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Synopsis: The X-ray crystal structure of [Fe(OEP)(NO)]− is reported, along 

with infrared and NMR spectra. The Fe−N−O bond angle decreased upon 

reduction and was consistent with those in other {FeNO}8 complexes. The 1H 

NMR spectrum was reported, which was different from those for other S = 0 

metalloporphyrin complexes due to the displacement of the Fe atom from the 
porphyrin plane. This spectrum was consistent with DFT calculations. 
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Abstract 

 
The preparation and characterization of the iron octaethylporphyrin nitroxyl 

ion, [Fe(OEP)(NO)−], is reported. The complex was synthesized by the one-

electron reduction of Fe(OEP)(NO) using anthracenide as the reducing agent. 

The compound was isolated as the potassium (2.2.2)cryptand salt. The anion 

was characterized using X-ray analysis with visible and infrared spectroscopy. 

The spectral features of the iron nitroxyl complex were consistent with 

previous literature reports. The important structural changes upon reduction 

were a significant decrease in the Fe–N–O bond angle from 142° to 127° and 

an increase in the N–O bond length from that in the starting nitrosyl moiety. 

The porphyrin ring became significantly less planar upon reduction, but the 

displacement of the iron atom from the 24-atom plane was essentially 

unchanged. In spite of the attempt to encapsulate the potassium ion with the 

(2.2.2)cryptand, significant interaction between K+ and the oxygen of the 

nitroxyl were observed, indicating a contact ion pair in the crystal structure. 

Comparison between the experimental structure and the DFT-calculated 

parameters were reported. The results are consistent with the Fe–N–O moiety 

being the site of the reduction, with little evidence for the reduction of the 

iron itself or the porphyrin ring. The proton NMR spectrum was also obtained, 

http://dx.doi.org/10.1021/acs.inorgchem.5b02384
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and the chemical shifts were significantly different from other S = 0 

metalloporphyrin complexes. These shifts, though, were consistent with the 

DFT calculations. 

Introduction 

Iron porphyrin nitroxyl compounds have attracted considerable 

interest due to their varied chemical and biochemical reactions. The 

nitroxyl, along with its conjugate acid (HNO), is involved in a number 

of biochemical processes, including microbial denitrifying enzymes,1 as 

well as providing therapeutic benefits.2,3 Ferrous nitroxyl species have 

been proposed as intermediates in nitric oxide reductase (NorBC)4 and 

cytochrome P450nor.5,6 The electronic structure and biological 

reactivity of Fe(HNO) complexes have been recently reviewed.7 

Particular interest has been focused on [Fe(P)(NO)]− because of its 

relationship to Fe(P)(HNO) (where P = porphyrin). The cyclic 

voltammetry of Fe(OEP)(NO) and Fe(TPP)(NO) (OEP = 

octaethylporphyrin; TPP = tetraphenylporphyrin) was reported by 

Olson et al.8,9 In the latter work, the visible spectroelectrochemistry of 

the oxidation and reduction of these complexes was reported.9 Choi 

and Ryan10 examined the voltammetry of Fe(TPP)(NO) in the presence 

of amines. Mu and Kadish11 used FTIR spectroelectrochemistry to 

characterize the νNO band in [Fe(P)(NO)]+. Choi et al.12 used resonance 

Raman spectroscopy to obtain the spectrum of [Fe(TPP)(NO)]− in THF, 

and identify its νNO and νFe-NO bands. The FTIR spectroelectrochemistry 

of Fe(OEP)(NO) was reported by Wei and Ryan,13 and measured the 

νNO band of [Fe(OEP)(NO)]− to be 1441 cm–1, a decrease of 229 cm–1 

upon reduction. Goodrich et al.14 used visible and FTIR 

spectroelectrochemistry to study the reduction of a bis picket fence 

porphyrin nitrosyl and observed a similar decrease in the νNO band in 

the infrared. 

 

Scheidt and Frisse15 reported on the X-ray structure of 

Fe(TPP)(NO). Two crystal structures of Fe(OEP)(NO) were later 

reported by Scheidt et al.16 Prior to this work, iron porphyrin nitrosyl 

structures suffered from disorder.15,17,18 Later Goodrich et al.14 also 

obtained a single NO orientation with a bis picket fence iron porphyrin. 

All of the structures showed a bent Fe–N–O moiety, with an angle of 

about 144° and a tilt of about 6–8°. The structures of two ferric 

porphyrin nitrosyl complexes, [Fe(TPP)(NO)][ClO4] and 
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[Fe(TPP)(NO)(H2O)][ClO4], were reported by Scheidt et al.19 The Fe–

N–O bond angles were about 175–177°, close to linear. The isolation 

of the first {FeNO}8 porphyrin complex, [Fe(TFPPBr8)(NO)]− (TFPPBr8 

= tetrakis(pentafluorophenyl)octabromoporphyrin), was reported by 

Pellegrino et al.20 The νNO value for the complex decreased from 1715 

to 1547 cm–1, consistent with previous solution studies of 

Fe(P)(NO)−.12-14 Recently, the structure of [Fe(TFPPBr8)(NO)]− was 

reported.21 An Fe–N–O bond angle of 122° was reported for this 

complex. The isolation of [Fe(OEP)(NO)]− has not yet been reported. 

The octaalkylporphyrins are structurally much closer to the 

physiological porphyrins than is TFPPBr8, and the isolation and 

characterization of this complex would be of great value. In this paper, 

we report on the X-ray crystal structure of [Fe(OEP)(NO)]−. 

Experimental Section 

Iron octaethylporphyrin chloride, zinc octaethylporphyrin, THF, 

2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-

diazabicyclo[8.8.8]hexacosane), anthracene, and THF were obtained 

from Sigma-Aldrich Chemical Co. The nitrosyl complex Fe(OEP)(NO) 

(1) and its 15N analogue were synthesized by literature methods.22 

Meso-deuteration of H2OEP was accomplished using the D2SO4/D2O 

method.23 1-Methylimidazole-d3 was obtained from CDN Isotopes. 

Anhydrous tetrahydrofuran (THF) was refluxed in the presence of 

sodium and benzophenone under nitrogen until the solution was blue. 

The reducing agent, a 0.20 M solution of the potassium cryptand salt 

of anthracenide, was generated in the glovebox by dissolving 

equimolar amounts of anthracene and 2.2.2-cryptand in THF. A small 

amount of potassium metal was then added to this solution. After 

reaction, the excess potassium metal was removed and disposed of 

properly. Caution: potassium metal is very reactive and can cause fire 

or explosion due to the formation of H2 and the exothermicity of its 

reaction with water or acidic protons. The complex Fe(OEP)(NO) was 

dissolved in THF, and 1 equiv of potassium cryptand anthracenide was 

added. The solvent was removed, and the solid was then redissolved 

in THF. Crystallization was obtained by layering with heptane. The 

infrared spectra were obtained with a Thermo Nicolet-FTIR 

spectrophotometer (Model 670 Nexus) with an MCT detector. Infrared 

spectra of solid materials were collected as KBr pellets. Analysis of the 
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crystal packing distances and planarity of the porphyrin ring was 

carried out using the program MERCURY from the Cambridge 

Crystallographic Data Center (University of Cambridge, Cambridge, 

U.K.). 1H NMR spectra were collected at room temperature with a 

Varian 400 MHz spectrometer. 

 

Electronic structure, NMR, and vibrational spectral calculations 

were carried out using the m06, m06L, mpwvwn, and bp86 DFT 

functionals and the TZVP basis set for all elements except for the iron 

atom using the Gaussian 09 suite of programs.24-26 Only the m06 

functional was used for the NMR calculations. The Wachters basis set 

was used for iron.27 All calculations converged using the tight 

optimization criteria. 

Results and Discussion 

X-ray Crystal Structure 
 

The reduction of Fe(OEP)(NO) (1) was carried out using 

potassium (2.2.2)cryptand anthracenide as the reducing agent as 

described in the Experimental Section. The visible spectrum of the 

chemically generated [Fe(OEP)(NO)]− was consistent with the 

literature values.9,12,28 The ferrous nitroxyl complex [Fe(OEP)(NO)]− 

(2) was crystallized as the potassium cryptand salt. The salt 

crystallized with two cations, two anions, and one anthracene molecule 

in an asymmetric unit. In general, the bond lengths and angles of both 

porphyrin structures in the asymmetric unit were within experimental 

error. There are two important exceptions: the K1–O1 (K1A–O1A; 

3.125 and 3.278 Å, respectively) and O1–N5 (O1A–N5A) (Table 2) 

distances differed by more than the experimental error. While the K1–

O1/K1A–O1A distances differed, the K1–O1–N5/K1A–O1A–N5A bond 

angles were similar (98.57° versus 98.36°, respectively), but the 

uncertainties were large (0.18°). These differences in the ionic bond 

lengths (K–O distance) and the uncertainties in the K–O–N bond 

angles are probably due to the thermal motion of the NO group. The 

stronger the thermal motion, the shorter the bond will appear.32 In our 

case, the thermal vibrations of the O and N atoms forming the shorter 

N═O bond are 20–25% stronger than the longer bond. The structure of 

the cation and anion is shown in Figure 1, and the crystallographic 

http://dx.doi.org/10.1021/acs.inorgchem.5b02384
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data and structure refinement details are shown in Table 1. Additional 

structural data are given in the Supporting Information. The important 

bond lengths and angles are shown in Table 2, along with a 

comparison with those of related complexes. 

 

Figure 1. ORTEP diagram for one of the [K(2.2.2)][Fe(OEP)(NO)] units in the 
asymmetric unit. Ellipsoids are depicted at 50% probability. 

Table 1. Crystal Data and Structure Refinement Details for [K(2.2.2)-

cryptand][Fe(OEP)(NO)]·0.5(anthracene) 

empirical formula C61H85FeKN7O7 

formula wt 1123.31 

temp/K 100.00(10) 

cryst syst triclinic 

space group P1 ̅ 

a, Å 14.7775(2) 

b, Å 19.6688(3) 

c, Å 21.2458(3) 

α, deg 83.4024(14) 

β, deg 88.8922(12) 

http://dx.doi.org/10.1021/acs.inorgchem.5b02384
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.5b02384#tbl1
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γ, deg 73.4501(14) 

V, Å3 5879.61(16) 

Z 4 

ρcalcd, g/cm3 1.269 

μ, mm–1 3.148 

F(000) 2404.0 

cryst size, mm3 0.633 × 0.139 × 0.113 

radiation Cu Kα (λ = 1.54184) 

2θ range for data collection, deg 5.94–148.4 

index ranges –18 ≤ h ≤ 18, −23 ≤ k ≤ 24, −26 ≤ l ≤ 26 

no. of rflns collected 111300 

no. of indep rflns 23568 (Rint = 0.0502, Rσ = 0.0373) 

no. of data/restraints/params 23568/45/1392 

goodness of fit on F2 1.021 

final R indexes (I ≥ 2σ(I)) R1 = 0.0625, wR2 = 0.1502 

final R indexes (all data) R1 = 0.0797, wR2 = 0.1610 

largest diff peak/hole, e Å–3 1.12/-0.63 

 

Table 2. Selected Crystallographic Determined Parameters and Nitrosyl 

Infrared Energies for Related Metalloporphyrin Nitrosyl Complexes 

complex   M–NNO, Å N–O, Å (M–
Np)av, Å 

M–N–O, 
deg 

νNO, cm–1 E°, V 
vs 

SCE 

ref 

Fe(OEP)(NO) SC 1.7307(7) 1.168(1) 2.009(12) 142.74(8) 1673 –
1.10 

8, 16
 

[Fe(OEP)(NO)]− SC 1.812(3), 
1.816(3) 

1.187(3), 
1.203(3) 

1.993(16), 
1.993(16) 

127.2(2), 
126.8(2) 

1445 (1428)a   13, 
this 
work 

  DFT/m06 1.786 1.190 2.002 122 1530   this 
work 

  DFT/m06L 1.787 1.197 2.008 123 1503   this 
work 

  DFT/bp86 1.783 1.207 2.012 125 1527   this 
work 

  DFT/mpwvwn 1.809 1.213 2.041 125 1480   this 
work 

Fe(TFPPBr8)(NO) SC 1.741(5) 1.131(6) 1.988(12) 148.5(4) 1718 –
0.16 

20, 21
 

[Fe(TFPPBr8)(NO)]− SC 1.814(4) 1.194(5) 1.972(11) 122.4(3) 1540   21
 

[Fe(porphine)(NO)]− DFT 1.798 1.211   123 1530   20
 

  DFT 1.786 1.206 2.011 125 1533   14
 

Co(OEP)(NO) SC 1.8444(9) 1.164(1) 1.984(8) 123.4(2) 1677 –
1.15b 

29, 30
 

  SC 1.844(2) 1.152(3) 1.985(9) 123.39(5) 1675   31
 

a [Fe(OEP)(15NO)]− b Fe(TPP)(NO). 

 

As was observed for [Fe(TFPPBr8)(NO)]− (3),21 the Fe–N–O bond 

angle decreased significantly when the nitrosyl complex was reduced. 
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For 2, the bond angle (average) decreased from 144 to 127°, a 

decrease of 17° (Fe–N–O angles for each anion 126.8(2) and 

127.2(2)°). This compares to a slightly smaller bond angle of 122.4° 

for 3. The Fe–N–O bond angle of 3 and the Co–N–O bond angle of 

Co(OEP)(NO) were similar (3, 122.4°; Co(OEP)(NO), 122.7 and 

123.4°); all three structures had bond angles smaller than the angle in 

[Fe(OEP)(NO)]−. The Fe–N–O angle was consistent with the formation 

of a {FeNO}8 structure. Upon reduction, the tilt angle for Fe–N 

decreased from 6° to 8° in 1 and to 2° in 2. The N–O bond length 

(average) in 2 was 1.195 Å, which was essentially the same as the 

bond length in 3 (1.194 Å). 

 

The distances between the potassium ion and the nearest atom 

of the axial ligand are within the range observed for other 

metalloporphyrins. For example, comparing salts with a K(2.2.2) 

cation, a shorter K–N distance of 2.957 Å was observed for 

K+(2.2.2)[Fe(TPP)(CN)2]2–,33 while a longer K–O distance was seen in 

[CoIII(TPP)(NCO)2]− (3.407 Å).34 The interaction of the cation with the 

Fe(P)(NO)− anion is significantly different in our work as compared to 

that of Hu and Li.21 In Hu and Li’s work, the N–O moiety was directed 

away from the cation, [Co(Cp)2]+, which showed no specific interaction 

with the anion. In our work, the distances were relatively short 

(around 3.2 Å) between K1 and O1, similar to the potassium cryptand 

salt of [FeII(TPP)(CN)2]−, where there was a similar interaction 

between the K(2.2.2) ion and the N atom of the cyanide ligands. This 

is consistent with a contact ion pair, on the basis of the work of 

Davlieva et al.35 

 

The average Fe–Np bond distance decreased upon reduction 

from 2.009 Å (2.004 Å for structure B) to 1.993 Å (0.016/0.011 Å), 

where Np is the average distance between the iron atom and the four 

pyrrole nitrogens of OEP. This decrease was similar to that observed 

for [Fe(TFPPBr8)(NO)]−, where the average distance decreased from 

1.988 to 1.972 Å (0.016 Å). For Fe(OEP)(NO), the displacements of Fe 

from the 24-atom porphyrin ring16 were 0.29 and 0.27 Å for the two 

structures, while the Fe displacement for [Fe(OEP)(NO)]− was found to 

be 0.28 Å. This contrasts with Fe(TFPPBr8)(NO), where the Fe 

displacement decreased from 0.36 to 0.19 Å upon reduction. 
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A small degree of ruffling was observed for the starting 

complex, Fe(OEP)(NO). The average deviation from the 24-atom plane 

was found to be 0.031 and 0.044 Å for the two structures that have 

been characterized.16 Upon reduction, there was a significant increase 

in the nonplanarity of the porphyrin ring. This can be visually seen by 

the green structure in Figure 2. The average deviation of each atom in 

2 from the 24-atom plane was 0.12 Å, 2–3 times larger than in 

Fe(OEP)(NO) (see Figure 2B for the individual displacements of 

[Fe(OEP)(NO)]−; there were no significant differences between the two 

anions in the unit cell). A comparison of Fe(OEP)(NO) (structure A) 

with 2 is shown in Figure 2, where 2 is the green structure and 1 is 

the pink structure. As can be seen, the nitroxyl is more saddled than 

the starting nitrosyl. The ruffling and saddling in 3 was significantly 

larger than in 2 (0.49 Å versus 0.12 Å), but the starting complex for 3 

was already significantly saddled (0.51 Å).21 Therefore, it would be 

difficult to detect and interpret changes that occurred upon the 

formation of 3. 

 
Figure 2. (A) Comparison of [Fe(OEP)(NO)]− (green) with Fe(OEP)(NO)16 (structure A 
in the reference, pink). Hydrogens have been omitted for clarity. (B) Porphyrin core 
diagram that indicates the out-of-plane displacements of the atoms from the 24-atom 
porphyrin plane of [Fe(OEP)(NO)]− (first structure in unit cell, F1–C54). Displacements 
are given in units of 0.01 Å. Positive displacements are toward the nitroxyl group. 
Nitrogen atoms are labeled for orienting the ion. The nitroxyl is between N3 and N4. 
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For comparison, DFT was used to calculate the structure and 

infrared spectrum of [Fe(OEP)(NO)]−, using the m06, m06L, mpwvwn, 

and bp86 functionals. The results are shown in Table 2. The infrared 

spectra of [Fe(OEP)(NO)]− (natural abundance) and [Fe(OEP)(15NO)]− 

are shown in Figure 3. The νNO values observed for the solid nitroxyl 

complexes are consistent with those previously reported by 

spectroelectrochemistry.13 For many parameters, there was good 

agreement between the calculated and experimental values. The two 

distances for the length of the N–O bond in the two anions within the 

asymmetric unit were within the range predicted by the DFT 

calculations (DFT, 1.190 and 1.213 Å; experimental, 1.187 and 1.203 

Å). The Fe–NO distances by DFT were shorter than the experimental 

value, while the experimental Fe–N–O angle (127°) was only slightly 

larger than the DFT values (122–125°). On the one hand, the Fe–Np 

value was shorter (1.993 Å) than the predicted values (2.002–2.012 

Å). On the other hand, the presence of two short and two long Fe–N 

bond distances was observed in both the experimental and DFT 

structures, in common with the Fe(OEP)(NO) starting complex. The 

DFT calculations all predicted shorter Fe–NNO distances (1.783–1.787 

Å) than were observed in the crystal structure (1.812 Å). This 

indicates a weaker Fe–NNO bond than was predicted by the 

calculations. The lengthening of the N–O bond was consistent with the 

occupation of the π* orbital in N–O. This can be seen in the HOMO of 

[Fe(OEP)(NO)]− (Figure 4A), which was obtained from the m06/DFT 

calculations. NBO calculations of 1 and 2 show no significant change in 

the d orbital occupation of the iron atom, indicating little to no 

reduction of the iron itself. While there was considerable consistency in 

the DFT calculated structures between the functionals, there were 

differences in the electron distribution. The best correlation between 

the d orbital occupation and the IR frequency was for the sum of the 

dx
2
–y

2/dz
2 orbitals. The sum was smallest for m06 (2.010, νNO 1530 cm–

1). As the sum of the dx
2
–y

2/dz
2 orbitals increased, the calculated νNO 

frequency decreased (bp86, 2.090, νNO 1527 cm–1; m06L, 2.195, νNO 

1503 cm–1; mpwvwn, 2.293, νNO 1480 cm–1) 

http://dx.doi.org/10.1021/acs.inorgchem.5b02384
http://epublications.marquette.edu/
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Figure 3. FTIR spectra of [K(2.2.2)][Fe(OEP)(naNO)] and [K(2.2.2)][Fe(OEP)(15NO)] 

in KBr pellets, where na = natural abundance. Frequencies shown are for νNO (1441 
cm–1 for natural abundance, 1428 cm–1 for 15N isotopomer). 

 
Figure 4. Two views of the HOMO orbital for [Fe(OEP)(NO)]− as calculated using DFT 
and the m06L functional: (A) side view; (B) top view. 

Within the porphyrin ring, the Cβ–Cβ bonds shortened slightly 

from 1.365/1.360 Å in the two Fe(OEP)(NO) structures to 1.357 Å in 

2. Given the differences in the two structures of 1, this decrease is 

probably not significant and is consistent with little to no electron 

http://dx.doi.org/10.1021/acs.inorgchem.5b02384
http://epublications.marquette.edu/
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density at these positions in the HOMO (Figure 4B). The average Cmeso 

bonds were essentially unchanged upon reduction (1.383/1.379 Å in 1 

to 1.381 Å in 2). On the other hand, while the distances from the Cmeso 

to the two adjacent Cα atoms differed little in 1 (maximum difference 

0.005 Å), there was significantly more asymmetry in 2. While one set 

of bonds was reasonably symmetrical (1.381/1.379 Å), the other three 

were much more asymmetrical, going from 1.389/1.378 Å to 

1.392/1.374 Å. While this asymmetry was not observed in the DFT 

calculations, the HOMO orbital in Figure 4B shows bonding interactions 

between some of the Cmeso atoms and Cα of one pyrrole, but no 

electron density between the same Cmeso and the other pyrrole Cα. 

Therefore, the bonding interaction, leading to the asymmetry, is 

predicted by DFT but is experimentally stronger than that predicted. 

Therefore, as was seen with the Cmeso–Cα distances, the changes 

predicted by DFT are in the right direction but are underestimated. 

Additionally, DFT calculations predicted no significant changes in the 

planarity of the porphyrin ring upon reduction (DFT: average deviation 

of 0.036 Å in 1 versus 0.038 Å in 2). 

 

In calculating the infrared spectra by DFT, it was found from 

previous studies on related complexes25 that a scale factor of 0.94 was 

appropriate for the m06 functional and 1.0 for the bp86 and mpwvwn 

functionals, though the bp86 functional tended to underestimate the 

vibrational energies. The results are shown in Table 2. All of the DFT 

calculations predict a large decrease in the νNO band upon reduction 

(1480–1530 cm–1), though none of them predicted correctly the 

measured wavenumber (1441 cm–1). The mpwvwn functional gave the 

best agreement (1480 cm–1), which is consistent with the work of Ling 

et al.,36 who had previously reported excellent agreement with this 

functional and the experimental values for nitrosyl complexes. 

 

While [Fe(OEP)(NO)]− is a S = 0 complex, the NMR spectrum 

was significantly different from those of other S = 0 metalloporphyrin 

complexes. Typical values of chemical shifts for such porphyrins, e.g., 

MgII(OEP) and FeII(OEP)(pyridine)2, are 10.0 ppm for the meso-

protons and 4.0 and 1.9 ppm for the methylene and methyl protons, 

respectively.37,38 The proton NMR spectrum for 2 showed no 

resonances around 10 ppm, in contrast to what has been seen for 

typical of S = 0 metalloporphyrins. Resonances for anthracene were 

http://dx.doi.org/10.1021/acs.inorgchem.5b02384
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observed at 7.4, 7.95, and 8.4 ppm (indicated by asterisks in Figure 

5). Additional resonances were observed at 7.50, 7.57, and 7.77 ppm, 

which are attributed to [Fe(OEP)(NO)]−. In order to confirm this, the 

NMR chemical shifts were calculated using Gaussian 09. Resonances 

for the meso proton resonances were predicted at 7.0 and 7.7 ppm. 

For comparison, the NMR spectrum of Zn(OEP) (S = 0) was calculated 

using Gaussian, and the calculated chemical shift was found to be 10.7 

ppm (experimental: 10.1 ppm39). The average calculated resonances 

by Gaussian for the methylene and methyl protons in Fe(OEP)(NO)− 

were 3.1 and 1.4 ppm. This compares to the experimental values of 

4.1 and 1.9 ppm for the methylene and methyl protons of Mg(OEP) 

and the calculated values for Zn(OEP) of 4.4 and 2.0 ppm. Resonances 

were observed for [Fe(OEP)(NO)]− at 0.9/1.3 ppm (methyl) and 

3.3/3.9 ppm (methylene), both upshifted from the S = 0 values, as 

predicted by DFT. Further confirmation was obtained by the synthesis 

of [Fe(OEP-d4)NO]−, where the meso protons were replaced by 

deuterium atoms. Figure 5 shows a comparison between the natural-

abundance and d4 forms of [Fe(OEP)(NO)]−. In the d4 complex, the 

resonances attributed to the meso protons were missing or highly 

attenuated. This spectrum is unusual in comparison to those for other 

S = 0 complexes. To test whether the chemical shift and splitting for 

the meso protons were due to the displacement of the iron atom, the 

DFT calculations for [Fe(OEP)(NO)]−, where the Fe atom was moved 

into the plane defined by the four pyrrole nitrogens (while maintaining 

the Fe–N–O bond lengths and angle), were performed. This calculation 

showed that the average δ value decreased from 7.6 to 9.2, closer to 

the experimental value for S = 0 metalloporphyrins, but the splitting of 

the meso protons was more pronounced. Both DFT calculations (Fe out 

of plane and in plane) showed that the meso protons that were 

displaced toward the NO group had δ values lower than those 

displaced away from the NO group. Attempts to mimic this with a five-

coordinate S = 0 complex (zinc octaethylporphyrin) in the presence of 

an excess of 1-methylimidazole-d3 were inconclusive. The complex did 

show a small decrease in the chemical shift of the meso resonances 

(10.18 to 9.99) but no splitting of the meso protons. This shift may 

have been attenuated because of the facile exchange of the imidazole 

ligand and the fact that the complex was weak. The most likely source 

of the splitting of the meso protons may be due to slow rotation of the 

NO– ligand around the iron. Slow rotation of the NO– moiety would 

http://dx.doi.org/10.1021/acs.inorgchem.5b02384
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more closely mimic the DFT calculations. Further studies are in 

progress on this issue. 

 
Figure 5. 1H NMR spectra for [Fe(OEP)(NO)]− (natural abundance and d4 isotopomer). 

Peaks with asterisks indicate resonances for anthracene. Chemical shifts (δ) for 
resonances of meso protons are shown. 

Conclusions 

The changes in the planarity from 1 to 2 were an unexpected 

result of the reduction. DFT calculations had predicted minor changes. 

The most significant changes in bond distances were the Cmeso to Cα 

distances, where the differences in the two Cmeso–Cα distances are 

probably the sources of the saddling of the complex. While such 

asymmetry was not predicted by the DFT calculations, the presence of 

bonding interactions in the HOMO between the Cmeso and one of the Cα 

atoms is probably the source of this difference. This saddling is not 

necessarily a consequence of low-valent iron porphyrins, as Fe(TPP)− 

has an average deviation of less than ±0.05 Å.40 The metal–N–O angle 

in the complex was quite similar to those of other {M–N–O}8 

complexes such as 3 and Co(OEP)(NO).28 Little change was observed 

in the displacement of the iron atom from the plane in the formation of 

2, unlike the changes observed in the formation of 3.21 In both 2 and 

3, the average Fe–Np bond distances decreased by a similar amount. 

The decrease in the νNO band upon reduction was consistent with the 

increase in the N–O bond length, but the DFT calculations consistently 

underestimated the wavenumber decrease. Finally, the iron porphyrin 

nitroxyl showed a unique 1H NMR spectrum for 2, but the spectrum 

was consistent with DFT calculations. Overall, the results of this work 

confirm that the primary site of the reduction of low-spin heme {Fe-

http://dx.doi.org/10.1021/acs.inorgchem.5b02384
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NO}7 complexes is on the nitrosyl moiety, as has been observed 

elsewhere.14 This result is in strong contrast to the non-heme 

{FeNO}7, where the reduction is centered on the iron in forming the 

{FeNO}8 complex.41 This difference is also reflected in the redox 

potentials, which is much more negative for the heme {Fe-NO}7 

complexes. 

The authors declare no competing financial interest. 
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