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Induction Machine Broken-Bar Fault Diagnosis 
Using the Rotor Magnetic Field Space-Vector 
Orientation 
 
B. Mirafzal 
Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI 

N.A.O. Demerdash 
Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI 
 

Abstract: 
A new technique based on rotor magnetic field space vector orientation is presented to diagnose 
broken-bar faults in induction machines operating at steady state. In this technique, stator currents 
and voltages are used as inputs to compute and subsequently observe the rotor magnetic field 
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orientation, which has a more significant "swing-like" pendulous oscillation in case of broken-bar faults 
than in healthy operation. It will be shown here that the range of this "pendulous oscillation" is a 
function of the number of broken bars. Also in this technique, it was found that an inter-turn shorted 
stator-winding fault, which exhibits similar pendulous oscillation, could be distinguished from rotor 
broken-bar faults through the use of a variance index. In order to validate this method, experimental 
evidence is given here for several broken-bar cases in a 2-hp three-phase two-pole squirrel-cage 
induction machine. 

SECTION I Introduction 
IN THE PAST two decades, there have been many investigations on fault diagnostics in electric 
machines, especially squirrel-cage induction motors [1]–[2][3][4][5][6]. Because the squirrel-cage 
induction motor is presently one of the most widely used machines in industry, it is the most 
investigated machine with regard to motor fault diagnostics. A sudden motor failure may be very 
damaging or catastrophic in an industrial system, in which the electric motor is the prime mover. 
Consequently, these motor failures reduce productivity in industry. Hence, maintenance schedules are 
provided to proactively reduce or prevent these failures. Nevertheless, the probability of a sudden 
motor failure cannot be entirely ruled out. Moreover, increasing the frequency of scheduled 
maintenance increases the cost and decreases the productivity of a system. Accordingly, an online fault 
diagnostic system becomes a valuable tool to increase industrial efficiency and reliability. This paper 
propose a technique for fault diagnostic purposes which might help develop proactive “as needed” 
maintenance scheduling 

Besides this introduction, the paper contains six additional sections. Section II theoretically shows that 
in case of broken-bar faults the rotor magnetic field oscillates around its original healthy case 
direction. Section IIIpresents the necessary formulations to obtain the rotor magnetic field orientation 
in a space-vector plain. In Section IV, the simulation results are analyzed and explained as to how inter-
turn shorted stator-winding types of faults occurring simultaneously with broken-bar faults could be 
distinguished from pure broken-bar rotor faults. In Section V a 230-V 60-Hz two-pole 2-hp squirrel-cage 
three-phase induction motor was tested for faults constituting one through five rotor broken-bars. 
Also in this section, this new method's results of diagnosing the broken-bar faults for this 2-hp motor 
are compared with the results of applying the well-known fast Fourier transform (FFT) technique to the 
same set of motor phase currents under the same fault conditions, with its sideband frequency 
concepts. In Section VI a discussion of the merit of the present approach versus the FFT sideband 
approach is given 

SECTION II Rotor Magnetomotive Force (MMF) for a Case With a Broken -Bar 
Fault 
The objective of this section is to develop the idea of the “pendulous oscillation” of the rotor magnetic 
field in case of a broken-bar rotor fault. For demonstration purposes, consider the simple case of a 
three-phase two-pole squirrel-cage induction motor with eight rotor bars. This is a simplified example 
in order to easily grasp a good physical understanding of this “swing-like” pendulous oscillation 
phenomenon, and analytically verify this phenomenon and its angular swing magnitude as an index 
(measure) for the rotor broken-bar count and, hence, more specific fault diagnostics. In general, the 



fundamental components of the rotor loop currents in a healthy rotor case [Fig. 1(a)] can be expressed 
as follows: 

𝑖𝑖𝐿𝐿𝐿𝐿(𝑡𝑡) = 𝐼𝐼𝑟𝑟cos (𝜔𝜔𝑟𝑟𝑡𝑡 − 𝜑𝜑 −
2𝜋𝜋(𝑘𝑘 − 1)

𝑁𝑁𝑏𝑏
)

𝑘𝑘 = 1,2, … ,𝑁𝑁𝑏𝑏
 

(1) 

and accordingly, the rotor bar currents can be expressed in terms of the loop currents as follows: 

𝑖𝑖𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝑖𝑖𝐿𝐿𝑏𝑏−1(𝑡𝑡) − 𝑖𝑖𝐿𝐿𝑏𝑏(𝑡𝑡),𝑛𝑛 = 1,2, … ,𝑁𝑁𝑏𝑏  

(2) 

where 𝜔𝜔𝑟𝑟 is the rotor angular frequency (2𝜋𝜋𝜋𝜋𝜋𝜋), 𝑁𝑁𝑏𝑏 is the number of rotor bars per pair of poles, while 
for this simplified example of Fig. 1, 𝑁𝑁𝑏𝑏 = 8 bars. Here, 𝜑𝜑 is a phase shift between the first rotor loop 
current and the reference. In this development, the reference is taken to be the stator voltage of 
phase 𝐴𝐴. In Fig. 1(b), it is assumed that the sixth bar is broken. 

 
Fig. 1 Developed rotor cage circuits representation with a healthy and one broken bar for an eight-bar simplified 
example 

 
Fig. 2 Rotor MMF waveform of the eight-bar example at 𝑡𝑡 = 0, with one broken bar 
 

Meanwhile, in this case, (1)only constitutes an approximation of the fundamental components of the 
healthy loop currents. However, this equation is not valid for the newly formed loop current resulting 
from the bar breakage. Specifically, this is the unhealthy loop current, 𝑖𝑖𝐿𝐿5_6(𝑡𝑡), see the developed 
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schematic of the one broken-bar cage in Fig. 1(b). For purposes of this demonstration, let the 
aforementioned angle, 𝜑𝜑 = 3𝜋𝜋/4rad, and at time, 𝑡𝑡 = 0, the loop current, 𝑖𝑖𝐿𝐿5_6(0) = 𝐼𝐼𝑋𝑋. 

 
Fig. 3 Magnetic field orientation of the eight-bar example at 𝑡𝑡 = 0, with one broken bar 
 

Accordingly, for the broken bar case of Fig. 1(b) the rotor MMF waveform at 𝑡𝑡 = 0 can be depicted as 
shown in Fig. 2. The unknown value of the loop current, 𝑖𝑖𝐿𝐿5_6(0) = 𝐼𝐼𝑋𝑋, can be calculated using the 

fundamental electromagnetic field concept, ∇ ⋅ 𝐵𝐵
→

= 0. This enables one to write the following 
relationship between the various loop currents of Fig. 1(b), assuming no axial flux exists in this case: 

𝜇𝜇0𝐴𝐴loop
𝑔𝑔

(𝑖𝑖𝐿𝐿1 + 𝑖𝑖𝐿𝐿2 + 𝑖𝑖𝐿𝐿3 + 𝑖𝑖𝐿𝐿4 + 2𝑖𝑖𝐿𝐿5_6 + 𝑖𝑖𝐿𝐿7 + 𝑖𝑖𝐿𝐿8) = 0 

(3) 

where 𝐴𝐴loop is the rotor loop area, and 𝑔𝑔 is the air-gap height. Solving (3) at 𝑡𝑡 = 0, using substitutions 
for 𝑖𝑖𝐿𝐿1 through 𝑖𝑖𝐿𝐿4, 𝑖𝑖𝐿𝐿7, and 𝑖𝑖𝐿𝐿8 from (1), in conjunction with the necessary algebraic manipulations 
gives 

𝐼𝐼𝑋𝑋 = �
1
2

+
√2
4
� 𝐼𝐼𝑟𝑟 . 

(4) 

It should be emphasized here that the loop currents contain a set of higher order harmonics, where in 
these calculations only their fundamental components are considered. Moreover, the currents in the 
healthy loops will be affected slightly in the presence of the broken bar, where those effects are 
neglected in these calculations for only qualitative conceptualization purposes of the rotor field's 
pendulous oscillation phenomenon. That is, these assumptions qualitatively demonstrate the rotor 
magnetic field pendulous oscillations in the presence of broken-bar faults 

Now, from (1), (2), and (4), the rotor MMF profile at 𝑡𝑡 = 0 can be depicted as shown in Fig. 2. As one 
can see from Fig. 2, the location of the magnetic axis (or center of mass) of the negative half cycle of 
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the rotor MMF is shifted to the left side of the original axis by a nonzero angular value, Δ𝛾𝛾. In order to 
calculate this angular shifted, Δ𝛾𝛾, see Fig. 2, the angle 𝛾𝛾, which defines the location of the “center of 
mass” of the distorted MMF, can be determined as follows: 

�𝛾𝛾 −
𝜋𝜋
8
� 𝐼𝐼𝑋𝑋 = �

5𝜋𝜋
8
− 𝛾𝛾� 𝐼𝐼𝑋𝑋 + �

2𝜋𝜋
8
� �
√2
2
� 𝐼𝐼𝑟𝑟 . 

(5) 

Upon substitution for 𝐼𝐼𝑋𝑋 from its above-determined value in (4), the angle, 𝛾𝛾, locating the magnetic 
axis will have a value as follows: 𝛾𝛾 = (0.957)(𝜋𝜋/2). Subsequently, the resulting angular shift, Δ𝛾𝛾, of 
the magnetic axis for this half waveform caused by the sixth bar breakage can be obtained as 
follows; Δ𝛾𝛾 = (𝜋𝜋/2) − (0.957)(𝜋𝜋/2) = (0.043)(𝜋𝜋/2). Fig. 3 shows the angular shift, Δ𝛾𝛾, and the 
overall rotor magnetic field orientation (north pole to south pole line), which is now tending to the 
right side by an angle, Δ𝛿𝛿 = Δ𝛾𝛾/2, at 𝑡𝑡 = 0. As time t progresses forward, 𝑡𝑡 > 0, the distortion in the 
profile of the rotor MMF will also be continuously modulated (changing) with time. This continuous 
change in the rotor MMF profile is equivalent to the rotor magnetic field displacement in subsequent 
leading and lagging manners around the original magnetic axis of the healthy rotor case. This 
phenomenon takes place in a continuously alternating or “swing-like” pendulous manner. In other 
words, the rotor's magnetic field orientation oscillates around the original direction in the healthy 
motor case, while the original direction rotates at synchronous speed 

There is an additional factor influencing this angular displacement of the magnetic field orientation, 
namely that associated with the elevated degree of flux crowding and saturation level within the rotor 
iron laminations in the region surrounding the broken bars [7]. This aspect though has not been 
discussed here, will be revisited later on in this paper in relation to the experimental results. As one 
can see in this simple example, this continuously ongoing angular displacement of the magnetic field 
orientation will be a function of the number of broken bars and their position within the rotor 
geometry. In Section III, a method to detect the rotor magnetic field space vector orientation is 
presented using the space-vector theory in electric machines [8] 

SECTION III Space-Vector Formulation for Rotor Magnetic Field Orientation 
The space vectors of the stator current, voltage, or total flux linkage are defined as the sum of space 
vectors of individual phases as follows [8]: 

Ω
→
𝑠𝑠(𝑡𝑡) =

2
3

{Ω𝑠𝑠𝑠𝑠(𝑡𝑡) + 𝛼𝛼Ω𝑠𝑠𝑏𝑏(𝑡𝑡) + 𝛼𝛼2Ω𝑠𝑠𝑠𝑠(𝑡𝑡)} 

(6) 

where the symbol Ω stands for the current 𝑖𝑖, voltage 𝑣𝑣, or total flux linkage 𝜆𝜆 in the stator windings, 
and 𝛼𝛼 = 𝑒𝑒𝑗𝑗2𝜋𝜋/3 is a space operator. Meanwhile, the space-vector relationship between the stator 
voltage, and the total flux linkage in the stationary frame of reference is expressed as follows [8]: 

https://ieeexplore.ieee.org/document/#deqn4


 
Fig. 4 Steady-state space vectors of stator voltage 𝑣𝑣

→
𝑠𝑠, stator current 𝑖𝑖

→
𝑠𝑠, stator flux linkage 𝜆𝜆

→
𝑠𝑠, and the 

information signal 𝜓𝜓
→

  

 
Fig. 5 Functional diagram of the rotor magnetic field orientation observer for broken-bar and shorted turn 
detection 
 

 
Fig. 6 Simulation-based results of the absolute value of 𝜓𝜓real in webers versus angle 𝛿𝛿 = �∠𝜓𝜓

→
(𝑡𝑡) − ∠𝑣𝑣

→
𝑠𝑠(𝑡𝑡)� in 

degrees for a three-broken-bar fault 
 

𝑣𝑣
→
𝑠𝑠(𝑡𝑡) = 𝑅𝑅𝑠𝑠 𝑖𝑖

→
𝑠𝑠(𝑡𝑡) +

𝑑𝑑𝜆𝜆
→
𝑠𝑠

𝑑𝑑𝑡𝑡
 

(7) 

and in induction machines, the space vector of the stator flux 𝜆𝜆
→
𝑠𝑠 can be expressed in terms of the 

stator and rotor current space vectors as follows [8]: 

𝜆𝜆
→
𝑠𝑠(𝑡𝑡) = (𝐿𝐿𝑠𝑠 − 𝑀𝑀𝑠𝑠) 𝑖𝑖

→
𝑠𝑠(𝑡𝑡) +

3
2
𝑀𝑀𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟′

→
(𝑡𝑡) 
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(8) 

where 𝑖𝑖
→
𝑠𝑠(𝑡𝑡), 𝑣𝑣

→
𝑠𝑠(𝑡𝑡), and 𝜆𝜆

→
𝑠𝑠(𝑡𝑡) are as defined above in (6). In these equations, 𝐿𝐿𝑠𝑠 and 𝑀𝑀𝑠𝑠 are the self- 

and mutual inductances of the stator phases, 𝐿𝐿𝑠𝑠 − 𝑀𝑀𝑠𝑠 is the total three-phase stator inductance, 
and 𝑀𝑀𝑠𝑠𝑟𝑟 is the peak value of the stator phase to rotor loop mutual inductance. In general, the 
aforementioned inductances might be functions of time when the effects of magnetic saturation 

and/or slotted air gaps are considered in a case study. Meanwhile, 𝑖𝑖𝑟𝑟′
→

(𝑡𝑡), which is the space vector of 
the rotor currents referred to the stator side and expressed in the stationary reference frame, can be 
written in terms of the rotor loop currents for a cage with 𝑁𝑁𝑏𝑏 bars as follows: 

𝑖𝑖𝑟𝑟′
→

(𝑡𝑡) = �
2
3
�𝑒𝑒𝑗𝑗�

2𝜋𝜋(𝐿𝐿−1)
𝑁𝑁𝑏𝑏

�𝑖𝑖𝐿𝐿𝐿𝐿(𝑡𝑡)

𝑁𝑁𝑏𝑏

𝐿𝐿=1

� 𝑒𝑒−𝑗𝑗𝜃𝜃𝑟𝑟 . 

(9) 

Physically, the space vector of the rotor currents determines the instantaneous magnitude and 
instantaneous spatial orientation (displacement) of the peak of the rotor MMF distribution produced 
by the 𝑁𝑁𝑏𝑏 rotor loops. Therefore, in order to detect the rotor magnetic field orientation, one way is to 
detect (observe) the orientation of the second term on the right side of (8). Namely, this complex 

signal, 𝜓𝜓
→

(𝑡𝑡) = (3/2)𝑀𝑀𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟′
→

(𝑡𝑡), is graphically depicted in the phase-space vector diagram of Fig. 4, 

through the use of (7) and (8). This observer signal 𝜓𝜓
→

(𝑡𝑡), the so-called information signal in Fig. 5, can 
thus be expressed from (8) as follows: 

𝜓𝜓
→

(𝑡𝑡) = 𝜆𝜆
→
𝑠𝑠(𝑡𝑡) − (𝐿𝐿𝑠𝑠 − 𝑀𝑀𝑠𝑠) 𝑖𝑖

→
𝑠𝑠(𝑡𝑡). 

(10) 

Now, we have established the background to present an observer for a rotor magnetic field space-
vector orientation. This observer is mainly formed using (6), (7), and (10) as outlined in the functional 
block diagram of this method depicted in Fig. 5. Accordingly, the stator winding parameters of the 
induction machine, 𝑅𝑅𝑠𝑠, 𝐿𝐿𝑠𝑠, and 𝑀𝑀𝑠𝑠 are used as the observer parameters (see Fig. 5). In reality, the 
machine parameters will slightly change due to the variations of temperature, voltage, and frequency 
of the operating conditions. Moreover, machine parameters vary due to the faults in the rotor bars 
and/or stator windings. However, in this work the parameters of this observer are set based on the 
healthy case values at the rated conditions of an induction machine. This results in an invariable (fixed) 
scale or reference from which to distinguish a healthy case from a broken-bar case, as well as help 
detect the number of broken bars for a given faulty condition as will be seen in the experimental 
results below 

As explained above, in the case of a fault, the information signal oscillates around the healthy case 
orientation. If the induction motor is energized by a voltage source with balanced sinusoidal 
waveforms, obviously the stator voltage space vector 𝑣𝑣

→
𝑠𝑠(𝑡𝑡) will not have any pendulous oscillations. 
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Hence, the pendulous oscillation of the information signal, 𝜓𝜓
→

(𝑡𝑡), is caused only by the space vector of 
the stator current 

In the faulty case the rotor imperfections such as broken bars are the main contributor the 
modulations that take place in the space vector of stator current, which lead to the above mentioned 

pendulous oscillations in 𝜓𝜓
→

(𝑡𝑡). However, these oscillations can still exist, though to a considerably 
lesser extent, in the healthy motor case under test conditions. This is due mainly to imperfections (lack 
of perfect balance) in the location of the conductors in stator slots in a randomly wound motor such as 
the 2-hp test case presented below. This is in addition to the discrete and finite number of rotor bars, 
as well as lamination imperfections that disturb the magnetic symmetry around the 360° structure of 
both the stator and rotor cores 

SECTION IV Fault Diagnostic Indexes and Analysis of Simulation Results 
A 230-V 60-Hz two-pole 2-hp squirrel-cage three-phase induction motor with 108 turns in each stator 
phase, 36 rotor bars, and 24 stator slots was simulated entirely in the 𝐴𝐴𝐵𝐵𝐴𝐴 frame of reference 
including the possibility of inter-turn shorts in stator windings and/or rotor broken-bar faults, using an 
approach of similar nature to the work of reference [9]. This machine was also tested under healthy 
and broken bar cases as will be given in the experimental results section of this paper. From knowledge 
of the 𝐴𝐴, 𝐵𝐵, and 𝐴𝐴 time-domain voltage and current waveforms, the information (observer) 

signal, 𝜓𝜓
→

(𝑡𝑡), was calculated according to (10). This signal, 𝜓𝜓
→

(𝑡𝑡), which reveals the rotor magnetic field 
space-vector orientation, can be represented as follows: 

 
Fig. 7 Rotor field space-vector swing angle Δ𝛿𝛿 versus number of broken bars 
 

𝜓𝜓
→

(𝑡𝑡) = 𝜓𝜓real + 𝑗𝑗𝜓𝜓imag. 

(11) 

In Fig. 6, the absolute value of 𝜓𝜓real, that is |𝜓𝜓real| in webers, with an orientation equal to the phase 

angle, 𝛿𝛿 = (∠𝜓𝜓
→

(𝑡𝑡) − ∠𝑣𝑣
→
𝑠𝑠(𝑡𝑡)) in degree, is plotted in a polar coordinate diagram for the fault case of 

three broken bars, while the stator windings are in a healthy condition. The phase “swing” angle, Δ𝛿𝛿, 
of the observation signal was also computed (simulated) for the case of one through seven broken 
bars. It was found, as expected based on our earlier simple eight-bar example that Δ𝛿𝛿 is progressively 
increasing with the increase in the number of broken bars. The resulting plot, case (1), of the swing 
angle Δ𝛿𝛿 versus the number of broken bars obtained from the simulation is shown in Fig. 7. 
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Fig. 8 Simulation-based results of the absolute value of 𝜓𝜓real in webers versus angle 𝛿𝛿 = (∠𝜓𝜓

→
(𝑡𝑡) − ∠𝑣𝑣

→
𝑠𝑠(𝑡𝑡)) in 

degrees for an inter-turn stator winding short-circuit fault 
 

Here, there is a definite relationship or proportionality correlation between the number of broken bars 
and the magnitude of the angle Δ𝛿𝛿. In these authors' judgment, this correlation can be exploited for 
diagnostics purposes 

In order to ascertain whether this present approach can distinguish a stator shorted turn fault from a 
rotor broken-bar type of fault, the case of an inter-turn shorted stator winding was also modeled and 
simulated using a technique which was presented in an earlier paper by these authors [10]. In this 
shorted turns simulation, a concept of state-space modeling of the dynamics of induction motors using 
“line-to-line flux linkages,” in conjunction with shorted turn formulations similar to those detailed 
in [11]were used. Accordingly, based on the results of this simulation, the absolute value 
of 𝜓𝜓real versus the phase angle 𝛿𝛿 is plotted in polar format in Fig. 8 for a case of one shorted turn in 
one of the these phases of the stator winding, while the rotor is assumed to be in a healthy condition. 
In these figures, Δ𝛿𝛿 demonstrates the range of the pendulous oscillations in the phase angle 𝛿𝛿. 
Moreover, in Fig. 7, the range of the pendulous oscillations is shown starting with a healthy rotor 
condition with progression up to the case with seven broken bars for a healthy stator winding 
condition, labeled case (1). The reasons of the small but nonzero value of pendulous oscillation 
angle, Δ𝛿𝛿, for the healthy motor case were discussed above at the end of Section III. Meanwhile, the 
simulation was repeated with an additional fault of one turn short in one of the phases in the stator 
winding, case (2). As one can see in Fig. 7, the observed swing angle for three broken bars with a 
healthy stator, case (1), is almost the same as the healthy rotor condition with a one turn-to-turn short 
within phase 𝐴𝐴 of the stator winding. 
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Fig. 9 Complementary index 𝜎𝜎𝑟𝑟 to distinguish broken-bar faults from broken-bar plus shorted-turn faults, and 
pendulous oscillation Δ𝛿𝛿 
 

Therefore, only observing the swing angle is not sufficient for distinguishing between a stator type of 
fault and a rotor broken-bar type of fault. Hence, a complementary variance index, 𝜎𝜎𝑟𝑟, was introduced 
to aid in distinguishing a broken-bar fault from a fault of an inter-turn short in a stator winding. This 
variance index, 𝜎𝜎𝑟𝑟, is defined here as follows: 

𝜎𝜎𝑟𝑟2 =
∑𝑁𝑁𝐿𝐿=1 𝜓𝜓real2 (𝑡𝑡𝐿𝐿)

𝑁𝑁 − 1
 

(12) 

where 𝑁𝑁 is the number of data samplings covering at least one rotor current cycle. Use of this 
index 𝜎𝜎𝑟𝑟  in conjunction with the phase “swing” angle Δ𝛿𝛿 yields plots such as shown in the three-
dimensional plot of Fig. 9. These plots demonstrate how stator-winding inter-turn faults occurring 
simultaneously with broken-bar faults can be distinguished from pure broken-bar faults through the 
swing angle Δ𝛿𝛿 in conjunction with the distinct values of the new variance index 𝜎𝜎𝑟𝑟. See the set of 
faults in case (1) involving only broken bars, and the set of faults in case (2) involving a simultaneous 
occurrence of rotor broken-bar and stator shorted turn faults in Fig. 9 

SECTION V Experimental Results and Their Analysis 
 

 
Fig. 10 (a) Laboratory setup for the experimental verification and (b) a rotor with five broken bars 
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Fig. 11 Stator line current profile over a one-rotor slip cycle from testing of a healthy rotor case 
 

The 2-hp three-phase squirrel-cage induction motor, which was considered for simulation purposes 
in Section IV, was also tested in the laboratory under healthy operation, as well as under one through 
five broken-bar faults (at 1.8-hp load); see the test setup in Fig. 10. This new angular rotor field 
orientation swing angle method was applied to the experimental data of observed stator current and 
voltage waveforms to obtain the swing angle Δ𝛿𝛿 of the pendulous oscillation of the rotor field 
orientation. As sample examples, the stator current waveforms for a rotor frequency cycle 𝜋𝜋𝜋𝜋, are 
given in Figs. 11 and 12 for the healthy and five-broken-bar faults, respectively. Meanwhile, the FFT 
spectral analysis was also applied to the same experimentally obtained stator currents used in the 
rotor field swing angle analysis. Here, Figs. 13, 15, 17, and 19 show the swing angle Δ𝛿𝛿 under healthy 
operation as well as one-, three-, and five-broken-bar faults, respectively. In these figures, the absolute 

value of 𝜓𝜓real in webers, with an orientation equal to the phase angle 𝛿𝛿 = (∠𝜓𝜓
→

(𝑡𝑡) − ∠𝑣𝑣
→
𝑠𝑠(𝑡𝑡)) in 

degree, are plotted in a polar coordinate diagram. The swing angle Δ𝛿𝛿 under healthy operation as well 
as one through five broken-bar faults are given with the corresponding number of broken bars in Table 
I. The values of Δ𝛿𝛿 versus the number of broken bars are also plotted in Fig. 21. As can be clearly 
observed from the data in Table I and the plot of Fig. 21, the swing angle Δ𝛿𝛿 bears a definite 
correlation to the number of broken bars, whereby one can observe that the larger the value of Δ𝛿𝛿, 
the larger the number of broken bars 

Meanwhile, Figs. 14, 16, 18, and 20 show the normalized FFT spectrum of the stator current for the 
same set of experimental data starting with the healthy (no broken bars) case, as well as the faulty 
cases of one, three, and five broken bars, respectively. In these figures, the sideband components are 
shown at frequencies 𝜋𝜋𝑏𝑏 = (1 ± 2𝜋𝜋)𝜋𝜋, here, 𝜋𝜋 = 0.0333 

The following queries have to be answered by a fault diagnostics system. 

1. Is the rotor cage healthy or unhealthy? 

2. If there are broken bars, is their number on the increase? 
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Fig. 12 Stator line current profile over a one-rotor slip cycle from testing of a five-broken-bar case 
 

The first query can be answered by using the swing angle Δ𝛿𝛿 as well as the sideband component. It 
may be argued that for a fault case constituting only one broken bar the side band components can 
answer the first query with a higher resolution than the swing angle, Δ𝛿𝛿. However, the sideband 
component magnitudes are function of the load torque and inertia [12], while the swing angle Δ𝛿𝛿 can 
be observed even at no-load condition. Moreover, in order to observe the side band component, 
normally a slip (speed) measurement is necessary, while in order to observe the swing angle Δ𝛿𝛿, only 
the synchronous speed is needed, which is readily available from knowledge of the space-vector angle 
of the stator voltage, ∠𝑣𝑣

→
𝑠𝑠(𝑡𝑡). The speed (slip) measurement can be achieved either directly using a 

tachometer or estimated indirectly from the stator voltages and currents. The direct measurement 
adds a device to an online diagnostic system, therefore it reduces the reliability and increases the cost 
of the diagnostic system. Meanwhile, the indirect measurement provides a suitable estimation for 
control applications, where a tolerance is inherent in such a procedure, and such a tolerance value may 
not be suited for diagnostics purposes. In order to judge whether a broken bar fault is becoming a 
more sever fault or not, the second query must be answered. This query is answered in detail 
in Section VI. 

 
Fig. 13 Experimentally based results of the absolute value of 𝜓𝜓real in webers versus angle 𝛿𝛿 = (∠𝜓𝜓

→
(𝑡𝑡) −

∠𝑣𝑣
→
𝑠𝑠(𝑡𝑡)) in degrees for a healthy motor case 
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TABLE I Swing Angle Δ𝛿𝛿 and Sideband Maqnitudes for the Healthy and one Through Five Broken-Bar 
Faults 

Rotor situation ∆𝛿𝛿 (Degrees) Side Band Magnitude (db) (at 𝜋𝜋𝑏𝑏 = (1 − 2𝜋𝜋)𝜋𝜋) 
Healthy Rotor 3.7423 -58.2 
One Broken-Bar 4.4907 -44.4 
Two Broken-Bars 5.7250 -36.8 
Three Broken-Bars 8.1056 -32.6 
Four Broken-Bars 10.6307 -29.5 
Five Broken-Bars 16.2255 -25.2 

 
 

 
Fig. 14 Normalized FFT spectrum of the test stator line current for a healthy motor case 

 
Fig. 15 Experimentally based results of the absolute value of 𝜓𝜓real in webers versus angle 𝛿𝛿 = (∠𝜓𝜓

→
(𝑡𝑡) −

∠𝑣𝑣
→
𝑠𝑠(𝑡𝑡)) in degrees for a one-broken-bar fault 
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Fig. 16 Normalized FFT spectrum of the test stator line current for a one-broken-bar fault 

 
Fig. 17 Experimentally based results of the absolute value of 𝜓𝜓real in webers versus angle 𝛿𝛿 =

(∠𝜓𝜓
→

(𝑡𝑡) − ∠𝑣𝑣
→
𝑠𝑠(𝑡𝑡)) in degrees for a three-broken-bar fault 

 
Fig. 18 Normalized FFT spectrum of the test stator line current for a three-broken-bar fault 
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Fig. 19 Experimentally based results of the absolute value of 𝜓𝜓real in webers versus angle 𝛿𝛿 =

(∠𝜓𝜓
→

(𝑡𝑡) − ∠𝑣𝑣
→
𝑠𝑠(𝑡𝑡)) in degrees for a five-broken-bar fault 

 

 
Fig. 20 Normalized FFT spectrum of the test stator line current for a five-broken-bar fault 
 

SECTION VI Discussion of the Sideband Components Versus the Swing Angle 
The second query, in Section V, must be answered to judge whether a broken-bar fault is becoming a 
more severe fault or not. Now, the question is: “Which one of these indexes, the swing angleΔδor the 
FFT sideband component, can provide a stronger criterion.” 

Upon close examination of Figs. 21and 22, it can be realized that: 

1. in the “ swing angle” case, Fig. 21, we have 

𝑑𝑑(Δ𝛿𝛿)
𝑑𝑑𝑏𝑏𝑏𝑏

> 0 and 𝑑𝑑2(Δ𝛿𝛿)
𝑑𝑑𝑏𝑏𝑏𝑏2

> 0 (13) 

 

2. while in the “FFT sideband” case, Fig. 22, we have 
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𝑑𝑑(𝑑𝑑𝑏𝑏)
𝑑𝑑𝑏𝑏𝑏𝑏

> 0 and 𝑑𝑑2(𝑑𝑑𝑏𝑏)
𝑑𝑑𝑏𝑏𝑏𝑏2

≠ 0(±) (14) 

 

where 𝑛𝑛𝑏𝑏 indicates the number of adjacent broken bars. Expressions (13)and (14) show that the swing 
angle Δ𝛿𝛿 can clearly indicate whether the number of broken bars is increasing because of the positive 
value of the second derivative 𝑑𝑑2(Δ𝛿𝛿)/𝑑𝑑𝑛𝑛𝑏𝑏

2, while that is not the case for the FFT sideband method 
because the second derivative 𝑑𝑑2(𝑑𝑑𝑑𝑑)/𝑑𝑑𝑛𝑛𝑏𝑏

2 may either be positive or negative. Accordingly, the swing 
angle Δ𝛿𝛿 and its first derivative 𝑑𝑑(Δ𝛿𝛿)/𝑑𝑑𝑛𝑛𝑏𝑏 are both increasing monotonic functions. This can be 
attributed to the direct physical relationship between Δ𝛿𝛿 and the extent of distortion in the rotor MMF 
due to the increase in the number of broken bars. It should be further pointed out that an increase in 
the number of broken bars is accompanied by an increase in the severity of the degree of magnetic 
saturation in the rotor lamination region surrounding the broken bars as shown in earlier work [7], 
thus leading indirectly to further increase in the swing angle, Δ𝛿𝛿. On the contrary, for the stator 
spectrum sideband component, the first derivative 𝑑𝑑(𝑑𝑑𝑑𝑑)/𝑑𝑑𝑛𝑛𝑏𝑏 is always positive, however, it is not an 
increasing monotonic function. This can be attributed to the weaker physical link between the degree 
of stator current waveform distortion resulting from broken bars, and any increase in the number of 
broken bars. Therefore, the swing angle Δ𝛿𝛿 provides a stronger criterion to judge whether a broken 
bar fault is becoming a more severe fault or not. 

 
Fig. 21 Rotor field space-vector swing angle Δ𝛿𝛿 versus number of broken bars obtained from test results 

 
Fig. 22 Normalized line-current sideband magnitude at 𝜋𝜋𝑏𝑏 = (1 − 2𝜋𝜋)𝜋𝜋 versus number of broken bars 
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SECTION VII Conclusion 
A new technique based on the “swing-like” pendulous oscillation of the rotor magnetic field 
orientation has been developed and presented for rotor broken-bar fault detection. An associated 
variance index derived from the pendulous swing angle has been developed to distinguish a rotor 
broken-bar fault from an inter-turn stator-winding short circuit when such faults occur concurrently. 
Mainly, this paper has shown that as the number of broken bars increases, the range of the “swing-
like” pendulous oscillation of the rotor magnetic field orientation will increase in a monotonically 
unambiguous manner. This phenomenon has been verified experimentally for broken-bar faults in a 
case-study squirrel-cage induction motor 
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