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Maximal Class p-Groups with Large
Character Degree Gaps

Michael C. Slattery

Abstract. In [5], Mann proves some bounds on the size of gaps between
character degrees of maximal class p-groups. In this note we contruct a
family of examples that shows that one of these bounds is sharp.

Mathematics Subject Classification (2010). Primary 20C15; Secondary
20D15.

Keywords. p-Groups, Character degrees, Maximal class.

There are many theorems relating the structure of a finite group to the
set of irreducible character degrees for that group. Recently, a number of
papers have focused on p-groups of maximal class and normally monomial
groups (e.g. [3], [4], [6]). A character of a group is said to be normally mono-
mial if it is induced from a linear character of a normal subgroup, and we
say that a group is normally monomial if all of its irreducible characters are.
Any finite p-group is monomial, but not all are normally monomial.

The paper [6] shows that there are some restrictions on possible sets of
degrees of irreducible characters for normally monomial 5-groups of maximal
class. That paper conjectures that similar restrictions exist for any 5-group
of maximal class (not necessarily normally monomial) and further for any
p-group of maximal class with p ≥ 5. In [5], A. Mann proves:

Proposition. Let G be a p-group of maximal class. If G has irreducible char-
acters of degrees higher than p, then it has at least one such character of

degree at most p
p+1
2 .

We will construct a family of groups (see Theorem 3 below) that shows
that this bound is sharp. Since several of Mann’s other results refer to nor-
mally monomial groups, it is of interest to note that these examples are
normally monomial.

The following known result will be useful in our construction.

Lemma 1. Let A be a finite abelian p-group with cyclic decomposition

A = 〈x1〉 × 〈x2〉 × · · · × 〈xn〉,
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and let z be an element of order p in f1(A). Then, for any integers e1, . . . , en
there is a unique automorphism θ of A with θ(xi) = xiz

ei for i = 1, . . . , n.
Furthermore, θp is the identity map.

Proof. We can write any element a ∈ A uniquely in the form

a = xc11 x
c2
2 · · ·xcnn ,

where 0 ≤ ci < order(xi). We define

θ(a) = xc11 z
e1c1xc22 z

e2c2 · · ·xcnn zencn .

Factoring the powers of z to the right, we see that for any a ∈ A there is
an integer ta such that θ(a) = azta . Since z has order p, it is clear that θ
preserves multiplication.

Furthermore, since z ∈ f1(A), z = bp for some b ∈ A and

θ(z) = θ(bp) = (bztb)p = bpzptb = bp = z.

Consequently, the image of θ includes z and so xi for all i. Thus θ is an
automorphism of A. Since θ fixes z, we see that

θp(a) = azpta = a

as claimed. �

We will also need the following surprising construction of R. Baer.

Notation. If G is a group of odd order and x ∈ G, there is a unique element
of G whose square is x. We will denote this element by

√
x.

Lemma 2 (Baer trick). Let G be a finite group of odd order and nilpotence
class 2. We define a new binary operation (“addition”) on the set G by

x+ y = xy
√

[y, x].

Then (G,+) forms an abelian group with the following properties.

• If xy = yx for x, y ∈ G, then x+ y = xy.
• For any x ∈ G and integer n, xn = nx (where nx denotes repeated

addition).
• Every automorphism of G is also an automorphism of (G,+).

Proof. See [1], Appendix B. A modern treatment can be found in [2], Lemma
4.37. �

Theorem 3. For p ≥ 5 there is a normally monomial p-group of maximal

class with character degrees {1, p, p
p+1
2 } of multiplicity {p2, pp−1 − 1, p − 1}

respectively.

Proof. Let k = p−1
2 , and let A be an abelian p-group of type (1, . . . , 1, 2, 2)

with k cyclic factors. That is,

A = 〈a0〉 × 〈a1〉 × · · · × 〈ak−1〉

where a0, . . . , ak−3 have order p and ak−2 and ak−1 have order p2.
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Now let z = a−p
k−2 and for j = 0, 1, . . . , k− 1 let θj be an automorphism

of A as in Lemma 1 such that θj(ai) = aiz
(−1)i(i

j) (where
(
i
j

)
is zero if j > i).

Then by the lemma, each of the automorphisms θj has order p and, since
they each act only by multiplying by powers of z, they all commute.

Let B = 〈b0, b1, . . . , bk−1〉 be an elementary abelian p-group of rank
k. Define an action of B on A by specifying that bj acts like θj , and let
E = AoB be the semidirect product.

The group E will be a maximal subgroup of the group we are construct-
ing, so we now want to define an automorphism of E. To do this it will be
useful to have a power-commutator presentation of E. For the pc-generating
sequence, we will take

ak−1, ak−2, . . . , a0, b0, b1, . . . , bk−1, y, z

where y = a−p
k−1 and as above z = a−p

k−2. These elements generate E, and
every element of E can be written uniquely as a product of powers of these
generators in the order given with exponents at most p − 1. The relations
in the presentation fall into two categories: power relations and commutator
relations. The power relations are apk−1 = y−1, apk−2 = z−1, and the other p-
th powers are trivial. The only non-trivial commutator relations are [bj , ai] =

z(−1)i+1(i
j), which are given by the action of B on A above. Since the bj

appears first in the commutator, this power of z is the negative of the one
specified earlier.

We will define a map from E to itself by giving images of the pc-
generators and verify that this gives a well-defined endomorphism by check-
ing that the images satisfy the original relations for the group. We define
σ : E → E by mapping each pc-generator to itself times the next generator
in the sequence (and z to itself). That is

σ(ak−1) = ak−1ak−2, σ(ak−2) = ak−2ak−3, . . . , σ(a0) = a0b0,
σ(b0) = b0b1, σ(b1) = b1b2, . . . , σ(bk−1) = bk−1y,
σ(y) = yz, σ(z) = z.

To check the power relations, we compute

σ(ak−1)p = (ak−1ak−2)p = apk−1a
p
k−2 = y−1z−1 = σ(y)−1.

For p ≥ 7: The second power relation follows from

σ(ak−2)p = (ak−2ak−3)p = apk−2a
p
k−3 = z−1 = σ(z)−1.

For p = 5: k = 2 and the second check becomes

σ(a0)p = (a0b0)p = ap0b
p
0z

−(p
2) = z−1 = σ(z)−1.

In checking the commutator relations, it is useful to note that commu-
tators in E are central, and so [x1x2, y1y2] = [x1, y1][x1, y2][x2, y1][x2, y2] for
all xj , yi ∈ E. There are several cases of commutators to consider.

Case [aj , ai] for 0 < j < i: Here the generators and their images under
σ lie entirely in the abelian group A, so they are all trivial.
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Case [a0, ai] for 0 < i: [a0, ai] = 1 and

[σ(a0), σ(ai)] = [a0b0, aiai−1] = [b0, ai][b0, ai−1] = z(−1)i+1(i
0)z(−1)i(i−1

0 ) = 1.

Case [bj , bi] for i < j < k − 1: Here the generators and their images
under σ lie entirely in the abelian group B, so they are all trivial.

Case [bk−1, bi] for i < k − 1: [bk−1, bi] = 1 and

[σ(bk−1), σ(bi)] = [bk−1y, bibi+1] = 1.

Case [bj , ai] for j < k − 1 and 0 < i:

[σ(bj), σ(ai)] = [bjbj+1, aiai−1] = [bj , ai][bj , ai−1][bj+1, ai][bj+1, ai−1]

= [bj , ai]z
(−1)i(i−1

j )z(−1)i+1( i
j+1)z(−1)i(i−1

j+1).

The exponent of z becomes (−1)i[
(
i−1
j

)
−
(

i
j+1

)
+
(
i−1
j+1

)
] = 0, and so

[σ(bj), σ(ai)] = [bj , ai] = σ([bj , ai]).

Case [bj , a0] for j < k − 1:

[σ(bj), σ(a0)] = [bjbj+1, a0b0] = [bj , a0][bj+1, a0] = [bj , a0] = σ([bj , a0])

using the fact that [bj+1, a0] is trivial since j + 1 > 0 and so
(

0
j+1

)
is zero.

Case [bk−1, ai] for 0 < i:

[σ(bk−1), σ(ai)] = [bk−1y, aiai−1] = [bk−1, ai][bk−1, ai−1]

= [bk−1, ai] = σ([bk−1, ai])

using the fact that [bk−1, ai−1] is trivial since k − 1 > i − 1 and so
(
i−1
k−1

)
is

zero.
Case [bk−1, a0]:

[σ(bk−1), σ(a0)] = [bk−1y, a0b0] = [bk−1, a0] = σ([bk−1, a0]).

Finally, any commutator relation involving y or z will not change since
both these generators and their images under σ are central in E.

Since the relations are all preserved by σ, it defines an endomorphism
of E. Furthermore, it is clear from the images of the pc-generators that σ is
onto and so is an automorphism of E.

Next, we wish to show that σ has order p. It is apparently quite hard to
compute powers of σ directly because of the fact that a0 does not commute
with σ(a0). Consequently, we are going to use the Baer trick to allow us to
compute with σ acting on an abelian group.

The group E has nilpotence class 2 and odd order, and so by Lemma 2
we can define an abelian operation (denoted x+ y) on the set E by

x+ y = xy
√

[y, x].

Now σ is a permutation of the elements of E and we would like to write that
permutation in terms of the new operation. For most of the pc-generators, σ
simply maps the generator to itself plus the next generator in the sequence
(and z to itself), however the situation is different for a0. We compute

a0 + b0 = a0b0
√
z−1 = a0b0 +

√
z−1
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since
√
z−1 is central in E. Consequently,

σ(a0) = a0b0 = a0 + b0 −
√
z−1 = a0 + b0 +

√
z,

with the last equality using the fact that square root commutes with inversion
and inverses are the same in E and (E,+). We also will need

σ(b0 +
√
z) = σ(b0

√
z) = b0b1

√
z

= b0 + b1 +
√
z = (b0 +

√
z) + b1,

where
√
z is fixed by σ since it is a power of z.

At this point it is convenient to relabel the pc-generators of E as
u1, u2, . . . , up+1 in the same order as given above with the exception of
uk+1. That is, u1 is ak−1, uk is a0, uk+2 is b1, up+1 is z, and so on, but
uk+1 = b0 +

√
z. With this labeling, σ(ui) = ui + ui+1 for 1 ≤ i < p+ 1 and

σ fixes up+1. It follows that

σn(ui) = ui +

(
n

1

)
ui+1 + · · ·+

(
n

j

)
ui+j + · · ·+

(
n

n

)
ui+n,

where we define uj to be the identity element of E for j > p+ 1.
For i > 1

σp(ui) = ui +

(
p

1

)
ui+1 + · · ·+

(
p

p+ 1− i

)
up+1 = ui

since the coefficients of ui+1, . . . are all divisible by p and all of the last p− 1
pc-generators have order p.

For i = 1 we see

σp(u1) = u1 +

(
p

1

)
u2 + · · ·+

(
p

p

)
up+1 = u1 + pu2 + up+1,

and since pu2 = apk−2 = z−1, up+1 = z, and inverses are the same in E and
(E,+), we find that σ has order p as claimed.

Define G = E o 〈s〉 where s has order p and acts on E like σ. So G
has order pp+2 and from the definition of σ one can see that G has maximal
class. In particular, [ui, s] = ui+1 for i = 1, . . . , p except when i = k. There,

because of our tweaked definition of uk+1, we have [uk, s] = uk+1

√
z−1.

We now consider the irreducible character degrees of G. Let Y = 〈y, z〉.
We begin with the degrees of E. From the defined action of B, it is easy to
see that B fixes Y elementwise and has only orbits of length p on A\Y . Hence
there are p2+(pk+1−p) orbits in total. Brauer’s permutation lemma says that
B has the same number of orbits on Irr(A). As the irreducible characters of A
having z in their kernel are B-fixed, it follows that B has only regular orbits
on the remaining characters. Consequently, those characters of A which do
not extend to E, induce to irreducibles of degree pk. Hence the multiset of

character degrees of E is [(1)p
2k+1

, (pk)p(p−1)].
It is clear that some of the linear characters of E extend to G and the

rest induce irreducibly, so G has characters of degree 1 and p. Since G has
maximal class, we know it has p2 linears and the remaining linears of E
induce to p2k − 1 characters of degree p.



6 Michael C. Slattery

Next we consider the nonlinear characters of E. Since Y is central in E,
the restriction φY has a unique irreducible constituent for any φ ∈ Irr(E).
Consequently, the action of s on the nonlinear characters of E is the same
as the action on the linear characters of Y which lie below some nonlinear
ones of E. Those are the characters of Y without z in their kernel. Now s on
Y fixes the elements of 〈z〉 and moves the p2 − p other elements in orbits of
size p. Consequently, s moves the elements of Irr(Y ) which do not have z in
their kernel in orbits of size p and so, the characters of degree pk all induce
irreducibly to G giving p − 1 characters of degree pk+1 as the only other
degree of G. That is, the irreducible character degrees of G are {1, p, pk+1}
with the claimed multiplicities. Recall that k = p−1

2 , hence k + 1 = p+1
2 .

Finally, to see that G is normally monomial, note that any character
of degree p is induced from a maximal, hence normal, subgroup. Further, if
λ ∈ Irr(Y ) does not have z in its kernel, then λ extends to B × Y . Since

λG has a single constituent, we see the characters of degree pk+1 = p
p+1
2 are

induced from the normal abelian subgroup B × Y . �
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