenon, ω is the

desired impact of the penalization function, which determines the overall effect of

a particular detector in the fusion if it drifts away, η determines the slope of the
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d3

b

b

D3

D2

D1

Figure 4.3: Majority voting representation. Distances di are traced from the center
of each detector. While these distances are shown as the center distances among
detectors (u and v), they also comprise their heights and widths (h and w). In
this scenario, D1 and D2 are close to each other, while D3 is farther away. The
consensus will penalize D3 in this case, since d1 is the minimum distance.

function, and λ determines the distance at which the penalization starts taking

place.

4.3 Adaptive Fusion Center Strategy

The bank of KFs is composed of one filter for each sensor/detector. Each

filter/expert in the bank gives a local estimate of the detector/measurement

assigned to that particular filter. Another KF acts as the fusion center, which

adapts itself at each measurement by updating its measurement noise covariance

according to

Rvv(wd, wM) = Γwd + ∆wM (4.8)

where wd and wM are given by Eqs. 4.7 and 4.4, respectively,

Γ = diag(γ1, γ2, · · · , γn), ∆ = diag(δ1, δ2, · · · , δn), and diag(.) represents a

diagonal matrix whose elements are the function parameters. γi and δi can be set

to 1 if there is no a priori knowledge of the system. Otherwise, γi can be set to a
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value depending on the knowledge of the noise of the sensor and δi can be set to a

value depending on how much drift the sensor suffers.

4.4 Platform description

A pan-tilt system and a small UAV were used to test the proposed method.

The algorithm was implemented in C++ using OpenCV libraries. Each of the

experts as well as the fusion center were executed in individual threads. The

algorithm ran in a Lenovo W530 laptop with an Intel Core i7-3630QM CPU @

2.40GHz× 8 processor and a Quadro K1000M graphics card.

4.4.1 Pan-Tilt System

The platform was composed of two servo motors that control the 2DOF of

the system with an on-board Creative Senz3D camera1. Two different PID

controllers kept the system as close as possible to the center of the image by using

the centroid of the fusion approach. The servo motors were driven by the

computer using an Arduino UNO that converted the position commands into

PWM signals for the servo motors. Position commands were sent using serial

communication. The implemented PID gains for both the pan and tilt motions

were: Kp = 35, Ki = 3.4 and Kd = 8. Figure 4.4 shows a representation of the

pan-tilt system.

4.4.2 UAV Platform

The UAV used in this work was the Parrot AR.Drone 2.0, controlled over a

Wi-Fi link. The 4DOF platform is controlled using the same heuristic proposed in

[15]. However only a PD controller was used, with the following gains:

• Pitch(θ): Kpθ = 0.020 and Kdθ = 0.020.
1Only RGB images were used in this work. Depth data was discarded.
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Pan

Tilt

u

v

Figure 4.4: Diagram of the pan-tilt following system.

• Roll(φ): Kpφ = 0.699 and Kdφ = 0.400.

• Yaw(ψ): Kpψ = 0.120 and Kdψ = 0.020.

• Throttle: KpT = 0.430 and KdT = 0.021.

Furthermore, in addition to attempting to keep the target at the center of the

image using its centroid position (u,v), the UAV also used the target’s relative

scale variations, based on h and w, to keep a constant distance from the target.

Figure 4.5 shows a representation of the UAV system.

4.5 Experimental Results

Several experiments were conducted to evaluate the proposed HAB-DF

approach, from a simulation-based experiment to real applications using the

pan-tilt system and the UAV platform described in Sections 4.4.1 and 4.4.2.
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Figure 4.5: Diagram of the UAV following system.

4.5.1 Simulations

A simulation using the HAB-DF is shown in Figure 4.6. To emulate a

scenario in which different sensors have distinct characteristics, each signal in the

simulation suffers from different types of noise and faults. Each expert in the first

level of the hierarchy fed the fusion center with its own estimate. Having

redundancy in sensor data produced estimations that any single method could

not accomplish alone. Moreover, the way that the approach adapts itself along the

run allows it to eliminate the noise and faults. This can be seen in Figure 4.6b,

where higher covariance values indicate that each expert in the first hierarchy is

deemed faulty depending on its performance.
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Compared to other works like [44], the HAB-DF took into consideration

outliers by using the Mahalanobis distance and softening their impact. Unlike

[44], HAB-DF does not learn the fault types, as learning specific types can leave

unexplored regions outside the scope of the training scenarios. Alternatively the

majority voting penalizes any faulty sensor. The values used for the simulations

are η = 0.01 and ζ = 400 for the MD. ω0 = 4, ω = 500, η = 12.5 and λ = 1.5 for

the Majority voting.

(a) Simulated signals (b) Adaptive Covariance

Figure 4.6: Simulation of a second order system. KFi represents the local estimate
of the signal ysi. The HAB-DF is the only method that is able to accurately track
the signal by fusing the output of each KF in the first hierarchy. Each sensor suffers
from different types of faults: Gaussian noise, spikes, drifts and shocks (a constant
offset for an given time). Figure (b) shows the covariances of the different signals
that are feed to the fusion center.

4.5.2 Pan-tilt System

This section describes the experiments carried out using the pan-tilt

platform presented in Section 4.4.1. The evaluation consisted of testing each of

the estimators individually with their respective detector and then the fusion of

all of them. This experiment took place in a room where a face was tracked using
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the pan-tilt system. All the experiments were run using similar light conditions

and with the same face at similar starting distances. Each run lasted until the

target was out of the image frame or noticeable tracking loss occurred. This gave

a result where each individual test follows the target for a different number of

frames. Furthermore, to compare each individual detector’s overall performance,

each test was labeled by hand. Five tests for each individual estimator and the

proposed HAB-DF were carried out, for a total of 20 data sets. Figure 4.7 presents

images from these selected sequences. The values used for the system are the

followings:

• η = 1 and ζ = 10 for the MD of each expert

• TLD: ω0 = 10, ω = 500, η = 0.1 and λ = 10, ∆ = 10 and ∆ = 10000 when

the confidence value is below the default threshold

• CMT: ω0 = 10, ω = 1000, η = 0.1 and λ = 10, ∆ = 1000

• STRUCK: ω0 = 10, ω = 20000, η = 0.1, λ = 8 and ∆ = 10

Performance and reliability were measured with an overlap score (also

known as the Jaccard index), given by

JIDX(Abb, AT) =
|Abb ∩ AT|
|Abb ∪ AT|

(4.9)

where |.| represents the cardinality, Abb and AT are the areas in pixels of the

bounding boxes of each approach and of the GT, respectively. JIDX measures the

area of overlap between the bounding boxes generated by each approach and the

labeled GT. The closer to 1, the better the performance. In addition to the JIDX, the

Euclidean distance d used in the majority voting also depicts the dissimilarity

among each approach and the GT. Calculating this measure involves the center of

the bounding box, its height, and its width.

Figure 4.8 displays several metrics that illustrate the performance of the

approaches. Figure 4.8a shows the average performance of the different detectors
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(a) HAB-DF (b) Struck

(c) DSSTtld (d) CMT

Figure 4.7: Pan-tilt system experiment using a face as the target (best seen in col-
ors). The frames shown here are random frames selected from the dataset. Each
of them presents a different tracking approach. The target was moving sideways
with some vertical disturbances and gradually increasing the distance from the
camera. In (a) HAB-DF is shown in yellow and DDSTtld is shown in blue because
it is lost.

and the proposed approach according to JIDX. As shown, Struck performed

worst among all the detectors, having problems with scale changes caused by the

target moving closer and farther from the camera. CMT, DSSTtld and the

proposed approach performed similarly until the 400th frame. DSSTtld showed

the best performance for a few frames in terms of accuracy (between the 400th

and 600th frame) but was not able to handle pose changes nor out-of-plane

rotations of the target, which resulted in a sudden drop in confidence level and
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consequently losing track of the target. While CMT was able to handle distortions

caused by rotation, its JIDX degraded with scale changes. As a result, it kept track

of the target longer than the other detectors, albeit with substantially reduced

accuracy. If the intrinsic properties of the detectors are combined, the Bayesian

approach is not only more robust but also more accurate than only using a single

detector. Also, if one of the detectors is not performing well, such as Struck in the

aforementioned scenario, it is possible to see that the fusion is not affected.

Figure 4.8c shows a comparison of the accuracies of the different approaches.

This plot considers a threshold between JIDX and d of what is considered a

successful frame. On average, the Bayesian fusion yielded better results and

outperformed every single estimator.

An additional experiment was conducted using a recycle bin as target

because of its distinct appearance. Figure 4.9 exhibits different images along the

experiment. Figure 4.10 shows the different metrics collected during the

experiment. Figure 4.10a shows the JIDX for each approach. Up to the 100th

frame, all approaches have similar performance, with HAB-DF leading in

accuracy most of the time. In this scenario, Struck showed better performance,

since the object was kept almost at a constant distance. It was not until frame 700

that Struck lost track. Figure 4.10b shows the Euclidean distance d. DSSTtld

performed the worst due to pose variations and out-of-plane rotations of the

object, while CMT had a reasonable performance throughout the run.

Furthermore, the HAB-DF leads in performance among all approaches, relying

only on the best detectors at each frame as shown once again in Figure 4.10c.

Figure 4.10d displays how the adaptation of the HAB-DF took place. When

DSSTtld fell below the set threshold, the MD triggered. Between frames 100-300

and 500-800 the detector did not overcome distortions caused by out-of-plane

rotations of the object, lowering DSSTtld’s confidence, and consequently losing
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(a) Jaccard Index (b) Euclidean distance d

(c) Measure of success

Figure 4.8: Average performance. (a) Average JIDX. A decrease in JIDX indicates
a tracking performance degradation. A value of zero indicates a complete failure
in which there is no overlap between the GT and the detector. (b) Average of
Euclidean distance. A value close to zero means that the GT and the tracker are
similar. (c) Success bar graph, a frame is considered successfully tracked when
JIDX ≥ 0.5 and d ≤ 50.

track. CMT showed several spikes caused by substantial delays in processing key

points. This behavior does not affect the overall approach, as asynchronous

measurements are accounted for by the MD and majority voting.

Figures 4.10e and 4.10f illustrate the object position within the frame with

respect to the desired set-point (Spu = 320 and Spv = 240 which are the pixel

center coordinates of the image). This graph shows that the experiment was
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consistent with the motion of the target. Despite some detectors being lost along

the experiment, the transition among them was soft.

Figure 4.9: Pan-tilt system experiment using a recycling bin as the target (best seen
in colors). The frames shown here are random frames selected from the dataset.
Each of them presents a different tracking approach. The target was moving side-
ways with some vertical disturbances, and a slight change in distance from the
camera. HAB-DF is shown in yellow. In frams 301 and 697 DDSTtld is shown in
blue because it is lost.

4.5.3 UAV Platform

Figure 4.11 shows snapshots of experiments using a small UAV. These

experiments were carried out indoors and consisted of following several targets

in a hallway and in a gym. The quantitative results of two of these experiments

can be seen in Figures 4.12 and 4.13. Figure 4.12a displays the relative distance to

the target as estimated by the ratio between the area of the target and the image

area. The initial ratio is used as the set point, and the error is used to control the
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UAV pitch. Figures 4.12b and 4.12c show the vertical and horizontal target

positions within the frame and the corresponding set points. The offset observed

in Figure 4.12c is due to the coupled effect of the pitch and throttle controllers as

the target moves (i.e., as the UAV moves forward, its camera faces down).

Although this effect is unavoidable with a fixed camera, it could be resolved with

a camera that can be controlled independently from the UAV. Figure 4.12d shows

the amount of penalization suffered by each tracker throughout the trial. It is

interesting to note that in this scenario Struck shows improved performance in

comparison with the pant-tilt system experiments. This is a result of the fact that

the target scale remains approximately constant as the UAV follows it. Figure 4.13

shows equivalent results for the hallway scenario. A similar discussion applies,

except for the fact that the offset in the vertical coordinate is not seen because the

target moved at lower speeds.

Redundant information allows the platform to track the target for longer

periods of time. In the sequence shown in Figure 4.12, HAB-DF was able to keep

track of the target for 7132 frames, until all the detectors lost track of the target

simultaneously. In comparison, DSSTtld first lost track at frame 220, Struck at

frame 275, and CMT at frame 1738. While these trackers were often able to

recover from failure because the target was eventually brought back to the center

of the image, had the control actions been taken according to any one of those

trackers individually, the platform would likely not have been able to continue

following the target. Thanks to the proposed scheme, the system is capable of

ignoring lost detectors and rely on those that provide confident estimates.

Failures are evident in Figures 4.12d and 4.13d, which show to what extent each

detector is penalized.
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(a) Jaccard Index (b) Euclidean distance d

(c) Measure of success (d) Adaptive Covariance

(e) Horizontal target position (f) Vertical target position

Figure 4.10: Evaluation of the performance of tracking a recycle bin. Figure 4.10a
and Figure 4.10b show that DSSTtld has a degraded performance (around frames
100-300 and 500-800). This is consistent with Figure 4.10d, where DSSTtld suffers
of a sudden drop of confidence value resulting in an increment of the covariance
that is ruled by the MD and the majority voting scheme. The HAB-DF has the
best performance among all the approaches as seen in Figure 4.10c. Moreover, the
transition between detectors is soft, allowing for the smooth motion control that
can be seen in Figure 4.10e and Figure 4.10f.
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(a) Hallway Experiments

(b) Gym Experiments

Figure 4.11: UAV Trials. Several targets are followed with a small UAV. The top
left figure (frame 1413) shows all the detectors working properly in the hallway
scenario while the HAB-DF fuses their measurements. During the trial, DSSTtld
loses track several times, as illustrated in frame 2520, while CMT and Struck con-
tinue to track and HAB-DF properly combines their outputs. The figures at the
bottom show similar snapshots for the gym scenario. In the right figure (frame
493), Struck shows significant scale disparity, while the combined output correctly
estimates the size of the target. Frame 3132 shows a different target in which all
three detectors are working albeit with some positional inaccuracy. The combined
estimate is more accurate.
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(a) Relative distance to target (b) Horizontal target coordinate

(c) Vertical target coordinate (d) Adaptive covariance

Figure 4.12: Tracking a person in a gym with a UAV. Figures 4.12a, 4.12b, and 4.12c
show the behavior of the UAV along the trial. Figure 4.12d shows the adaptive
behavior of the HAB-DF during the experiment.
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(a) Relative distance to target (b) Horizontal target coordinate

(c) Vertical target coordinate (d) Adaptive covariance

Figure 4.13: Tracking a person in a hallway with a UAV. Figures 4.13a, 4.13b, and
4.13c show the behavior of the UAV along the trial. Figure 4.13d shows the adap-
tive behavior of the HAB-DF during the experiment.
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CHAPTER 5

CONCLUSIONS

In this work, a Hierarchical Adaptive Bayesian Data Fusion (HAB-DF)

method was presented. While the algorithm is not limited to specific applications,

the main scenario under consideration was vision-based robotic control. The

method outperformed single detectors, with better accuracy and keeping track

for longer periods of time. Moreover, no training data was used while most

approaches in this field rely on machine learning techniques, most of which

require large amounts of training data for good performance. Even when

substantial amounts of training data are available, these methods may be unable

to handle situations that were not properly explored during training. The

HAB-DF relies instead on the local statistical performance of the individual data

sources. In addition, the decentralized architecture allows the experts to operate

asynchronously, while penalizing measurements that are delivered to the fusion

center with significant delays. Finally, a weighted majority voting scheme allows

sensors that provide measurements which are discrepant or have low confidence

to be automatically discarded from the estimation.

We also presented an autonomous, cost effective, vision-based object

following ground vehicle. The system was based on an iRobot Create 2 mobile

platform, a Creative Senz3D ToF camera, and a Jetson TK1 embedded computer.

The object detection was accomplished using TLD and the tracking performed by

a Kalman filter. Data fusion was implemented in order to extend the operating

range of the system beyond the measuring capabilities of the ToF sensor. All

processing was performed in real-time on the on-board computer. Several

experiments were conducted where the system successfully followed target

objects in a variety of situations, including illumination changes, full occlusions,
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and rapid movement at far (> 1m) distances. Quantitative experiments showed

in detail how data fusion is accomplished.

Although the proposed approach is not restricted to Kalman filters and

alternative recursive Bayesian methods such as Sequential Monte Carlo

approaches [40] could be employed for increased robustness, one of our main

objectives was to devise a lightweight method that could be used in portable

embedded platforms. A Kalman filter seemed like the most effective choice.

Moreover, the platforms tested show that the proposed algorithms are

suitable for real-time applications with good performance. All the platforms were

able to follow practical objects with different characteristics without any prior

training. Additionally, this work shows that when detectors/sensors with

different performances are combined, they can outperform single methods.

5.1 Future Work

There are several future directions to explore in this project. In the first

place it would be beneficial to improve the control heuristics so that the decisions

between moving in different directions would occur more seamlessly thereby

reducing the chances of losing track of the target due to abrupt motions. Second,

the ToF camera used in this project has a limited range and cannot be used

outdoors, hence it was not possible to use it on the aerial platform. A better

camera would extend the use of the system and allow for more accurate distance

estimation using the UAV. In addition, faster and more robust tracking can be

accomplished simply by porting more of the software implementation to the GPU

in the embedded computer. Finally, exploring data association and track

management mechanisms would allow for the system to perform more robustly

in more complex scenarios in which multiple similar targets move in close

proximity.
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