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Abstract 

 

A mixed quantum/classical approach to inelastic scattering (MQCT) is 

developed in which the relative motion of two collision partners is treated 

classically, and the rotational and vibrational motion of each molecule is 

treated quantum mechanically. The cases of molecule + atom and molecule + 

molecule are considered including diatomics, symmetric-top rotors, and 

asymmetric-top rotor molecules. Phase information is taken into 

consideration, permitting calculations of elastic and inelastic, total and 

differential cross sections for excitation and quenching. The method is 

numerically efficient and intrinsically parallel. The scaling law of MQCT is 

favorable, which enables calculations at high collision energies and for 

complicated molecules. Benchmark studies are carried out for several quite 

different molecular systems (N2 + Na, H2 + He, CO + He, CH3 + He, H2O + 

He, HCOOCH3 + He, and H2 + N2) in a broad range of collision energies, which 

demonstrates that MQCT is a viable approach to inelastic scattering. At higher 

collision energies it can confidently replace the computationally expensive 

full-quantum calculations. At low collision energies and for low-mass systems 

results of MQCT are less accurate but are still reasonable. A proposal is made 

for blending MQCT calculations at higher energies with full-quantum 
calculations at low energies. 

I Introduction 

Collision of a molecule with another molecule (or an atom) in 

gas phase environment is a fundamental physical process important in 
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a broad variety of chemical phenomena, ranging from astrochemistry 

that occurs on galactic sizes,1,2 to atmospheric chemistry,3,4 to 

combustion processes in the man-made engines,5,6 and to 

microfabricated traps cooled down to ultralow temperatures.7,8 At first 

glance the inelastic scattering process might look simple: two collision 

partners exchange energy by means of the interaction potential, but 

complexity is hidden in the details. 

 

First of all, the energy is distributed between translational and 

internal degrees of freedom that include rotational and vibrational 

modes of one or both collision partners. Populations of these states 

may be far from thermodynamic equilibrium; so, detailed knowledge of 

many state-to-state transition cross sections is required. But in larger 

molecules the number of accessible internal states may reach 

hundreds and even thousands.9-12 Second, the molecule–molecule 

interaction is described by a complicated multidimensional potential, 

represented by the potential energy surface (PES), or hypersurface to 

be exact, that should be constructed using the tools of electronic 

structure theory and the state-of-the-art methods of surface fitting.13, 

14 Third, the range of scattering energies we have to cover is often 

broad, with different mechanisms dominating in different collision 

regimes (e.g., scattering resonances at low energies2,12,15 in contrast to 

vibrational excitation at high energies).16-18 Finally, very detailed 

information about the process may be needed, such as differential 

over scattering angle cross section for state-to-state transition.19,20 If 

several of these complications have to be tackled simultaneously, the 

inelastic scattering process does not look simple anymore. 

 

One very popular theoretical tool for description of molecular 

collisions is the method of classical trajectories.21-23 It is relatively 

straightforward (in terms of computational methodology) and quite 

affordable (in terms of numerical cost) to deal with classical models of 

small polyatomic molecules as they rotate, vibrate, and exchange 

energy in a collision. We often use classical terms to visualize the 

collision process, and to understand it qualitatively. Problems with this 

approach occur at the final stage of calculations, when classical 

trajectories have to be analyzed to extract quantitative information, 

such as state-to-state cross sections. Experience shows that a classical 

description is appropriate only when the energy exchanged in the 
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process is high, and the number of internal states involved (rotational, 

vibrational) is large. Examples include photochemistry,24 collision-

induced dissociation,25,26 exothermic chemical reactions,27 and 

hyperthermal phenomena.28 However, for the low-energy collisions, or 

when just a few low-lying quantum states are involved, the method of 

classical trajectories is not expected to be accurate. Moreover, several 

important molecular processes/features cannot be described by 

classical trajectories in principle, such as preservation of zero-point 

energy,29-31 symmetry restrictions for state-to-state transitions,32 

tunneling,33 and scattering resonances.29 

 

In contrast, the quantum mechanical approach to inelastic 

scattering, such as coupled-channel (CC) formalism,34,35 is the most 

universal, general and (besides numerical convergence issues) is 

considered to be exact, because the full-dimensional Schrodinger 

equation is numerically solved without any physical approximations. 

Unfortunately, the cost of such calculations grows dramatically for 

heavier collision partners, at higher collision energies, and for the 

molecules with dense spectra of the rotational and vibrational states. 

For example, the CC calculations of rotationally inelastic scattering for 

a triatomic + diatomic system, such as H2O + H2 with collision 

energies up to 8000 cm–1,36 are at the limit of the present day 

computing power.37 It appears that similar calculations for a triatomic 

+ triatomic system, such as H2O + H2O,38 or for a polyatomic + atom 

system, such as CHOOCH3 + He,12 are so computationally expensive 

that they are considered impractical for any useful range of collision 

energies (e.g., at room temperature). Furthermore, inclusion of the 

lowest vibrational modes, such as bending in H2O, or torsion in 

CHOOCH3, would make these calculations even more expensive. A 

somewhat sad but honest conclusion is that a broad variety of 

molecular collision processes, which include chemically important 

triatomic and small polyatomic molecules, are well outside the reach of 

theorists today. 

 

Expanding our predictive capabilities, even slightly, toward 

these more complicated systems would be quite beneficial. This is why 

the focus of our research is on development of an efficient theoretical 

method that would involve a physical approximation to ease 

calculations but would still remain reasonably detailed and accurate, at 
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least in collision regimes where the full-quantum approach is not 

affordable anymore, whereas the purely classical approach is not 

accurate. Pictorially, our approach can be “positioned” between the 

purely classical and the full-quantum methods discussed above, 

because it combines both classical and quantum mechanics to treat 

different degrees of freedom in a molecular scattering problem. 

Namely, we still use quantum mechanics to describe the internal 

quantized states of molecules, but we also employ classical mechanics 

to describe their translational motion. This is an approximation, but we 

demonstrate below that this is a good one to make for almost any 

molecular system in almost any collision regime. If the limitations of 

this approach are understood and are easy to predict a priori, it may 

become a useful addition to the toolbox of theorists. Importantly, a 

very significant computational speed-up, compared to the full-

quantum method, is achieved because the quantum treatment of 

continuum motion (scattering of heavy particles that typically requires 

a large number of partial waves) is avoided and is replaced by the 

mean-field trajectory. Still, the state-to-state transitions are described 

by the time-dependent Schrodinger equation, which incorporates 

quantization of states, symmetry, tunneling, and other attributes of 

quantum mechanics. 

 

We call our approach the mixed quantum/classical theory 

(MQCT). It was not developed in isolation, because similar theories 

have been proposed in the past, and we built upon that previous work. 

Very relevant is the early work of McCann and Flannery39-41 in 1970s 

and, of course, the intense work of Billing42,43 in the 1980s and 1990s. 

The great work of Billing was so influential that at the end of 1990s 

and beginning of 2000s quite a few theory groups around the world 

decided to give a try to the mixed quantum/classical approach, 

applying it to a broad variety of problems, including nonadiabatic 

phenomena,44 ro-vibrational excitation,45 femtosecond spectroscopy,46 

collision-induced dissociation,47 photodissociation,48 and solvent 

effect.49 Some of the results obtained at that time were quite 

encouraging but because those systems, processes, and collision 

conditions were so diverse, it was hard to come out with general 

conclusions about accuracy, generality, and numerical efficiency of the 

method. To our best knowledge, no one else pursued a focused 
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systematic study of the method, and after the death of Billing in 

2003,50 these activities gradually declined. 

 

Similarly to Billing,42,43 we differentiate between two distinct 

implementations of MQCT ideas. The first (more approximate) 

implementation restricts quantum mechanical treatment to the 

vibrational degrees of freedom only, describing rotational motion 

classically, same as translational motion. Potentially, this is a powerful 

approach, suitable for description of ro-vibrational processes with large 

vibrational and rotational excitations, including dissociation. The 

largest body of Billing’s work was dedicated to development and 

testing of this approach. Recently, we applied similar methods to 

describe stabilization of scattering resonances at the final step of the 

ozone forming reaction, in O3* + Ar collisions, looking at the isotope 

effects,51-53 but also in the benchmark study of ro-vibrational 

quenching in CO(v = 1) + He.54,55 However, our major focus has been 

on the second implementation of MQCT, in which all the internal 

degrees of freedom are treated quantum-mechanically (rotational and 

vibrational states on equal footing) and only the scattering is described 

classically. Clearly, this version is more rigorous and is more suitable 

for a systematic benchmark study. Surprisingly, it has never been 

properly tested. Billing himself applied it to only one system, H2 + 

He,43,56 focusing on transitions between the few lowest states at two 

values of collision energies. Those limited results were not particularly 

representative. 

 

In our recent work,57-63 summarized in this Feature Article, we 

carried out a systematic development of theory for this second more 

rigorous version of MQCT, incorporating phase information into the 

formalism (to compute elastic and differential over scattering angle 

cross sections), expanding MQCT onto the general case of an 

asymmetric-top rotor (suitable for description of polyatomic 

molecules), and including the case of molecule + molecule collisions 

(which makes this overall theory complete). Simultaneously, we 

conducted a rigorous benchmark tests of MQCT, applying it to six 

different molecular systems, computing elastic and inelastic, total and 

differential cross sections for rotational excitation and quenching, of 

light and heavy collision partners, with low and high levels of the initial 

excitation and in a broad range of collision energies from few 
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wavenumbers up to 104 cm–1. In one case we including vibrational 

states into the basis set expansion, which enables calculations of 

coupled ro-vibrational processes. We also studied one case when the 

rotational energy released by one collision partner is absorbed by 

rotation of the other partner, the so-called quasi-resonant energy 

transfer between two molecules. Among the molecules we studied 

there were such important as H2O,2,16,17,19,38 and such large as 

HCOOCH3 which, to our best knowledge, is the most complicated 

system ever considered for the inelastic scattering calculations.12 In all 

cases we compared our MQCT results against results of the full-

quantum calculations carried out with MOLSCAT64 or Hibridon.65 

II Theory 

Here we review definitions and the final equations of motion for 

MQCT (without detailed derivations) and discuss how to set up the 

initial conditions for those and how to convert the results of 

calculations into observable quantities. This presentation summarizes 

derivations and generalizes results of several earlier theory papers on 

diatomic + atom,54,55,57,59,60 polyatomic + atom,58,61,62 and diatomic + 

diatomic63 systems. The point we convey here is that MQCT equations 

have the same form for any system of two collision partners, the 

difference is only in the meaning of indexes and in the structure of 

state-to-state transition matrix. Notations we use here are somewhat 

different from those used in our earlier papers but are chosen to 

emphasize the generality of MQCT and to make the equations most 

transparent and user-friendly. 

 

II.1 Quantum and Classical Degrees of Freedom 
 

Consider inelastic scattering of two collisions partners that can 

be either two molecules or a molecule and an atom. In either case, 

classical variables that describe the scattering process in MQCT are 

three coordinates (R, Θ, Φ) of the vector Q that connects centers of 

mass of two collision partners. This is illustrated schematically in 

Figure 1 for the case of a diatomic + diatomic collision, but again, this 

description remains valid if one of the molecules is replaced by an 

atom, or if a collision of two polyatomic molecules is considered. For 

any system, the uppercase variables R, Θ, and Φ give the position of 
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the classical vector Q with respect to the laboratory-fixed reference 

frame, using the usual spherical polar system of coordinates. 

 

 
Figure 1. Classical and quantum degrees of freedom for description of inelastic 

collision of two diatomic molecules, AB and CD, in the body-fixed reference frame. 

 

Quantum degrees of freedom in MQCT are the angles needed to 

describe individual orientations of colliding molecules with respect to 

the vector Q (i.e., in the BF reference frame), and these are different 

for different systems. For example, in the diatomic + diatomic case 

depicted in Figure 1 these are four lowercase angles (θ1, θ2, φ1, φ2). If 

the second molecule is replaced by an atom, then the second pair of 

angles is obsolete and only the first one is needed, just (θ, φ). If 

polyatomic molecule is considered, then we use Euler angles (α, β, γ), 

for each molecule. For simplicity we will introduce a composite variable 

ω to label all the quantum degrees of freedom in the system. At most, 

there are six angles needed for the general case of polyatomic + 

polyatomic collision, namely, ω = {α1, β1, γ1, α2, β2, γ2}. 

 

The total time-dependent wave function for the quantum part of 

the system is expressed in MQCT as follows (in atomic units): 

 

(1) 
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where amn are time-dependent expansion coefficients, Ψmn is basis set 

of rotational eigenstates of the system, and En are their corresponding 

energy eigenvalues. Index n is a composite index that labels states 

and its meaning depends on the system. For the simplest case of a 

diatomic + atom we have simply n ≡ {j} and Ψmn(ω) ≡ Yj
m(θ,φ), i.e., 

spherical harmonics.57 For an asymmetric-top rotor (general 

polyatomic molecule) + atom we should set n ≡ {j, ka, kc} and 

determine wave functions Ψmn(ω) ≡ Ψmjkakc(α,β,γ) by diagonalization of 

the rotational Hamiltonian in the basis set of Wigner D-functions.61 In 

either case, the energy En of eigenstate depends on n only and does 

not depend on m, which is a projection of angular momentum vector j 

of the molecule onto vector Q, which plays the role of z-axis in the BF 

reference frame. For a diatomic + diatomic case depicted in Figure 1 

we should set n ≡ {j, j1, j2}, where j1 and j2 are individual angular 

momenta of the molecules, but now j represents the total angular 

momentum of two molecules, j = j1 + j2, which is also quantized in 

MQCT: |j1 – j2| ≤ j ≤ j1 + j2. Corresponding eigenstates Ψmn(ω) ≡ 

Ψmjj1j2(θ1,θ2,φ1,φ2) are expanded over basis set of spherical harmonics 

of two molecules using Glebsch–Gordan coefficients.63 The meaning of 

m is still a projection of j onto Q. 

 

II.2 Equations of Motion 
 

Substitution of eq 1 into time-dependent Schrödinger equation 

leads to MQCT equations for time-evolution of the quantum probability 

amplitudes amn(t) and for the classically treated degrees of freedom in 

the problem, {R(t), Φ(t), Θ(t)}. Here, we present just the final 

equations, adapted for the case when the initial rotational wave 

function ψ(ω,t=0) is a rotational eigenfunction Ψmn(ω) rather than a 

general rotational wave packet. In such system the rotational wave 

function possesses cylindrical symmetry around the vector Q, and the 

classical trajectory of motion {R(t), Φ(t), Θ(t)} is restricted to one 

plane. We choose this plane to be the equatorial plane Θ = π/2, which 

greatly simplifies both classical and quantum equations of motion. In 

this case the time-dependent Schrodinger equation for atom-molecule 

scattering is reduced to the following system of coupled equations for 

probability amplitudes: 
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(2) 

where ΔEn′
n = En – En′. Here matrix V describes transitions between m-

components of j in the BF reference frame. It is computed analytically 

for every value of j as follows: 

 

(3) 

 

Note that matrix V is time-independent (should be computed only 

once) and is analytic. It does not involve any interaction potential. 

Physical meaning of the last term in eq 2 is the centrifugal coupling 

effect. Allowed transitions are Δm = ±1. The coupled-states (CS) 

approximation is obtained readily by neglecting this term.57,60 

 

In contrast, matrix M in eq 2 describes transitions between 

states n, and is computed separately for every m-component of j using 

the potential energy surface V(R,ω) as follows: 

 

(4) 

 

This is a potential coupling matrix and it should be computed 

numerically. Elements of M are real and depend on R only, which is 

the length of the vector Q, that itself evolves during the collision. For 

simple systems (diatomic, triatomic molecules) a useful expression for 

matrix elements can be obtained by expanding the interaction 

potential over a basis set of spherical harmonics. Such formulas for a 

diatomic molecule and symmetric-top and general asymmetric-top 

rotor have been published61 and will not be reviewed here. For more 

complicated (polyatomic) molecules it is better to compute matrix 

elements directly by multidimensional quadrature over ω.62 

Equations of motion for classical degrees of freedom (coordinates of 

the vector Q) are obtained using the Ehrenfest approach.57 The 

resultant differential equations for R(t) and Φ(t) also include matrixes 

M and V, as a commutator:57,60,61 

 

(5a) 
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(5b) 

(6a) 

(6b) 

 

where μ is the reduced mass of two collision partners, and ΔEn
n′ = En′ – 

En. We showed that expressions in right-hand sides of eqs 5b and 6b 

are real-valued,57 which leads to the real-valued momenta and their 

time derivatives. These classical-like equations can be propagated in 

time and space numerically, together with the quantum-like system of 

coupled eqs 2 for probability amplitudes, using a suitable numerical 

method, like fourth order Runge–Kutta. 

 

II.3 Initial Conditions and Final Analysis 
 

Setting up the initial conditions for MQCT calculations includes 

sampling over classical degrees of freedom, but calculations of the 

state-to-state transition cross sections incorporates sum over the final 

and an average over the initial degenerate states, just as in the full-

quantum calculations. The goal is to keep MQCT as close as possible to 

the quantum formalism. For this reason we do not sample or use the 

classical collision impact parameter directly. Instead, we sample 

randomly and uniformly the value of J that represents the total angular 

momentum in the problem, through the range 0 ≤ J ≤ Jmax. The value 

of Jmax is a convergence parameter, just as in the full-quantum 

calculations. For the randomly chosen value of J and a chosen initial 

value of molecular angular momentum j we sample the value of 

randomly and uniformly through the range . It corresponds 

to the orbital angular momentum in the system, l = J – j, and is used 

to define classical initial conditions as follows: 

 

(7) 

 

(8) 
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where E = k2/2 μ is the kinetic energy of collision (not the total 

energy) and R is the initial molecule–molecule separation (close to 20 

Bohr). The initial value of Φ is arbitrary, and we use Φ = 0, as shown 

in the TOC graphic. 

 

With these initial conditions MQCT equations are propagated 

through the collision event, until the point when the molecule–

molecule separation exceeds the initial limiting value. The final values 

of probability amplitudes are used to compute transition probability 

(summed over the degenerate final states): 

 

(9) 

 

Average of this quantity over the batch of N sampled trajectories gives 

the corresponding cross section: 

 

(10) 

 

The number of trajectories N is also a convergence parameter. Note 

that sampling over J and l is done in a single step, because there is no 

requirement that the contribution of every J is converged. It is only 

important that the entire sum of eq 10 is converged; so, we use a very 

efficient two-dimensional sampling that converges with a moderate 

number of MQCT trajectories (around 100 per initial state, per energy 

point). Finally, the cross section is averaged over the initial degenerate 

states, by running a set of q independent calculations, taking each 

degenerate state as initial: 

 

(11) 

 

The entire procedure is, basically, the same for molecule + atom60-62 or 

molecule + molecule63 systems, except small differences in how the 
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summation is done in eqs 9 and 11. Namely, in the molecule + atom 

case, for each chosen initial j, the degenerate initial states are just the 

projection states – j ≤ m ≤ + j. So, in eq 11 the sum is over m and 

the partition function is q = 2j + 1. Similarly, in eq 9 the sum is over 

m′, for each final j′ of interest. However, in the molecule + molecule 

case, for a chosen pair of the initial states j1 and j2 (of two molecules) 

there are q = (2j1 + 1)(2j2 + 1) degenerate states of the system. 

Those are labeled by m varied in the range – j ≤ m ≤ + j (for each 

allowed j) and by j, varied in the range |j1 – j2| ≤ j ≤ j1 + j2 So, in eq 

11 the sum is over these m and j, whereas in eq 9 the sum is over m′ 

and j′, allowed for each pair of the final states j1′ and j2′ of interest. 

 

II.4 Reversibility in MQCT 
 

Consider a transition n → n′ between two states of the system, 

characterized by a positive energy difference ΔE = ΔEn
n′ = En′ – En > 0, 

which corresponds to En′ > En. In general, calculations of cross section 

for this process can be set up by starting MQCT trajectories in state n 

and looking at excitations into n′ or, alternatively, by starting in state 

n′, looking at quenching into n, and using the principle of microscopic 

reversibility.55 It states that if two such calculations are carried out at 

the same total energy Etot, the transition probabilities are equal: 

 

(12) 

 

In this expression E and E′ represent the initial kinetic energy of 

collision (Figure 2), related to the total energy as Etot = En + E = En′ + 

E′. Unfortunately, this principle is not automatically built into the 

MQCT formalism (similar to classical trajectory simulations, and in 

contrast to quantum mechanics, where it is satisfied rigorously). Our 

experience shows55 that straightforward MQCT calculations of 

excitation, n → n′, overestimate transition probability, whereas the 

calculations of quenching, n′ → n, underestimate it. Indeed, in 

calculations of excitation and quenching for the same total energy we 

always have E > E′ and P > P′, where P = (2μE)1/2 and P′ = (2μE′)1/2 

are the initial values of classical momenta. Because, in general, the 

probability of state-to-state transition depends on momentum (the 

speed) of collision, the results will always be different in the 
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calculations of excitation and quenching. The problem is more 

pronounced at lower collision energies and for transitions with larger 

quanta ΔE. It is particularly severe near the threshold (for excitation), 

when E ≈ ΔE and E′ ≪ ΔE, which gives E ≫ E′ and leads to very 

different collision speeds in two calculations, P ≫ P′, resulting in 

drastically different (sometimes by several orders of magnitude55) 

transition probabilities for excitation and quenching, pn→n′(E) ≫ 

pn′→n(E′) 

 

 
Figure 2. Schematic of energy balance in the principle of microscopic reversibility. E 
and E′ are kinetic collision energies in the calculations of excitation and quenching 
processes, respectively. See text for further details. 

 

One proven way to enforce reversibility in MQCT is to run both 

excitation and quenching calculations with the same initial momentum 

that can be chosen as an average of P and P′.55,56 The corresponding 

effective collision energy U is defined as 

 

(13) 

 

It does not appear in any equations listed above but is used to set up 

the initial conditions in the actual calculations (namely, in eq 8 instead 

of E). Using simple algebra, one can express U, E, and E′ through each 

other:55,56 
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(14) 

 

(15) 

 

(16) 

 

(17) 

 

Note that E′ < U < E. Also note that at the threshold for excitation, 

when E = ΔE and E′ = 0, we obtain U = ΔE/4. This means that the 

effective or actual collision energy U of MQCT trajectories is never less 

than one-quarter of the quantum for the state-to-state transition of 

interest. This approach, equivalent to symmetrization of scattering 

matrix, allows merging the results of calculations for excitation and 

quenching, which enforces reversibility and significantly improves 

accuracy of MQCT, even in the regime of low collision energies and for 

the systems with large quanta ΔE.57 We followed this approach in all 

calculations of rotationally inelastic scattering presented in section III 

(six different molecular systems) and in our earlier calculations of ro-

vibrational quenching in CO(v=1) + He system.57 

 

II.5 Scattering Phase and Differential Cross Section 
 

For the elastic scattering channel, and in particular for 

calculations of the differential (over scattering angle χ) cross section, 

the phase becomes important, but there are two contributions to the 

overall phase. The first contribution is phase acquired by the rotational 

wave function, the internal phase. It is contained in the complex-

valued probability amplitude amn, which is accurately computed within 

MQCT. We denote this phase δn and can compute it simply as δn = 

arg amn(t∞). Second contribution is phase shift of the partial wave, , 

which is missing in MQCT, because scattering is treated classically. 

However, classical treatment of translational degrees of freedom 

provides the deflection function . It cannot really be used directly to 
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compute the cross section at scattering angles smaller than the 

rainbow angle (see, for example, ref 66), but we found it possible to 

recover the value of from the dependence. Namely, in the 

semiclassical treatments of scattering it is assumed that deflection is 

determined by the total phase shift: 

 

(18) 

 

If the and dependencies are both known, this expression can be 

converted into differential equation for with boundary condition 

, which corresponds to no scattering at large impact 

parameters. Solving such equation numerically allows reconstructing 

the dependence: 

 

(19) 

 

where l is a dummy variable introduced for integration over . This 

phase is then accounted for simply by multiplying the final computed 

probability amplitude by the phase factor: . Such corrected 

probability amplitude can be used to compute the elastic scattering 

total cross section: 

 

(20) 

 

and the differential scattering amplitude (needed in calculations of the 

differential cross section60): 

(21) 

 

where is the Legendre polynomial of th degree. Note that this 

method can be applied to the inelastic scattering channels as well, but 

the total inelastic cross sections are insensitive to phases, because 

probability amplitudes are squared before any other operations in eq 

http://dx.doi.org/10.1021/acs.jpca.5b09569
http://epublications.marquette.edu/
javascript:void(0);
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#eq20


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Physical Chemistry A, Vol 120, No. 3 (January 28, 2016): pg. 319-331. DOI. This article is © American Chemical 
Society and permission has been granted for this version to appear in e-Publications@Marquette. American Chemical 
Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from American Chemical Society. 

17 

 

20 and the phase information is lost. For this reason we focused on the 

elastic channel. 

 

II.6 Few Remarks 
 

In the theory summarized above we neglected vibrational 

excitations and emphasized the (purely) rotational transitions, typical 

for molecules that are nearly rigid, described by the ground vibrational 

state wave function. But, if needed, the excited vibrational states can 

be easily added to the basis set expansion of eq 1, by using ro-

vibrational eigenstates, as we did in ref 60. If the number of 

vibrational states is large, one can employ a grid-based approach,51 

instead of the basis set expansion. 

 

Another note concerns rotational variables. It is customary to 

use spherical polar angles (θ, φ) for diatomic molecules, whereas the 

Euler angles (α, β, γ) are used for polyatomic molecules. However, for 

generality, the later could also be used instead of the former, because 

if we set α = 0 then β = θ and γ = φ. We should also note that in 

several earlier papers we used primed variables and indexes for the BF 

reference frame (e.g., φ′ m′, α′) and unprimed for the SF reference 

frame.60,61,63 Such nomenclature is not followed here, simply because 

we did not discuss any BF-to-SF transformations in this paper, and to 

make the final MQCT equations most transparent. Also, using two 

angles φ1 and φ2 is redundant in some sense, because the potential of 

interaction of two molecules depends on their difference only, Δφ = φ2 

– φ1. 

III Numerical Results 

III.1 Diatomic Molecules 
 

It was important to assess the accuracy of MQCT by comparing 

its results against the full-quantum results for simple systems. The 

first benchmark system we chose was N2 + Na, because it was studied 

recently in great detail by Dalgarno and co-workers20 using the full-

quantum CC approach, and because the potential energy surface 

employed in that study was readily available. Figure 3 shows cross 

sections for rotational quenching and excitation of N2 (j = 5) by 
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collision with Na atom in a broad range of collision energies, 5 < E < 

1500 cm–1.59,60 We see that for the quenching processes, 5 → 3 and 5 

→ 1, excellent agreement is observed between MQCT and the full-

quantum calculations down to E = 5 cm–1, and even slight oscillations 

of cross sections (as a function of collision energy) are reproduced. For 

the excitation processes, 5 → 7 and 5 → 9, the agreement is also 

nearly perfect and even the channel thresholds are accurately 

reproduced (Figure 3). Here the MQCT method is accurate through 5 

orders of magnitude range of cross section values. Similarly good 

agreement was also found for excitation of the ground rotational state 

j = 0 of N2 into the states j = 2, 4, and 6.60 

 

 
Figure 3. Inelastic scattering cross section for transitions in N2 + Na from j = 5 to j = 
1, 3, 7, and 9. Full-quantum results of Dalgarno and co-workers20 are shown by lines; 
our MQCT results,59 by symbols. 

 

Figure 4 shows differential cross sections for the elastic scattering 

channel 0 → 0 in the N2 + Na system at collision energy E = 50 cm–1.59 

Here, again, our MQCT results are tested against the full-quantum CC 

results of Dalgarno.20 The dependence is rather complicated, but every 

quantum oscillation is reproduced by MQCT, even at small scattering 

angles (forward scattering), where classical approximation is not 
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expected to be accurate. Recall that neither the elastic nor the 

differential cross section can be reproduced by the classical scattering 

theory, due to the lack of phase information and quantum 

interference.66 But MQCT has it all and is accurate, again, through 5 

orders of magnitude range of cross section values. Calculations of the 

differential cross sections at higher collision energies, 100 and 700 cm–

1, demonstrate excellent agreement too.60 

 

 
Figure 4. Differential cross section for elastic scattering of N2(j = 0) + Na at E = 50 cm–1. Full-
quantum results20 are shown by the green line; our MQCT results,59 by red line. 

 

So, we see that for N2 + Na collisions, MQCT is in detailed 

agreement with full-quantum calculations. It can be argued, however, 

that in this system all atoms are heavy, making it naturally suitable for 

classical treatment. This may be true, but one should keep in mind 

that all the chemically important atoms of the second and third rows of 

the periodic chart have masses comparable to those of N2 and Na; so, 

this example is rather representative. Still, a test of MQCT using 

lighter atoms would be desirable to see how well the MQCT would work 

in such case. 

 

For this reason we studied H2 + He,60 which is an all-light-atom 

system, often thought of as the most nonclassical example. In terms 
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of the mass effect, it represents the most stringent test of MQCT. 

Figure 5 gives the cross section for quenching of the first (j = 2) and 

second (j = 4) excited states of H2 by He impact through 4 orders of 

magnitude range of collision energies. Here comparison is against the 

full-quantum CC results of Balakrishnan, Stancil, and co-workers.8 In 

this system, indeed, we see some non-negligible differences between 

MQCT and the full-quantum calculations but, importantly, they vanish 

at collision energies above 100 cm–1, demonstrating accurate 

asymptotic behavior. Largest errors in MQCT calculations occur at 

lower energies. For example, at collision energies around 10 cm–1, 

predictions of MQCT for H2 + He exceed quantum results by 20% or 

so. For this system we also carried out calculations of quenching of the 

highly excited rotational state H2(j = 22) and we saw very similar 

behavior.60 A practically important conclusion is that even in the 

(worst) case of the lightest system, H2 + He, the MQCT method does 

not fail badly. Although less accurate, the results of MQCT remain 

reasonable, even at very low collision energies, on the order of just 

few wavenumbers (Figure 5). Needless to say that, for many 

applications, 20% error is acceptable.1 

 

 
Figure 5. Quenching cross section for H2 + He. Full-quantum results of Balakrishnan, 
Stancil, and co-workers8 are shown by lines (where available); our MQCT results,60)by 
symbols. Reprinted with permission from ref 60 (Semenov, A.; Dubernet, M.-L.; 
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Babikov, D.Mixed Quantum/Classical Calculations of Total and Differential Elastic and 

Rotationally Inelastic Scattering Cross Sections for Light and Heavy Reduced Masses in 
a Broad Range of Collision Energies. J. Chem. Phys. 2014, 140, 044306). Copyright 
2014 American Physical Society. 

One more point we want to stress here is that MQCT permits 

rigorous incorporation of the symmetry selection rules for state-to-

state transitions. Thus, in homonuclear diatomic molecules, such as N2 

or H2, only the transitions with even values of Δj are allowed. It is 

well-known that classical trajectory simulations produce a continuous 

spectrum of angular momentum values, and there is now a rigorous 

way of avoiding transitions that are quantum mechanically forbidden. 

In contrast, in MQCT the selection rules are enforced in the state-to-

state transition matrix of eq 4, by construction. Results presented 

above demonstrate this very clearly. 

 

III.2 Triatomic and Tetratomic Molecules 
 

The next natural step was to go beyond diatomic molecules by 

implementing MQCT for a symmetric-top rotor molecule collided with 

an atom. We chose a system of He + CH3 (an oblate top), because it 

was studied recently by Alexander and co-workers5 using the full-

quantum CC approach. Cross sections for rotational excitation of the 

ground state CH3(jk=00) into various excited states are presented in 

two frames of Figure 6, for collision energies up to 2500 cm–1. In this 

system we found that accuracy of MQCT may be different for different 

final states. For example, for the processes presented in the upper 

frame of Figure 6 the results of MQCT were in very good agreement 

with full-quantum results (similar to what we saw in diatomic 

molecules), which gave us confidence in the equations we derived and 

the code we wrote. But the lower frame of Figure 6 illustrates those 

transitions where the agreement was not that good. Although the 

general trend of energy dependence for each transition is captured by 

MQCT, we see that some difference between our MQCT results and the 

full-quantum results of Alexander5 survives even at higher energies 

(e.g., for transition 00 → 40 it reaches 38%). We did not see such 

behavior in others, in neither the simpler nor more complicated 

systems we studied so far, and do not quite understand the reason for 

this discrepancy yet (section III.4). 

http://dx.doi.org/10.1021/acs.jpca.5b09569
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#eq4
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#eq4
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#fig6
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#fig6
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#fig6
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#fig6
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#fig6
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#fig6
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#sec3.4
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#sec3.4


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Physical Chemistry A, Vol 120, No. 3 (January 28, 2016): pg. 319-331. DOI. This article is © American Chemical 
Society and permission has been granted for this version to appear in e-Publications@Marquette. American Chemical 
Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from American Chemical Society. 

22 

 

 
Figure 6. Energy dependence of rotational excitation cross sections for ground state 
of CH3 + He. Solid lines are full-quantum results of Alexander and co-workers;5 
symbols are our MQCT results. 

To expand MQCT even further, onto the case of a general 

asymmetric-top rotor molecule, we carried out calculations for 

quenching of para- and ortho-water by He.58,61 Our results for 

quenching of several excited states jkakc onto the ground state 000 are 

shown in Figure 7. We see that, for water quenching, the results of 

MQCT are in very good agreement with full-quantum results (of 

Dubernet) in the entire range of considered energies, up to 10 000 cm–

1, and through 4 orders of magnitude range of cross section values. At 

higher scattering energies results of MQCT coincide with full quantum 

results, for all transitions we studied.61 At lower energies the average 

error of MQCT is around 5–6%. At scattering energies below 30 cm–1 

errors on the order of 15% may occur. Interestingly, in the low-energy 

http://dx.doi.org/10.1021/acs.jpca.5b09569
http://epublications.marquette.edu/
javascript:void(0);
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#fig7
http://pubs.acs.org/doi/full/10.1021/acs.jpca.5b09569#fig7
javascript:void(0);


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Physical Chemistry A, Vol 120, No. 3 (January 28, 2016): pg. 319-331. DOI. This article is © American Chemical 
Society and permission has been granted for this version to appear in e-Publications@Marquette. American Chemical 
Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from American Chemical Society. 

23 

 

range, where broad scattering resonances are common, predictions of 

MQCT are still meaningful. They go through resonances in Figure 7 and 

represent the average (over resonances) value of the cross section. 

We also found that when resonances are narrow, numerous, and 

overlapping, the MQCT method describes well the nonresonant 

(background) behavior. Similar behavior was observed for j-changing 

and k-changing transitions between the rotationally excites states of 

water.61 

 

 
Figure 7. Rotational quenching cross sections of para-H2O. Lines are full-quantum 
results of Dubernet;61 symbols are our MQCT results. Reprinted with permission from 

ref 61 (Semenov, A.; Dubernet, M.-L.; Babikov, D.Mixed Quantum/Classical Theory for 
Inelastic Scattering of Asymmetric-Top-Rotor + Atom in The Body-fixed Reference 
Frame and Application to the H2O + He System. J. Chem. Phys. 2014, 141, 114304). 
Copyright 2014 American Physical Society. 

III.3 Complex Systems 
 

Although H2O (discussed above) is a small triatomic molecule, it 

requires the most general treatment of molecular rotation, because it 

represents the case of an asymmetric-top rotor. Any other rigid 

polyatomic molecule, arbitrarily large, can be studied using the same 

theory and code. It is true that as polyatomic molecules become larger 
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and larger, the assumption of rigidity holds less and less, due to 

possible excitations of floppy bending and large amplitude torsional 

modes. Still, purely rotational transitions in polyatomic molecules are 

of interest and are extremely hard to treat using the full-quantum 

approach, such as the CC method. 

 

To our best knowledge, the largest molecule ever considered for 

such calculations is methyl formate, HCOOCH3, quenched by the He 

atom. Some full-quantum data for rotational excitation in this process 

are available from the work of Wiesenfeld and co-workers.12 Due to 

huge number of channels and partial waves (needed for convergence) 

the full-quantum CC calculations are affordable at very low collision 

energies only, below 30 cm–1. Another complication, quite typical for 

polyatomic molecules, is the difficulty of PES expansion over the basis 

set of spherical harmonics. It appears that, when the PES is 

complicated, too many expansion terms (hundreds) are required for 

accurate surface representation, and it is hard to truncate the 

expansion without introducing artifacts into the PES.9,12 

 

In our MQCT calculations for HCOOCH3 + He62 we used the same 

PES as in ref 12, but we did not expand it over the basis set of 

spherical harmonics. Instead, we computed matrix elements directly 

by integration of eq 4 over Euler angles. In Figure 8 we compared our 

MQCT results against the full-quantum results of Wiesenfeld12 for 

excitation of several lower states of methyl formate jkakc starting from 

the ground state 000, for the range of collision energies below 30 cm–1. 

We found that above 15 cm–1 the average difference of cross section 

values is about 5%, which gives us argument to cautiously state that 

at higher energies MQCT is reasonably accurate for this system. In the 

lower energy range, 5–15 cm–1 in Figure 8, results of MQCT for the 

most important transitions in HCOOCH3 are still reasonable. Only at 

collision energies below 5 cm–1, where quantum resonances dominate 

does the accuracy of MQCT drop significantly. At these low energies 

many MQCT trajectories describe orbiting of He atom around 

HCOOCH3, which is the classical analogue of scattering resonance. A 

good recipe for analysis of such trajectories is yet to be found. For 

now, we simply removed them from consideration, focusing on 

nonresonant contribution to the process. 
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Figure 8. Cross sections for rotational excitation of methyl formate by collisions with 
the He atom, as a function of collision energy. Solid lines: full quantum results of 
Wiesenfeld and co-workers.12 Dashed lines/symbols: our MQCT results.62 

Because MQCT is usually more accurate at higher energies, it 

makes sense to use it for prediction of excitation cross sections in 

HCOOCH3 at collision energies above 30 cm–1 (where there are no 

other data available). Thus, we computed cross sections for excitation 

of 20 most important rotational states of methyl formate at collision 

energies up to 1000 cm–1,62 expanding the energy range by a factor of 

33 compared to the previous work,12 which clearly demonstrates the 

efficiency of our approach. 

 

So, it looks like rotational transitions in polyatomic molecules is 

one area where MQCT can be both efficient and accurate. Another 

important application would be in the molecule + molecule collisions. 
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We started exploring this topic too, by looking at a diatomic + diatomic 

system (Figure 1). Most recently,63 we carried out MQCT calculations 

for rotational transitions in N2 + H2, using the PES from ref 67. 

Because no one studied this system before, we also had to carry out 

the full-quantum CC calculations using MOLSCAT. 

 

Comparison of our MQCT results against the full-quantum 

results for collision energies up to 4000 cm–1 is presented in Figure 9 

for the process in which the rotationally excited H2(j = 2) excites the 

ground state N2(j = 0) into several upper states. We see that MQCT is 

accurate for N2 + H2 in a broad energy range, for all transitions we 

studied. At intermediate and high energies the agreement is detailed 

and the results of two methods, basically, coincide. Not only is MQCT 

very accurate asymptotically, but also it predicts accurately the 

excitation thresholds. In the range of multiple scattering resonances, 

just above the threshold for each transition, it describes well the 

nonresonant background. We also carried out calculations for the 

“opposite” case, where the rotationally excited N2(j=2) excites the 

ground state H2(j=0), and we saw very similar behavior.63 We are also 

in the process of applying MQCT to transitions where the quantum 

states of both molecules change simultaneously, such as (0,2) → (2,0) 

transition. In this case the internal rotational energy of H2(j = 2) is 

used to excite N2 from j = 0 to j = 2. Another interesting example of 

this sort in the N2 + H2 system is the (20,2) → (24,0) transition. In 

this special case energies of the initial and final rotational states of the 

entire system are nearly the same, with ΔE ≈ 4.5 cm–1. So, during the 

collision process the internal energy of the system remains (nearly) 

the same, and the kinetic energy of the system does not change 

much. It is particularly interesting to test MQCT for such quasi-

resonant energy transfer processes,68,69 because they are known to be 

particularly efficient, for example, in such important systems as H2O + 

H2.36 
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Figure 9. Excitation cross section for N2 + H2. Full-quantum results are shown by 

symbols; the MQCT results are shown by lines.63 Initial and final states are labeled by 
(j1j2) where first index belongs to N2 and the second index belongs to H2. 

III.4 Accuracy of MQCT 
 

One parameter that should be discussed for understanding the 

range of validity of MQCT is the de Broglie wavelength associated with 

masses and speeds of colliding partners. Qualitatively, we expect that 

MQCT is more accurate for more classical systems and collision 

conditions, described by shorter wavelengths that correspond to 

heavier masses and higher collision energies. For example, we saw 

that MQCT is more accurate in the cases of N2 + Na and HCOOCH3 + 

He and is less accurate in the cases of H2 + He and CH3 + He. To come 

out with some quantitative picture, we plotted the errors of MQCT 

(relative to the full-quantum results) versus a dimensionless ratio 

R0/λ, where R0 is the characteristic range of the molecule–quencher 

interaction potential (position of the minimum in the shallow van der 

Waals well in the asymptotic range), and λ is the de Broglie 

wavelength (associated with the two-body reduced mass and the 

effective collision energy U). The data for different systems we studied 

so far were collected all together on the same plot. It should be 

mentioned, though, that the range of interaction R0 does not change 

much from one system to another (here it varied from 6 Bohr in 
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HCOOCH3 + He to 10 Bohr in N2 + Na), whereas the de Broglie 

wavelength does change in a broad range, depending on collision 

energy and reduced mass. Figure 10 represents these data. We did not 

include those cases when other factors (such as scattering resonances, 

see below) seemed to have a dominant effect on the accuracy of 

MQCT. These data demonstrate some correlation between accuracy 

and the ratio R0/λ. The less accurate corner in Figure 10, upper left, 

contains points that belong to lighter systems collided at lower energy. 

Here R0/λ ≈ 5 and the error can reach 30–40%. Importantly, in the 

range of R0/λ > 10 the errors of MQCT drop exponentially (on average, 

over several different systems). The trend is such that near R0/λ ≈ 20 

the error is on the order of 2 or 3%. 

 

 
Figure 10. Errors of MQCT calculations (compared to the full-quantum results) as a 
function of the unitless ratio between the interaction range and the de Broglie 
wavelength. The data for six different systems are put together and are indicated by 
color. 

Another consideration, sometimes referred to when the range of 

validity of MQCT is examined, is associated with Delos criterion.70 

Formulated for electronic excitation in atom–atom collisions (not for 

molecular rotation), it states that a mixed quantum/classical 
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description is generally valid when the energy change ΔE associated 

with quantum state-to-state transition is small compared to collision 

energy E. It appears that this criterion is too strict for rotational MQCT, 

because we often see good results even in the opposite limit, E < ΔE, 

due to employment of the symmetrized (or average velocity) 

approach. The most striking example is quenching of state j = 22 in H2 

onto j = 20, characterized by large ΔE = 2968 cm–1 and accurately 

described by MQCT at collision energies of only E ≈ 350 cm–1.60 One 

reason for this anomalous accuracy is that this example describes 

quenching, not excitation. Indeed, we often see that MQCT results for 

quenching are rather good even at very low collision energies, because 

there is no threshold for the process, whereas results for excitation get 

worse near the threshold. One way to analyze MQCT results for both 

excitation and quenching on the same footing is to use the effective 

collision energy U introduced above. Thus, our modified Delos criterion 

would include the ratio ΔE/U. Figure 11 summarizes our data for 

different systems studied so far (except near resonances). Both 

excitation and quenching processes were included. The range of 

abscissa is rather broad and has the upper limit of ΔE/U = 4 achieved 

at U = ΔE/4, which corresponds to either excitation at the threshold 

energy E = ΔE or quenching with no energy, E′ = 0 (section II.4 

above). The points in Figure 11 spread quite a bit, especially in the 

more accurate (lower left) part of the graph, but still, this figure shows 

some correlation between accuracy of MQCT and the value of ΔE/U, 

particularly in the less accurate (upper right) corner of the graph. Data 

for different molecules complement each other, following similar 

trends. The case of H2 + He comes closest to the threshold ΔE/U = 4, 

where it demonstrates the worst accuracy, close to 40% (for transition 

from j = 22 to j = 20, characterized by large ΔE = 2968 cm–1, at very 

low collision energies, near 2 cm–1). However, as the value of ΔE/U is 

reduced the error of MQCT drops exponentially and, on average, is on 

the order of only 3% in the range of ΔE/U ≈ 1, and on the order of 2% 

in the range of ΔE/U ≈ 0.1. Compared to the average (shown in Figure 

11 by dotted line) the cases of HCOOCH3 + He and CH3 + He show 

somewhat larger errors. This is understood, because for the first of 

these two systems all the quantum-mechanical benchmark data12 

belong to the very low-energy regime (where quantum resonances are 

still present), which complicates analysis. The second system is rather 

light and has large rotational quanta, similar to H2 + He. Overall, the 
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dependencies of Figures 10 and 11 seem to be general and may be 

used to estimate the error of MQCT method before applying it to new 

systems. 

 

 
Figure 11. Errors of MQCT calculations (compared to the full-quantum results) as a 

function of the unitless ratio between the transition energy and the effective collision 

energy. The data for six different systems are put together and are indicated by color. 
The fit is by exponential function. 

The next factor to consider is scattering resonances. We should 

admit that in the current implementation of MQCT we simply neglect 

the contribution of captured trajectories (orbiting), focusing on 

nonresonant or averaged behavior. In the cases where scattering 

resonances might be important or even dominant (e.g., low-

temperature reaction rates) the full-quantum description is, perhaps, 

indispensable. But the question whether MQCT is capable of treating 

scattering resonances is still open, and a solution may very well be 

found. In the early days of the quantum/classical theories this 

question has been addressed.41 We already showed that the quantum 

phase can be computed and used in MQCT (e.g., for calculations of 

differential cross sections), and we also plan to explore whether this 

phase information can help in description of scattering resonances. 
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Finally, we saw that for one system, CH3 + He, some transitions 

are described less accurately than others (compare the upper and 

lower frames of Figure 6). We do not yet understand the reason for 

this effect. Because this is one system, the reduced masses and 

collision energies are the same for all these transitions. The values of 

ΔE and U are also quite similar. So, neither R0/λ nor ΔE/U is expected 

to influence the process and be used to explain the difference. One 

possibility, which we are still checking, is the convergence issue (of 

either MQCT or the full-quantum results used as a reference), because 

it is known that some transitions may need larger basis sets and larger 

values of total Jmax for convergence. More detailed information, such as 

comparison of MQCT vs full-quantum calculations at the level of 

opacity functions for each individual transition (e.g., at one chosen 

collision energy) may be needed to identify the reason for this 

disagreement. Detailed results and analysis for the CH3 + He system 

will be reported elsewhere. 

 

III.5 Computational Cost of MQCT 
 

Quantum calculations for simple systems, such as diatomic + 

atom, are very fast, particularly using efficient codes such as MOLSCAT 

or Hibridon. Thus, computational advantages of MQCT can be seen 

clearly either when the collision energies are high or when the system 

is rather complicated. For example, quantum calculations12 for 

rotational excitation of methyl formate by He were affordable only at 

low collision energies, below 30 cm–1. But using MQCT, we62 were able 

to compute excitation cross sections at energies up to 1000 cm–1. (In 

principle, we could do MQCT calculations at even higher energies, but 

there we were limited by the accuracy of the PES representation,12 not 

really by the cost of MQCT calculations.) 

 

It was also important to determine how the cost of MQCT 

calculations depends on the number of nondegenerate states 

(channels) included in the basis set expansion of eq 1, the so-called 

scaling law. There are two ways of determining the scaling law. We 

could run calculations at fixed values of energy E and Jmax, changing 

only the number of channels n in a broad range (i.e., changing the 

basis set size only). Alternatively, we could determine the cost of 

calculations in a broad range of energies, converged at each energy 
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with respect to the values of Jmax and n. The first approach is better 

defined from the mathematical standpoint, but the second approach is 

more relevant physically, and represents better the actual cost of 

calculations. We tested MQCT in both ways for several molecules,61-63 

and in all cases we found very similar scaling laws, on the order of n2 

or n3. We also tested the full-quantum CC method using MOLSCAT for 

the case of CH3 + He. In the first (idealized) test we found the well-

known scaling law n3, but in the second (more representative) test the 

scaling law was much worse, on the order of n5 to n6. 

 

These results are interpreted in the following way: In the 

idealized test the scaling law of the full-quantum method is determined 

by the cost of matrix algebra, and the only variable is matrix size. 

However, in practice, when the energy is varied in a broad range (for 

example, is raised), the cost of the full-quantum calculations increases 

not only due to (i) increasing basis set size n but also due to (ii) 

increasing number of partial scattering waves that have to be included 

for convergence, determined by the value of Jmax. The first contribution 

is described by the general law n3, whereas the second contribution 

caries an overhead that is somewhat system-dependent but is anyway 

substantial, leading to the total cost approaching n6. In contrast, MQCT 

has no such overhead, because scattering is treated classically. So, an 

increase of collision energy does not affect the scaling law of MQCT 

substantially, and it remains low, just n2.5. This is the origin of high 

efficiency of MQCT at large scattering energies. 

 

It must be recognized that one MQCT calculation from a given 

initial state produces only a column of the state-to-state matrix, not 

the entire scattering matrix. If the entire matrix is needed (which is 

rarely the case), the cost of MQCT will increase, by a factor of n at 

most. However, calculations of different columns of the scattering 

matrix are entirely independent and could be done at the same time 

on different processors. Furthermore, reversibility can be employed to 

cut down the cost of these calculations, at least by a factor of 2. The 

quantum parallelism can also be exploited, such as that in the time-

dependent wave packet calculations, by starting MQCT with the initial 

rotational wave packet, in contrast to the initial rotational eigenstate. 
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Lastly, it should be stressed that MQCT methodology is 

intrinsically parallel. Different MQCT trajectories are entirely 

independent and can be propagated by different processors without 

any message passing. Only the final results from different trajectories 

are collected, to compute cross sections using eqs 9–11. Thus, the full 

power of massively parallel computers available today can be utilized. 

IV Conclusions 

We developed the mixed quantum/classical theory for inelastic 

scattering, which we named MQCT, in which only the relative 

scattering motion of two collision partners is treated classically, 

whereas the internal motion of each molecule is treated quantum 

mechanically. It can be applied to rotationally and vibrationally 

inelastic scattering and covers the molecule + atom and the molecule 

+ molecule cases, including diatomic molecules, symmetric-top rotors, 

and the most general asymmetric-top rotor molecules. In this sense 

the theory is complete. Phase information is taken into consideration, 

which allows computing elastic and inelastic, total and differential 

cross sections. The scattering resonances (at very low collision 

energies) is one feature that requires further methodological 

development and testing of MQCT. 

 

The method is numerically efficient and intrinsically parallel. 

Compared to the full-quantum calculations, the scaling law of MQCT is 

more favorable, which allows applying it to more complicated 

molecules and at higher collision energies. One representative example 

is rotational excitation of methyl formate by helium atoms, for which 

we computed cross sections at collision energies up to 1000 cm–1. 

 

By comparing the results of MQCT against the full-quantum 

results for several quite different systems (N2 + Na, H2 + He, CO + He, 

CH3 + He, H2O + He, HCOOCH3 + He, and H2 + N2), we found that in 

many practically important scattering regimes the method is a viable 

approach to inelastic scattering. At higher collision energies it can 

confidently replace the full-quantum calculations that become 

computationally costly, if at all affordable. At low collision energies and 

for low-mass systems MQCT is less accurate, but even there it is not 

off by much. 

http://dx.doi.org/10.1021/acs.jpca.5b09569
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In fact, one could blend MQCT with full-quantum calculations in 

the following way: Typically, cross sections are needed in a broad 

range of collision energies. So, for low energies one should run the 

full-quantum calculations, because they are quite affordable in this 

regime and because scattering resonances may be present. These full-

quantum results can be used as a benchmark for the subsequent 

MQCT calculations. If MQCT is found to be accurate enough (starting at 

some intermediate energy), then at higher energies one could 

continue calculations with MQCT only, because it is more affordable. 
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