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Effects Of Load Magnitude on Diagnosing 
Broken Bar Faults in Induction Motors Using 
the Pendulous Oscillation of The Rotor 
Magnetic Field Orientation 
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N.A.O. Demerdash 
Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI 
 

Abstract: 
The effects of load level on the ability to diagnose broken bar faults in squirrel-cage induction motors 
are studied in this paper. The pendulous oscillation of the rotor magnetic field orientation is 
implemented as a fault signature for rotor fault diagnostic purposes at steady-state operations. 
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Moreover, the effects of load level on the low-side band component of the stator current spectrum, 
and associated diagnostic difficulties in this approach particularly in the presence of motor operation 
from pulsewidth-modulation drives, are reported as well. These investigations were performed 
through testing 2-hp and 5-hp induction motors over a wide range of load levels and control drives. 
The results of these tests and investigations demonstrate the efficacy of the pendulous oscillation 
signature as a diagnostic means that can be used for a wide range of motor operating conditions. 

Major Nomenclature 
𝛿𝛿(𝑡𝑡) Pendulous oscillation of the rotor (or resultant) magnetic field. 
𝛿𝛿1(𝑡𝑡) Fundamental component of the pendulous oscillation. 
Δ𝛿𝛿 Swing angle or the range of the pendulous oscillation. 
Δ𝛿𝛿1 Swing angle or the range of the fundamental component of the pendulous oscillation. 

Δ𝛿𝛿
~

 Analytically estimated swing angle. 

𝑁𝑁𝑏𝑏 Number of rotor bars per pair of poles. 
𝑛𝑛𝑏𝑏 Number of adjacent broken bars in a squirrel cage. 

 

SECTION II. Introduction 
THE basic principles underlying the concept of pendulous oscillation of rotor magnetic field orientation 
due to broken bars has been introduced in a previous investigation [1]. This phenomenon can be 
observed using merely the voltages and currents at the motor terminals without any need for 
obtaining the motor speed. In this paper, this technique is further refined in a manner that enables an 
investigator to detect the presence of one broken bar fault or even a manufacturing defect in a healthy 
rotor cage. Meanwhile, the effects of load level were studied experimentally here for 2-hp and 5-hp 
induction motors. In the case of the 5-hp motor, the effects of load level were studied when the motor 
was run under three different excitations: sinusoidal direct-line, pulsewidth-modulation (PWM) open-
loop constant volts-per-hertz control, and PWM closed-loop field-oriented control drive. These 
experimental results, as will be seen later, lead these authors to conclude that the method presented 
here constitutes indeed a simple and reliable technique for broken bar fault detection. This technique, 
side-by-side with the well-known sideband component techniques [2]–[3][4][5][6][7], will lead to an 
improvement in the reliability of the online rotor cage condition monitoring of induction motors. 

 
Fig. 1. Rotor cage developed circuit representation of (a) healthy cage and (b) broken bar cage. 
 

Meanwhile, to provide a better physical understanding of this phenomenon, an analytically estimated 
swing angle is formulated here based on electromagnetic principles in electric machines for a 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/28/30897/1433002/1433002-fig-1-source-large.gif


generalized case in which the rotor cage has 𝑁𝑁𝑏𝑏 bars per pair of poles and 𝑛𝑛𝑏𝑏 adjacent broken bars. It 
will be shown in this formulation that the analytically estimated swing angle is a function of 
both 𝑁𝑁𝑏𝑏 and 𝑛𝑛𝑏𝑏 for a limited number of broken bars. However, the swing angle is impacted by the 
space harmonics caused by the machine's design factors such as core saturation, stator and rotor 
tooth-slot geometry effects, and the discrete nature of the nonsinusoidal stator winding distributions 
in actual electric machines. Accordingly, in order to take into account these effects, a so-called 
harmonics effect factor 𝑘𝑘ℎ is introduced in the formulation. This formulation may allow manufactures 
to provide a set of diagnostic characteristic curves of the swing angle versus the number of broken bars 
for each class of their product lines. 

The next section elucidates the physics of the pendulous oscillation phenomenon in the rotor magnetic 
field orientation due to the presence of rotor broken bars. The next section also presents the above-
mentioned formulation in which the relationship between the swing angle Δ𝛿𝛿 and the 
parameters 𝑁𝑁𝑏𝑏 and 𝑛𝑛𝑏𝑏 is being discussed. It has to be emphasized that this formulation is given here 
only to provide a better physical understanding of this phenomenon, as well as a possible diagnostic 
characteristic curve. However, for practical motor diagnostics purposes, the swing angle Δ𝛿𝛿 was 
obtained through space-vector concepts applied to the easily accessible motor terminal 
measurements, namely stator voltages and currents. Accordingly, an online broken bar diagnostic 
approach is presented in Section IV, in which the input signals are two of the motor terminal voltages 
and their corresponding motor terminal currents. 

 
Fig. 2. Broken bar disturbs the peak of the rotor MMF profile. 
 

 
Fig. 3. Broken bar does not disturb the peak of the rotor MMF profile. 
 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/28/30897/1433002/1433002-fig-2-source-large.gif


SECTION III. Pendulous Oscillation Phenomenon in Rotor Magnetic Field 
Orientation 
The pendulous oscillation phenomenon in rotor magnetic field orientation is an electromagnetic 
phenomenon which can not be entirely investigated from circuitry point of view in an induction 
machine. In other words, the shape of the rotor magnetomotive force (MMF) waveform and 
corresponding space harmonics of the rotor cage have to be considered for this investigation. This 
phenomenon is studied in this section using the rotor MMF waveform, first in the presence of one 
broken bar, then in the presence of 𝑛𝑛𝑏𝑏 adjacent broken bars. 

A. Rotor MMF Distortion Due to One Broken Bar 
The concept of the existence of a pendulous oscillation phenomenon associated with the presence of 
broken bars in a squirrel cage induction motor was first introduced in [1]. Here, the objective of this 
section is to establish a generalized formulation for the “pendulous oscillation” of the rotor magnetic 
field for any cage with 𝑁𝑁𝑏𝑏 bars per pair of poles with one broken-bar fault, using the rotor MMF 
waveform. Consider the rotor loop currents 𝑖𝑖𝐿𝐿1, 𝑖𝑖𝐿𝐿2, … , 𝑖𝑖𝐿𝐿𝑁𝑁𝑏𝑏 in a squirrel cage, depicted here in Fig. 1, 
including the healthy cage and the case of a cage with one broken bar. The rotor MMF waveform is 
depicted here in terms of these loop currents using Ampere's law, and the fact that the rotor bar 
currents are expressed in terms of the loop currents as follows: 

𝑖𝑖𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝑖𝑖𝐿𝐿𝑏𝑏−1(𝑡𝑡) − 𝑖𝑖𝐿𝐿𝑏𝑏(𝑡𝑡), 𝑘𝑘 = 1,2, … ,𝑁𝑁𝑏𝑏 . 
(1) 

Accordingly, in Figs. 2 and 3, the rotor MMF waveforms are depicted in the case of one broken bar 
fault for two different time instances in a slip cycle. Thus, it has to be mentioned that Figs. 
2 and 3 depict two different positions of the broken bar with respect to a synchronously rotating frame 
of reference, since the MMF speed, 𝜔𝜔syn, is greater than the rotor speed (or rotational speed of the 
broken bar position), 𝜔𝜔𝑚𝑚, in an induction motor. In this study, the critical locations of positions of a 
broken bar are where they are passing the peaks of the MMF profile. Hence, the remainder of this 
discussion will be focused on two different locations for the broken bar position with respect to the 
rotor MMF waveform shown in Figs. 2 and 3. In case (1), Fig. 2, the broken bar disturbs the magnitude 
of the peak of the rotor MMF shown here by the solid lines, and in case (2), Fig. 3, the broken bar does 
not disturb the magnitude of the peak of the rotor MMF. In Figs. 2 and 3, the positive and negative 
magnetic neutral planes indicate the locations of the magnetic north pole and south pole, respectively. 
In general, a neutral plane (or magnetic axis) is located where inherently the magnetic flux lines are 
equally divided between two sides of that plane. In other words, it will be shown later that in case 
(2), Fig. 3, in spite of the bar breakage in the positive portion of the rotor MMF, the neutral plane is not 
relocated from its original location in a healthy case. However, in case (1), Fig. 2, the positive neutral 
plane tends to the left side of its original location in a healthy case by the angular shift Δ𝛾𝛾. Although 
this relocation occurs periodically in a continuous manner over half a slip cycle, or with an angular 
frequency of 2(𝜔𝜔syn − 𝜔𝜔𝑚𝑚), the maximum relocation theoretically occurs twice while the broken bar is 
passing the positive and negative peak spans of the rotor MMF waveform. 



In order to quantify the broken bar distortion effect on the rotor MMF waveform, the magnitude of 
the current 𝑖𝑖𝑋𝑋 in the newly formed loop resulting from the bar breakage (see Fig. 1) has to be 

calculated. This can be done by applying the well-known magnetic field concept that ∇ ⋅ 𝐵𝐵
→

= 0 for the 
healthy cage shown in Fig. 1(a). That is, the surface integral of flux density, 𝐵𝐵 = (𝜇𝜇𝑜𝑜MMF𝑟𝑟)/𝑔𝑔, over any 
closed surface is equal to zero. This enables one to write the following equation for the cage shown 
in Fig. 1(a), assuming that there is no significant axial flux component: 

𝜇𝜇𝑜𝑜𝐴𝐴loop
𝑔𝑔

(𝑖𝑖𝐿𝐿1 + ⋯+ 𝑖𝑖𝐿𝐿𝑏𝑏−2 + 𝑖𝑖𝐿𝐿𝑏𝑏−1 + 𝑖𝑖𝐿𝐿𝑏𝑏

+𝑖𝑖𝐿𝐿𝑏𝑏+1 + ⋯+ 𝑖𝑖𝐿𝐿𝑁𝑁𝑏𝑏) = 0
 

(2) 

where 𝑖𝑖𝐿𝐿𝑏𝑏 indicates the loop current in the 𝑘𝑘th loop, 𝐴𝐴loop is the rotor loop area, and 𝑔𝑔 is the effective 

(equivalent) air-gap height. Meanwhile, applying the fundamental magnetic field concept, ∇ ⋅ 𝐵𝐵
→

= 0, 
for the cage with one broken bar, shown in Fig. 1(b), in which the area of the loop containing the 
broken bar equals twice the area of a healthy loop, yields the following: 

𝜇𝜇𝑜𝑜𝐴𝐴loop
𝑔𝑔

(𝑖𝑖𝐿𝐿1 + ⋯+ 𝑖𝑖𝐿𝐿𝑏𝑏−2 + 2𝑖𝑖𝑋𝑋

+𝑖𝑖𝐿𝐿𝑏𝑏+1 + ⋯+ 𝑖𝑖𝐿𝐿𝑁𝑁𝑏𝑏) = 0.
 

(3) 

Here, it is assumed as an approximation, the respective healthy loop currents in Fig. 1(a) and (b) are 
equal, for a limited number of broken bars. In other words, the healthy loop currents in Fig. 1(b) will 
not significantly be distorted due to the broken bar fault; see, in Appendix A, the results of a time-
stepping finite-element (TSFE) model for justification of that approximating assumption. Accordingly, a 
quick comparison between (2) and (3) yields the following approximation for the distorted loop 
current, 𝑖𝑖𝑋𝑋: 

𝑖𝑖𝑋𝑋 =
1
2

(𝑖𝑖𝐿𝐿𝑏𝑏−1 + 𝑖𝑖𝐿𝐿𝑏𝑏). 

(4) 

Now, the next step is to calculate the angular shift Δ𝛾𝛾 in the rotor MMF waveforms in the 
aforementioned cases, shown in Fig. 2 [case (1)], and Fig. 3 [case (2)]. Here, it has to be pointed out 
that the positive neutral plane of the rotor MMF waveform, or magnetic axis, is located where the 
magnetic flux lines are equally divided between two sides of the neutral plane. It means that the area 
of the positive portion of the rotor MMF waveform is split into two equal areas by the neutral plane 
(line), provided that the equivalent air-gap height is constant everywhere around the cylindrical 
surface of the rotor. It has to be emphasized that the effective air-gap height will not be a constant 



throughout the circumference of the rotor, due to effects of core saturation and the stator slotting 
which vary throughout a pole pitch. 

According to the above-mentioned definition for the neutral plane (magnetic axis), and through the 
use of (4), one can see that in case (2) the neutral plane's location will not change, that is, 𝛥𝛥𝛾𝛾 = 0. 
However, the angular shift, Δ𝛾𝛾, is not zero in case (1), see Fig. 4, and it can be expressed as follows: 

Δ𝛾𝛾 = 𝛾𝛾 −
𝜋𝜋
𝑁𝑁𝑏𝑏

= �
𝜋𝜋
𝑁𝑁𝑏𝑏
� �
𝑖𝑖𝐿𝐿𝑚𝑚 − 𝑖𝑖𝑋𝑋

𝑖𝑖𝑋𝑋
� . 

(5) 

 

 
Fig. 4. Broken bar disturbs the peak of the rotor MMF profile. 
 

Substituting for the current 𝑖𝑖𝑋𝑋 from (4) into (5), where 𝑘𝑘 = 𝑚𝑚 in case (1), yields the total magnitude of 

the estimated swing angle of the magnetic axis, Δ𝛿𝛿
~

, which can be written according to the fact 

that Δ𝛿𝛿
~

= (2Δ𝛾𝛾)/2 in radians as follows [1]: 

Δ𝛿𝛿
~

=
2Δ𝛾𝛾

2
= Δ𝛾𝛾 = �

𝜋𝜋
𝑁𝑁𝑏𝑏
� �
𝑖𝑖𝐿𝐿𝑚𝑚 − 𝑖𝑖𝐿𝐿𝑚𝑚−1

𝑖𝑖𝐿𝐿𝑚𝑚 + 𝑖𝑖𝐿𝐿𝑚𝑚−1
� . 

(6) 

B. Rotor MMF Distortion Due to 𝑛𝑛𝑏𝑏 Broken Bars 
A similar procedure, as discussed in the previous section, can be applied here for a rotor cage 
with 𝑛𝑛𝑏𝑏 adjacent broken bars. This results in the following general formulation for the analytically 

estimated swing angle, Δ𝛿𝛿
~

, in radians: 

Δ𝛿𝛿
~

= �
𝜋𝜋
𝑁𝑁𝑏𝑏
� �
𝑛𝑛𝑏𝑏𝑖𝑖𝐿𝐿𝑚𝑚 − ∑ 𝑖𝑖𝐿𝐿𝑏𝑏

𝑚𝑚−𝑛𝑛𝑏𝑏
𝑏𝑏=𝑚𝑚−1

𝑖𝑖𝐿𝐿𝑚𝑚 + ∑ 𝑖𝑖𝐿𝐿𝑏𝑏
𝑚𝑚−𝑛𝑛𝑏𝑏
𝑏𝑏=𝑚𝑚−1

� . 

(7) 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/28/30897/1433002/1433002-fig-4-source-large.gif


For details of the steps leading to the expression in (7) see Appendix B. Upon taking into account of the 
fundamental components of the rotor loop currents as well as the harmonic factor 𝑘𝑘ℎ, we have the 
following: 

Δ𝛿𝛿
~

= 𝑘𝑘ℎ �
𝜋𝜋
𝑁𝑁𝑏𝑏
�

× �
(2𝑛𝑛𝑏𝑏 + 1)sin (𝜋𝜋/𝑁𝑁𝑏𝑏) − sin [(2𝑛𝑛𝑏𝑏 + 1)(𝜋𝜋/𝑁𝑁𝑏𝑏)

sin � 𝜋𝜋𝑁𝑁𝑏𝑏
� + sin �(2𝑛𝑛𝑏𝑏 + 1) � 𝜋𝜋𝑁𝑁𝑏𝑏

��
�

 

(8) 

where the 𝑘𝑘ℎ could be obtained by manufacturers either during the design stage using TSFE methods 
or testing of an existing machine. It should be pointed out that because of the assumption implied in 
the derivation of the current 𝑖𝑖𝑋𝑋 in (4) and (B.1) in Appendix B involving the neglect of loop current 
distortion effects in the conductively undisturbed loops, it is in these authors' judgment that the 
generalized formulation of (8) is valid for a limited number of adjacent bar breakages where 1 ≤ 𝑛𝑛𝑏𝑏 <
(𝑁𝑁𝑏𝑏/4) (see Fig. 4). 

 
Fig. 5. Vector potential waveforms obtained from FE calculation, 2-hp healthy motor. (a) Healthy rotor cage. (b) 
Rotor cage with three broken bars. 
 

This observation will be revisited in the analysis of the experimental test results given in Section VI. For 
details of the derivations leading to (8) and the justification of the accompanying approximating 
assumption see Appendix B. Here, based on (8) one can theoretically deduce as shown in Appendixes 
A and B that induction machines will fail under full-load condition if the number of adjacent broken 
bars 𝑛𝑛𝑏𝑏 reaches half the number of rotor bars per pair of poles, that is. when 𝑛𝑛𝑏𝑏 = 𝑁𝑁𝑏𝑏/2. In these 
authors' judgment, this is heuristically expected from the physical nature of the operation of induction 
motors. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/28/30897/1433002/1433002-fig-5-source-large.gif


SECTION IV. Pendulous Oscillation Phenomenon—FE Electromagnetic Field 
Evidence 
The objective of this section is to present an electromagnetic field based evidence of the existence of 
the motor magnetic field pendulous oscillation due to broken bar faults using TSFE modeling and 
computation. An analytical proof of the existence of the pendulous oscillation due to broken bars was 
presented in the previous section using the rotor MMF waveform. However, the analytical proof of this 
phenomenon was established based on two simplifying assumptions: namely, that the height of the 
equivalent air gap is uniform, and that the healthy rotor current loops do not suffer significant current 
magnitude distortions during bar breakage. Here, in this section, a 2-hp motor was simulated using the 
Flux2D- MAGSOFT TSFE software, naturally, excluding the above-mentioned simplifying assumptions. 

Here, the mid-air-gap magnetic vector potential (MVP) plots over a slip cycle obtained under a healthy 
and a three-broken-bar fault conditions, are shown in Fig. 5(a) and (b), respectively. In order to 
demonstrate the pendulous oscillation phenomenon, 200 instances separated by the same time 
interval over a slip cycle were selected and their corresponding vector potential waveforms were 
plotted in Fig. 5(a) and (b), respectively. In other words, any sine-shaped curve in this family of MVP 
plots indicates the MVP distribution at a time instant versus the position which is 360° covering the 
entire mid-air-gap circumference. As one can observe, in the healthy case of Fig. 5(a), these MVP 
waveforms occur on top of each other throughout the duration of the slip cycle, while this is not the 
case for the three-broken-bars fault in which these waveforms do not occur on top of each other due 
to the existence of a three-broken-bars fault, thus leading to the banded (blurring) appearance of the 
MVP sine waveforms of Fig. 5(b). 

 
Fig. 6. Functional block diagram of calculating swing angle, Δ𝛿𝛿1. 
 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/28/30897/1433002/1433002-fig-6-source-large.gif


This “blurring” means that as time progresses the MVP travels with a slight speed perturbation in the 
case of broken bars. This waveform speed perturbation around its synchronous speed generates the 
so-called pendulous oscillation. Hence, it can be concluded that the mid-air-gap magnetic field has two 
motions: 1) a main motion at synchronous speed and 2) a pendulous oscillation. 

SECTION V. A Space-Vector Method for Detecting the Rotor Magnetic Field 
Pendulous Oscillation 
 

 
Fig. 7. Pendulous oscillation and its fundamental component in degrees versus time in seconds for the 5-hp 
induction motor in the case of three broken bars, full-load condition. 
 

 
Fig. 8. Swing angle Δ𝛿𝛿 in degrees versus the Re(i⃗ s(t)) in amperes in a polar coordinate in the case 
of three broken bars, full-load condition. 
 

If there were access to the rotor loop currents, the swing angle due to 𝑛𝑛𝑏𝑏 adjacent broken bars could 
be calculated using the space vector of the loop currents. Of course, in a squirrel-cage induction motor 
with the present technology this is not a practical prospect. However, this angle can be indirectly 
obtained using measurable stator quantities. This can be accomplished by detecting the rotor or 
resultant magnetic field orientation through space-vector formulations [8]. A method based on 
detecting the rotor magnetic field orientation was presented by these authors in [1]. However, stator 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/28/30897/1433002/1433002-fig-7-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/28/30897/1433002/1433002-fig-8-source-large.gif


resistance and inductances were necessary parameters in that process of the measurement (detection) 
of the rotor magnetic field. In this paper, these authors demonstrate the finding that the resultant 
magnetic field orientation can be considered as the diagnostic signature in order to observe the effects 
of rotor field orientation in the presence of a broken bar fault. The functional block diagram of this 

technique is shown in Fig. 6 in which the space vectors of the stator currents 𝑖𝑖
→
𝑠𝑠 and voltages 𝑣𝑣

→
𝑠𝑠 are 

defined as follows: 

𝑖𝑖
→
𝑠𝑠(𝑡𝑡) =

2
3

((𝑖𝑖𝑎𝑎 − 𝑖𝑖𝑏𝑏) + 𝛼𝛼(𝑖𝑖𝑏𝑏 − 𝑖𝑖𝑐𝑐) + 𝛼𝛼2(𝑖𝑖𝑐𝑐 − 𝑖𝑖𝑎𝑎))

= (𝑖𝑖𝑎𝑎 − 𝑖𝑖𝑏𝑏) + 𝑗𝑗√3(𝑖𝑖𝑎𝑎 + 𝑖𝑖𝑏𝑏)

𝑣𝑣
→
𝑠𝑠(𝑡𝑡) =

2
3

(𝑣𝑣𝑎𝑎𝑏𝑏 + 𝛼𝛼𝑣𝑣𝑏𝑏𝑐𝑐 + 𝛼𝛼2𝑣𝑣𝑐𝑐𝑎𝑎)

= (𝑣𝑣𝑎𝑎𝑏𝑏) + 𝑗𝑗(𝑣𝑣𝑎𝑎𝑏𝑏 + 2𝑣𝑣𝑏𝑏𝑐𝑐)/√3

 

(9) (10) 

where the currents and voltages 𝑖𝑖𝑎𝑎, 𝑖𝑖𝑏𝑏 ,𝑣𝑣𝑎𝑎𝑏𝑏, and 𝑣𝑣𝑏𝑏𝑐𝑐, are the input signals of the online fault diagnostic 

system depicted in Fig. 6. In Fig. 7, the pendulous oscillation 𝛿𝛿(𝑡𝑡) = ∠𝑖𝑖
→
𝑠𝑠 − ∠𝑣𝑣

→
𝑠𝑠 which is obtained as 

the difference between the current space-vector angle ∠𝑖𝑖
→
𝑠𝑠(𝑡𝑡) and the voltage space-vector 

angle ∠𝑣𝑣
→
𝑠𝑠(𝑡𝑡), as a function of time as well as its fundamental component 𝛿𝛿1(𝑡𝑡), are shown for a cage 

with three broken bars at full-load condition. Meanwhile, the corresponding polar plot of the swing 
angle Δ𝛿𝛿, obtained from laboratory testing of the 5-hp motor, is shown in Fig. 8. Here, in this 
technique, the swing angle Δ𝛿𝛿1 (see Figs. 6 and 7) is considered as the diagnostic index. This index 
leads one to easily detect (distinguish) a cage with one broken bar from a healthy cage, despite the fact 
that the total swing angle measure Δ𝛿𝛿 might be contaminated with noise, especially for a low number 
of broken bars. 

In this procedure, first the input signals are sampled using an A/D converter, and subsequently are 
filtered using a low-pass filter. Then, the output signals of the low-pass filter are collected (or saved) 
over a period greater than a slip cycle. In order to obtain the fundamental component of the 
pendulous oscillation 𝛿𝛿1(𝑡𝑡) with a high resolution, an integer number of the swing angle cycles is 
required. Notice that the frequency of the pendulous oscillation is equal to twice the slip frequency 
and a speed sensor is unnecessary in this technique. This process of determination of the fundamental 
component was accordingly accomplished through a data processing algorithm in conjunction with the 
least-squares technique [9], [10]. 



 
Fig. 9. Laboratory test setup for the 5-hp induction motor. 
 

SECTION VI. Experimental Results 
A 2-hp two-pole 230-V induction motor with 36 rotor bars was tested in the laboratory under a healthy 
rotor condition as well as one-, three-, and five broken-bar fault conditions. These tests were 
performed under a sinusoidal direct-line excitation. Also, a 5-hp six-pole 460-V induction motor with 45 
rotor bars was tested in the laboratory under a healthy rotor condition, as well as one through four-
broken-bar faults. These tests were performed when the 5-hp motor was energized from three 
different power supplies: 1) sinusoidal direct-line excitation; 2) PWM open-loop constant volts-per-
hertz control; and 3) PWM closed-loop field-oriented control. The last two tests with control drives 
were performed using the commercially available AB Power Flex40 and AB 1336 Impact drives, 
respectively. The carrier frequency of both of these PWM drives was set to be 4 kHz. In these tests, the 
data acquisition laboratory test equipment was a National Instrument LabView SCXI-1000 device, while 
the sampling rate was set to be 50 K samples per second. Fig. 9 shows the laboratory test setup for 
testing the 5-hp induction motor under healthy and faulty conditions. 

In order to study the effects of load level on the two methods of rotor broken bar fault diagnostics: 1) 
using the fundamental component of pendulous oscillation which was introduced above and 2) using 
the well-known low sideband (LSB) component of the stator phase current spectrum [2]–[3][4][5] [6], 
the following test scenarios were selected and implemented for measurement in the laboratory: 

TABLE I Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, Sinusoidal 
Excitation Full-Load 2-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -49.0 -56.5 0.3302 
One Broken Bar -45.3 -43.4 1.2180 
Three Broken Bars -31.8 -31.2 5.6429 
Five Broken Bars -24.6 -25.9 9.8292 
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TABLE II Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, Sinusoidal 
Excitation 85% of Full Load 2-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -44.0 -51.9 0.3401 
One Broken Bar -46.0 -43.8 1.1795 
Three Broken Bars -29.1 -31.6 5.5437 
Five Broken Bars -25.8 -25.8 9.6982 

 

TABLE III Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, Sinusoidal 
Excitation 50% of Full Load 2-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -55.7 -53.9 0.3761 
One Broken Bar -42.1 -44.1 1.1929 
Three Broken Bars -33.4 -32.6 5.4163 
Five Broken Bars -27.9 -26.5 9.3811 

 

TABLE IV Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, Sinusoidal 
Excitation Full-Load 5-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -43.3 -74.6 0.0473 
One Broken Bar -45.6 -47.0 1.1570 
Two Broken Bars -40.8 -40.0 2.6214 
Three Broken Bars -35.9 -35.1 4.1769 
Four Broken Bars -33.8 -33.1 5.3092 

 

TABLE V Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, Sinusoidal 
Excitation 75% of Full Load 5-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -48.3 -76.5 0.0416 
One Broken Bar -43.2 -46.6 0.9761 
Two Broken Bars -37.0 -39.5 2.2204 



Three Broken Bars -38.3 -36.0 3.4513 
Four Broken Bars -32.0 -33.0 4.2493 

 

TABLE VI Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, Sinusoidal 
Excitation 50% of Full Load 5-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -60.5 -66.0 0.0427 
One Broken Bar -45.1 -47.2 0.7074 
Two Broken Bars -38.5 -40.0 1.5582 
Three Broken Bars -35.3 -36.8 2.3709 
Four Broken Bars -34.9 -34.4 2.8733 

 

TABLE VII Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, PWM 
Open-Loop Drive Full-Load 5-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -50.0 -64.0 0.0866 
One Broken Bar -43.2 -46.6 1.2457 
Two Broken Bars -41.6 -39.8 2.7226 
Three Broken Bars -35.8 -35.0 4.3178 
Four Broken Bars -34.6 -33.0 5.6961 

 

TABLE VIII Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, PWM 
Open-Loop Drive 75% of Full Load 5-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -51.0 -60.6 0.1157 
One Broken Bar -42.0 -46.0 0.9535 
Two Broken Bars -38.6 -39.5 2.2214 
Three Broken Bars -37.0 -36.2 3.6217 
Four Broken Bars -34.3 -33.0 4.5219 

 

TABLE IX Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, PWM Open-
Loop Drive 50% of Full Load 5-hp Induction Motor 



 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -43.0 -65.0 0.0877 
One Broken Bar -43.3 -55.5 0.8062 
Two Broken Bars -39.6 -40.5 1.6100 
Three Broken Bars -36.4 -37.2 2.4389 
Four Broken Bars -36.8 -34.5 3.1334 

 

TABLE X Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, PWM Closed 
-Loop Drive Full-Load 5-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -24.5 -38.3 0.2024 
One Broken Bar -35.0 -34.9 0.4201 
Two Broken Bars -30.8 -29.8 0.4585 
Three Broken Bars -23.4 -23.2 0.4620 
Four Broken Bars -21.8 -22.2 1.1027 

 

TABLE XI Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, PWM 
Closed-Loop Drive 75% of Full Load 5-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -38.5 -39.3 0.1415 
One Broken Bar -37.7 -37.7 0.2588 
Two Broken Bars -29.8 -29.8 0.6349 
Three Broken Bars -22.0 -22.0 1.1349 
Four Broken Bars -21.8 -21.8 1.3720 

 

• 2-hp sinusoidal direct-line excitation at 
1. full-load condition under healthy cage and one, three, and five broken bar faults 

(see Table I); 
2. 85% of full-load condition under healthy cage and one, three, and five broken bar faults 

(see Table II); 
3. 50% of full-load condition under healthy cage and one, three, and five broken bar faults 

(see Table III); 
• 5-hp sinusoidal direct-line excitation at 



1. full-load condition under healthy cage and one through four broken bar faults (see Table 
IV); 

2. 75% of full-load condition under healthy cage and one through four broken bar faults 
(see Table V); 

3. 50% of full load condition under healthy cage and one through four broken bar faults 
(see Table VI); 

• 5-hp PWM (4 kHz carrier frequency) open-loop constant volts-per-frequency drive 
1. full-load condition under healthy cage and one through four broken bar faults (see Table 

VII); 
2. 75% of full-load condition under healthy cage and one through four broken bar faults 

(see Table VIII); 
3. 50% of full-load condition under healthy cage and one through four broken bar faults 

(see Table IX); 
• 5-hp PWM (4 kHz carrier frequency) closed-loop field-oriented control drive; 

1. full-load condition under healthy cage and one through four broken bar faults (see Table 
X); 

2. 75% of full-load condition under healthy cage and one through four broken bar faults 
(see Table XI) 

3. 50% of full-load condition under healthy cage and one through four broken bar faults 
(see Table XII). 

 

TABLE XII Comparison Between the Swing Angle in Degrees and LSB Magnitude in Decibels, PWM 
Closed -Loop- 50% of Full Load 5-hp Induction Motor 

 Low Side Band Magnitude in 
(db) 

 Swing Angle in 
(degrees) 

Rotor Cage 
Condition 

Rectangular Windowing Hanning 
Windowing 

∆𝜹𝜹𝟏𝟏 

Healthy -38.8 -38.2 0.2673 
One Broken Bar -37.4 -37.1 0.4483 
Two Broken Bars -32.6 -31.0 0.9863 
Three Broken Bars -27.0 -25.0 1.4615 
Four Broken Bars -24.4 -22.3 2.3603 

 



 
Fig. 10. Pendulous oscillation and its fundamental component in degrees versus time in seconds for the 5-hp 
induction motor in a healthy situation, full-load condition. 

 
Fig. 11. Pendulous oscillation and its fundamental component in degrees versus time in seconds for the 5-hp 
induction motor in the case of one broken bar, full-load condition. 

SECTION VII. Analysis of Experimental Test Results 
For a direct-line sinusoidal excitation of the 5-hp induction motor, Table IV and Figs. 10 –12 show the 
pendulous oscillation 𝛿𝛿(𝑡𝑡), its fundamental component 𝛿𝛿1(𝑡𝑡), and the swing angle Δ𝛿𝛿1 in degrees for a 
healthy, one, and two adjacent broken-bar faults under full-load conditions. As one can observe, a 
rotor with one broken-bar fault can be easily distinguished from a healthy cage. Moreover, the 
correlation between the swing angle Δ𝛿𝛿1 and the number of broken bars leads to the conclusion that, 
not only can a faulty case be distinguished from a healthy case, but also the degree of the fault severity 
can be acquired using this swing angle fault index. In this technique, a nonzero value of the swing 
angle Δ𝛿𝛿1 means that there is a defect in the rotor bars. Hence, a healthy cage should not generate a 
nonzero value of swing angle. However, there exists no such ideal condition 
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Fig. 12. Pendulous oscillation and its fundamental component in degrees versus time in seconds for the 5-hp 
induction motor in the case of two broken bars, full-load condition. 

 
Fig. 13. FFT spectrum of the stator phase current for the 5-hp induction motor in the case of one broken bar, 
50% of full load, PWM open-loop drive. 

 
Fig. 14. FFT spectrum of the stator phase current for the 5-hp induction motor in a healthy case, 50% of full-load, 
PWM closed-loop drive. 
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Fig. 15. Angle of pendulous oscillation versus number of broken bars, sinusoidal excitation, 2-hp induction 
motor. 
 

due to the presence of even slight manufacturing imperfections under normal industrial tolerances. 
Hence, a nonzero value of swing angle is obtained even under healthy motor conditions, e.g., see Fig. 
10, where Δ𝛿𝛿1 = 0.0473∘. Accordingly, the swing angle under healthy conditions can be measured and 
saved as the threshold value. Meanwhile, it should be pointed out again that the frequency of the 
pendulous oscillation due to broken-bar faults is equal to twice the slip frequency. Therefore, this 
frequency characteristic of the swing angle enables an online condition monitoring system to 
distinguish a broken-bar fault from other phenomena which may produce other magnetic field 
oscillations with different frequencies. 

In case of the test results given in Table IX for a PWM open-loop control of the 5-hp motor, Fig. 
13 shows the fast Fourier transform (FFT) spectrum of the corresponding stator phase current in the 
presence of one broken bar, at 50% of full load. Here, it is difficult to observe any LSB component in 
the stator phase current spectrum shown in Fig. 13. Moreover, for the same motor, Fig. 14 shows the 
FFT spectrum of the stator phase current in a healthy case for 50% of full load under PWM closed-loop 
control, which corresponds to the test results of Table XII. It can be easily observed that there are two 
LSB components close to the fundamental component, which is not what one would expect for a 
healthy condition and, consequently, such a signal could lead to considerable ambiguities in rotor 
broken-bar fault diagnostics. Therefore, without detracting from the diagnostic value of classical 
spectral analysis techniques, it can be concluded that the LSB index may not be as reliable an approach 
for partial load levels in cases of PWM excitations. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/28/30897/1433002/1433002-fig-15-source-large.gif


 
Fig. 16. Angle of pendulous oscillation versus number of broken bars, sinusoidal excitation, 5-hp induction 
motor. 

 
Fig. 17. Angle of pendulous oscillation versus number of broken bars, PWM open-loop control drive, 5-hp 
induction motor. 

 
Fig. 18. Angle of pendulous oscillation versus number of broken bars, PWM closed-loop control drive, 5-hp 
induction motor. 
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Fig. 19. LSB component in the terminal current spectrum versus number of broken bars, sinusoidal excitation, 5-
hp induction motor. 

 
Fig. 20. LSB component in the terminal current spectrum (using Hanning Windowing) versus number of broken 
bars, sinusoidal excitation, 5-hp induction motor. 

 
Fig. 21. LSB component in the terminal current spectrum versus number of broken bars, PWM-open loop control 
drive, 5-hp induction motor. 
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Fig. 22. LSB component in the terminal current spectrum (with Hanning windowing) versus number of broken 
bars, PWM open-loop control drive, 5-hp induction motor. 
 

The plots showing the swing angle diagnostic index Δ𝛿𝛿1 and the spectral LSB indexes as functions of 
the number of broken bars for the various tests given in Tables I –XII are illustrated in Figs. 15 –24. 
Elaboration on the analysis of these results is given next. 

 
Fig. 23. LSB component in the terminal current spectrum versus number of broken bars, PWM closed-loop 
control drive, 5-hp induction motor. 

 
Fig. 24. LSB component in the terminal current spectrum (with Hanning windowing) versus number of broken 
bars, PWM closed-loop control drive, 5-hp induction motor. 
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A main disadvantage of the spectral analysis of the stator current is the impact of the phenomenon 
referred to as side-lobe leakage, which sometimes can mask the sideband components, due to 
inherent (rectangular) windowing of finite data sets [10], [11]. One can observe the masking effect of 
this phenomenon in the results given in Fig. 13, as well as Figs. 19, and 21. However, window weighting 
(e.g., using Hanning windowing [10]) mitigates the effects of finite data sets at the expense of 
decreasing the spectral resolution [10], [11], see Figs. 20, and 22. Moreover, spectral sampling, as 
imposed by the discrete Fourier transformation (DFT), can sometimes produce misleading results [10]. 
In other words, if the data sampling frequency is not proportional to the frequency of the fundamental 
component, the effect of the side-lobe leakage will be sometimes significant enough to mask the 
sideband components even using the windowing techniques. That is, the sampling frequency of the 
data acquisition system should be adjusted based on the fundamental frequency which may not be 
feasible in many practical applications. This may lead to difficulty, especially if an induction motor is 
driven by an adjustable-speed drive. 

The swing angle diagnostic index Δ𝛿𝛿1 in Figs. 15 –17 shows that there is always a difference between 
the resulting angle Δ𝛿𝛿1 for a healthy cage and that angle of a cage with even one broken bar. 
Moreover, the severity of broken-bar faults can be evaluated using the swing angle index. These two 
characteristics of the swing angle make it somewhat superior to the LSB index. As one can observe 
from Figs. 20 and 22, an increase in LSB magnitude tends to exhibit a quasi-saturation profile. 
Meanwhile, as one can see from Figs. 16 and 17, the swing angle decreases with a decrease in the load 
level in the case of the 5-hp motor, which makes heuristic sense because less load means less rotor 
circuit's impact observable from the stator side. However, in the case of the 2-hp motor the swing 
angle does not vary with the load level (see Fig. 15). This may be attributable to the fact that the 
number of rotor bars per pole in the case of the 2-hp motor is (36 / 2) = 18, while this number is 
only (45 / 6) =7.5 in the case of the 5-hp motor. 

The same trend for the swing angle versus number of broken bars observed in Figs. 15 –17 holds true 
for the closed-loop PWM drive case of Fig. 18, except for the full-load condition under which a 
diminution in the swing angle increase with an increase in the number of broken bars took place at full 
load. This is due to the controller's compensation actions inherent in field-oriented PWM closed-loop 
control drives that are tuned to full-load operation. 

SECTION VIII. Conclusion 
 



 
Fig. 25. FE simulation results of the rotor bar currents of “Bar # 22” in (a) a healthy cage and (b) a cage 
with three broken bars fault. 

 
Fig. 26. FE simulation results of the rotor loop currents of “Loop # 22” in (a) a healthy cage and (b) a cage 
with three broken bars fault. 
 

In this paper, a simple and reliable broken rotor bar fault diagnostics method using the motor's 
resultant magnetic field, which is based on the pendulous oscillation of the rotor magnetic field 
orientation phenomenon, has been introduced and investigated for load levels from 50% to 100% of 
full load for a set of 2- and 5-hp induction motors. These tests were performed in the case of the 5-hp 
motor under sinusoidal direct-line excitation as well as a PWM open-loop constant volts-per-hertz 
control drive and a PWM closed-loop field oriented control drive. The results confirmed that under a 
variety of load levels, even the subtle fault of one broken bar can be distinguished (detected) from a 
healthy rotor cage. The input signals of this method are merely two motor terminal voltages and two 
motor terminal currents, without any need for motor speed measurements. The method was shown to 
be robust and unambiguous in identifying the extent of the number of broken bars. Hence, a 
correlation between the swing angle and other fault indices leads to an improvement in the reliability 
of the online rotor cage condition monitoring of induction motors. 
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Appendix 
The objective of this appendix is to give evidence to the validity of the approximating assumption that 
the healthy loop currents in a defective rotor cage are not significantly different from the healthy loop 
currents in a healthy rotor cage. It should be pointed out that this assumption as an approximation will 
be valid only for a case with relatively low number of broken bars with respect to the number of bars 
per pair of poles. Meanwhile, the outcome of this assumption was to demonstrate that the magnetic 
axis due to broken bar faults will be relocated from its original location in a healthy condition. 

In order to validate the above mentioned assumption, the 2-hp induction motor, whose laboratory test 
results were presented in Section IV, was simulated using Flux-2D-MAGSOFT TSFE software. The 
simulation results of the two case studies of a healthy rotor cage and a cage with three broken bars are 
presented here as validation of this assumption. In Fig. 25, the rotor 

 
Fig. 27. FE simulation results of the rotor bar current distributions in (a) a healthy cage and (b) a cage with three 
broken bars fault. 

 
Fig. 28. FE simulation results of the rotor loop current distributions in (a) a healthy cage and (b) a cage with three 
broken bars fault. 
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bar current of the 22nd bar are shown for the healthy case and the case of three bar breakages, where 
the 19th, 20th, and 21st bars were broken. Meanwhile, in Fig. 26, the healthy loop current of the 22nd 
loop (located between the 21st and 22nd bars) are shown for the above-mentioned healthy and 
broken-bar cases. Of course, these figures are not in phase because of the fact that the starting 
transient period will be longer in the case of a motor with the broken-bars fault. Examination of these 
waveforms of Fig. 26 reveals no significant change in the loop current magnitudes. This is happening 
even for the loop immediately adjacent to the bar breakage. 

Moreover, in Fig. 27, the bar current distributions of a healthy cage and a cage with three broken bars, 
located at bar numbers 19, 20, and 21, are shown at an instance in the TSFE simulation (or for a rotor 
position). Meanwhile, the rotor loop current distributions are shown in Fig. 28, where the loops 
numbered 18, 19, 20, and 21 in the healthy cage are absent in the cage with three broken bars fault. As 
one can observe from Fig. 28, the healthy loop currents in a cage with three broken bars did not suffer 
significant change in comparison with their values in the healthy cage. The most important observation 
is that the loop current distribution shows that the rotor magnetic field, which is established due to the 
loop current distributions at any instance, has a displacement in its positive neutral axis due to the 
three broken bars shown at that specific time sample (rotor position) shown in Fig. 28(b). 

The objective of this appendix is to present the mathematical proof of (7) and (8) in Section II. 
Moreover, it will be shown analytically that an induction motor will fail if the number of adjacent 
broken bars reaches to half the number of bars per pair of poles. 

Here, a similar procedure, as discussed in the Section II for a cage with one broken bar, can be applied 
for a rotor cage with 𝑛𝑛𝑏𝑏 adjacent broken bars. The distortion step on the rotor MMF or the unknown 
value of the large loop current due to 𝑛𝑛𝑏𝑏 broken bars, 𝑖𝑖𝑋𝑋, can be expressed in terms of the other 
healthy loop currents as follows: 

𝑖𝑖𝑋𝑋 =
∑ 𝑖𝑖𝐿𝐿𝑏𝑏
𝑚𝑚−𝑛𝑛𝑏𝑏
𝑏𝑏=𝑚𝑚

(𝑛𝑛𝑏𝑏 + 1)
. 

(B.1) 

Considering the positive portion of the rotor MMF profile similar to the one shown in Fig. 4 but 
with 𝑛𝑛𝑏𝑏 adjacent broken bars and knowing that the magnetic axis is located where the area of this 
portion is equally divided (center of mass of the MMF), yields 

(𝛾𝛾)𝑖𝑖𝑋𝑋 + �
2𝜋𝜋
𝑁𝑁𝑏𝑏
� � 𝑖𝑖𝐿𝐿𝑏𝑏

𝑚𝑚−𝑛𝑛𝑏𝑏

𝑏𝑏=𝑚𝑚−1

= �(𝑛𝑛𝑏𝑏 + 1) �
2𝜋𝜋
𝑁𝑁𝑏𝑏
� − 𝛾𝛾� 𝑖𝑖𝑋𝑋.

 

(B.2) 

Now, using 𝑖𝑖𝑋𝑋 from (B.1) and solving (B.2) for 𝛾𝛾 yields 



𝛾𝛾 =
1

2𝑖𝑖𝑋𝑋
⋅

2𝜋𝜋
𝑁𝑁𝑏𝑏

� � 𝑖𝑖𝐿𝐿𝑏𝑏

𝑚𝑚−𝑛𝑛𝑏𝑏

𝑏𝑏=𝑚𝑚

− � 𝑖𝑖𝐿𝐿𝑏𝑏

𝑚𝑚−𝑛𝑛𝑏𝑏

𝑏𝑏=𝑚𝑚−1

� 

(B.3) 

which gives 

𝛾𝛾 = �
𝜋𝜋
𝑁𝑁𝑏𝑏
� �
𝑖𝑖𝑚𝑚
𝑖𝑖𝑋𝑋
� . 

(B.4) 

Hence, the angular shift of the magnetic axis can be calculated by 

Δ𝛾𝛾 = 𝛾𝛾 −
𝜋𝜋
𝑁𝑁𝑏𝑏

= �
𝜋𝜋
𝑁𝑁𝑏𝑏
� �
𝑖𝑖𝑚𝑚 − 𝑖𝑖𝑋𝑋
𝑖𝑖𝑋𝑋

� . 

(B.5) 

Substituting (B.1) into (B.5) yields 

Δ𝛾𝛾 = �
𝜋𝜋
𝑁𝑁𝑏𝑏
� �

(𝑛𝑛𝑏𝑏 + 1)𝑖𝑖𝑚𝑚 − ∑ 𝑖𝑖𝐿𝐿𝑏𝑏
𝑚𝑚−𝑛𝑛𝑏𝑏
𝑏𝑏=𝑚𝑚

∑ 𝑖𝑖𝐿𝐿𝑏𝑏
𝑚𝑚−𝑛𝑛𝑏𝑏
𝑏𝑏=𝑚𝑚

� . 

(B.6) 

Accordingly, the estimated swing angle of the magnetic axis Δ𝛿𝛿
~

, in radians, is given below [1] 

Δ𝛿𝛿
~

=
2Δ𝛾𝛾

2
= �

𝜋𝜋
𝑁𝑁𝑏𝑏
� �
𝑛𝑛𝑏𝑏𝑖𝑖𝑚𝑚 − ∑ 𝑖𝑖𝐿𝐿𝑏𝑏

𝑚𝑚−𝑛𝑛𝑏𝑏
𝑏𝑏=𝑚𝑚−1

𝑖𝑖𝑚𝑚 + ∑ 𝑖𝑖𝐿𝐿𝑏𝑏
𝑚𝑚−𝑛𝑛𝑏𝑏
𝑏𝑏=𝑚𝑚−1

� . 

(B.7) 

Considering only the fundamental component of loop currents yields 

Δ𝛿𝛿
~

= �
𝜋𝜋
𝑁𝑁𝑏𝑏
�

× �
𝑛𝑛𝑏𝑏𝐼𝐼𝑟𝑟 cos(𝜔𝜔𝑟𝑟𝑡𝑡) −� 𝐼𝐼𝑟𝑟 cos �𝜔𝜔𝑟𝑟𝑡𝑡 −

2𝑘𝑘𝜋𝜋
𝑁𝑁𝑏𝑏

�
𝑚𝑚−𝑛𝑛𝑏𝑏

𝑏𝑏=𝑚𝑚−1

𝐼𝐼𝑟𝑟 cos(𝜔𝜔𝑟𝑟𝑡𝑡) + � 𝐼𝐼𝑟𝑟 cos �𝜔𝜔𝑟𝑟𝑡𝑡 −
2𝑘𝑘𝜋𝜋
𝑁𝑁𝑏𝑏

�
𝑚𝑚−𝑛𝑛𝑏𝑏

𝑏𝑏=𝑚𝑚−1

� .
 

(B.8) 



Substituting 𝑡𝑡 = 0 in (B.8), due to that fact that 𝑘𝑘 = 𝑚𝑚 in case (1) discussed in Section II, yields 

Δ𝛿𝛿
~

= �
𝜋𝜋
𝑁𝑁𝑏𝑏
��

(𝑛𝑛𝑏𝑏 + 1) −� cos �2𝑘𝑘𝜋𝜋
𝑁𝑁𝑏𝑏

�
𝑛𝑛𝑏𝑏

𝑏𝑏=0

� cos �2𝑘𝑘𝜋𝜋
𝑁𝑁𝑏𝑏

�
𝑛𝑛𝑏𝑏

𝑏𝑏=0

� . 

(B.9) 

Using the following trigonometry identities [12] 

� cos �
2𝑘𝑘𝜋𝜋
𝑁𝑁𝑏𝑏

�

𝑛𝑛𝑏𝑏

𝑏𝑏=0

=
1
2

+
sin �(2𝑛𝑛𝑏𝑏 + 1) � 𝜋𝜋𝑁𝑁𝑏𝑏

��

2 sin � 𝜋𝜋𝑁𝑁𝑏𝑏
�

. 

(B.10) 

Equation (B.9) can be rewritten as follows 

Δ𝛿𝛿
~

= �
𝜋𝜋
𝑁𝑁𝑏𝑏
�

⎝

⎜
⎜
⎜
⎛(𝑛𝑛𝑏𝑏 + 1) − 1

2 −
sin �(2𝑛𝑛𝑏𝑏 + 1) � 𝜋𝜋𝑁𝑁𝑏𝑏

��

2 sin � 𝜋𝜋𝑁𝑁𝑏𝑏
�

1
2 +

sin �(2𝑛𝑛𝑏𝑏 + 1) � 𝜋𝜋𝑁𝑁𝑏𝑏
��

2 sin � 𝜋𝜋𝑁𝑁𝑏𝑏
� ⎠

⎟
⎟
⎟
⎞

. 

(B.11) 

Further simplification yields 

Δ𝛿𝛿
~

= �
𝜋𝜋
𝑁𝑁𝑏𝑏
�

× �
(2𝑛𝑛𝑏𝑏 + 1) sin � 𝜋𝜋𝑁𝑁𝑏𝑏

� − sin �(2𝑛𝑛𝑏𝑏 + 1) � 𝜋𝜋𝑁𝑁𝑏𝑏
��

sin � 𝜋𝜋𝑁𝑁𝑏𝑏
� + sin �(2𝑛𝑛𝑏𝑏 + 1) � 𝜋𝜋𝑁𝑁𝑏𝑏

��
� .

 

(B.12) 

In order to take into account the harmonics effect, the factor 𝑘𝑘ℎ, elaborated earlier in the paper, is 
inserted in this formulation as follows: 



Δ𝛿𝛿
~

= 𝑘𝑘ℎ �
𝜋𝜋
𝑁𝑁𝑏𝑏
� �

(2𝑛𝑛𝑏𝑏 + 1) − 𝜉𝜉
1 + 𝜉𝜉

� 

(B.13) 

where 

𝜉𝜉 =
sin [(2𝑛𝑛𝑏𝑏 + 1)(𝜋𝜋/𝑁𝑁𝑏𝑏)]

sin (𝜋𝜋/𝑁𝑁𝑏𝑏)
. 

It should be noticed that if 𝜉𝜉 = −1, then 𝛥𝛥𝛿𝛿 → ∞. It means that an induction machine 
with 𝑛𝑛𝑏𝑏 adjacent broken bars will fail when sin [(2𝑛𝑛𝑏𝑏 + 1)(𝜋𝜋/𝑁𝑁𝑏𝑏)] = −sin (𝜋𝜋/𝑁𝑁𝑏𝑏). In other words, 
the failure happens when (2𝑛𝑛𝑏𝑏 + 1)(𝜋𝜋/𝑁𝑁𝑏𝑏) = (𝜋𝜋/𝑁𝑁𝑏𝑏) + 𝜋𝜋, from which one deduces that the machine 
will fail when 𝑛𝑛𝑏𝑏 reaches a value equal to (𝑁𝑁𝑏𝑏/2). 

References 
1. B. Mirafzal and N. A. O. Demerdash, "Induction machine broken-bar fault using the rotor space-

vector magnetic field orientation", IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 534-542, Mar./Apr. 
2004. 

2. S. Williamson and A. C. Smith, "Steady state analysis of 3-phase cage motors with rotor-bar and 
end-ring faults", Proc. Inst. Elec. Eng., vol. 129, no. 3, pp. 93-100, 1982. 

3. W. Deleroi, "Squirrel cage motor with broken bar in the rotor-physical phenomena and their 
experimental assessment", Proc. Int. Conf. Electrical Machines, pp. 767-770, 1982. 

4. W. Deleroi, "Broken bar in squirrel cage rotor of induction motor part I: Description by 
superimosed fault currents", Arch. Elektrotech. (Germany), vol. 67, pp. 91-99, 1984. 

5. G. B. Kliman, R. Koegle, J. Stein, R. D. Endicott and M. W. Madden, "Noninvasive detection of 
broken rotor bars in operating induction motors", IEEE Trans. Energy Convers., vol. 3, no. 4, pp. 
873-879, Dec. 1988. 

6. G. B. Kliman, W. J. Premerlani, B. Yazici, R. A. Koegl and J. G. Mazereeuw, "Sensorless online 
motor diagnostics", IEEE Comput. Appl. Power, vol. 10, no. 2, pp. 39-43, Apr. 1997. 

7. G. B. Kliman, Spectral analysis of induction motor current to detect rotor faults with reduced 
false alarms, Sep. 1991. 

8. P. Vas, Electrical Machines and Drives: A Space-Vector Theory Application, U.K., London:Oxford 
Univ. Press, 1992. 

9. B. Mirafzal, Incepient fault diagnosis in squirrel-cage induction motors, Aug. 2005. 
10. A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-Time Signal Processing, NJ, Upper 

Saddle River:Prentice-Hall, 1999. 
11. M. E. H. Benbouzid and G. B. Kliman, "What stator current processing-based technique to use 

for induction motor rotor faults diagnosis?", IEEE Trans. Energy Convers., vol. 18, no. 2, pp. 238-
244, Jun. 2003. 

12. C. R. Wylie and L. C. Barrett, Advanced Engineering Mathematics, New York:McGraw-Hill, 1982. 

 



 


	Effects of Load Magnitude on Diagnosing Broken Bar Faults in Induction Motors Using the Pendulous Oscillation of the Rotor Magnetic Field Orientation
	Recommended Citation

	Abstract:
	Major Nomenclature
	SECTION II. Introduction
	SECTION III. Pendulous Oscillation Phenomenon in Rotor Magnetic Field Orientation
	A. Rotor MMF Distortion Due to One Broken Bar
	B. Rotor MMF Distortion Due to ,𝑛-𝑏. Broken Bars

	SECTION IV. Pendulous Oscillation Phenomenon—FE Electromagnetic Field Evidence
	SECTION V. A Space-Vector Method for Detecting the Rotor Magnetic Field Pendulous Oscillation
	SECTION VI. Experimental Results
	SECTION VII. Analysis of Experimental Test Results
	SECTION VIII. Conclusion
	ACKNOWLEDGMENT
	Appendix
	References

