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Markets: A Case Study 
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Loyola University Chicago, USA 
 

 

BACKGROUND 
In the current economic environment, international stock markets have 

become increasingly linked, due to financial deregulation, the globalization 

of markets, and information technology. Financial deregulation and global- 

ization of markets have contributed to the stronger relationships between 

stock markets, with the U.S. causing other market movements by influencing key 

underlying macroeconomic variables that cause stock index movements (Nasseh 

& Strauss, 2000). Information technology accelerates responsiveness to world 

events as information travels around the world in nanoseconds. Traders can now 

react instantly to corporate announcements, rumors, and the activities of other 

markets. In fact, in addition to extending trading hours to create linkages between 

international markets, exchange links have been developed that allow traders to 

trade at another exchange through specific agreements during any time of the day 

or night (Cavaletti, 1996). 

      An understanding of the international market equity structure has 

become important for investment decision-making, since international 

diversification is a strategy often used in portfolio management to reduce 

risk (Malliaris, 1996; Theodossiou, 1994). International portfolio 

diversification has gained popularity as an investment strategy in  

Copyright © 2002, Idea Group Publishing. 



206 Malliaris &  Salchenberger 
 

 

 

industrial countries as individual and corporate investors have been 

encouraged to increase their holdings in foreign securities. Barron’s 

reported that U.S. investors had tripled their ownership of foreign equities 

from $63 billion in 1988 to $200 billion in 1993, and this number has 

more than tripled again since then. There is a widespread belief that profit 

can be increased and risk can be reduced with a portfolio consisting of 

domestic and foreign investments. The reason that international 

diversification was originally recommended as an investment strategy is 

that, if domestic and foreign markets are highly uncorrelated, portfolio risk 

is reduced. If, on the other hand, domestic market movement follows 

movement in foreign markets, the trader has some advance warning of 

profitable positions to take daily. 

Recent events in the stock market have dramatically demonstrated the 

degree of integration among international equity market price indices in times 

of great financial upheaval. For example, the U.S. equity markets responded to the 

October 1997 collapse of the Southeast Asian markets with its own downward 

plunge, followed by the current period of volatility, demonstrating global linkages 

between these two markets (Lee & Kim, 1994). While it is interesting to study the 

periods immediately before and after such catastrophic events, the more general 

question is whether or not international equity markets demonstrate co-movement 

on a daily basis. The degree to which markets are integrated or segmented 

internationally and move together on a daily basis is one that impacts investment 

decisions for investors and traders and yet largely remains an unanswered 

question. Studies have suggested (Dickinson, 2000; Masih & Masih, 1997) that 

the U.S. has a greater impact on the other international equity markets. But the 

amount of day- to-day impact of the other markets on the U.S. has yet to be 

demonstrated. This is the problem we want to address. 

The use of neural networks represents a new approach to how this type 

of problem can be investigated. The economics and finance literature is 

full of studies that require the researcher to prespecify the exact nature of 

the relationship and select specific variables to test. In this study, we use 

a multistage approach that requires no prespecification of the model and 

allows us to look for associations and relationships that may not have been 

considered. Previous studies have been limited by the nature of statistical 

tools, which require the researcher to determine the variables, time frame, 

and markets to test. An intelligent guess may lead to the desired outcome, 

but neural networks are used to produce a more thorough analysis of the 

data, thus improving the researcher’s ability to uncover unanticipated 

relationships and associations. 
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PURPOSE OF THE CASE STUDY 
The purpose of this case study is to step through the process of using data 

mining and neural networks to look for the influence of selected Eastern 

markets (Japan, Hong Kong, and Australia) on the S&P 500. The neural 

network results will be compared to a standard benchmark, the random walk 

forecast. The random walk hypothesis assumes that, since tomorrow cannot be 

predicted, the best guess we can make is that tomorrow’s price will be the same 

as today’s price. If neural networks outperform the random walk, then it can 

be concluded that there is a nonlinear function or process inherent in the data 

tested. The implication is that a short-term forecast can be successfully 

generated. 

If the neural network/random walk contest is decided in favor of the neural 

network, this might lead to the conclusion that the benefits from diversification 

have been largely overstated and may be due to differences in real growth rates, 

inflation, and exchange rates. In addition, the degree to which international 

markets are linked may be significant for determining the cost of capital for 

international projects and the formulation of  national economic policies. If 

the random walk cannot be beaten, then these results would support those 

investors who believe that international diversification offers protection for their 

portfolio. 

This application is appropriate for neural networks because other statistical 

methods have failed to yield a good  short-term prediction model. While there is 

some intuition regarding which market indicators may influence the price we are 

trying to predict, empirical validation is the ultimate test of economic theories. 

 

 

MEASURING NETWORK PERFORMANCE 
A variety of  performance methods are used for determining the 

reliability, validity, and usefulness of neural networks  developed for financial 

applications. Since the purpose of this case study is to focus on short-term 

forecasting, we measured the overall prediction error and compared the 

performance of the neural networks with the random walk, which served as 

a convenient bench- mark. The success of short-term trading strategies in 

international markets typically rely on prediction accuracy, in which unit 

errors are more important than percentage errors, so we have computed mean 

absolute error (MAE) and root mean squared error (RMSE) to measure 

prediction performance. The objective was to evaluate consistency and 

accuracy over a short time, rather than the ability to predict long-term 

trends and major price shifts. Other measures typically used include mean 

absolute   percentage error  and  directional symmetry. For a more detailed



208 Malliaris &  Salchenberger 
 

 

 

discussion of each of these and other perfor- mance metrics, see Azoff 

(1994) and chapter one of this book. 

 

 

METHODOLOGY 
 

Database 
A database of international market prices from 1997-2000 (open, high, 

low, and closing) was developed for this research and included prices for the 

S&P 500, Nikkei 225, Hong Kong Hang Seng, and Australian All Ordinaries. 

Individual data sets for each market were downloaded from Yahoo 

(www.yahoo.com/m2) and combined into one data set by matching on date. 

For each market, the following variables were available from each market for 

each day of the three year period: date, high price, low price, open price, and 

closing price. Since all markets are not open on the same set of days, only days 

that all markets were open were used. 

Preliminary correlation analysis of the data led to the decision to focus on 

predicting the S&P 500 of the U.S., using the Australian All Ordinaries 

(AORD), the Hong Kong Hang Seng (HIS), and the Nikkei 225 of Japan 

(N225). The hypothesis under investigation for this case study is the effect of 

the three non-Western markets on the U.S. price within one day. In particular, 

the relationship of the difference between the open and closing price and the 

high and low prices in these markets was studied. This difference is used to 

indicate the amount of market change for a particular day in that market, and 

input from these markets are used to discover the impact of their changes on 

the U.S. market. 

The impact on the open price in the U.S. can often be significantly greater 

or smaller if the markets are closed for any period of time. Therefore, an 

important variable developed and included as part of the data set is the number 

of nights each market was closed locally. For example, if a market is open 

Monday and Tuesday, the Tuesday value for this variable would be 1. In 

addition, correlation analysis showed that a one-day lag of Australia’s price 

information was more highly correlated with the S&P 500 price than the current 

Australian price. Thus, the one-day lag of the Australian price variables was 

included in all data sets used. 

 

Preparing the Data Set 
The process of cleaning and preprocessing the data for neural networks 

is an essential first step for the development, training, and testing of the neural 

http://www.yahoo.com/m2)
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networks. Data preparation involves handling missing data, proper coding of 

data, identifying outliers, and discarding erroneous data. This data set was 

examined for missing values and inconsistent data or outliers. Outliers cause 

problems in financial prediction problems because the network cannot predict 

their behavior, since there are typically an insufficient number of them. Problem 

domain knowledge, data plots, computations of statistical measures, such as 

the mean and standard deviation, and histograms were used help to identify 

outliers. These were removed from the data set by deleting the entire row for 

that day. Values that were outside of a 3% range for market prices were 

discarded. The final data set contained 657 observations for years 1997-1999 

and 239 observations for 2000. 

 

Preprocessing the Data Set 
Preprocessing the data set reduces noise and enhances the signal, thus 

improving the learning capability of a neural network. In many cases, 

combining input values reduces the input space and improves the mapping of 

the model. Better results are always achieved when noise is eliminated from 

the data set by reducing the input space and identifying and selecting variables 

that have the greatest impact on the output variable. Raw price data (open 

price, closing price, high, low) is seldom effective in neural networks, because 

the values overwhelm the network and it is difficult for the network to learn the 

trends and subtle price movements. Thus, the first step in preprocessing this 

data set was to convert the price data into meaningful ratios. For this data set, 

we used percentage of change in a market’s price by computing the ratio of the 

difference between open and closing price divided by the open price, and 

similar ratios were computed for the high and low prices. 

The final variable set included each of the following, computed daily for the 

Australian, Hong Kong, and Japanese markets: 

(open price – closing price) / open price 

an additional lag of (open price – closing price) / open price for Australia 

(high – low) / open price 

number of nights a market was closed locally 

number of nights S&P 500 was closed locally 

to predict 

(open price – closing price) / open price for the S&P 500 on the same day. 

Thus, we are looking for the sensitivity of today’s S&P 500 change to 

changes that have happened a few hours earlier in other markets. 

The next step in preprocessing the data is to normalize or scale the data. 

We used a technique called min-max normalization performed by the neural 
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networks software package. This normalization process performs a linear 

transformation on the original input set into a specified data range, in this case 

0 to 1. 

 

Selecting a Neural Network Model 
Model specification is a key issue in developing any approximation 

technique, and selecting a particular neural network architecture 

corresponds to making assumptions about the space of the approximating 

function. Backpropagation neural networks were selected for this problem 

domain because of past success with this approach for prediction problems 

(Malliaris & Salchenberger, 1993; Malliaris & Salchenberger, 1996a; 

Malliaris & Salchenberger, 1996b). 

We adopted the standard approach for training and testing, that is, to evaluate 

a model by testing its performance on a validation set consisting of out-of-sample 

data. Neural networks were trained on years 1997-1999 and forecasts 

generated on the validation set consisting of data for 2000. 

 

Data Set Segmentation: Neural Clustering 
The first set of neural networks was developed, as previously described, 

using the input set consisting of the price ratio data as described for the 

Australia, Hong Kong, and Japanese markets to predict the price ratio for the 

S&P 500 of the U.S. The results from using a training set consisting of daily 

observations for years 1997-1999 and a test set consisting of observations for 

2000 were unsatisfactory. Further testing on networks developed, using prices 

divided into subsets based on quarters, did not yield significant improvement 

with respect to the performance measures selected for this problem. 

Neural clustering was then employed to attempt to get better results with 

our neural network and to determine if there were some factors at work in this 

data set that were not obvious. The assumption was that better results 

(improved prediction accuracy) with the neural networks might be achieved 

when clustering was used to reduce the size of the input space and cluster the 

data into subsets that are highly correlated with each other and exhibit the same 

behavior. 

In this study, two clustering techniques were used: k-means networks 

and Kohonen networks. K-means clustering is a fast-clustering technique 

that requires the number of clusters be selected in advance, and a minimum 

distance classifier is used to separate examples. Thus, an example is assigned to a 

cluster if it is closest to the center of that cluster. An initialization step, such as 

randomly assigning one example to each cluster is required to begin the process. 

Then each case is examined, distances are computed, and it is assigned to the 

cluster with the center closest to the case. After the case is assigned, the center 

of its cluster is 
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updated. The process continues until all the examples are grouped into the 

specified number of clusters and further processing yields no change in cluster 

assignment.  

Kohonen neural networks are unsupervised, self-organizing map (SOM) 

networks that project multidimensional points onto a two-dimensional network to 

simplify the complex patterns often found in high-dimensional input spaces. 

There are no middle layers, only input and output layers. These networks 

employ competitive learning and are useful in applications where it is important to 

analyze a large number of examples and identify groups with similar features. 

In competitive learning, “winner takes all” is used, where the “winner” is the 

connection with the highest firing rate. Units that are spatially close develop 

similar memory vectors, and neighborhoods shrink. Each cluster center can be 

thought of as describing the neural memory of a typical pattern for that cluster. 

Refer to chapter one of this text for additional discussion of self-organizing 

maps. 

When an input pattern is presented, the units in the output layer compete with 

each other for the right to be declared the winner. The winner is the output node 

whose connection weight is the “closest” (mimimum distance) to the input pattern. 

The connection weights of the winner are adjusted and thus moved in the direction 

of the input pattern by a factor determined by the learning rate. As the process 

continues, the size of the neighborhoods decreases. Thus, the Kohonen network 

finds the closest matching neuron to the input and moves the weights of this neuron 

and those in neighboring proximity towards the input vector. 

Clementine Data Mining software was used to conduct this cluster analysis. 

Clementine employs visual modeling techniques that allow the user to integrate 

preprocessing, model building, and evaluation of results by manipulating icons. In 

this research, we used the capabilities of this software package and Microsoft 

Excel to eliminate outliers, consolidate the data, transform the data by applying 

mathematical functions to the data, establish clusters using two different 

techniques, develop, train, and test a neural network,  and  examine the results. 

The actual determination of the number of clusters to be used is more of an art 

than a science. In Figures 1a to 1c, the results of clustering the data into 15, 9, and 

6 clusters are shown. We want the number of clusters to be as small as possible 

whileretainingtheabilitytodistinguishbetweenclasses.Notethat9clustersappear 

to give the best results, based on a visual inspection of the figures and the statistical 

output from Clementine. With 6 clusters, no distinct boundaries appear between 

clusters. 

Figures 2a and 2b compare the results of using clustering on the training 

data set for 1997-1999 and the validation set. These figures show that the 

training and validation sets demonstrate similar clustering patterns. Where 

one cluster is sparsely populated in the training set, it is also sparsely 
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Figure 1a: Input data with 15 clusters 

 

 

Figure 1b: Input data with 9 clusters 

 
 

populated in the validation set. Coordinates as shown, from (0,0) to (2,2) were 

associated with each cluster and used to identify each cluster. 

Having decided to use 9 clusters, we also developed clusters using the k- 

means technique. Nine clusters numbered 1-9 were formed for this analysis. 

To determine if any improvement could be made to the neural network 

forecast, if the cluster association were known, two new training and test sets 

were developed. The first new data set added the k-means cluster value as an input 

to signal the cluster association to the network. A second data set included the 

Kohonen feature map cluster coordinate. Each of  these sets was then used to train 
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Figure 1c: Input data with 6 clusters 
 

 
 

 

Figure 2a: Clustered training data, 1997-1999 

 

a backpropagation neural network, and the validation set was used to generate 

preliminary results, as shown in Table 1. Only slight differences in the MSE for the 

prediction set were observed. We continued our experiments by using the 

clustering results in a different way. 
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Figure 2b: Clustered validation data, 2000 
 

 
 

 

             Table 1: Results without clustering 

 

Model MSE 

Random Walk 0.0151 

Neural Network 0.0106 

Neural Network with Kohonen Variable Added 0.0107 

Neural Network with K-Means Variable Added 0.0105 

 

 

Developing the Neural Networks Using the Clustered Data 

Set 
The real value of clustering the data is to discover data partitions that have 

not occurred to the human decision-maker. To see if this would improve the 

network’s ability to develop daily forecasts, we next developed 18 separate 

neural networks, 9 for the k-means clusters and 9 for the Kohonen clusters. For 

each network, Clementine determines the best number of middle-layer nodes 

based on prediction accuracy of the training set, and the learning rate is initially set 

to 0.9. 
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Thus, instead of the single backpropagation neural network originally devel- 

oped and tested, we needed to train and test a different neural network for each 

cluster, using the clusters discovered in the data set for the years 1997-1999. The 

first step was to train the 9 neural networks for the Kohonen clusters, and this was 

done using Clementine data mining software. Next, each observation in the 

validation set was fed into the trained Kohonen network and the resulting cluster 

value was identified. For example, if an observation from 2000 was most closely 

associated with the first cluster, then“0,0” was used to identify the cluster. Then 

the corresponding trained neural network was used for predicting the S&P price 

ratio. This process was repeated for the k-means clusters. For the validation 

set, the number of observations in each of the nine k-means clusters was 29, 2, 

5, 41, 2, 26, 22, 14, and 98. 

In Figure 3, the visual model developed using Clementine that trains 

and tests the appropriate networks is shown. The training set consisting of 

data from 1997 to 1999 is shown as the icon labeled “training file,” and the 

validation set (data from 2000) is displayed in the model as the icon “validation 

set”. The type icon is used by Clementine to identify the data type (e.g., integer, 

text, etc.) and purpose. The top row of the figure shows the process used to 

develop the Kohonen clusters. The center row shows the process of feeding the 

data through the trained Kohonen model. Then, a single cluster is isolated and 

a neural network is trained on that cluster. In the bottom row, data from the 

validation set are fed through the trained Kohonen model to identify the 

clusters. A cluster is selected and fed into the corresponding single-cluster, 

trained neural network. The results are then analyzed. 
 

Figure 3: Neural network prediction model in Clementine, with Kohonen 

clustering 
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RESULTS 
The initial results of developing backpropagation networks trained with 

data from 1997-1999 and tested using data from 2000, displayed in Table 1, 

led  to the conclusion that better short-term predictions could be achieved if the 

data were properly clustered. The results of next set of experiments, using 

neural clustering, are shown in Tables 2and 3. In all cases, except one, the neural 

network based on a single cluster outperforms the random walk forecast for the 

same set of data. Further statistical analysis shows that these are significantly 

different at the.05 level of significance for  the Kohonen clusters (0,0), (0,2), 

(1,0), (1,1), (1,2). 
 

                             

 

                     SUMMARY AND CONCLUSIONS 
The results are interesting and significant from a methodological and an 

empirical perspective. The nature of the prediction problem and the results 

from the neural networks developed using the entire data set led to the 

decision to use two data mining tools for this prediction problem: clustering and 

neural networks. The quality of the data set in terms of its predictive capabilities 

often determines the success or failure of neural networks. This prompted the 

decision to reexamine the data set for strong relationships in the data set that we 
 
 
Table 2: Random walk and neural network forecast errors within k-means 

clusters for year 2000 
 
 

K-Means 

Cluster 

MAE 

Random Walk 

MAE 

Neural Network 

RMSE 

Random Walk 

RMSE 

Neural Network 

1 0.0183 0.0107 0.0216 0.0136 

2 0.0526 0.0203 0.0654 0.0247 

3 0.0207 0.0114 0.0250 0.0159 

4 0.0149 0.0115 0.0194 0.0151 

5 0.0037 0.0139 0.0046 0.0139 

6 0.0142 0.0099 0.0185 0.0115 

7 0.0151 0.0125 0.0186 0.0166 

8 0.0122 0.0079 0.0159 0.0090 

9 0.0141 0.0098 0.0175 0.0134 
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Table 3: Random walk and neural network forecast errors within Kohonen 

clusters for year 2000 
 

Kohonen 

Cluster 

MAE 

Random Walk 

MAE 

Neural Network 

RMSE 

Random Walk 

RMSE 

Neural Network 

(0,0) 0.0163 0.0108 0.0196 0.0133 

(0,1) 0.0172 0.0160 0.0230 0.0171 

(0,2) 0.0149 0.0099 0.0221 0.0121 

(1,0) 0.0153 0.0106 0.0190 0.0127 

(1,1) 0.0171 0.0109 0.0213 0.0115 

(1,2) 0.0205 0.0095 0.0218 0.0120 

(2,0) 0.0117 0.0132 0.0141 0.0092 

(2,1) 0.0158 0.0130 0.0192 0.0174 

(2,2) 0.0162 0.0132 0.0201 0.0175 

 
could not discover through knowledge of the problem domain that might be 

affecting the prediction results. The data was segmented into clusters based 

on features discovered through the clustering process, and the results were 

indeed improved. 

The neural networks developed in this study outperformed the random 

walk predictions in most cases. This is an important empirical result, because 

the implication is that prices can be predicted using available information, thus 

signaling the existence of profitable trading strategies. That is, what happens 

daily in Japan, Australia, and Hong Kong does have an effect on the S&P 500, 

not only in catastrophic times, but also in normal day-to-day trading. 

Using neural networks for price forecasting represents a valuable approach 

to this problem for several reasons. Neural networks may prove to be useful for 

these forecasting problems, which traditional statistical methods have been 

unable to solve. With neural networks, there is no need to engage in a debate over 

issues like autocorrelation, the probability distribution of the variables, or the 

nature of the underlying process, which must be determined before the 

statistical techniques traditionally used in futures prices forecasting can be 

used to develop forecasts. Since many of these issues appear to be unresolved, 

to the extent that conflicting evidence has been reported in many studies, a 

modeling approach which need not resolve these issues represents a great 

advantage. 
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The results of this study give us many leads for areas of future research. Both 

k-means and Kohonen clusters led to improved neural network forecasts, yet the 

clusters occurred in different ways. That is, the Kohonen and k-means 

clusters were not identical. Further analysis of the clusters – why they aggregate 

data into those groups and why the groups are not identical – is left to future 

analysis. 

Since we have established that these markets have an effect daily, the door is 

now open to other researchers to investigate and refine these forecasts. The 

dominance of American markets is taken for granted. This study has shown 

that the major player is itself affected on a daily basis by the movements of 

markets on the opposite side of the globe. The world is indeed a small place. 
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