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Synopsis: The syntheses, X-ray structures, and electrochemical properties of 

homobimetallic complexes (M = Co, Cu, Zn) supported by a pentadentate 

ligand (LN3O2) with “fused” NNO pincer-type coordination sites are reported. 

The LN3O2 chelate consists of a bridging diarylamido group and flanking 

salicyaldimine donors, and the flexible framework permits the binding of 

redox-active auxilary ligands, such as 2,2-bipyridine, and small molecules like 

O2. The S = 1/2 species arising from oxidation of the LN3O2 ligand was 
characterized with EPR spectroscopy. 
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Abstract 

 

The remarkable chemistry of mononuclear complexes featuring tridentate, 

meridionally chelating “pincer” ligands has stimulated the development of 

ligand frameworks containing multiple pincer sites. Here, the coordination 

chemistry of a novel pentadentate ligand (LN3O2) that provides two closely 

spaced NNO pincer-type compartments fused together at a central 

diarylamido unit is described. The trianionic LN3O2 chelate supports 

homobimetallic structures in which each M(II) ion (M = Co, Cu, Zn) is bound 

in a meridional fashion by the bridging diarylamido N atom and O,N-donors of 

the salicyaldimine arms. The metal centers are also coordinated by a mono- 

or bidentate auxiliary ligand (Laux), resulting in complexes with the general 

form [M2(LN3O2)(Laux)2]+ (where Laux = 1-methyl-benzimidazole (1MeBI), 2,2′-

bipyridine (bpy), 4,4′-dibromo-2,2′-bipyridine (bpyBr2), or (S)-2-(4-isopropyl-

4,5-dihydrooxazolyl)pyridine (S-iPrOxPy)). The fused nature of the NNO pincer 

sites results in short metal–metal distances ranging from 2.70 Å for 

[Co2(LN3O2) (bpy)2]+ to 3.28 Å for [Zn2(LN3O2) (bpy)2]+, as revealed by X-ray 

crystallography. The complexes possess C2 symmetry due to the twisting of 

the aryl rings of the μ-NAr2 core; spectroscopic studies indicate that chiral Laux 

ligands, such as S-iPrOxPy, are capable of controlling the helical sense of the 

LN3O2 scaffold. Since the four- or five-coordinate M(II) centers are linked 

solely by the amido moiety, each features an open coordination site in the 

intermetallic region, allowing for the possibility of metal–metal cooperativity 

in small-molecule activation. Indeed, the dicobalt(II) complex [Co2(LN3O2) 

(bpyBr2)2]+ reacts with O2 to yield a dicobalt(III) species with a μ-1,2-peroxo 

ligand. The bpy-containing complexes exhibit rich electrochemical properties 

due to multiple metal- and ligand-based redox events across a wide (3.0 V) 

potential window. Using electron paramagnetic resonance (EPR) spectroscopy 

and density functional theory (DFT), it was determined that one-electron 

oxidation of [Co2(LN3O2) (bpy)2]+ results in formation of a S = 1/2 species 
with a LN3O2-based radical coupled to low-spin Co(II) centers. 
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1 Introduction 

Tridentate ligands that coordinate in a meridional fashion are 

often called pincers due to their rigidity and tightly binding nature.1 

Pincer ligands have found application in nearly all areas of inorganic 

chemistry, including transition-metal catalysis,2 sensors,3 and 

materials science.4 While considerable diversity exists within this ever-

expanding ligand family, a classic type of pincer features a central 

diarylamido unit with two flanking phosphine donors (PNP pincers).5 

Several diarylamido-based NNN pincers have also been generated, 

where the N-donor arm is an imine, amine, or heterocyclic donor.6 

Such ligands have been used in the preparation of low-coordinate, yet 

highly stable, transition-metal complexes capable of performing 

diverse chemical transformations. 

 

Given the remarkable utility of mononuclear pincer complexes, 

there has been interest in developing binuclear complexes that contain 

two pincer-type compartments. The presence of two metal ions offers 

several catalytic advantages, most crucially the possibility of 

cooperative action in substrate binding/activation and the ability to 

perform multiple electron transfers (assuming the metal centers are 

redox active). A few “bis(pincer)” complexes have been prepared by 

the dimerization of mononuclear species;7 in most of these cases, the 

metal centers are doubly bridged by either the pincer arms8 or the 

exogenous ligands not connected to the pincer unit.9 In other systems, 

the two metal centers are bridged by pyrazine,10 1,4-phenylene,11 or 

ferrocene12 spacers, resulting in metal–metal distances greater than 6 

Å. Some groups have connected the pincer compartments by more 

flexible spacers,13 thereby allowing the metal centers to approach one 

another in space. For example, the Ozerov group recently generated a 

series of ligands in which two PNN pincer units are connected by an 

alkyl spacer, (CH2)n (n = 2 or 4).14 These ligands were used to prepare 

hydride-bridged palladium complexes with Pd–Pd distances near 3 Å, 

as well as a complex featuring a metal–metal bond (Pd–Pd distance of 

2.56 Å). 

 

As described in this manuscript, short intermetallic distances 

can also be achieved by removing the spacer between the two pincer 

sites entirely. In such “fused” ligands, the two pincer coordination 
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pockets share one of the donor arms, which then serves as the single 

bridge between the metal centers. This approach to bis(pincer) design 

has not been widely employed, but Meyer and co-workers reported 

fused (or “two-in-one”) PNN15 and NNN16 pincer ligands featuring a 

bridging pyrazolate that provides one N-donor to each ferrous center 

(Figure 1a). Here, we expand upon the fused approach through the 

synthesis of the novel bis(pincer) ligand LN3O2, shown in Figure 1b. 

Like conventional PNP and NNN pincers, the LN3O2 ligand contains a 

central diarylamido donor; however, the presence of the two 

salicyaldimine chelates allows LN3O2 to behave as a binucleating ligand 

with the diarylamido unit in a bridging position. The resulting 

framework provides pincer-type coordination to two metal centers in 

close proximity (3 Å or less). 

 

Figure 1. Complexes featuring fused (or “two-in-one”) pincer ligands: (a) PNN 
bis(pincer) ligand recently reported by Meyer and co-workers,15 and (b) the LN3O2 
ligand described in this manuscript. 

While not nearly as common as binucleating frameworks with 

phenolate or pyrazolate bridges, ligands like LN3O2 that feature a 

bridging diarylamido unit have yielded complexes with attractive 

electronic and structural properties. For instance, PNP ligands have 

been used to generate various bimetallic(I) complexes with M2(μ-

NAr2)2 diamond cores (M = Cu,17 Ni,18 and Co19). Although these 

complexes utilize PNP ligands, the resulting four-coordinate M(I) 

http://dx.doi.org/10.1021/acs.inorgchem.5b01380
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centers exist in pseudotetrahedral N2P2 environments instead of 

pincer-like sites. Spectroscopic and computational analysis revealed 

that the redox chemistry occurs primarily at the bridging N atoms20—a 

finding consistent with previous studies of mononuclear complexes 

with PNP pincer ligands.21 The “noninnocent” nature of μ-NAr2 ligands 

is a potential asset in catalytic processes requiring multiple electron 

transfers.22 Another advantage of diarylamido ligands is their intrinsic 

chirality due to the relative orientation of the aromatic rings, which 

gives rise to atropisomers with C2 symmetry.14,23 Thus, diarylamido-

based ligands could lead to chiral bimetallic complexes for 

enantioselective catalysis. 

 

To date, the vast majority of bimetallic complexes with bridging 

diarylamido ligands have featured M2(μ-NAr2)2 diamond cores.17-19,24 

However, such structures are not ideal for catalysis or small-molecule 

activation, as the steric bulk of the four phenyl rings limits access to 

the metal centers. In contrast, the LN3O2 ligand provides a more open 

framework that preserves three vacant coordination sites on each 

metal center in a meridional arrangement, similar to mononuclear 

pincer-based complexes. These open coordination sites are available 

for the binding of substrates and/or auxiliary ligands (Laux) with 

advantageous structural or electrochemical properties, as described 

below. Due to the presence of the salicyaldimine chelates, LN3O2 bears 

resemblance to binucleating salen and Schiff base ligands that have 

proven useful in catalysis and materials chemistry.25 The variable 

dihedral angle between aryl rings of the amido unit imparts rotational 

flexibility to the pendant salicyaldimine arms. 

 

 
Chart 1 
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In this manuscript, we report the syntheses and X-ray structural 

characterization of the homobimetallic complexes 1–5 indicated in 

Chart 1. These complexes have the general formula [M2(LN3O2)(Laux)2]+ 

(M = Co, Cu, Zn), where Laux represents 1-methylbenzimidazole 

(1MeBI), 2,2′-bipyridine (bpy), or 4,4-dibromo-2,2-bipyridine (bpyBr2). 

Chiral [Zn2(LN3O2)]+ frameworks were prepared using the optically 

active bidentate ligand (S)-2-(4-isopropyl-4,5-dihydro-

oxazolyl)pyridine (S-iPrOxPy; Chart 1). First-row transition metals were 

selected because of their earth abundance, redox-active nature 

(except for Zn), and proven ability to perform small-molecule 

activation. The electrochemical properties of 2–5 were thoroughly 

examined with cyclic and square-wave voltammetries. These bpy-

containing complexes exhibit an abundance of electrochemical features 

arising from both ligand- and metal-based events; indeed, complexes 

2 and 4 exhibit six redox events over a potential range of nearly 3.0 

V. The electronic structures of [Co2(LN3O2) (bpy)2](ClO4) (4) and its 

one-electron oxidized derivative (4ox) were examined with 

spectroscopic and computational methods. These results indicate that 

4ox is a S = 1/2 species in which the μ-NAr2 unit of the LN3O2 ligand 

carries a large amount of unpaired spin density. Finally, we 

demonstrate that [Co2(LN3O2) (bpyBr2)2](ClO4) (5) reacts with O2 to 

yield a dicobalt(III) complex with a bridging peroxo ligand, suggesting 

that these bimetallic complexes are capable of small-molecule 

activation. 

2 Experimental Section 

Materials and Physical Methods 
 

Unless otherwise noted, all reagents and solvents were 

purchased from commercial sources and used as received. 

Dichloromethane and acetonitrile were purified and dried using a 

Vacuum Atmospheres solvent purification system. Due to their air-

sensitive nature, the dicobalt(II) complexes (4 and 5) were handled 

under inert atmosphere using a Vacuum Atmospheres Omni-Lab 

glovebox. Elemental analyses were performed at Midwest Microlab, 

LLC, in Indianapolis, IN. 

 

http://dx.doi.org/10.1021/acs.inorgchem.5b01380
http://epublications.marquette.edu/
http://pubs.acs.org/doi/10.1021/acs.inorgchem.5b01380#cht1
http://pubs.acs.org/doi/10.1021/acs.inorgchem.5b01380#cht1
http://pubs.acs.org/doi/10.1021/acs.inorgchem.5b01380#cht1
http://pubs.acs.org/doi/10.1021/acs.inorgchem.5b01380#cht1


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Inorganic Chemistry, Vol 54, No. 47 (2015): pg. 8744-8754. DOI. This article is © American Chemical Society and 
permission has been granted for this version to appear in e-Publications@Marquette. American Chemical Society does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from American Chemical Society. 

7 

 

UV–vis absorption spectra were obtained with an Agilent 8453 

diode array spectrometer, and CD spectra were recorded using a Jasco 

J-715 spectropolarimeter. Infrared (IR) spectra of solid samples were 

measured with a Thermo Scientific Nicolet iS5 FTIR spectrometer 

equipped with the iD3 attenuated total reflectance accessory. 1H NMR 

spectra were collected at room temperature with a Varian 400 MHz 

spectrometer. EPR experiments were performed using a Bruker 

ELEXSYS E600 equipped with an ER4415DM cavity, an Oxford 

Instruments ITC503 temperature controller, and an ESR-900 He flow 

cryostat. The program EasySpin4 was used to simulate the 

experimental spectra.26 Electrochemical measurements were 

performed with an epsilon EC potentiostat (iBAS) under nitrogen 

atmosphere at a scan rate of 100 mV/s with 0.1 M (NBu4)PF6 as the 

electrolyte. A three-electrode cell containing a Ag/AgCl reference 

electrode, a platinum auxiliary electrode, and a glassy carbon working 

electrode was employed for voltammetric measurements. Under these 

conditions, the ferrocene/ferrocenium (Fc+/0) couple has an E1/2 value 

of +0.47 V in MeCN. 

 

Bis(4-methyl-2-nitrophenyl)amine 
 

This procedure was adapted from previously published reports.27 

A round-bottom flask equipped with a stir bar was charged with a 

mixture of concentrated nitric acid (70%; 10 mL) and glacial acetic 

acid (45 mL). The mixture was cooled to 0 °C, and bis(4-

methylphenyl)amine (5.00 g, 25.4 mmol, 1.0 equiv) was added. The 

yellow mixture was stirred for 10 min in an ice/water bath before 

dropwise addition of isoamyl nitrite (8.75 g, 75 mmol, 3.0 equiv) over 

the course of 5 min. The solution turned to dark green; after stirring 

for an additional 10 min, the solution changed to an orange color and 

a precipitate started to form. The orange precipitate was collected via 

filtration, washed with diethyl ether, and dried under vacuum (6.45 g, 

22.5 mmol, 89% yield). 1H NMR (400 MHz, CDCl3) δ: 2.37 (s, 6H, 

CH3), 7.32 (d, J = 8.5 Hz, 2H, ArH), 7.42 (d, J = 8.5 Hz, 2H, ArH), 

7.99 (s, 2H, ArH), 10.80 (s, 1H, NH). 13C NMR (101 MHz, CDCl3) δ: 

20.43, 119.73, 125.25, 126.33, 131.73, 135.19, 135.85. 
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Bis(4-methyl-2-aminophenyl)amine 
 

A 250 mL pressure vessel equipped with a stir bar was filled 

with solid bis(4-methyl-2-nitrophenyl)amine (3.00 g, 10.45 mmol, 1.0 

equiv), MeOH (100 mL), and 10% Pd/C (500 mg, 0.47 mmol, 0.0045 

equiv). The flask was pressurized with H2 gas (46 psi), and the mixture 

was stirred at 65 °C for 4 h, during which the bright orange solution 

became colorless. The mixture was filtered through Celite and washed 

with cold MeOH, and the solvent was removed under vacuum to yield a 

light purple oil. The oil residue was triturated with Et2O (20 mL) to give 

a pale brown powder, which was collected by filtration and dried under 

vacuum (2.25 g, 9.93 mmol, 95% yield). 1H NMR (300 MHz, CDCl3) δ: 

2.25 (s, 6H, CH3), 3.56 (s, 4H, NH2), 4.80 (s, 1H, NH), 6.54 (d, J = 

7.9 Hz, 2H, ArH), 6.63–6.58 (m, 4H, ArH). 13C NMR (75 MHz, CDCl3) 

δ: 21.14, 109.99, 117.27, 120.49, 129.10, 133.11, 138.61. 

 

Pro-Ligand H3LN3O2 
 

To a solution of bis(4-methyl-2-aminophenyl)amine (454 mg, 

2.0 mmol, 1.0 equiv) in MeOH (30 mL) was added 3,5-di-tert-butyl-2-

hydroxybenzaldehyde (937.3 mg, 4.0 mmol, 2.0 equiv) and 5 drops of 

formic acid. The mixture was heated overnight at 60 °C under an inert 

atmosphere, giving rise to a bright yellow precipitate. The yellow solid 

was collected by filtration and dried under vacuum to yield pure 

H3LN3O2 as a yellow powder (1.20 g, 1.82 mmol, 91% yield). X-ray-

quality crystals were obtained by slow evaporation of a H3LN3O2 

solution in a mixture of CH2Cl2:CH3OH (9:1). Anal. Calcd for C44H57N3O2 

(MW = 659.96 g mol–1): C, 80.08; H, 8.71; N, 6.37. Found: C, 80.32; 

H, 8.89; N, 6.27. 1H NMR (400 MHz, CDCl3) δ: 1.17 (s, 18H, C(CH3)3), 

1.30 (s, 18H, C(CH3)3), 2.35 (s, 6H, CH3), 6.55 (s, 1H, NH), 6.99 (s, 

2H, ArH), 7.02 (d, J = 8.2 Hz, 2H, ArH), 7.17 (s, 2H, ArH), 7.36–7.30 

(m, 4H, ArH), 8.64 (s, 2H, ArH), 13.26 (s, 2H, N═C-H). 13C NMR (101 

MHz, CDCl3) δ: 20.79, 29.13, 31.46, 34.11, 34.81, 116.46, 118.56, 

119.27, 126.75, 127.78, 127.89, 130.44, 134.26, 136.82, 138.47, 

140.22, 158.15, 163.94. 
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[Cu2(LN3O2)(1MeBI)2](OTf) (1) 

 

The pro-ligand H3LN3O2 (66.0 mg, 0.100 mmol), 1MeBI (26.4 

mg, 2.0 equiv), and Cu(OTf)2 (72.3 mg, 2.0 equiv) were added to a 25 

mL flask containing MeCN (5 mL). After stirring for 5 min, NEt3 (42 μL, 

3.0 equiv) was added, causing the solution to turn from brown to 

reddish brown. The mixture was stirred for 2 h and then filtered 

through Celite. A small amount of MeOH (1 mL) was slowly added to 

the filtrate, and the resulting solution was allowed to slowly evaporate 

over the course of 2 days. This process yielded orange-brown crystals 

that were collected, washed with Et2O (3 mL), and dried under 

vacuum. Yield = 65 mg (54%). X-ray-quality crystals were grown from 

a concentrated 1:1 solution of CH2Cl2:MeOH. The resulting structure 

revealed uncoordinated MeOH molecules in the asymmetric unit, and 

elemental analysis suggests that a small amount (∼1.0 equiv) remains 

after drying. Anal. Calcd for C61H70Cu2F3N7O5S·CH3OH (MW = 1229.4 g 

mol–1): C, 60.56; H, 6.07; N, 7.97. Found: C, 60.35; H, 5.69; N, 7.82. 

UV–vis [λmax, nm (ε, M–1 cm–1) in MeCN]: 310 (19 000), 424 (13 100). 

FTIR (cm–1; solid): 2953 (m), 2903 (w), 2864 (w), 1593 (m), 1523 

(m), 1493 (m), 1456 (m), 1420 (m), 1358 (s), 1151 (s). 19F NMR (δ, 

CD3CN): −79.3 (OTf). 1H NMR (δ, CD3CN): −30.6 (2H), 1.4 (18H), 2.2 

(18H), 4.0 (6H), 6.2 (2H), 7.5 (2H), 8.8 (2H), 16.2 (2H), 22.7 (2H), 

30.5 (2H), 40.2 (2H), 41.8 (6H), 51.7 (2H). μeff = 2.41 μB (Evans 

method). 

 

[Cu2(LN3O2) (bpy)2](OTf) (2) 
 

The procedure was nearly identical to the one used to prepare 

complex 1; the only difference was the replacement of 1MeBI with bpy 

(31.2 mg, 2.0 equiv). Yield = 104 mg (84%). Anal. Calcd for 

C65H70Cu2F3N7O5S (MW = 1245.4 g mol–1): C, 62.68; H, 5.67; N, 7.87. 

Found: C, 62.46; H, 5.73; N, 7.85. UV–vis [λmax, nm (ε, M–1 cm–1) in 

MeCN]: 298 (40 200), 430 (15 100), 495 (sh). FTIR (cm–1; solid): 2948 

(m), 2904 (w), 2863 (w), 1593 (m), 1521 (m), 1489 (m), 1352 (s), 

1152 (s). 19F NMR (δ, CD3CN): −79.3 (OTf). 1H NMR (δ, CD3CN): 

−29.5 (2H), 1.4 (18H), 2.8 (18H), 8.9 (2H), 9.6 (2H), 10.1 (2H), 12.9 

(4H), 13.3 (2H), 18.1 (2H), 25.9 (2H), 33.6 (2H), 36.0 (2H), 39.9 

(6H), 45.1 (2H), 116.0 (2H). μeff = 2.36 μB (Evans method). 

 

http://dx.doi.org/10.1021/acs.inorgchem.5b01380
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[Zn2(LN3O2) (bpy)2](OTf) (3) 
 

To a 25 mL flask were added the pro-ligand H3LN3O2 (66.0 mg, 

0.100 mmol), 2,2′-bipyridine (31.2 mg, 2.0 equiv), and Zn(OTf)2 (72.7 

mg, 2.0 equiv). The components were dissolved in a 1:1 mixture of 

MeCN:CH2Cl2 (5 mL) and stirred for 5 min. The addition of NEt3 (42 μL, 

3.0 equiv) caused the solution to turn to an orange color. The mixture 

was stirred overnight and filtered through Celite, and the solvent was 

removed under vacuum. The resulting powder was washed with Et2O 

(5 mL), dried under vacuum, and dissolved in a 1:1 mixture of 

MeCN:MeOH (4 mL). Slow evaporation over the course of 2 days 

provided orange crystals that were collected via filtration, washed with 

Et2O, and dried under vacuum. Yield = 96 mg (77%). Orange crystals, 

suitable for X-ray diffraction, were grown from a concentrated 1:1 

solution of CH2Cl2:MeOH. Anal. Calcd for C65H70F3N7O5SZn2 (MW = 

1249.1 g mol–1): C, 62.50; H, 5.65; N, 7.85. Found: C, 62.16; H, 

5.60; N 7.76. UV–vis [λmax, nm (ε, M–1 cm–1) in MeCN]: 425 (24 300), 

460 (19 600). FTIR (cm–1; solid): 2949 (m), 2904 (w), 2865 (w), 1598 

(m), 1523 (m), 1487 (m), 1379 (s), 1159 (s). 19F NMR (δ, CD3CN) δ: 

−79.4 (OTf). 1H NMR (δ, CD3CN): 1.11 (s, 18H, C(CH3)3), 1.37 (s, 

18H, C(CH3)3), 2.13 (s, 6H, CH3), 5.54 (d, J = 8.3 Hz, 2H, LN3O2-ArH), 

6.17 (d, J = 8.3 Hz, 2H, LN3O2-ArH), 7.03 (s, 2H, LN3O2-ArH), 7.21 (dd, 

J = 8.1, 5.5 Hz, 2H, bpy-ArH), 7.26 (d, J = 2.7 Hz, 2H, LN3O2-ArH), 

7.39 (d, J = 2.7 Hz, 2H, LN3O2-ArH), 7.45–7.51 (m, 2H, bpy-H), 7.96 

(d, J = 8.1 Hz, 2H, bpy-H), 7.99–8.07 (m, 8H, bpy-H), 8.48 (s, 2H, 

N═C-H), 8.75 (d, J = 6.3 Hz, 2H, bpy-H). 

 

[Co2(LN3O2) (bpy)2](ClO4) (4) 
 

The procedure was identical to the one used to prepare complex 

3, except for the substitution of Co(ClO4)2·6H2O (73.2 mg, 2.0 equiv) 

for Zn(OTf)2. Yield = 85 mg (71%). Brown crystals, suitable for X-ray 

diffraction, were grown from a concentrated 1:1 solution of 

acetone:MeOH. Anal. Calcd for C64H70ClCo2N7O6 (MW = 1186.6 g mol–

1): C, 64.78; H, 5.95; N, 8.26. Found: C, 62.37; H, 5.86; N, 7.91 (the 

discrepancies are due to small amounts of [HNEt3]ClO4 salt, which 

persists even after multiple recrystallizations). UV–vis [λmax, nm (ε, M–1 

cm–1) in MeCN]: 440 (13 800), 590 (sh). FTIR (cm–1; solid): 2956 (m), 

2904 (w), 2867 (w), 1587 (m), 1511 (m), 1441 (m), 1360 (s), 1162 

http://dx.doi.org/10.1021/acs.inorgchem.5b01380
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(m). 1H NMR (δ, CD3CN): 0.74 (s, 18H, C(CH3)3), 1.30 (s, 18H, 

C(CH3)3), 2.09 (s, 6H, CH3), 5.48 (d, J = 8.4 Hz, 2H, LN3O2-ArH), 6.13 

(d, J = 8.4 Hz, 2H, LN3O2-ArH), 7.01 (s, 2H, LN3O2-ArH), 7.15 (d, J = 

2.4 Hz, 2H, LN3O2-ArH), 7.23 (d, J = 2.4 Hz, 2H, LN3O2-ArH), 7.34 (t, J 

= 6.0 Hz, 2H, bpy-H), 7.68 (t, J = 6.0 Hz, 2H, bpy-H), 7.73 (s, 2H, 

N═C-H), 7.84 (d, J = 6.0 Hz, 2H, bpy-H), 7.96–8.12 (m, 6H, bpy-H), 

8.18 (d, J = 7.9 Hz, 2H, bpy-H), 10.23 (d, J = 6.0 Hz, 2H, bpy-H). 

 

[Co2(LN3O2) (bpyBr2)2](ClO4) (5) 
 

This complex was prepared in the same manner as complexes 3 

and 4, with the exception that bpyBr2 (62.8 mg, 2.0 equiv) was used as 

the auxiliary ligand. Yield = 86 mg (57%). The X-ray structure 

revealed two uncoordinated MeOH molecules in the asymmetric unit. 

Anal. Calcd for C64H66Br4ClCo2N7O6·2CH3OH (MW = 1566.3 g mol–1): C, 

50.61; H, 4.76; N, 6.26. Found: C, 48.98; H, 4.48; N, 6.31 (the 

discrepancies are due to small amounts of [HNEt3]ClO4 salt). UV–vis 

[λmax, nm (ε, M–1 cm–1) in MeCN]: 260 (30 000), 340 (14 900), 420 

(8900), 580 (sh). FTIR (cm–1; solid): 3070 (w), 2948 (m), 2900 (w), 

2863 (w), 1589 (m), 1543 (w), 1520 (m), 1492 (w), 1462 (m), 1397 

(m), 1251 (m), 1170 (m). 1H NMR (δ, CD3CN): 0.77 (s, 18H, C(CH3)3), 

1.31 (s, 18H, C(CH3)3), 2.17 (s, 6H, CH3), 5.62 (d, J = 8.2 Hz, 2H, 

LN3O2-ArH), 6.23 (d, J = 8.2 Hz, 2H, LN3O2-ArH), 7.10 (s, 2H, LN3O2-

ArH), 7.17 (d, J = 2.5 Hz, 2H, LN3O2-ArH), 7.30 (d, J = 2.5 Hz, 2H, 

LN3O2-ArH), 7.57 (dd, J = 6.0, 1.9 Hz, 2H, bpy-H), 7.65 (d, J = 6.0 Hz, 

2H, bpy-H), 7.80 (s, 2H, N═C-H), 7.92 (dd, J = 6.3, 1.9 Hz, 2H, bpy-

H), 8.27 (d, J = 1.9 Hz, 2H, bpy-H), 8.46 (d, 2H, J = 1.9 Hz, bpy-H), 

9.95 (d, J = 6.3 Hz, 2H, bpy-H). 

 

[Co2(O2)(LN3O2) (bpyBr2)2](ClO4) (5-O2) 
 

Complex 5 was dissolved in a 1:1 mixture of CH2Cl2:MeOH and 

exposed to air. Slow evaporation over the course of several days 

provided dark brown crystals of both 5 and 5-O2 that were collected 

via filtration, washed with Et2O, and dried under vacuum. Attempts to 

separate the two complexes were unsuccessful. Regardless, the 

spectroscopic features of 5-O2 were distinguished by comparison to 

data collected with pure samples of 5. FTIR (cm–1; solid): 2948 (m), 

2899 (w), 2863 (w), 1588 (m), 1543 (w), 1518 (m), 1493 (m), 1462 

http://dx.doi.org/10.1021/acs.inorgchem.5b01380
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(m), 1398 (m), 1252 (m), 1170 (m), 1080 (s). 1H NMR (δ, CD3CN): 

0.77 (s, 18H, C(CH3)3), 1.36 (s, 18H, C(CH3)3), 2.32 (s, 6H, CH3), 5.63 

(d, J = 8.4 Hz, 2H, LN3O2-ArH), 6.55 (d, J = 8.4 Hz, 2H, LN3O2-ArH), 

7.17 (d, J = 6.4 Hz, 2H, bpy-H), 7.35 (d, J = 2.4 Hz, 2H, LN3O2-ArH), 

7.37 (dd, J = 6.4, 2.0 Hz, 2H, bpy-H), 7.63 (d, J = 2.4 Hz, 2H, LN3O2-

ArH), 7.70 (d, J = 2.0 Hz, 2H, bpy-H), 8.34 (dd, J = 6.1, 1.9 Hz, 2H, 

bpy-H), 8.37 (d, J = 1.9 Hz, 2H, bpy-H), 8.45 (s, 2H, LN3O2-ArH), 8.61 

(s, 2H, N═C-H), 9.00 (d, J = 6.1 Hz 2H, bpy-H). 

 

[Zn2(LN3O2)(S-iPrOxPy)2](OTf) (6) 
 

To a 25 mL flask were added the pro-ligand H3LN3O2 (66.0 mg, 

0.100 mmol), Zn(OTf)2 (72.7 mg, 2.0 equiv), and S-iPrOxPy (38 mg, 

2.0 equiv). The components were dissolved in a 3:1 mixture of 

MeCN:CH2Cl2 (8 mL) and stirred for 5 min. The addition of NEt3 (42 μL, 

3.0 equiv) caused the yellow solution to turn to a red-orange color. 

The mixture was stirred for 1 h and filtered through Celite, and the 

solvent was removed under vacuum. The resulting powder was 

washed with pentane (5 mL) and dried under vacuum. Yield = 73.2 mg 

(56%). Anal. Calcd for C67H82F3N7O7SZn2 (MW = 1317.2 g mol–1): C, 

61.09; H, 6.27; N, 7.44. Found: C, 60.79; H, 5.81; N, 7.97 (the slight 

discrepancies are due to small amounts of NEt3). UV–vis [λmax, nm (ε, 

M–1 cm–1) in MeCN]: 420 (21 000), 460 (18 300). FTIR (cm–1; solid): 

3055 (w), 2953 (m), 2906 (w), 2867 (w), 1653 (w), 1606 (m), 1591 

(m), 1523 (m), 1487 (m), 1402 (m), 1236 (s), 1153 (s). 19F NMR (δ, 

CD3CN): −79.4. 1H NMR (δ, CD3CN): 0.52 (d, J = 6.8 Hz, 6H, 

CH(CH3)2), 0.59 (d, J = 6.8 Hz, 6H, CH(CH3)2), 1.11 (s, 18H, C(CH3)3), 

1.36 (s, 18H, C(CH3)3), 1.56–1.62 (m, 2H, CH(CH3)2), 2.22 (s, 6H, 

CH3), 3.92–3.82 (m, 2H, oxazol-H), 4.48 (dd, J = 9.4, 6.9 Hz, 2H, 

oxazol-H), 4.65 (t, J = 9.4 Hz, 2H, oxazol-H), 6.80 (d, J = 8.2 Hz, 2H, 

LN3O2-ArH), 6.89 (d, J = 8.2 Hz, 2H, LN3O2-ArH), 6.93 (s, 2H, LN3O2-

ArH), 7.12 (d, J = 2.7 Hz, 2H, LN3O2-ArH), 7.16 (dd, J = 7.9, 5.0 Hz, 

2H, py-H), 7.40 (d, J = 2.7 Hz, 2H, LN3O2-ArH), 7.57 (d, J = 7.9 Hz, 

2H, py-H), 7.98 (t, J = 7.9 Hz, 2H, py-H), 8.10 (s, 2H, N═C-H), 8.58 

(d, J = 5.0 Hz, 2H, py-H). 

 

  

http://dx.doi.org/10.1021/acs.inorgchem.5b01380
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Crystallographic Studies 
 

X-ray diffraction data were collected at 100 K with an Oxford 

Diffraction SuperNova diffractometer equipped with a 135 mm Atlas 

CCD detector and Cu Kα radiation source. The resulting data were 

processed with the CrysAlis Pro program package (Agilent 

Technologies, 2011). An absorption correction was performed on the 

real crystal shape followed by an empirical multiscan correction using 

SCALE3 ABSPACK routine. Structures were solved using the SHELXS 

program and refined with the SHELXL program28 within the Olex2 

crystallographic package.29 All non-hydrogen atoms were refined with 

anisotropic displacement parameters. Hydrogen atoms were generally 

positioned geometrically and refined using appropriate geometric 

restrictions on bond lengths and bond angles within a riding/rotating 

model, and the torsion angles of −CH3 hydrogens were optimized to 

better fit residual electron density. For complexes 1, 3, and 5-O2, the 

unit cells contained large void spaces filled with heavily disordered 

solvent, and exact localization of these molecules was not feasible. The 

solvent-mask procedure implemented in Olex2 was therefore applied 

to account for the contribution of these solvent molecules to diffraction 

intensities. X-ray crystallographic parameters are provided in Table 

S1, and experimental details are available in the CIFs. 

 

DFT Computations 
 

DFT calculations were carried out using the ORCA 2.9 software 

package developed by Dr. F. Neese (MPI for Chemical Energy 

Conversion).30 When X-ray structures were not available (4ox and 6), 

computational models were generated via geometry optimizations that 

employed the Becke-Perdew (BP86) functional.31 The computational 

models of 4 and 4ox omitted the tert-butyl substituents of the 

phenolate donors. Calculations of the four possible isomers of 6, 

however, involved the entire complex without modification of the LN3O2 

or S-iPrOxPy ligands. Once the optimized models were obtained, 

molecular energies and electronic structure parameters were 

calculated using Becke’s three-parameter hybrid functional for 

exchange along with the Lee–Yang–Parr correlation functional 

(B3LYP).32 All calculations utilized Ahlrichs’ valence triple-ζ basis set 

(TZV) and TZV/J auxiliary basis set in conjunction with polarization 

http://dx.doi.org/10.1021/acs.inorgchem.5b01380
http://epublications.marquette.edu/
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functions on all atoms.33 Solvent effects were calculated using the 

conductor-like screening model (COSMO)34 with a dielectric constant 

(ε) of 36.6 for MeCN. Exchange coupling constants (J) were obtained 

using Noodleman’s broken symmetry approach (H = −2JSA·SB).35 

Isosurface plots of molecular orbitals were prepared with Laaksonen’s 

gOpenMol program.36 

3 Results and Discussion 

3.A Synthesis of H3LN3O2 and Bimetallic Complexes 
 

The pro-ligand H3LN3O2 is prepared by the route shown in Figure 

2. The final step in the synthesis is the condensation of bis(2-amino-4-

methylphenyl)amine with 2 equiv of 3,5-di-tert-butylsalicylaldehyde. 

Formation of the two salicyaldimine units required the presence of 

tert-butyl groups on the phenol ring. Salicylaldehydes with less bulky 

substituents reacted instead with the central diarylamine moiety to 

give a cyclized 2-(benzimidazol-2-yl)phenol product (Figure S1). The 

identity of H3LN3O2 was confirmed by 1H NMR and X-ray 

crystallography. In the solid state, H3LN3O2 adopts a twisted 

conformation featuring hydrogen bonds between phenol donors and 

imine acceptors (Figure 2). 

 

 
Figure 2. (a) Synthetic route for the pro-ligand H3LN3O2. (b) Molecular structure of 
H3LN3O2 determined by X-ray crystallography (50% probability thermal ellipsoids). 

The bimetallic complexes 1–6 were prepared by the reaction of 

H3LN3O2 with 2 equiv of the appropriate MX2 salt (M = Co, Cu, Zn; X = 

OTf, ClO4) in the presence of NEt3, along with addition of 2 equiv of the 

desired auxiliary ligand (1MeBI, bpyR2, or S-iPrOxPy). The resulting 

complexes are soluble in CH2Cl2 and polar aprotic solvents but 

insoluble in MeOH. All of the complexes possess a dark orange-brown 

color due to an absorption manifold with λmax near 420 nm (ε ≈ 104 M–

http://dx.doi.org/10.1021/acs.inorgchem.5b01380
http://epublications.marquette.edu/
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1 cm–1). This feature is attributed to π–π* transitions of the LN3O2 

ligand based on its intensity and consistent presence irrespective of 

metal ion or auxiliary ligand. As expected, dicopper complexes 1 and 2 

give rise to 1H NMR spectra with broad, paramagnetically shifted peaks 

(Figure S2). Using the Evans method, effective magnetic moments 

(μeff) of 2.38 ± 0.03 μB were measured for 1 and 2 at room 

temperature; these values are slightly less than the spin-only value of 

2.56 μB expected for a binuclear species with two uncoupled S = 1/2 

spins. In contrast, 1H NMR spectra of the dizinc and dicobalt complexes 

(3–5) display sharp peaks with chemical shifts indicative of 

diamagnetic ground states (Figure S3). The lack of paramagnetism in 

the dicobalt complexes 4 and 5 is somewhat surprising, and it 

suggests the presence of strong antiferromagnetic coupling between 

the Co2+ centers—a matter that will be examined below. 

 

3.B Solid-State Structures of Complexes 1–5 
 

Dark orange-brown crystals of the bimetallic complexes 1–5 

suitable for X-ray diffraction analysis were grown from concentrated 

1:1 solutions of CH2Cl2 and MeOH (or 1:1 acetone:MeOH in the case of 

4). Attempts to generate X-ray-quality crystals of 6 were 

unsuccessful. Selected bond lengths and angles are provided in Tables 

1 and 2, and the representative structures of [Cu2(LN3O2)(1MeBI)2]+ 

(1+) and [Cu2(LN3O2) (bpy)2]+ (2+) are shown in Figure 3. In each 

structure, the LN3O2 ligand supports a bimetallic core in which the 

metal centers are solely bridged by the central diarylamido group. For 

example, the unit cell of 1 contains two symmetrically independent 

dicopper complexes with Cu1···Cu2 separations (dCu–Cu) of 3.0069(4) 

and 3.1202(4) (Table 1). The central [Cu2N]3+ unit exhibits a Cu1–N3–

Cu2 angle near 97°, giving rise to an intermetallic “cleft”. As intended, 

the LN3O2 framework provides meridional [N,N,O]2– coordination to 

both Cu2+ centers. The amido and phenolate donors of the fused 

pincer-type sites are pulled back slightly with O(1/2)–Cu(1/2)–N3 

bond angles of 165 ± 3°. The Cu–O/N bond distances range from 

approximately 1.90 Å for the phenolate donors (O1,O2) to 2.05 Å for 

the bridging amido (N3) ligand. The additional coordination of two 

1MeBI auxiliary ligands to each Cu2+ ion results in distorted square-

planar geometries, although Cu1 is also weakly bound to a MeOH 

solvate (the Cu1–O6 distance is greater than 2.40 Å). The planes of 

http://dx.doi.org/10.1021/acs.inorgchem.5b01380
http://epublications.marquette.edu/
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the 1MeBI ligands are oriented nearly perpendicular to the square-

planar [CuN3O] units, and the 1MeBI phenyl rings are positioned 

parallel to the imine groups on the inside of the cleft (Figure 3a). 

 

Table 1. Selected Bond Distances (Angstroms) and Angles (degrees) for the 

Two Symmetry-Independent Units (A and B) in the Crystal Structure of 

[Cu2(LN3O2)(1MeBI)2]OTf (1) 

bond lengths A B 

Cu1···Cu2 3.0069(4) 3.1202(4) 

Cu1–O1 1.908(2) 1.921(2) 

Cu1–N1 1.940(2) 1.950(2) 

Cu1–N3 2.049(2) 2.061(2) 

Cu1–N4 (1MeBI) 1.991(2) 2.006(2) 

Cu1–O6 (MeOH) 2.537(2) 2.404(2) 

Cu2–O2 1.902(2) 1.898(2) 

Cu2–N2 1.920(2) 1.925(2) 

Cu2–N3 2.035(2) 2.039(2) 

Cu2–N6 (1MeBI) 1.987(2) 1.982(2) 

bond angles A B 

Cu1–N3–Cu2 94.83(8) 99.10(8) 

O1–Cu1–N1 92.55(7) 92.46(7) 

O1–Cu1–N3 162.50(7) 162.62(7) 

O1–Cu1–N4 88.53(7) 90.19(7) 

N1–Cu1–N3 84.05(7) 84.20(7) 

N1–Cu1–N4 175.12(8) 175.51(8) 

N3–Cu1–N4 96.31(7) 94.32(7) 

O2–Cu2–N2 94.05(7) 93.55(7) 

O2–Cu2–N3 164.17(7) 167.41(7) 

O2–Cu2–N6 89.15(7) 89.46(8) 

N2–Cu2–N3 84.13(7) 84.46(7) 

N2–Cu2–N6 166.02(8) 168.43(8) 

N3–Cu2–N6 96.40(7) 94.96(8) 

twist anglea 66.3 73.2 
a The twist angle refers to the angle between the planes of the aryl rings of the central 
amido unit. 
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Figure 3. Thermal ellipsoid plots (40% probability) derived from the X-ray crystal 
structures of complexes 1 (a) and 2 (b). Hydrogen atoms, counteranions, and tert-
butyl substituents of the phenolate donors have been omitted for the sake of clarity. 

The meridional binding mode of the LN3O2 framework causes 

each half of the ligand to adopt an orientation in which the 

salicyaldimine unit is roughly coplanar with the adjacent arylamido 

ring. However, these planar halves of the LN3O2 ligand are rotated 

relative to one another due to the twisting of the diarylamido unit. The 

solid-state structures of 1–5 revealed “twist angles” between 60° and 

73° for the aryl rings bonded to N3 (Tables 1 and 2). Therefore, the 

bimetallic complexes possess idealized C2 symmetry and exist as 

racemic mixtures of (M)- and (P)-enantiomers, as illustrated in Figure 

4 [Note: The (P)-enantiomers of 1 and 2 are displayed in Figure 3]. In 

the next section, we will demonstrate that use of a chiral auxiliary 

ligand can force the LN3O2 ligand to favor one conformation over the 

other, resulting in a single diastereomeric product. 

 
Figure 4. Illustration of the two possible orientations of the C2-symmetric LN3O2 ligand 
in complexes 1–6. The designations of the atropisomers (M and P) were based on 
rules developed for binaphthyl systems. 
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The three bpy-containing complexes 2–4 (Chart 1) yield quasi-

isomorphous crystals in the monoclinic P21/c space group (Table S1). 

The structure of [Cu2(LN3O2) (bpy)2]+ (2+), shown in Figure 3b, is 

representative of the series. In each complex, the two metal ions 

occupy equivalent binding sites defined by the pincer-type N,N,O-

chelates of the LN3O2 ligand, which adopts the same C2-symmetric 

(“twisted”) conformation described above. Coordination of the 

bidentate bpy ligands results in five-coordinate M2+ ions with distorted 

square-pyramidal (4) or trigonal-bipyramidal (3) geometries, as 

indicated by τ values37 in Table 2. The presence of the fifth donor 

causes the M2+ ions to move out of the plane defined by the meridional 

LN3O2 chelate by amounts ranging from 0.36 (4) to 0.80 Å (3). Each 

bpy ligand places one pyridyl donor trans to the imine N atom (N1 or 

N2), while the other is located outside the cleft in a position opposite 

the intermetallic bond vector. Unlike the 1MeBI ligands in 1, the bpy 

ligands in 2–4 do not block access to the space between the metal 

ions, thus permitting the binding of small molecules like O2 (vide 

infra). 

 

Table 2. Selected Bond Distances (Angstroms) and Angles (degrees) Obtained from 
the Crystal Structures of Complexes 2–4 

  complex 2 complex 3 complex 4 

bond distances Cu1 Cu2 Zn1 Zn2 Co1 Co2 

M1···M2 2.9667(5)   3.2820(5)   2.7010(5)   

M1–O1/M2–O2 1.924(2) 1.921(2) 1.952(1) 1.956(1) 1.899(2) 1.895(2) 

M1–N1/M2–N2 1.940(2) 1.940(2) 2.054(1) 2.058(1) 1.889(2) 1.888(2) 

M1–N3/M2–N3 2.063(2) 2.052(2) 2.086(1) 2.103(1) 1.966(2) 1.964(2) 

M1–N4/M2–N6 (bpy) 2.201(2) 2.228(2) 2.100(1) 2.100(1) 2.064(2) 2.059(2) 

M1–N5/M2–N7 (bpy) 2.010(2) 2.008(2) 2.116(1) 2.118(1) 1.942(2) 1.943(2) 

M–LN/O (ave) 2.028 2.030 2.062 2.067 1.952 1.950 

  complex 2 complex 3 complex 4 

bond angles Cu1 Cu2 Zn1 Zn2 Co1 Co2 

M1–N3–M2 92.28(8)   103.15(6)   86.85(8)   

O1/O2–M–N1/N2 92.69(8) 92.58(9) 89.07(5) 88.52(5) 93.52(8) 93.92(7) 

O1/O2–M–N3 146.38(8) 152.33(8) 140.53(5) 133.17(5) 158.41(7) 156.69(7) 

O1/O2–M–N4/N6 114.49(8) 112.33(8) 114.66(5) 118.85(5) 106.01(7) 105.79(7) 

O1/O2–M–N5/N7 91.23(8) 88.30(8) 90.43(5) 94.39(5) 84.38(7) 86.33(7) 

N1/N2–M–N3 83.05(8) 84.09(9) 81.72(5) 80.43(5) 85.02(8) 84.76(7) 

N1/N2–M–N4/N6 93.85(8) 94.33(8) 97.25(5) 97.34(5) 91.98(8) 91.57(8) 

N1/N2–M–N5/N7 171.34(9) 171.63(9) 174.87(5) 175.18(5) 171.85(8) 172.13(8) 

N3–M–N4/N6 99.09(8) 95.33(8) 104.57(5) 107.69(5) 95.57(8) 97.51(8) 

N3–M–N5/N7 97.87(8) 98.93(8) 101.83(5) 100.25(5) 99.83(8) 98.11(7) 
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  complex 2 complex 3 complex 4 

bond angles Cu1 Cu2 Zn1 Zn2 Co1 Co2 

N4/N6–M–N5/N7 77.50(8) 77.66(8) 78.33(5) 77.89(5) 81.08(8) 80.81(8) 

τ valuea 0.42 0.32 0.57 0.70 0.22 0.26 

twist angleb 64.0   67.6   61.7   
aFor definition of the τ value, see ref.37 
bThe twist angle refers to the angle between the planes of the aryl rings of the central 

amido unit. 

 

Table 2 reveals several trends in metric parameters across the 

2–4 series. The M–LN/O bond distances and intermetallic separations 

are strongly dependent on metal ion identity, both following the 

general order of Zn > Cu > Co. Of particular note is the observed 

Co···Co distance (dCo–Co) of 2.701 Å, which is remarkably short given 

the presence of only one bridging ligand. A search of the Cambridge 

Structural Database found that nearly all di- and polycobalt complexes 

with dCo–Co < 2.8 Å possess multiple bridging groups. While it is not 

proper to invoke the existence of a Co–Co bond in 4, since the 

intermetallic distance exceeds the sum of van der Waals radius of Co 

(2.486 Å), this feature points to strong electronic interactions between 

the Co2+ centers. In addition, the average Co–LN/O distance of 1.951 Å 

in 4 is unusually small. High-spin Co2+ complexes with N4O ligand sets 

typically exhibit average Co–LN/O lengths of 2.07 ± 0.05 Å, while the 

handful of low-spin [CoN4O] structures in the literature feature 

average Co–LN/O bonds of 1.95 ± 0.05 Å.38 Thus, the crystallographic 

data indicate that 4 consists of two low-spin Co2+ centers in square-

pyramidal environments. The electronic structure of this complex is 

described in more detail in the DFT section below. 

 

Not surprisingly, the solid-state structures of complex 4 and its 

bpyBr2-containing congener (5) are quite similar, with one exception: 

the addition of bromine substituents causes a modest lengthening of 

the Co···Co distance from 2.701 to 2.837 Å, with a concomitant 

increase in the Co1–N3–Co2 bond angle (Table S2). Otherwise, the 

Co–N/O bond lengths in 4 and 5 differ by less than 0.025 Å, indicating 

that both complexes feature low-spin Co2+ centers. 
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3.C Formation of the Chiral Complex [Zn2(P-LN3O2)(S-
iPrOxPy)2]OTf (6) 
 

There has been a long-standing interest in developing chiral 

bimetallic complexes for use in asymmetric catalysis and 

supramolecular chemistry.39 As noted above, the bimetallic complexes 

1–5 possess helical chirality due to the C2 symmetry imposed by the 

LN3O2 framework (Figure 4). We were curious whether the use of a 

chiral auxiliary ligand would bias the helical sense of the LN3O2 ligand, 

thereby yielding a single diastereomeric product. To this end, the 

reaction of Zn(OTf)2 and H3LN2O3 with the auxiliary ligand S-iPrOxPy 

(Chart 1) was performed in the presence of base. The 1H NMR 

spectrum of the resulting product (6), shown in Figure 5, displays only 

one set of well-resolved peaks arising from the LN3O2 and S-iPrOxPy 

ligands, indicating that the material largely consists of a single 

diastereomer. However, a number of weak and poorly resolved 

features are also apparent (indicated by the asterisks in Figure 5a); if 

these are assigned to the minor diastereomer then relative peak 

heights suggest that at least 85% of 6 exists as the major product. 

Further evidence of diastereomeric excess is provided by circular 

dichroism (CD) spectroscopy. As shown in Figure 5b, the CD spectrum 

of 6 exhibits positive and negative bands at 470 and 380 nm, 

respectively, corresponding to the two overlapping bands in the 

absorption spectrum. Since these features arise from LN3O2-based 

transitions (vide supra), we can conclude that the LN3O2 ligand largely 

exists in a single helical conformation. As expected, the CD spectrum 

of the bpy-containing dizinc(II) analog (3) is featureless across the 

UV–vis region (Figure S4) because the complex exists as a racemic 

mixture of M- and P-enantiomers. 
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Figure 5. (Top) Aromatic region of the 1H NMR spectrum of complex 6 in MeCN-d3. 
Peaks are assigned to either the pyridyl (py) moiety of S-iPrOxPy or the LN3O2 ligand 
based on splitting patterns and comparison to data collected for H3LN3O2 and 3. Each 
of the 10 assigned features integrates to two H atoms. Ill-defined peaks marked with 
asterisks arise from the minor diastereomeric product. (Bottom) Absorption and CD 
spectra of 6 collected at room temperature in MeCN. 

In complex 6, the oxazoline ring of the asymmetric S-iPrOxPy 

ligand can be positioned either cis or trans to the imine donors (N1 

and N2). The combination of geometric and stereoisomerism gives rise 

to four possible C2-symmetric structures: trans-(M,S,S), cis-(M,S,S), 

trans-(P,S,S), and cis-(P,S,S). The energy of each isomer was 

computed using DFT, and the most stable structure was found to be 

cis-(P,S,S), shown in Figure 6. This isomer minimizes steric 

interactions between the isopropyl groups of S-iPrOxPy and the LN3O2 

ligand. Relative to cis-(P,S,S), the cis-(M,S,S) diastereomer is higher 

in energy by 6.4 kcal/mol because the isopropyl groups are directed 
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toward the central aryl rings. The trans-(M,S,S) and trans-(P,S,S) 

structures are even more unfavorable energetically (7.0 and 9.9 

kcal/mol, respectively), as the isopropyl groups sterically clash with 

either the phenyl rings of the diarylamido unit (M-isomer) or the tert-

butyl substituents of the phenolate donors (P-isomer). These DFT 

results suggest that the major isomer of 6, observed spectroscopically 

in solution, corresponds to the cis-(P,S,S) diasteromer. On the basis of 

the computed energy differences, we would not expect to detect the 

minor isomer at room temperature. The fact that the minor cis-(M,S,S) 

diastereomer is observed in the 1H NMR spectrum of 6 (Figure 5) 

suggests that the M- and P-isomers cannot easily interconvert to yield 

the thermodynamically favored product, and thus, the product ratio is 

also affected by kinetic factors. 

 
Figure 6. Depictions of the cis-(P,S,S) diastereomer of complex 6. 

3.D Electrochemical Studies 
 

Voltammetric methods were used to examine the 

electrochemical properties of complexes 2–5 in MeCN solutions with 

0.1 M (NBu4)PF6 as the supporting electrolyte and scan rates of 100 

mV/s. The reported potentials are relative to the Fc/Fc+ couple. The 

cyclic and square-wave voltammograms (CV and SWV) of the dicopper 

complex 2, shown in Figure 7, reveal three redox features at negative 

potentials of −1.40, −1.83, and −2.06 V. The two lowest potential 

events are quasi-reversible, whereas the peak at −1.40 V is 
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irreversible. The SWV of the analogous dicobalt complex (4) displays 

three peaks at very similar potentials of −1.42, −1.81, and −2.04 V. 

Assignment of these features to either metal- or ligand-based 

reductions is aided by comparison with data collected for 3, which 

contains redox-inactive Zn2+ ions. The voltammogram of 3 retains the 

two lowest potential features at −1.95 and −2.08 V; however, the first 

reduction wave is absent (Figure 7). Therefore, we can confidently 

assign the two events at E < −1.7 V to reduction of the bpy auxiliary 

ligands, while the event near −1.4 V is attributed to reduction of the 

Cu2
4+ and Co2

4+ units to yield mixed-valent species. Electrochemical 

data obtained for the bpyBr2-containing dicobalt complex (5) provide 

further confirmation of these assignments. Relative to 4, the two 

lowest potentials peaks of 5 are shifted positively by ∼0.23 V, 

reflecting the electron-withdrawing capacity of the 4-Br substituents. 

In contrast, the metal-based peak experiences a much smaller shift 

from −1.42 to −1.33 V. The redox-active nature of bpy ligands has 

been well-established in numerous studies,40 including recent efforts 

by the Wieghardt group.41,42 The homoleptic [Fe(bpy)3]2+ complex, for 

example, exhibits sequential reductions of the three bpy ligands at 

potentials of −1.66, −1.94, and −2.10 V.41 The corresponding 

potentials in 2–4 are more negative than those reported for 

[Fe(bpy)3]n by 100–150 mV, likely due to the trianionic nature of the 

LN3O2 framework. 

 
Figure 7. Cyclic voltammograms (solid lines) of complexes 2–5 collected in MeCN 
with 0.1 M (NBu4)PF6 as the supporting electrolyte. Corresponding square-wave 
voltammograms are indicated by the dashed lines. All scan rates were 100 mV/s. Data 
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in the high- and low-potential regions were generally collected in separate scans. Two 
CVs with different sweep widths are provided for complex 2. 

To more positive potentials, all four complexes exhibit a feature 

between 0.07 and 0.19 V. While this redox event is quasi-reversible 

for 2 and 4 (ΔE = 83 and 115 mV, respectively), it is irreversible in 

the cases of 3 and 5, as evident in the diminished intensity of the 

corresponding peaks in the SWV (Figure 7). Given its presence across 

the 2–5 series, it is logical to attribute this feature to a ligand-based 

event. Indeed, a survey of the literature revealed that the diarylamido 

moieties of PNP pincer ligands are oxidized between +0.32 and −0.34 

V,18,21b,43 and the di(2-pyrazolylaryl)amido pincers of Gardinier and co-

workers undergo oxidation near 0.0 V.6e,44 The common feature near 

0.1 V in complexes 2–5 is therefore assigned to oxidation of the μ-

NAr2 unit of the LN3O2 ligand. Evidence for formation of a ligand-based 

radical upon one-electron oxidation of 4 is provided in the EPR and 

DFT studies described in section 3.E. 

 

In addition, complexes 2 and 4 exhibit two closely spaced 

waves centered near 0.90 V (Figure 7). These features correspond to 

successive oxidations of the divalent metal ions, although the 

processes likely involve partial oxidation of the phenolate donors as 

well. Support for the latter conclusion is found in the CV and SWV data 

of the dizinc(II) analog (3), which display an ill-defined event in the 

same region despite the absence of redox-active metal ions. Previous 

studies of related mononuclear complexes have detected phenolate 

oxidations in the range of 0.5–1.5 V versus Fc+/0,45 although it is often 

difficult to distinguish between ligand- and metal-based events due to 

the high covalency of metal–phenolate bonds. 

 

3.E Spectroscopic and Computational Studies of 4 and 

4ox 
 

Density functional theory (DFT) was employed to examine the 

unusual electronic properties of [Co2(LN3O2) (bpy)2]+ (4+), namely, its 

diamagnetism and short Co–Co distance. These calculations employed 

the hybrid B3LYP functional and crystallographically determined 

structure, although the tert-butyl substituents of the phenolate rings 

were replaced with H atoms. The proper wave function for the S = 0 

ground state was obtained using the broken-symmetry (BS-DFT) 
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approach pioneered by Noodleman and others.46 The BS-DFT 

calculations revealed strong antiferromagnetic (AF) coupling between 

the low-spin Co2+ centers, with a computed exchange coupling 

constant (J) of −1050 cm–1 (based on the Yamaguchi definition47 of H 

= −2JSA·SB). The AF coupling arises from direct overlap of the 3d(z2)-

based singly occupied molecular orbitals (SOMOs) localized on each 

Co2+ center (the local z axes are directed along the axial Co–N bonds; 

see Figure S5). The overlap integral (S) for these two magnetic 

orbitals with opposite spin is 0.29, consistent with the presence of a 

partial Co–Co bond in 4. The magnitude of the computed J value 

ensures that the triplet state is not accessible at room temperature. 

 

On the basis of the electrochemical results presented above, we 

sought to generate the oxidized form of complex 4 via chemical 

means. Treatment of 4 with 1 equiv of 1′-acetylferrocenium (AcFc; E 

= 0.27 V) in MeCN causes the ligand-based absorption band near 400 

nm to red shift and decrease in intensity (Figure 8; inset), indicative of 

a change in the π system of the LN3O2 ligand. The X-band EPR 

spectrum of the one-electron-oxidized species (4ox), shown in Figure 

8, consists of a broad derivative feature centered at g = 2.02. The 

presence of 59Co hyperfine splitting at both high and low fields is 

particularly evident in the second-harmonic spectrum. The data is 

nicely simulated (Figure 8) with the following spin-Hamiltonian 

parameters: a pseudoaxial g tensor (gx,y,z = 2.059, 2.037, 1.995) and 

hyperfine coupling constants of Ax,y,z = 23, 21 and 7.1 G for both Co 

ions. Low-spin, five-coordinate Co2+ centers typically display Amax 

values between 80 and 120 G and gx values near 2.40.48 In contrast, 

the modest g anisotropy and small A values of 4ox more closely 

resemble the EPR parameters of mononuclear Co/O2 adducts (gx,y = 

2.08 and Amax ≈ 20 G), where the unpaired spin largely resides on the 

superoxo ligand.48 Therefore, the EPR data provide further evidence 

that one-electron oxidation of 4 generates a ligand-based radical, 

although the unpaired spin is partially delocalized over the two Co 

ions. 
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Figure 8. X-band EPR spectrum of 4ox (black, solid) in frozen MeCN at 77 K. The 
presence of 59Co hyperfine splitting is clearly apparent in the corresponding second-
harmonic data (top). Simulated spectra (red, dashed) were obtained with the following 
parameters: gx,y,z = 2.059, 2.037, 1.995; Ax,y,z = 23, 21, and 7.1 G; mwFreq = 9.434 
GHz. (Inset) Absorption spectra of 4 (blue, solid) and 4ox (black, dashed) in MeCN 
(conc. = 0.1 mM). 

The nature of the LN3O2-based radical was probed with BS-DFT 

calculations. Because a crystal structure of 4ox is not available, a 

computational model was obtained via geometry optimization. 

Comparison of Mulliken spin populations indicate that one-electron 

oxidation of 4 to 4ox causes a dramatic increase in the amount of 

unpaired spin density on the LN3O2 ligand (from 0.04 to 0.74 spins), 

while the spin of the Co centers remains nearly constant. The 4ox 

model contains three unpaired electrons: two are localized in Co(dz2)-

based MOs, while the third is primarily localized on the central μ-NAr2 

unit of the LN3O2 ligand. The contour plot of the LN3O2-based SOMO, 

shown in Figure S6, reveals overlap between the 2pz orbital of the 

bridging N atom (N3) and Co 3d orbitals, accounting for the observable 
59Co hyperfine splitting in the EPR spectrum of 4ox. The DFT 

calculations are therefore consistent with the formulation of 4ox as 

[Co2+
2(LN3O2,•) (bpy)2]2+, in agreement with the electrochemical and 

spectroscopic data already presented. 
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3.F Reactivity of Complex 5 with O2 
 

If exposed to air, solutions of 5 in 1:1 CH2Cl2:MeOH provide 

dark-brown crystals with unit cell parameters distinct from those 

determined for anaerobically grown crystals (Table S1). X-ray 

diffraction analysis determined that the aerobic crystals consist of 

[Co2(O2)(LN3O2) (bpy)2]ClO4 (5-O2), where a diatomic O2 ligand bridges 

in a μ-1,2-fashion between the six-coordinate cobalt centers (Figure 

9). The O3–O4 distance of 1.372(6) Å identifies the bridging ligand as 

a peroxide (O2
2–) moiety. The [Co2O2] unit adopts a twisted orientation 

with a Co–O–O–Co dihedral angle of 56.3° and Co1···Co2 distance of 

3.253(1) Å—considerably longer than the dCo–Co value of 2.70 Å found 

for 5. Significantly, the 5-O2 structure proves that small molecules are 

able to access the open coordination sites within the intermetallic cleft, 

despite the steric bulk of the nearby tert-butyl substituents of the 

phenolate donors. Moreover, the dramatic 0.55 Å increase in 

intermetallic separation upon O2 binding highlights the structural 

pliability of the LN3O2 scaffold. 

 
Figure 9. Thermal ellipsoid plot (30% probability) derived from the X-ray crystal 
structure of complex 5-O2. Hydrogen atoms, counteranions, and tert-butyl 
substituents of the phenolate donors have been omitted for the sake of clarity. 

Comparison of metric parameters indicates that the conversion 

of 5 → 5-O2 involves oxidation of the low-spin Co2+ centers to Co3+. 

This conclusion is evident in the shortening of the axial Co1–N4 and 

Co2–N6 bonds by ∼0.09 Å due to the transfer of two Co(dz2)-based 

electrons to O2 (Table S2). In contrast, O2 binding does not cause 

significant changes in the O–C, N–C, and C–C bond lengths of the 
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LN3O2 ligand, indicating a lack of radical character. On the basis of the 

electrochemical data presented above, one might have assumed that 

O2 binding would result in oxidation of the LN3O2 ligand. It appears that 

the increase in coordination number from 5 to 6, coupled with the 

dianionic nature of the peroxide ligand, suppresses the redox 

potentials of the Co centers relative to LN3O2. These factors favor 

metal-centered oxidation over ligand-based oxidation in formation of 

the dicobalt-peroxo complex. 

4 Conclusions 

As demonstrated in this manuscript, the easily prepared LN3O2 

ligand is capable of supporting homobimetallic frameworks (M = Co, 

Cu, Zn) with adjacent pincer-type compartments consisting of a 

bridging diarylamido group and salicyaldimine chelates (Figure 1). The 

“fused” nature of the pincer sites results in short intermetallic 

distances between 2.7 and 3.3 Å, as determined by X-ray 

crystallography. While several complexes with [M2(μ-NAr2)2] cores 

have been reported in the literature, complexes 1–6 are rather unique 

in containing only a single diarylamido bridge.49 Because of this, the 

unsaturated metal centers are capable of binding auxiliary ligands, 

such as 1MeBI, bpyR2, and S-iPrOxPy. These auxiliary ligands impart 

additional features to the bimetallic complexes that may prove useful 

in future applications; for example, the noninnocent bpyR2 ligands in 

2–5 account for two redox events at low potentials, while the optically 

active S-iPrOxPy ligand compels the C2-symmetric structures to favor 

the P-configuration. Thus, the LN3O2 ligand provides a versatile 

platform for the synthesis of bimetallic complexes with tunable 

electronic and structural properties. 

 

Electrochemical studies of the bpy-containing complexes 2 and 

4 found six redox couples over a range of 3.0 V arising from both 

metal- and ligand-based events. The one-electron oxidation of 4 near 

0.1 V triggers formation of a LN3O2-based radical localized on the 

diarylamido donor, as indicated by EPR and DFT studies of 4ox. This 

finding is consistent with previous studies of [M2(μ-NAr2)2] complexes. 

The ability to perform several electron transfers is critical for synthetic 

catalysts involved in small-molecule activation, such as the reduction 

of O2 (to H2O) and H+ (to H2). Redox-active ligands, like bpy and LN3O2 
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in complexes 2–5, can serve as electron reservoirs for multielectron 

transformations. Most significantly, the complexes described here 

feature open and accessible coordination sites between the metal 

centers for small-molecule binding. As highlighted by formation of the 

μ-peroxo complex 5-O2 (Figure 9), the LN3O2 scaffold has the 

structural flexibility to accommodate the changes in coordination 

number and oxidation state that occur during catalytic cycles. 

Therefore, we are currently evaluating the ability of these promising 

binuclear complexes to serve as electrocatalyts for the reduction of O2 

and H+. 
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