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Abstract 
Inventory record inaccuracy (IRI) challenges multichannel retailers in fulfilling both brick‐and‐mortar 

and direct channel demands from their distribution centers. The nature and damaging effects of IRI 

largely go unnoticed because retailers assume daily IRI remains stable over time within the 

replenishment cycle. While research shows that a high level of IRI is damaging, in reality the level of IRI 

https://doi.org/10.1111/jbl.12019
http://epublications.marquette.edu/


can change every day. We posit that daily IRI variation increases the uncertainty in the system to 

negatively affect inventory and service levels. Our research uses data collected daily from a 

multichannel retailer to ground a discrete‐event simulation experiment. Going beyond testing just the 

level of IRI, we evaluate daily IRI variation's impact on operating performance. What we find in our 

empirical data challenges extant assumptions regarding the characteristics of IRI. In addition, our 

simulation results reveal that daily IRI variation has a paradoxical effect: it increases inventory levels 

while also decreasing service levels. Moreover, we also reveal that brick‐and‐mortar and direct 

channels are impacted differently. Our findings show that assumptions and practices that ignore daily 

IRI variation need revising. For managers, we demonstrate how periods of multiday counting help 

assess their daily IRI variation and indicate what the causes may be. 

Keywords 
inventory record inaccuracy, multichannel retailing, inventory management, distribution center 

Introduction 
To manage inventory complexities present across brick‐and‐mortar and direct (i.e., Internet‐based) 

channels, retailers commonly use centralized decision support systems to serve both of these channels 

from a single distribution center (DC) (Blankley et al. [ 9] ; Galbreth and LeBlanc [ 28] ). These systems 

assume that the retailer's system inventory record (SIR) is accurate, even though widespread inventory 

record inaccuracy (IRI) occurs in practice (Raman et al. [ 55] ; Rekik [ 56] ). Research shows that IRI, 

which is the relative discrepancy between the SIR and the actual inventory on‐hand of a stock‐keeping 

unit (SKU), is damaging to operating performance (Waller et al. [ 70] ; DeHoratius and Raman [ 23] ). 

However, because the level of IRI is continually changing, managers cannot make one‐time 

adjustments to account for it, but must assess and manage the variability of IRI to maintain DC 

operating performance and predictability (Barratt et al. [ 6] ). 

In this study, we examine the operating performance effects of daily IRI variation within replenishment 

cycles (i.e., the interval between successive supplier deliveries) of a multichannel retailer DC. Daily IRI 

variation is the degree to which SIR and actual inventory differ on a day‐to‐day basis. In practice, 

because multichannel managers realize IRI damages channel performance (Metters and Walton [ 46] ), 

they perform cycle counts and audits at single points in time to identify and correct IRI (Neeley [ 51] ). 

This practice assumes that these occasional, periodic point estimates represent the true level of IRI, 

that is, there is stability during the replenishment cycle and between cycle counts. In this paper, we 

test this assumption and investigate daily IRI variation and its effects on operating performance under 

different demand patterns (i.e., order size and frequency) within multichannel retailing. Our study aims 

to answer the following main questions: In the context of a multichannel retailer's DC, to what extent 

does daily IRI variation affect performance? Do channel demand patterns alter the effects of daily IRI 

variation? 

Our research employs a multimethod approach (Mentzer and Flint [ 45] ; Sanders and Wagner [ 59] ), 

using both empirical and simulated daily IRI data to answer these questions. First, we review the 

impact that daily IRI variation has within the replenishment cycle and propose a paradoxical effect: 

that daily IRI variation increases inventory levels while also decreasing service levels (i.e., order fill 



rate). We also propose that direct channel demand patterns are more sensitive to the uncertainty 

created by this phenomenon. 

Second, our research uses empirical, multiday IRI data from a multichannel retailer to investigate 

common assumptions of daily IRI variation. We also decouple SIR errors into those that are 

transaction‐dependent (TD) and transaction‐independent (TI) while accounting for the effects of 

inventory policies on performance. Finally, similar to recent logistics research (e.g., Shapiro and 

Wagner [ 63] ; Torres and Maltz [ 67] ), we use our data to ground a simulation with daily IRI variation 

and test the hypothesized effects on DC performance (i.e., customer service and inventory level). 

Simulation is appropriate because it: ( 1) incorporates a high level of detail regarding the factors of 

interest, ( 2) accommodates nonlinearities essential to IRI research (e.g., frequencies in cycle counting 

and record corrections), and ( 3) accounts for stochastic elements in lead times, SIR errors, and 

demand across channels (Bowersox and Closs [ 11] ). 

We find that daily IRI variation increases inventory levels but decreases service levels, and that an 

interaction exists between daily IRI variation and channel demand patterns. Also, TI errors seem to be 

more damaging throughout the inventory system than TD errors. This reveals to managers the 

importance of knowing what type of errors induce daily IRI variation, so they may reduce the problem 

instead of using inventory to buffer against the problem. 

Our study makes three primary contributions. First, it uses longitudinal evidence to extend the 

literature beyond current simplifying assumptions of daily IRI variation (cf. Kök and Shang [ 36] ; 

DeHoratius et al. [ 22] ), giving a more accurate description for researchers to use. Second, it 

demonstrates how daily IRI variation is a detrimental phenomenon that managers should be aware of 

as they seek to avoid stock‐outs and improve DC performance (Rabinovich [ 54] ). Third, it presents an 

approach that managers can use to begin assessing and controlling the problems that cause daily IRI 

variation. Thus, our research leads to a better understanding of IRI behavior in DCs and suggests how 

managers can respond to further improve DC performance. 

In the next two sections, we review the literature to propose direct and interaction hypotheses about 

daily IRI variation's effect on DC operating performance. Next, we present our empirical method and 

results, followed by our simulation method and results. We conclude with a discussion of our findings, 

contributions, and future research opportunities. Finally, we refer the reader to the Appendix. 

Literature Review 

Investigations concerning IRI 
Since the early works of Rinehart ([ 58] ), Schrady ([ 62] ), and Iglehart and Morey ([ 32] ), the extant 

literature has focused on the conspicuous presence of IRI in distinct contexts: manufacturing (Graff 

[ 30] ; Brown et al. [ 14] ), retailing (Morey [ 47] ; Raman et al. [ 55] ; Corsten and Gruen [ 20] ; 

Nachtmann et al. [ 49] ), and the extended supply chain (Delen et al. [ 24] ; Heese [ 31] ; Ukun et al. 

[ 68] ). Common across this literature is the attempt by researchers to map the causes and 

consequences of IRI and to provide managerial guidance regarding ideal or optimal approaches for 

tackling the problem with inventory management practices. 



This literature on IRI may be segregated into two streams of research: empirical and analytical. The 

empirical stream, which primarily investigates correlations between operating conditions and the 

presence of IRI, is best represented by DeHoratius and Raman ([ 23] ). In that study, data from a 

retailer are used to develop a framework relating several factors that mitigate or exacerbate IRI, such 

as auditing practices, product variety, sales velocity, price, retail stores environment, and distribution 

structure. DeHoratius and Raman ([ 23] ) argue that these factors should be incorporated into 

inventory planning tools to account for the presence of IRI. While empirical research has shown the 

influence and variability of IRI, there remains a lack of empirical characterizations of how IRI varies over 

time and of the errors that drive IRI variation, and the impact that this variation has on performance. 

The analytical stream of IRI literature, by contrast, primarily considers auditing policies and base‐stock 

levels to minimize inspection and inventory holding costs when IRI is present (e.g., Fleisch and 

Tellkamp [ 27] ; Delen et al. [ 24] ). Kang and Gershwin ([ 33] ) use simulation to demonstrate how even 

small levels (1%–3%) of IRI during replenishment cycles lead to severe stock‐outs. Camdereli and 

Swaminathan ([ 15] ) describe how IRI influences optimal replenishment policy decisions and 

coordinating contracts in a single‐period, single‐location system. Kök and Shang ([ 36] ) develop a joint 

inspection and replenishment policy that minimizes total costs in a finite horizon, while DeHoratius 

et al. ([ 22] ) propose replenishment policies that account for errors using a Bayesian updating of error 

distribution. 

Taken as a whole, analytical research has reinforced the notion that the replenishment cycle is a crucial 

process in scheduling periodic inventory counts to manage IRI. However, it has yet to show how 

measuring and managing daily IRI variations within replenishment cycles can impact DC performance. 

In addition, the above research commonly makes several simplifying assumptions. First, it assumes that 

errors inducing daily IRI variation are identically distributed and independent of demand and of the 

channels through which demand arrives. Therefore, this research assumes that IRI follows a simple 

random‐walk pattern over time.[ 1] Second, the research assumes that managers will only know of 

inaccuracies as a result of scheduled cycle counts. Third, it assumes that IRI variation involves only a 

single SKU, as opposed to a wider range of SKUs, which is more common in practice. By contrast, our 

research uses an empirically grounded simulation to examine these assumptions while showing how 

DC performance is affected by daily IRI variation across multiple channels. In addition, because 

managers may look to increase inventory to protect against IRI, we examine how replenishment 

policies interact with IRI‐inducing errors to exacerbate the problem. 

Drivers of IRI 
Since IRI is the logistics equivalent of a manufacturing defect (Ernst et al. [ 26] ), the manifestation of 

IRI is linked to SIR errors that are akin to unscheduled downtimes in manufacturing and material 

handling systems (Banks et al. [ 5] ). Such SIR errors may be classified into two groups: ( 1) TD errors 

and ( 2) TI errors (Lee and Özer [ 40] ; Nachtmann et al. [ 49] ). TD errors are changes in IRI as triggered 

by replenishments, demand orders, or product returns (Lee and Özer [ 40] ). Errors in this category can 

be due to: ( 1) incorrect deliveries, ( 2) misplaced items, or ( 3) incorrect picking (Kang and Gershwin 

[ 33] ). TI errors are changes in IRI that occur irrespective of transaction and are influenced by the 

amount of inventory on‐hand (DeHoratius and Raman [ 23] ). Such errors are related to: ( 1) internal 

materials movement, and ( 2) shrinkage from theft, spoilage, or damage (Kang and Gershwin [ 33] ). 



Channel characteristics also affect IRI. In some cases, multichannel retailers fulfill both their brick‐and‐

mortar and direct channel demands from a single‐location DC. While this allows for the pooling of 

inventory to reduce stock‐outs (Ton and Raman [ 66] ) and facilitates the coordination of operations 

(Metters and Walton [ 46] ), there is speculation that the inherent differences in both channels may 

affect how IRI occurs and influences DC operating performance (Agatz et al. [ 1] ). In particular, 

because consumer search costs are lower in direct channels than in brick‐and‐mortar channels, 

consumers in direct channels will have easier, more regular access to wider product variety (Bakos [ 3] 

). This will induce smaller, more frequent consumer orders in direct channels (Metters and Walton [ 46] 

; Agatz et al. [ 1] ) than in brick‐and‐mortar channels that can create a wider variety in the sources of 

IRI within the DC (DeHoratius and Raman [ 23] ). Thus, relative to brick‐and‐mortar channels, the 

economics of direct channels create more opportunities for TD errors in the DC. 

Inventory management policies may also influence the levels of IRI (Kök and Shang [ 36] ; DeHoratius 

et al. [ 22] ). Safety stock policies that hold more inventory create complexity and tracking difficulties 

because of the sheer volume and variety of items (Lee and Billington [ 41] ; DeHoratius [ 21] ). 

Replenishment policies that prescribe highly frequent order deliveries create more opportunities for 

TD errors (Bonney et al. [ 10] ). Even the common method of using a single‐day, periodic cycle count to 

reconcile SIR with physical inventory can present IRI‐management problems (Brooks and Wilson [ 13] ). 

Not only is cycle counting costly (Graff [ 30] ), it is also prone to human error that can induce IRI rather 

than correct it (Neeley [ 51] ). Moreover, it only offers snapshots of IRI that mask the TD and TI errors 

that influence daily IRI variation; items observed with low (high) IRI during a cycle count may spike 

(drop) in IRI after the count (Kang and Gershwin [ 33] ; Lee and Özer [ 40] ). As such, managers can 

adopt policies based on unrealistic assumptions of SIR accuracy. Thus, understanding how channel 

characteristics and inventory policies interact with the underlying SIR errors that drive IRI variation will 

benefit both managers and academics. 

The replenishment cycle as related to IRI 
During the replenishment cycle, decision support system records (including the SIR) are reviewed 

either continuously or periodically to determine reorder needs. Periodic reviews are used in most real‐

world environments so to jointly replenish products and leverage economies of scale (Waller et al. [ 71] 

). In addition, (𝑠, 𝑆) policies, also known as min–max, are seen as efficient in retail distribution (Scarf 

et al. [ 61] ; Ballou [ 4] ). In fact, Viswanathan ([ 69] ) shows that periodic (𝑠, 𝑆) policies are optimal in 

many DC‐related environments. Not surprisingly, such a policy has been adopted in retail organizations 

(Caro and Gallien [ 17] ), including the company we discuss in the empirical portion of this paper. As 

such, without loss of generalizability, we use the period (𝑠, 𝑆) structure as a framework to discuss IRI 

variation effects. 

A primary concern of the replenishment cycle is when and how much to reorder, so that inventories 

and backorders are kept optimally low. When the system determines replenishment is needed, a 

reorder is placed that is to be received after a specific lead time but before inventory is insufficient to 

fill customer orders. While partial order fulfillment may be allowed, customer service is highest when 

orders are filled “on‐time/in‐full” or OTIF (Livingstone [ 43] ; Braithwaite and Samakh [ 12] ). We 

therefore adopt in our paper the concept of a potential backorder point, defined as the point where 

inventory depletes just below the average customer order size (cf. Li et al. [ 42] , 411); this is the point 



where backorders not only become highly probable, but also have the greatest detriment to service 

levels. While the literature has focused on incorporating demand or supply uncertainties to prevent 

backorders (cf. Silver [ 64] ; LeBlanc et al. [ 39] ), only recent work has examined uncertainties in the 

inventory record itself (DeHoratius et al. [ 22] ). This is crucial because the time at which the reorder 

point and potential backorder point occur will change depending on the characteristics of IRI and the 

average customer order size in the distribution channel. 

Figure 1 depicts an inventory profile with a periodic (𝑠, 𝑆) policy and IRI during the reorder interval of a 

replenishment cycle. Actual and recorded inventory are distinguished, as are the time‐ordered periodic 

reviews (in gray). Early in the replenishment cycle, inventory levels are high and IRI does not instigate 

performance problems. However, during the reorder interval of the replenishment cycle (shown in 

Figure 1 as beginning around the first periodic review), IRI creates problems that have both customer 

service and inventory performance ramifications. Although the literature has shown IRI to affect 

replenishment cycle performance, how daily IRI variation impacts performance has not been studied. 

In the next section, we hypothesize how daily IRI variation directly affects inventory and service levels, 

and how daily IRI variation during the reorder interval of the replenishment cycle interacts with 

channel demand patterns (shaped by the demand characteristics we discussed earlier for direct and 

brick‐and‐mortar channels) to impact inventory and service levels. 

Hypotheses: How Daily IRI Variation Affects Performance 
Consistent with literature (Angulo et al. [ 2] ; Kang and Gershwin [ 33] ), we operationalize IRI as the 

relative discrepancy between the SIR amount (J) less the actual amount on‐hand (I). When IRI is 

negative, the amount of inventory that managers believe they have is less than actual; when IRI is 

positive, the amount of inventory that managers believe they have is more than actual. 

If IRI is negative, which the retail literature has referred to as “inflating” (Barratt et al. [ 6] ), managers 

will begin a premature reorder interval at point “A” in Figure 1 at the third review instead of the more 

appropriate fourth review. This means early receipts and, thus, higher inventory levels than required. 

Moreover, while awaiting resupply, inventory depletes toward the average customer order size. If the 

system reaches the potential backorder point “B” in Figure 1, managers are more likely to believe they 

have insufficient stock to fill the order in full. The likelihood of a backorder increases, even though 

inventory is available, thus impacting service levels negatively. Under this scenario, managers will not 

receive indications that IRI exists and so IRI will remain negative. 

If IRI is positive, which in a retail setting leads to “freezing” (Kang and Gershwin [ 33] ; DeHoratius and 

Raman [ 23] ), managers will begin the reorder interval at point “C” at the sixth review in Figure 1 that 

is later than required, meaning late receipts and lower inventory levels. However, when actual 

inventory reaches point “D” in Figure 1, managers will likely accept orders that cannot be fulfilled, thus 

potentially hurting service levels. In contrast to negative IRI, under this scenario DC picking personnel 

will observe that stock is unavailable, informing managers that IRI exists, correcting the positive IRI 

condition and repairing the “frozen” SKU (Barratt et al. [ 6] ). This has been referred to as a “free 

inspection” (Kök and Shang [ 36] , 201) and has been largely ignored in the IRI literature. So long as IRI 

stays positive during the reorder interval, the situation will be corrected at point “D” and thereby 

eliminate the IRI condition. 



Our first two hypotheses relate to the direct performance effects of daily IRI variation. High daily IRI 

variation means that extreme levels of both positive and negative IRI are likely to occur. That is, when 

daily IRI variation is high, the range of values to which SIR can deviate from actual inventory is greater 

than if daily IRI variation was low. Although previous studies do not examine daily IRI variation 

empirically, it has been shown analytically that IRI variation can increase requisite inventory or 

decrease service levels. For instance, Iglehart and Morey ([ 32] ) show that error variation increases 

requisite buffer stock under a periodic review system, while Kök and Shang ([ 36] ) show that 

maintaining requisite service levels becomes more costly as error variations increase. While these 

studies do not investigate daily IRI variation in a multichannel DC setting, we expect similar outcomes. 

We posit that an increase in daily IRI variation has the paradoxical effect of concurrently raising DC 

inventory levels and lowering DC service levels. 

Regarding service levels, both negative and positive values of IRI will diminish performance. As daily IRI 

variation increases, the range between negative and positive IRI values increases, which increases the 

frequency that the potential backorder points “B” and “D” in Figure 1 will occur. That is, either point 

“B” will cause premature backordering earlier in the reorder interval, or point “D” will cause failed pick 

attempts more often because of later reorders. We therefore posit the following: 

H1: Daily IRI variation decreases DC service levels. 

Regarding inventory, higher daily IRI variation causes an increase in actual levels. While negative IRI 

increases inventory levels because of early reordering at point “A,” positive IRI decreases inventory 

levels because of late reordering at point “C.” Yet higher daily IRI variation means more instability, 

increasing the degree that both negative and positive IRI states exist. Although, as stated above, 

picker‐induced corrections will repair positive IRI states, these corrections will be effective only if the 

IRI state remains stable. Because daily IRI variation creates instability during the reorder interval, a 

correction to record inaccuracies will be only temporary. Therefore, as daily IRI variation increases, 

regardless if IRI is positive or negative, the damaging effects of IRI will persist and inventory levels will 

remain higher. The related hypothesis is stated: 

H2: Daily IRI variation increases DC inventory levels. 

We next hypothesize how channel demand patterns interact with daily IRI variation to influence DC 

performance. Similar to daily IRI variation, demand order size and frequency increase the potential 

range of SIR values. Our earlier discussion about demand characteristics for brick‐and‐mortar and 

direct channels suggests that the infrequent, large orders that typify brick‐and‐mortar channels are 

“lumpier” than the frequent, small orders that characterize direct channels (Ward [ 72] ). Lumpy, 

erratic demand generally induces more uncertainty into an inventory system (Bartezzaghi and Verganti 

[ 7] , 116), increasing the likelihood that brick‐and‐mortar channels will have a wider range of potential 

SIR values, and higher SIR variability, than direct channels. Moreover, because of this disparity in SIR 

variability, an increase in daily IRI variation will have a relatively different effect between the two 

channels. Specifically, brick‐and‐mortar channels, with relatively higher SIR variability, will experience 

smaller increases in SIR variability from daily IRI variation than direct channels. Thus, brick‐and‐mortar 

channels will be less sensitive to increases in daily IRI variation than direct channels. 



This implies that daily IRI variation exacerbates the service level problems discussed in the 

development of H1 more in direct channels than in brick‐and‐mortar channels. The relatively larger 

effect by IRI variation on SIR variability in a direct channel increases the frequency in which potential 

backorder points “B” and “D” occur. Therefore, for an equivalent level of IRI variation across direct and 

brick‐and‐mortar channels, there will be more premature backorders and order‐pick failures in direct 

than in brick‐and‐mortar channels. This leads to the following hypothesis. 

H3a: Daily IRI variation has a more adverse effect on DC service levels under direct channel 

demand than under brick‐and‐mortar channel demand. 

Daily IRI variation also exacerbates problems regarding inventory levels to a greater degree in direct 

channels than in brick‐and‐mortar channels. Lumpy demand, as in a brick‐and‐mortar channel, is 

generally associated with higher inventory (Bartezzaghi et al. [ 8] ). The relatively larger effect by IRI 

variation on SIR variability in direct channels causes more frequent early ordering and less permanent 

IRI corrections. Thus, the inventory effects caused by IRI variation will be more damaging in direct than 

in brick‐and‐mortar channels. This leads to our last hypothesis. 

H3b: Increases in DC inventory levels due to daily IRI variation are higher under direct channel 

demand than under brick‐and‐mortar channel demand. 

Contextual factors 
Beyond the above hypotheses, we discuss other factors that interact in the DC system for which we 

control (see in Figure 2). As we discussed in the literature review section, these factors and their 

effects on performance are based on whether daily IRI variations are caused by TD or TI errors. 

Detailed explanations are given in Table 1, but are summarized as follows: ( 1) because opportunities 

for TI errors are more frequent than TD errors, we expect that TI errors exert a greater interactive and 

direct influence than TD errors on DC operating performance; ( 2) because of more frequent customer 

orders, we expect that direct channel demand patterns interact more with the negative effects of TD 

errors than with the negative effects of TI errors on DC operating performance; ( 3) because inventory 

variations are proportional to the inventory policy reorder point (little s), we expect that little s 

interacts more with the negative effects of TI errors than with the negative effects of TD errors on DC 

operating performance; ( 4) because of the increased opportunity for TD errors, we expect that the 

inventory policy's reorder quantity (i.e., S – little s = Δ) interacts more with the negative effects of TD 

errors than with the negative effects of TI errors on DC inventory and service levels; and finally, ( 5) 

because of the increased opportunity for TI error to accumulate, we expect that cycle count frequency 

(time between counts) interacts more with the negative effects of TI errors than with the negative 

effects of TD errors on DC operating performance. 



Table 1. Contextual factors interacting with record errors and affecting DC operating performance 

Expected contextual factor Justification 

(1) TI errors exert a greater interactive and direct 
influence than TD errors on DC inventory levels 
and service levels 

The literature suggests differing causes for TD and TI errors (Iglehart and Morey 32; 
Ernst et al. 26). TD errors occur when too many or too few units are actually picked 
than are recorded during a shipping transaction, and when receipt documents are 
inaccurate during a receiving or returning transaction. TI errors, by contrast, occur 
regardless of incoming or outgoing product, and are the result of unrecorded 
spoilage, damage, theft, and the like. Opportunities for TI errors are more frequent 
than TD errors because inventory exists nearly every day, while transactions do not 

(2) Direct channel demand patterns interact more 
with the negative effects of TD errors than with 
the negative effects of TI errors on DC inventory 
levels and service levels 

TD and TI errors will also interact with the demand patterns observed in different 
channels. Given an equal total demand in a period across channels, a direct channel 
will have smaller order sizes and higher order frequencies than a brick‐and‐mortar 
channel. If we represent the relationship between order frequencies and order sizes 
in a channel by a ratio r, a higher r represents a direct channel and translates into 
more frequent customer orders and, therefore, more opportunities for TD errors. 
This would compound the record errors in the system and reduce system 
performance 

(3) Inventory policy reorder point (little s) interacts 
more with the negative effects of TI errors than 
with the negative effects of TD errors on DC 
inventory levels and service levels 

TD and TI errors will also interact with the inventory levels used as reorder points. In 
a periodic review reorder policy (𝑠, 𝑆) regime, the reorder point (little s)—which 
managers base on various costs, policies, and lead times—influences the average 
amount of stock carried: ceteris paribus, a higher reorder point will increase the 
average amount of inventory on hand. As the amount of inventory on hand 
increases, the opportunity for TI errors will increase. This is because as more units 
are available in stock, there will be more units to miscount, misplace, or experience 
shrinkage. In this way, as the reorder point increases, the exposure to the effects of 
TI errors will increase and damage DC performance. On the other hand, the reorder 
point has little bearing on the size or frequency of transactions and, thus, will have a 
relatively minor interaction with the negative effects of TD errors on DC inventory 
levels and service levels 

(4) Inventory policy reorder quantity (Δ) interacts 
more with the negative effects of TD errors than 
with the negative effects of TI errors on DC 
inventory and service levels 

The size of reorder quantities (Δ)—which managers base on various costs and 
policies—influence the occurrence of TD errors because these errors occur, in part, 
when inventory is replenished. The frequency of replenishment is inversely related 
to the average reorder quantity: ceteris paribus, as reorder quantity decreases, the 
frequency of reorder transactions increases. In this way, a smaller Δ increases the 



opportunities for possible TD errors and for replenishment cycle problems in 
general. Although Δ may also interact with TI because Δ influences the amount of 
inventory on hand, the constant amount of inventory on hand as influenced by 
reorder point (little s) is expected to dominate interactions with TI 

(5) Cycle count frequencies (time between counts) 
interact more with the negative effects of TI errors 
than with the negative effects of TD errors on DC 
inventory levels and service levels 

TD and TI errors and their impact on inventory and service level performance will 
depend on the inventory audit policy in place. A common policy to control IRI and 
improve performance is cycle counting, in which frequency (i.e., time between 
counts) is the primary parameter necessary to define the policy. Counting occurs in 
longer cycles for those items that are considered less important in terms of sales 
volume or item value (Cantwell 16). Because cycle counting occurs infrequently for 
these items, there will be more opportunity for TI errors to accumulate (as 
explained in item (1) above). As such, longer audit frequencies will increase the 
opportunity for TI errors to occur 

Notes : DC, distribution center; TI, transaction‐independent; TD, transaction‐dependent. 



Finally, it is important to note that an influential characteristic of IRI is bias, meaning that over time the 

system may consistently be in a positive IRI or a negative IRI state. As stated above, the effects of these 

conditions on inventory levels are well known. As such, although no hypotheses are given for this 

characteristic, in order to test our hypotheses regarding daily IRI variation, we control for the IRI bias 

condition in our analysis. 

Methodology 
To test our hypotheses with a simulation model, we first collected data to represent essential DC 

characteristics while controlling for spurious sources of variation. This enabled us to stringently focus 

on DC fulfillment operations and daily IRI variation. We chose a DC that fulfilled demand from both 

direct and brick‐and‐mortar retail channels of a midsize apparel retailer in the United States. This 

research setting was ideal because the retailer's DC faced high IRI levels across many SKUs even though 

efforts to mitigate IRI were in place—for example, the implementation of continuous improvement 

initiatives and the adoption of a modern warehouse management system (WMS). Moreover, given the 

nature of the apparel retailer's business, there was relatively less variation in the physical size of the 

SKUs than in most industrial settings. This mitigated the effects of a factor that has been found 

elsewhere to significantly induce IRI (DeHoratius and Raman [ 23] ). In addition, although the retailer 

held and managed separate inventories for its direct and brick‐and‐mortar channels, operational 

processes, equipment, and personnel were shared between the fulfillment operations of both channels 

within the DC, thus preventing such factors to induce biases between channels. By focusing on a single 

DC location of a multichannel retailer, we avoided the introduction of bias that might otherwise 

compromise the comparability of measures and establishment of relationships between concepts. The 

homogeneity of factors across both channels also controlled for extraneous sources of IRI, which might 

introduce unobservable variability. 

The retailer followed a periodic review policy based on an (𝑠, 𝑆) approach for reordering and 

replenishing: when the periodic reviews showed that inventory (i.e., system record + in‐transit 

replenishment orders – backordered demand orders) reached a position equal to or approaching the 

reorder point, little s, the DC reordered from suppliers an amount necessary to take the level back to a 

preset maximum S. While little s performs the function of a reorder point with some element of safety 

stock, the difference Δ (i.e., S – little s) accounts for demand patterns, replenishment lead time, and 

reordering costs, so it serves to control reorder quantity. 

Data collection 
The retailer carried approximately 15,000 SKUs across seven product categories. Of these, 100 SKUs 

were common to both channels, representing just four of the seven product categories. SKUs for each 

channel were in separate locations within the DC. We ranked these 100 common SKUs by unit sales 

volume within each of the four product‐channel categories to identify fast‐, medium‐, and slow‐

velocity products. The two products best representing each type of velocity were selected, resulting in 

24 matched pairs (i.e., 2 [SKUs] × 3 [velocity types] × 4 [product categories]) across the two channels to 

allow for comparability of findings (Metters and Walton [ 46] ) and to cover a broad spectrum of prices 

and popularities. Because three of the 24 sampled SKUs had been scheduled to be discontinued during 

our data collection process, we also selected three additional SKUs as possible substitutes. The three 

additional SKUs were chosen based on their similarities (category, velocity, price) to the SKUs that had 



been scheduled to be discontinued. As we continued to see inventory and product receipts for these 

three SKUs during the data collection, we decided to maximize our sample by retaining the three 

“discontinued” as well as the three additional SKUs in the final sample. The final sample of 27 SKUs 

across two channels (for a total sample of 54) is presented in Table 2. 

Table 2. IRI parameters among SKU characteristics and channels 

    Estimates of IRI 
parameters (% on‐
hand inventory) 

   

    Bias (mean μIRI)  Daily 
variability 
(SD σIRI) 

 

Item SKU Price 
($) 

Rank in 
category 

Direct channel Brick‐and‐
mortar 
channel 

Direct 
channel 

Brick‐and‐
mortar 
channel 

1 2446300 4 Slow 0.00 −1.04 0.00* 2.37 

2 2315968 4 Medium −1.77 2.35 3.38 15.16 

3 2315927 4 Fast 0.03 2.14 0.19 8.52 

4 2100402 4.75 Unique† 0.04 −0.14 1.88 1.36 

5 2083954 4.75 Slow −1.37 −1.08 1.56 2.31 

6 2083947 4.75 Medium 0.00 −0.04 0.00* 0.12 

7 2008985 4.75 Fast −2.00 −16.11 1.19 21.99 

8 2225977 5 Unique† −10.00 −10.00 31.62 31.62 

9 2268167 5 Medium −1.12 −2.21 0.69 12.26 

10 2268100 5 Fast −10.00 −10.00 31.62 31.62 

11 2268118 5 Fast −0.09 −3.57 0.38 11.29 

12 2237402 14 Slow −0.13 39.26 0.41 64.69 

13 2199966 14 Medium 0.26 0.27 0.83 0.43 

14 2199982 14 Medium −0.26 0.56 0.46 0.48 

15 2237410 14 Fast 0.57 −2.85 1.92 9.35 

16 1577527 27 Slow −1.29 0.00 0.36 0.00* 

17 1603919 27 Slow −9.90 −10.00 31.66 31.62 

18 1740356 27 Medium −1.64 −18.79 0.62 31.47 

19 1372960 27 Fast 0.66 0.00 0.43 0.00* 

20 1862911 28 Slow −7.17 0.00 16.12 0.00* 

21 1785328 28 Medium −1.81 −2.45 4.86 7.75 

22 1785419 28 Fast 0.23 0.00 0.42 0.00* 

23 2099356 30 Medium −2.73 2.49 1.27 4.10 

24 2099612 30 Fast −0.40 2.03 1.26 4.91 

25 2259570 44 Slow −0.47 0.00 3.89 0.00* 

26 2259588 44 Fast −0.68 0.00 1.01 0.00* 

27 2374106 60 Unique† −10.23 10.00 17.93 31.62  
Average 
(SD) 

  
−2.27% (3.63%) −0.71% 

(9.99%) 
5.78% 
(10.29%) 

12.04% 
(15.85%) 

Notes : IRI, inventory record inaccuracy; SKU, stock‐keeping unit; SD, standard deviation. 



*SKUs with zero variability, that is, accurate over the period, were excluded from error estimations. 
†Item was announced as “discontinued” but continued to be monitored. 

 

To assess IRI, we focused on tracking the physical inventory held for the 27 sampled SKUs at the DC for 

both the direct and brick‐and‐mortar channels during a period of 10 consecutive business days. 

Simultaneously, we contrasted this information with the data in the retailer's SIR. We did not count the 

physical inventory during the weekend because the DC operated only from Monday to Friday. The 10 

business days corresponding to two calendar weeks were chosen to avoid the interference of 

seasonality in demand. The company carried out a complete physical audit of every SKU in the DC two 

weeks before our data collection. 

To track the physical inventory and minimize the likelihood of counting error, at least two of the 

researchers counted the number of items in storage for each SKU and for each channel. Every day, the 

counters were randomly assigned to 27 SKUs (13 or 14 SKUs for each channel), to avoid counting bias 

due to fatigue and knowledge of previous inventory levels. It has been shown that repetitive counting 

of many items of the same SKU might decrease the counters’ attention, or increase their expectations 

about a “correct” count (Neeley [ 51] , [ 52] ). At the beginning of every counting day, for all selected 

SKUs, we printed the SIR balance and the locations from the WMS onto a counting sheet. The items in 

the counting sheet were then sorted by nearby locations within each channel to ensure that we 

counted the SKUs in the same order every day. Each SKU had a fixed channel location in the DC—that 

is, one direct channel location and one brick‐and‐mortar channel location. All counts were performed 

at the start of each day before operations started to ensure that items were not in temporary storage 

or shipping/packing locations. The average on‐hand amount per SKU ranged from near zero to 9,000 

units, with an overall average of about 140, 430, and 770 units for slow‐, medium‐, and fast‐velocity 

SKUs, respectively. 

From 540 observations of SIR and actual inventory across 27 SKUs in both channels over 10 consecutive 

business days, a relative measure of IRI was computed as shown in Equation that follows from the IRI 

literature (Angulo et al. [ 2] ; Fleisch and Tellkamp [ 27] ). 

(1) 

𝐼𝑅𝐼pqt = {
𝑑pqt/𝐼pqt, if 𝐼pqt > 0

0, otherwise
 

 

where 𝑑pqt is the difference between the SIR balance (Jpqt) and physical inventory (𝐼pqt) of SKU p in 

channel q at counting day t (𝑝 =  1, … , 27;  𝑞 =  1, 2;  𝑡 =  1, … , 10). Our measure of IRI departs from 

some previous studies because we measure the relative rather than the absolute discrepancy (cf. 

DeHoratius and Raman [ 23] ). A relative measure enables comparability of IRI across different SKUs 

and is the common approach used in practice (Brown et al. [ 14] ). Although the possibility exists for 

𝑑pqt to be nonzero when 𝐼pqt is zero (which we observed 1.1% of the time), our relative measure 

provides better generalizability than an absolute measure. In addition, a relative discrepancy (i.e., 

percentage of actual inventory on hand) is consistent with a percentage representation of TD and TI 



errors. Finally, because in our analysis, we statistically assess the relative impact of daily IRI variation, 

use of a percentage versus an absolute measure is common among all scenarios and is thus 

controlled.[ 2] 

As shown in Table 2, daily IRI variability (measured as standard deviation σIRI) remained equal to zero 

across the ten counting days in eight out of the 54 series. In the 46 series that presented some 

variation, IRI showed large variability relative to the bias (measured as mean magnitude μIRI). 

Although, on average, the direct channel had a more negative bias than the brick‐and‐mortar channel, 

a between‐subjects multivariate analysis of variance revealed no significant influence of price, sales 

velocity, or channel type on μIRI or σIRI. This suggests a latent tendency toward a negative IRI bias, 

possibly because picker corrections are occurring when IRI is positive. 

To further assess literature assumptions of IRI behavior, we fit the 46 IRI series that presented IRI 

variability to various auto‐regressive integrated moving average (ARIMA) models. We found it most 

likely (at the.05 level) that 37 time series have an integrated and moving average term—that is, an 

ARIMA (0, 1, 1). This departs from the literature's assumption that IRI moves in a random‐walk 

pattern—that is, ARIMA (0, 1, 0)—and is likely a result of TD errors that are demand‐dependent and 

intermittent in nature. In addition, IRI variation across time was found to be 35% lower than IRI 

variation across SKUs, showing that it is erroneous to assume IRI varies similarly across time versus 

across SKU. Examples of daily 𝑑pqt values are shown in Figure 3 and were observed to have random 

shocks, followed by periods of stability. These observations challenge some of the simplifying 

assumptions made in the literature. 

We also examined the issue of IRI patterns more closely by modeling the probability of occurrence and 

the magnitude of the errors—the result of underlying, unobserved incidents that generate IRI 

(DeHoratius et al. [ 22] ). An error occurs in the multichannel retailer's inventory system when the 

difference (𝑑pqt) between Jpqt and 𝐼pqt of a particular SKU in a given channel changes between two 

consecutive days. That is: 

(2) 

𝑒pqt = 𝑑pqt − 𝑑pq,t‐1 

where epqt is an error that changes the IRI of SKU p in channel q at counting day t 

(𝑝 =  1, … , 27;  𝑞 =  1, 2;  𝑡 =  1, … , 10). We model error differently from the unobservable process; 

others have termed stock loss (Kang and Gershwin [ 33] ), random error (Kök and Shang [ 36] ), invisible 

demand (DeHoratius et al. [ 22] ), or demand error (Nachtmann et al. [ 49] ). This literature assumes 

that an independent and identically distributed random variable following a continuous distribution 

impacts inventory in each period, and that this random variable is independent of any receipts, 

returns, or shipments over time; thus leading to a random‐walk pattern. We see from the empirical 

data that this is not the case. Therefore, we make no such assumptions and, instead, we associate 

errors closer to IRI's generating mechanisms (cf. Rinehart [ 58] ; Lee and Özer [ 40] ). Following early 

work on IRI (Iglehart and Morey [ 32] ; Ernst et al. [ 26] ), we seek distinct estimates of TD and TI errors. 

As we could not directly observe every possible error over the study time frame, we adopt a heuristic 

to estimate TD and TI errors: Errors during no SIR change are assumed to be TI errors while those 



during SIR change are divided into TI and TD errors based on TI error rates observed when there was 

no SIR change (see the Appendix). 

In Table 3, we examine the frequency and magnitude of TD and TI errors across channels, price, and 

sales velocity in accordance with literature (DeHoratius and Raman [ 23] ). Because high skewness 

exists in portions of the data, we focus on the median values. Regarding TD and TI frequencies, we find 

mostly no significant differences (p > .05), except for lower price SKUs having significantly higher TD 

rates that could be due to larger pack sizes. Regarding TD and TI magnitudes, we find mostly no 

significant differences (p > .05), an exception being that channels show significant TD difference. 

Further investigation reveals that because error rates are percentage values, a series of 

uncharacteristically small retail transaction quantities induced large TD values—if these are removed 

then no significant TD difference is found (p > .10). In sum, we conclude that assuming similar TD and 

TI frequencies and magnitudes across channels and sales velocities is acceptable, but that price may 

have some effect on IRI through differences in TD frequencies. 

Table 3. Observed inventory error frequencies and magnitudes across product characteristics‡,§, 

 Frequency  Magnitude  

Product characteristics TD errors TI errors TD errors TI errors 

Price 
  

 
 

 High 
  

 
 

  N 21 24 52 18 

  Mean (%) 51.4 25.8 −102.9 −8.4 

  Median (%) 57.1 15.5 −47.7 −1.0 

 Low 
    

  N 25 29 76 54 

  Mean (%) 69.0 34.9 9.2 −1.7 

  Median (%) 77.8 33.3 −8.0 −0.1 

 p‐value of differences 
    

  Mean* .218 .213 .248 .365 

  Median† .038 .179 .280 .276 

Channel 
    

 Direct 
    

  N 26 26 98 29 

  Mean (%) 61.3 39.3 −33.4 −5.3 

  Median (%) 70.8 29.2 −11.8 −0.6 

 Brick‐and‐mortar 
    

  N 20 27 30 43 

  Mean (%) 60.5 22.6 −45.9 −2.1 

  Median (%) 55.0 14.3 −99.0 −0.1 

 p‐value of differences 
    

  Mean* .968 .115 .912 .630 

  Median† .552 .341 .012 .471 

Sales velocity 
    

 Fast 
    

  N 16 17 50 22 



  Mean (%) 54.3 39.5 98.5 −1.9 

  Median (%) 56.3 33.3 18.3 0.1 

 Medium 
    

  N 13 16 32 29 

  Mean (%) 60.1 27.9 −241.4 −1.1 

  Median (%) 60.0 25.0 −99.9 −0.2 

 Slow 
    

  N 11 14 30 17 

  Mean (%) 57.6 30.4 −33.6 1.7 

  Median (%) 50.0 15.5 −16.3 −0.7 

 Unique 
    

  N 6 6 16 4 

  Mean (%) 86.9 14.6 −52.8 −50.0 

  Median (%) 92.9 12.5 −85.7 −50.3 

 p‐value of differences 
    

  Mean .247 .284 .048 .003 

  Median .379 .292 .054 .610 
Notes : TD, transaction‐dependent, TI, transaction‐independent. 
*p‐value from univariate ANOVA tests. 
†p‐value from nonparametric median difference tests. 
‡Distribution values across groups are found to be equivalent except for TD magnitudes between velocity and 
channels (p < .01), revealing the influence that order patterns have (based on nonparametric Kolmogorov–
Smirnov two‐sample tests for price and channel, and Kruskal–Wallis k‐sample tests for sale velocity). 
§The estimation procedure used is found in the Appendix. 

 

Simulation model 
On the basis of our empirical analysis, we used a discrete‐event simulation (Kelton et al. [ 34] , 197) to 

test our hypotheses and to observe outcomes for the relationships among the contextual factors (see 

Figure 2). The simulation methodology accommodates nonlinearities (e.g., cycle counting and picker 

corrections) that are key elements of IRI research and that cannot be assessed accurately using 

analytical techniques that require limiting assumptions (Bowersox and Closs [ 11] ). 

In order to explore the IRI dynamics in the DC of a multichannel retailer, a simple inventory 

management system is considered with a single SKU available in a retail channel: either direct or brick‐

and‐mortar. The retailer follows an (𝑠, 𝑆) inventory policy at the DC that is consistent with our 

empirical setting and extant literature, making the simulation generalizable to other DCs (Nahmias and 

Smith [ 50] ; cf. Ballou [ 4] ). The amount of reordered inventory, Δ, corresponds to the difference 

between S and the inventory position. Under such review policies, both the predetermined minimum 

level, little s and the Δ (i.e., S – little s) quantity are expected to influence IRI and inventory 

performance as described in earlier sections. The replenishment of inventory at the DC involves supply 

lead times given by a random variable with mean μleadtime and standard deviation σleadtime from an 

uncapacitated supply source. 

Demand input corresponds to the arrival of batch orders in the brick‐and‐mortar channel and the 

arrival of individual, end‐customer orders in the direct channel. We do not allow multiple SKUs in the 



orders to preserve the internal validity of the results; doing so allows the simulation to consider DC 

performance in an unbiased fashion, across all demand orders, irrespective of their product 

composition. Orders in the simulation may induce multiple items for an SKU. These order sizes follow a 

known distribution with mean μd and standard deviation σd. They arrive according to a Poisson 

distribution with mean λd and standard deviation √λd. 

Demand in the orders is fulfilled by the WMS when the SIR shows inventory availability; otherwise, 

they are backordered. No partial shipments are allowed (Kumar et al. [ 37] ). This ensures consistency 

with OTIF measures of customer service that can be found in practice (Godsell and Van Hoek [ 29] ), 

and also ensures an equal treatment of small versus large order sizes that are common in direct and 

brick‐and‐mortar channels, respectively. If SIR shows enough inventory availability to fulfill an order 

but physical inventory is too low to fill the order in full (i.e., point “D” in Figure 1), the nonlinearity of a 

picker correction (i.e., an adjustment made by picking employees) is modeled by making the SIR equal 

to the actual inventory while backlogging the order. 

A fundamental distinction between an inventory management system in the direct channel and one in 

the brick‐and‐mortar channel is the difference in demand patterns—that is, customer order size and 

frequency (Agatz et al. [ 1] ). To assure comparability of results between channels, we assume that the 

total volume of demand (in units) is equal in both channels. This allows holding constant both s and Δ 

while varying a ratio, r, which is the relative change from a base brick‐and‐mortar order frequency. 

Higher values of r represent more frequent and, thus, smaller orders, according to the demand pattern 

in the direct channel than those based on the demand pattern in the base brick‐and‐mortar channel. 

Therefore, in our simulation, a lower ratio r represents the brick‐and‐mortar channel and a higher ratio 

r represents the direct channel. For example, if the average monthly demand is 100 units in each 

channel, while the base brick‐and‐mortar channel (with r = 1) will receive an average of 20 orders of 5 

items each, the direct channel (with r = 2.5) will receive 50 orders of 2 items each. By dividing μd, σd, 

and λd by the ratio r, we modify the differences in magnitudes and interarrival times of demand to 

represent channel characteristics, while holding the coefficients of variation σdμd and λdλd and total 

demand constant. 

The simulation also takes into account the sources of IRI variation. Rather than assuming that IRI varies 

from an identically distributed, demand‐independent random integer variable, we seek to replicate our 

empirical results by allowing IRI to vary from two sources: TD errors and TI errors. The magnitude of a 

TD error is defined by the realization of a random percentage variable, normally distributed (cf. Fleisch 

and Tellkamp [ 27] ) with mean zero and standard deviation σTD multiplied by the size of the 

transaction. TD errors occur according to a conditional probability PTD. Conversely, the magnitude of a 

TI error is defined by the realization of a random percentage variable, normally distributed with mean 

zero and standard deviation σTI times the amount of physical inventory. TI errors occur according to a 

probability PTI. The occurrence of either TD or TI errors will change daily IRI dependent on demand and 

inventory levels. Finally, in the simulation, we correct IRI by accounting for the possibility that IRI will 

be reconciled with SIR every time cycle counting is performed at f time intervals—larger f values mean 

more infrequent (less often) cycle counting. 



Holding the channel fixed, our simulation not only takes into account a daily sequence of events in the 

inventory system that follows past simulation studies addressing IRI (Kök and Shang [ 36] ), but also 

incorporates important nonlinearities. First, TD errors may occur only on days with replenishments or 

order picking, while TI errors are possible every day. Second, if fulfillment orders are released without 

enough stock, order pickers will notice this and the SIR level will be corrected. Third, physical inventory 

is not allowed to become negative. Fourth, cycle counting corrects SIR balances at discrete time 

intervals. Finally, IRI parameters, mean μIRI and standard deviation σIRI, are computed from the daily 

IRI values. Further details about our simulation model development (Sargent [ 60] ) are in the 

Appendix. 

Results 
To test our hypotheses, we designed a model in line with our empirical observations shown in Tables 2 

and 3 for a full factorial experiment across eight factors: little s (2 levels: 15 and 20), Δ (2 levels: 35 and 

50), r (3 levels: 1, 2, and 3), f (3 levels: 30, 180, and 360), σTD (2 levels: 0.03 and 0.06), PTD (2 levels: 

0.40 and 0.60), σTI (2 levels: 0.03 and 0.06), and PTI (2 levels: 0.10 and 0.20). To assure proper 

statistical power across factor combinations,[ 3] 35 replications were conducted for each of the 576 

factorial combinations to generate a total of 20,160 observations. Further background information 

relating to parameters, demand, errors, cycle counting, and model operations in our model is 

summarized in Table 4. 

Table 4. Summary of simulation background information 

Replenishment lead time and service level 

 Replenishment lead time: normally distributed with mean (μleadtime) 5 and SD (σleadtime) 1 (in days) 

 Target order fill rate (frequency of nonbackordering) determines the reordering policy parameters: 
99% 

Demand 

 Representative customer originates all demand 

 Demand orders are independent and identically distributed 

 Base† demand order size is normally distributed with mean (μd) 4.5 and SD (σd) 1 (in units)* 

 Base† demand order interarrival times follow a Poisson distribution with mean (λd) 3 (in days)* 

Errors 

 TI errors are independent and identically distributed 

 TI errors arrival times follow a Poisson distribution 

 TD error magnitude is a percentage of transaction size. The percentage is normally distributed with 
mean zero and an SD 

 TD errors occur according to a conditional probability with given mean and an SD 

Cycle counting 

 Physical inventory levels are correctly assessed 

 IRI levels are correctly assessed 

 SIR levels are correctly adjusted at the end of cycle counting 

Model operations 

 DC operates 24 hr, seven days per week 

 DC stock levels preloaded with typical days‐on‐hand inventory 

 Reordering policy determined based upon strategic goals and no IRI assumption 



 Reordering policy is min–max, or (𝑠, 𝑆), following a seven‐day periodic review 

 Reordering policy parameters (little s and Δ) are stagnant throughout simulation run 
Notes : DC, distribution center; TD, transaction‐dependent, TI, transaction‐independent; IRI, inventory record 
inaccuracy; SIR, system inventory record; SD, standard deviation. 
*Additional information regarding the estimation of these parameters is included in the Appendix. 
†Base demand represents the brick‐and‐mortar channel. 

 

To test the hypotheses, we used regressions analysis based on the output from 20,160 simulation runs. 

Because we expected interactions among experimental factors, we included, in the regression analysis, 

the factors’ main effects and two‐way interactions along with the direct effects of IRI bias μIRI and 

daily IRI variation σIRI. To avoid multicollinearity, we centered all factor variables before we formed 

interaction terms (Cohen et al. [ 19] ). We estimated variance inflation factors for the full model and 

found values ranging from 1 to 3.914. These values are below the threshold value ( 10) that would 

signal a multicollinearity problem. 

The regression results appear in Table 5. There are two models for each DC performance variable: 

service level (as measured by the percentage of orders accepted on‐time and in‐full) and average 

actual inventory level. The first model (model 1) includes all controls, while the second model (model 

2) includes all control as well as daily IRI variation (σIRI) and its interaction with channel demand 

pattern (r). Both models list standardized regression coefficients. Because model 2 controls for IRI 

effects, substantial changes in the coefficients indicate IRI sensitivity to particular variables. Overall, 

the R2 values range from 0.847 to 0.981 and show an improvement from model 1 to model 2 for each 

dependent variable. In addition, the second model's Δχ2(df) values for service level and average 

inventory show a significant improvement in variance explained [151( 2) and 2,992( 2), respectively]. 

Thus, the importance of understanding dynamic IRI characteristics is supported. 



Table 5. Regression results 

Dependent variable main effects Service level  Average inventory 
 

 
Model 1† Model 2† Model 1† Model 2† 

little s 0.900 (0.001)*** 0.884 (0.001)* 0.552 (0.002)** 0.564 (0.002) *** 

Δ 0.103 (0.000) *** 0.118 (0.000) *** 0.807 (0.001) *** 0.796 (0.001) *** 

r −0.053 (0.003) *** −0.053 (0.003)** −0.024 (0.007) *** −0.024 (0.006) *** 

F −0.211 (0.000) *** −0.060 (0.000) *** 0.112 (0.000) *** 0.002 (0.000) 

PTD −0.012 (0.022) *** −0.004 (0.022) 0.008 (0.056) *** 0.002 (0.049)* 

σTD −0.050 (0.150) *** −0.027 (0.148) *** 0.026 (0.375) *** 0.008 (0.337) *** 

PTI −0.118 (0.045) *** −0.068 (0.048) *** 0.069 (0.113) *** 0.034 (0.109) *** 

σTI −0.206 (0.150) *** −0.109 (0.196) *** 0.124 (0.375) *** 0.054 (0.448) *** 

μIRI −0.183 (0.052) *** −0.102 (0.058) *** −0.309 (0.129) *** −0.369 (0.132) *** 

σIRI (H1, H2) 
 

−0.207 (0.026) *** 
 

0.149 (0.058) *** 

σIRIXr (H3a, H3b) 
 

−0.052 (0.025) *** 
 

0.001 (0.057) 

Two‐way control interactions of experimental factors 
    

 sXΔ −0.111 (0.000) *** −0.105 (0.000) *** −0.008 (0.000) *** −0.012 (0.000) *** 

 sXr 0.067 (0.001) *** 0.068 (0.001) *** 0.009 (0.003) *** 0.009 (0.002) *** 

 sXf 0.039 (0.000) *** 0.045 (0.000) *** 0.045 (0.000) *** 0.041 (0.000) *** 

 sXPTD 0.005 (0.009) 0.005 (0.009) 0.000 (0.023) 0.001 (0.020) 

 sXσTD 0.017 (0.060) *** 0.015 (0.058) *** −0.001 (0.150) 0.001 (0.131) 

 sXPTI 0.036 (0.018) *** 0.039 (0.017) *** 0.008 (0.045) *** 0.006 (0.039) *** 

 sXσTI 0.056 (0.060) *** 0.062 (0.058) *** 0.014 (0.150) *** 0.010 (0.132) *** 

 ΔXr 0.009 (0.000)** 0.015 (0.000) *** 0.009 (0.001) *** 0.008 (0.001) *** 

 ΔXf −0.028 (0.000) *** −0.014 (0.000) *** 0.045 (0.000) *** 0.035 (0.000) *** 

 ΔXPTD 0.006 (0.003)* 0.006 (0.003)* 0.002 (0.008) 0.002 (0.007)* 

 ΔXσTD 0.003 (0.020) 0.002 (0.019) 0.001 (0.050) 0.002 (0.044)* 

 ΔXPTI −0.008 (0.006)** −0.004 (0.006) 0.014 (0.015) *** 0.011 (0.013) *** 

 ΔXσTI −0.022 (0.020) *** −0.013 (0.019) *** 0.023 (0.050) *** 0.017 (0.044) *** 

 rXf 0.000 (0.000) 0.028 (0.000) *** −0.003 (0.000)** −0.004 (0.000)** 

 rXPTD 0.000 (0.028) 0.001 (0.027) 0.000 (0.069) 0.000 (0.060) 

 rXσTD 0.003 (0.183) *** 0.008 (0.179)** 0.000 (0.459) 0.001 (0.409) 

 rXPTI −0.001 (0.055)* 0.012 (0.057) *** −0.001 (0.138) −0.002 (0.129)* 

 rXσTI −0.019 (0.183) *** 0.007 (0.221)* 0.001 (0.459) −0.001 (0.503) 



 fXPTD −0.006 (0.000) *** −0.002 (0.000) 0.004 (0.000) *** 0.001 (0.000) 

 fXσTD −0.016 (0.001) *** −0.006 (0.001)* 0.012 (0.003) *** 0.006 (0.002) *** 

 fXPTI −0.014 (0.000)** −0.006 (0.000)* 0.030 (0.001) *** 0.023 (0.001) *** 

 fXσTI −0.032 (0.001) *** −0.014 (0.001) *** 0.054 (0.003) *** 0.041 (0.002) *** 

 PTDXσTD −0.007 (1.498)** −0.003 (1.443) 0.005 (3.751) *** 0.002 (3.287)* 

 PTIXσTI −0.051 (2.996) *** −0.034 (2.922) *** 0.039 (7.503) *** 0.027 (6.660) *** 

 PTDXPTI 0.006 (0.449)* 0.005 (0.432)* 0.001 (1.125) 0.002 (0.986) 

 PTDXσTI 0.007 (1.498)* 0.006 (1.442) * 0.001 (3.751) 0.001 (3.285) 

 PTIXσTD 0.003 (2.996) 0.001 (2.884) 0.000 (7.502) 0.002 (6.573) 

 σTDXσTI 0.007 (9.986)* 0.000 (9.633) −0.001 (25.007) 0.004 (21.954) *** 

 N 20160 20160 20160 20160 

 R2 0.847 0.858 0.918 0.981 

 Δχ2(df) 
 

151(2) 
 

2,992(2) 

 % χ2 improvement 
 

7.4% 
 

23.3% 
Notes : †Standardized coefficients are shown along with standard errors. 
*p < .05. 
**p < .01. 
***p < .001. 

 



We first examine the results regarding the impact of daily IRI variation (σIRI) on DC performance and 

their support for H1 and H2. As shown in model 2 for service level as dependent variable, the 

standardized coefficient for σIRI is −0.207 (p < .001), in support of H1. Moreover, as shown in model 2 

for average inventory level as dependent variable, the standardized coefficient for σIRI is 0.149 

(p < .001), in support of H2. These coefficients show that daily IRI variation is quite damaging to DC 

performance. This is because daily IRI variation is shown to decrease service levels and increase 

average inventory level. 

We also examined how channel demand patterns r exacerbate the damaging effects of daily IRI 

variation σIRI, in order to test H3a and H3b. As shown in model 2 for service level as dependent variable, 

the standardized coefficient for σIRIXr is −0.052 (p < .001), which supports H3a. However, as shown in 

model 2 with average inventory level as dependent variable, the standardized coefficient for σIRIXr is 

0.001 (p = .374), which provides no evidence to support H3b. Thus, channel demand patterns are shown 

to only interact negatively with daily IRI variation with respect to service level, meaning that customer 

satisfaction should be especially a concern for direct channel managers when confronted with daily IRI 

variability. 

We also evaluated the effect of IRI bias, μIRI, on DC performance. As shown in the results for model 2 

for service level and average inventory as dependent variables, the standardized coefficients for 

μIRI are −0.102 (p < .001) and −0.369 (p < .001). Thus, as expected, a positive IRI bias (SIR > actual 

inventory) is unfavorable to service level but favorable to average inventory, and a negative IRI bias 

(SIR < actual inventory) has the opposite effect. This result comports with the literature's traditional 

perspective about the effects of IRI, but also contrasts with this study's findings about the effects of 

daily IRI variation. 

While not of primary theoretical interest, we also had expectations as to how the various experimental 

factors interacted with the TD and TI errors that drive IRI and influence performance. Regarding 

channel effects, the direct channel (with higher r) has worse service levels under IRI conditions (a 

negative direct effect) and interacts with the magnitude of TI in reducing service levels—smaller orders 

are sensitive to TI. This is contrary to our expectations. Also unexpected is the favorable (i.e., negative) 

direct effect r has on average inventory, showing that direct channels use more inventories during 

replenishment cycles and that larger reorder points are needed when direct channels have IRI. 

Regarding the order policy factors (little s and Δ), both benefit service levels as expected when in the 

presence of IRI. Yet, unexpectedly, little s interacts favorably with TI and TD for service level, while Δ 

has a stronger unfavorable interaction with TI than with TD for both performance variables. This shows 

that little s is the more useful factor in the (𝑠, 𝑆) regime as errors increase. Regarding audit policy, as 

expected a larger time between cycle counts (f) is generally unfavorable to both performance 

variables, but f does not affect inventory when daily IRI variability is accounted. Interactions between f 

and TI are more damaging because of the longer exposure of SIR to error opportunities. Finally, 

regarding TD and TI, the results overall indicate that TI is more damaging to operating performance 

than TD, both in the direct effects of PTI and σTI and in the interaction PTIXσTI. This was expected 

because opportunities for these types of errors exist more frequently. Interestingly, the TI magnitude 

(σTI) is more damaging than the TI probability (PTI), suggesting that reducing the size of the errors is 

more beneficial than reducing the likelihood of the errors. The issues with TI also suggest that 



managers should not increase inventory through larger order sizes to compensate for IRI because more 

on‐hand inventory creates more opportunities for error. 

Conclusion 
Inventory management theory and practice has perpetuated the assumption that static, periodic 

measures of IRI provide adequate information on which to base inventory reorder and audit policies. In 

this study, we examine the unexplored effects of daily IRI variation as an important influence on the 

operating performance of DCs in retail channels. We used continuous, multiday observations of IRI 

from a retailer's DC that uncovered problematic literature assumptions of IRI. We then used this data 

as a basis to build a simulation and validate hypotheses regarding the effect that daily IRI variation and 

the interaction between this variation and channel demand patterns have on DC performance. Our 

study also uncovers how operating conditions—inventory control policies and the frequency of cycle 

counts—interact with IRI to impact DC performance in favorable and unfavorable ways. 

Contributions to theory 
This is the first study to both describe empirically the characteristics of daily IRI variation and, with a 

grounded simulation, give its performance implications. As such, this paper breaks new ground into 

how IRI behaves over time and how DC operations are affected. Our data collection at a retailer's DC 

shows that substantial variability exists over time in ways that do not comport with common literature 

assumptions (see Williams and Tokar [ 73] ). We find that ( 1) IRI follows a moving average pattern 

likely tied to demand rather than a random‐walk pattern, and ( 2) IRI variability is better understood by 

SKU‐specific observations across days than single‐day observations across SKUs. In particular, our data 

collection finds that using across‐SKU IRI variation to infer actual IRI variation is an overestimate that 

will lead to excessive inventory on‐hand. Our results also underscore the fallacy of using single‐point 

estimates to gauge SKU IRI. As Table 2 shows, an item's IRI variation is often two or three times an 

item's IRI mean. Thus, our study shows empirically that there are better ways to estimate the true 

extent to which an item is exposed to IRI problems. 

Our study is also the first to use empirical data to both describe the characteristics and explore the 

effects of two key drivers of daily IRI variation—TD and TI errors. Potentially surprising are the high 

frequencies and magnitudes of both TD and TI errors that occur. Those familiar with the many 

opportunities for errors in DC operations, however, will likely attest that order fulfillment and 

inventory replenishment are quite susceptible to such problems (Lee and Özer [ 40] ). Our study gives 

evidence to support such an intuition. Yet, we push the boundary of understanding further in our 

simulation experiment, showing in Table 5 that the prevalence of TI errors interacts with inventory 

policies and impairs DC performance more than TD errors. This suggests that drivers of TI errors, such 

as storage practices and human behavior (DeHoratius [ 21] ; Rekik et al. [ 57] ), are at the root of daily 

IRI variation and could be a useful avenue for future behavior research in logistics (Tokar [ 65] ; 

Knemeyer and Naylor [ 35] ). In addition, the different interaction effects of TI and TD reveal the 

importance of using a multiday counting method as we have to not only assess daily IRI variation, but 

also to indicate whether TI or TD errors are most prevalent (as we do in Table 3). 

A crucial contribution of this study is the introduction of a new approach toward modeling IRI's daily 

variation. We analytically replicated the empirically observed patterns and parameters of daily IRI 



variation. In addition, the damaging effects of daily IRI variation on DC performance were shown to be 

acute. An example of this is given in Figure 4; although the impact varies, daily IRI variation 

σIRI decreases service levels regardless of the experimental factor. This result is important because 

research has yet to recognize day‐to‐day IRI variation as critical, instead of being focused on static 

observations to infer variation (DeHoratius and Raman [ 23] ) or to detect biases (Morey and Dittman 

[ 48] ). Without an accounting for daily IRI variation, such an important feature of the IRI phenomena is 

not recognized. Daily IRI variation also has a pernicious cognitive effect: record confidence 

degradation. Management of increasingly complex, multichannel DCs is reliant on decision support 

systems for ordering and product replenishment. As the informational foundation for managerial 

judgment erodes, inefficient triple‐checking of records and buffering of time and material likely grow, 

driving down operating performance. These secondary, negative effects of daily IRI variation may be 

worse than the primary effects we show; however, the message is the same that the variability 

characteristics of IRI need further study. 

A final theoretical contribution stems from our regression analysis where a more nuanced 

understanding is given as to the role that inventory control policies play with respect to IRI. As Table 5 

shows, higher reorder points (little s) and larger reorder quantities (Δ) have the expected effect of 

buffering inventory to protect service levels. However, our study shows these policy parameters have 

differing interactions with the TD and TI record errors that drive IRI variations. For instance, little s is 

shown in Table 5 to be particularly beneficial to service levels in its interaction with record errors; 

meaning that even though more inventory during the replenishment cycle can exacerbate TI errors, the 

earlier reorder point from a larger little s is more beneficial in the presence of larger TI errors. Yet, this 

is not the case for the reorder size Δ. Like little s, a larger Δ increases inventory that exacerbates TI 

errors, but Δ has no benefits for the replenishment cycle and, thus, the interaction of Δ and TI error is 

detrimental. This suggests that reducing the reorder size is a potential IRI‐management strategy. Thus, 

by examining in detail these interactions with both type of errors, we come closer to understanding the 

role various managerial choices play in the operation of DCs in the presence of IRI. 

Contributions to practice 
DC managers must choose where to allocate limited resources, such as employee time or technology 

investment, in their effort to diminish the negative impact of IRI. Our research suggests that DC 

managers should focus their attention not only on IRI bias, but also on daily IRI variability. Indeed, the 

paradoxical effect of daily IRI variation increasing inventory while decreasing service levels should be of 

keen interest to managers. Yet, this means devoting resources to multiday cycle counts without 

corrections in order to estimate the degree to which IRI variation exists. If managers correct on a daily 

basis, then IRI's inherently dynamic nature is not captured and crucial information may be lost. Future 

research should provide guidance as to how many days are required. 

Another recommendation from our research is that critical SKUs with perplexingly high inventory levels 

and low service levels be targeted for multiday counts. Following the approach described in our 

methodology, managers can gain rough estimates as to the likelihood that TD and TI errors exist. Items 

demonstrating high daily IRI variation and high TI errors should be the first priority, with particular 

attention being given to the magnitude of TI errors. Our results show that large, infrequent TI errors—

which may be associated with large‐scale spoilage—are more detrimental than small, frequent TI 



errors—which may be associated with small item breakage or theft. Plus, as Table 5 shows, TI errors 

correlate with daily IRI variation and interact with inventory policies more than TD errors. Therefore, 

resources dedicated to lessen large magnitude stock loss, such as assuring a proper storage 

environment to avoid spoilage, may be more beneficial than resources dedicated to reduce small, 

frequent errors, such as petty‐theft prevention. Of course, reducing both the magnitude and frequency 

of errors are important. Yet, understanding the broader performance effects of daily IRI variation will 

help managers make more informed decisions under resource constraints, and help avoid the naive 

reaction and potentially damaging strategy of simply increasing inventory levels. 

The observations we make with respect to the mixed channel effects will likely give confidence to 

managers that significant changes will not be required in managing IRI in multichannel DCs. That is, the 

demand pattern difference between direct channels as opposed to brick‐and‐mortar channels has 

minor direct and interacting influences on operating performance. The high frequency of customer 

orders that are typically observed in a direct channel may create the impression to managers that even 

minor TD errors will lead to large problems, but it appears that the smaller sizes that are common in 

these orders negate these consequences. However, it should be noted that because order sizes are 

lower in a direct channel, the potential backorder point is lower and, thus, the likelihood for picker 

correction diminishes. We find this to be of significant consequence to service levels, and managers 

should develop more intentional methods for ad‐hoc corrections. For example, early warning 

indicators within the WMS of paradoxically higher inventory levels and lower service levels than 

expected could perhaps be used as an initial trigger. Another important note for direct channels is that 

behavioral influences such as cognitive fatigue from repeated transactions (cf. Perrey et al. [ 53] ) or 

overconfidence from frequent experience (Einhorn and Hogarth [ 25] ) are more likely and should be 

examined in future research. As our empirical observations show, although not statistically significant, 

a higher median frequency of TD errors is possible in direct channels as opposed to brick‐and‐mortar 

channels. These issues should be of interest to researchers and managers alike. 

A final note to managers should be the importance of the DC employees. The context of a DC is 

substantially different than a retail store environment because DC employees see inventory storage for 

every sale. This increases the opportunity for DC employees to monitor the status of IRI. In particular, 

the frequency with which items are “frozen” is substantially less because orders that are accepted will 

not get filled and will therefore be rejected back to customer service. Crucial assumptions are that 

rejections will be expedient and proper stock corrections will be made. In our study, these assumptions 

are made and the benefits to operating performance are significant. As can be seen in Table 5, a 

positive, “freeze‐inducing” IRI bias still has a negative effect on service, but the impact is not as strong 

as daily IRI variation. In a retail store environment, this would not be the case; a stable IRI bias would 

create long periods of no replenishment and unsatisfied customers. Our results, therefore, emphasize 

the crucial role that employees have on the ability of DCs to diminish the damaging effects of IRI on 

performance. Having DC employees solely focused on productivity may seem to be beneficial, but a 

loss of accuracy for the sake of increased productivity may not be in the best interest of the operation. 

Limitations and future research opportunities 
One of our study's limitations is that we did not observe TD or TI errors as they occurred. However, 

doing so would have created a “Hawthorne effect” (Mayo [ 44] ), with employees artificially curtailing 



IRI due to our presence in the DC. Therefore, we ensured that employees were unaware of the SKUs 

that we used for our study. Also, observing all stock locations and transactions for all 27 items 

simultaneously over 10 days is highly resource intensive. However, future studies could focus on one or 

two items in fewer locations to examine closely how TD and TI errors translate into IRI variation. 

Modeling work could also ascertain costs and benefits of daily IRI variation knowledge. While there is 

valuable information from multiday counts, these studies could determine how many days and under 

what conditions such an activity is beneficial. 

Our simulation experiment assumed a zero error mean for both TD and TI errors. This designed the 

experiment to have no inherent IRI drift. While our empirical data support this assumption, it is 

possible that certain SKUs have an inherent negative or positive IRI tendency. For example, food items 

with short shelf‐lives likely have positive TI error averages; meaning actual inventory depletes faster 

than recorded and leads to a positive IRI bias. Our simulation study also did not vary the total velocity 

(i.e., sales volume) of SKUs. The ramifications of an inherent drift or a higher volume will most likely 

exacerbate of the effects we already observed, but these should be investigated further. 

Because we found empirically that errors do not occur in a random‐walk fashion (largely due to TD 

errors), future research should also look into advancing reorder policies that account for this—

particularly those items with higher transaction frequencies. Moreover, TI errors may be incorporated 

as indicated by more frequent stock relocations within the WMS system (Chen et al. [ 18] ). Internal 

stock movement increases the opportunities for errors and such information could be used for 

updating the inventory policies. 

Finally, our simulation experiment did not include actual behaviors of managers or employees during 

extreme levels of IRI. Managers will likely change inventory and monitoring policies as problems with 

order fulfillment occur, thus affecting IRI. Repeated failed pick attempts by employees will likely 

diminish confidence in the WMS, perhaps leading to communication problems or delays between 

departments and further exacerbating the problem. Studying the implications of such factors is beyond 

the scope of this paper. However, examining the social and behavioral processes that affect and 

interact with daily IRI variation would be interesting and useful for logistics research (Knemeyer and 

Naylor [ 35] ). 

Appendix 
The Appendix provides additional information regarding the empirical analysis and simulation design. 

We organize the information by section, detail into how transaction‐independent (TI) and transaction‐

dependent (TD) error estimates were computed. It also gives specifics on the simulation model 

development. 

Computation of TI and TD error estimates 
We use changes in the system inventory record (SIR) balance from the previous day 𝐽𝑝𝑞𝑡 −  𝐽𝑝𝑞,𝑡−1 as a 

proxy for transaction amount. We infer that a receipt/return takes place when the SIR balance 

increases, 𝛥𝐽𝑝𝑞 >  0, and that a shipment takes place when the SIR balance decreases 𝛥𝐽𝑝𝑞 <  0. We 

assume that an error at day t is TI if a transaction is not observed at day t. However, if a transaction is 

observed at day t, we make an assumption that the error may be a combination of TI and TD. We 



explain the procedure for computing TI and TD below. Note the magnitude of the TD error, TDpqt, is 

measured as the ratio between the estimated TD error quantity (TDe) with respect to the transaction 

amount in day t. Conversely, the magnitude of the TI error, 𝑇𝐼𝑝𝑞𝑡, is measured as the ratio between the 

estimated TI error quantity (TIe) with respect to the available physical inventory amount in day t (Ernst 

et al. [ 26] , 1993). The frequency of TD is the sum of the number of simultaneous errors and 

transactions divided by the total number of transaction days, while the frequency of TI is the sum of 

the number of nontransaction errors divided by the number of nontransaction days. Thus, we 

demonstrate how periods of multiday counting can assess daily IRI variations and can indicate what the 

underlying causes may be. 

Procedure 
Recall that 

IRI𝑝𝑞𝑡 = {

𝑑𝑝𝑞𝑡

𝐼𝑝𝑞𝑡
, if 𝑝𝑞𝑡 > 0

0, otherwise

 

where 𝑑pqt is the difference between the SIR balance (Jpqt) and physical inventory (𝐼pqt); and that 

𝑒𝑝𝑞𝑡 =  𝑑𝑝𝑞𝑡 −  𝑑𝑝𝑞,𝑡−1 

We compute day counts D according to Table A1. 

We note the proportion of days with errors =
𝐷𝑒

𝐷
=

𝐷𝑁𝑇
𝑒 +𝐷𝑇

𝑒

𝐷𝑁𝑇+𝐷𝑇
 

Let 𝑒̇𝑝𝑞𝑡 = 𝑒̇𝑝𝑞𝑡 for all 𝐷𝑁𝑇 (i.e., 𝐽𝑝𝑞𝑡 −  𝐽𝑝𝑞,𝑡−1 =  0) = independent error TI𝑒𝑝𝑞𝑡 for that instance 

Average 𝑇𝐼𝑒̅̅ ̅̅̅ =
Σ𝑒̇𝑝𝑞𝑡

𝐷𝑁𝑇
𝑒 , which estimates 𝜇(𝑇𝐼𝑒). Median 𝑀(𝑇𝐼𝑒) = middle of {𝑇𝐼𝑒} series 

𝑃(𝑇𝐼𝑒) =
𝐷𝑁𝑇

𝑒

𝐷𝑁𝑇

 

Let 𝑒̈𝑝𝑞𝑡 = 𝑒̇𝑝𝑞𝑡 for all 𝐷𝑇  (i.e. Jpqt −  Jpq,t−1 ≠  0) = overall error for that instance. 

Table A1. Notation to classify day counting 

Day characteristics With errors Without errors Total 

Without transaction 𝐷𝑁𝑇
𝑒  𝐷𝑁𝑇

𝑛𝑒  𝐷𝑁𝑇 

With transaction 𝐷𝑇
𝑒 𝐷𝑇

𝑛𝑒 𝐷𝑇 

Total 𝐷𝑒 𝐷𝑛𝑒 𝐷 

 

We assume that 𝑒̈𝑝𝑞𝑡 can be a combination of a transaction independent error (𝑇𝐼𝑒𝑝𝑞𝑡) and a 

transaction dependent error (𝑇𝐷𝑒𝑝𝑞𝑡). That is, 𝑒̈𝑝𝑞𝑡 = 𝑓[𝑇𝐼𝑒, 𝑇𝐷𝑒, 𝑃(𝑇𝐼𝑒), 𝑃(𝑇𝐷𝑒)]. 

We assume no difference exists in transaction versus nontransaction days with respect to independent 

errors. Because nonparametric analyses show a difference in error quantities (not percentiles) only by 

velocity (i.e., unique[u][ 1] , slow[s], medium[m], fast[f]); we assume accurate 𝜇(𝑇𝐼𝑒) and 𝑃(𝑇𝐼𝑒) 



estimates can be made from a “sample” of the nontransaction days (with 𝑒̇𝑝𝑞𝑡 values) for the sample of 

instances pqt within each velocity category. 

To compute TDepqt for each velocity (𝑢, 𝑠, 𝑚, 𝑓), we randomly sample 𝑁 values of 𝑒̈𝑝𝑞𝑡, where 

𝑁˜𝑃(𝑇𝐼𝑒) × (𝐷𝑇), through a random number b and estimate 𝑇𝐷𝑒𝑝𝑞𝑡
𝑢,𝑠,𝑚,𝑓

 as follows: 

𝑇𝐷𝑒𝑝𝑞𝑡 = {
𝑒̈𝑝𝑞𝑡, if 𝑏 > 𝑃(𝑇𝐼𝑒)

𝑒̈𝑝𝑞𝑡 − 𝑇𝐼𝑒̅̅ ̅̅̅𝑢,𝑠,𝑚,𝑓 , if 𝑏 ≤ 𝑃(𝑇𝐼𝑒)
∀velocities(𝑢, 𝑠, 𝑚, 𝑓) 

Therefore, 𝜇(𝑇𝐷𝑒) is estimated by 𝑇𝐷𝑒̅̅ ̅̅ ̅̅ =
Σ𝑇𝐷𝑒𝑝𝑞𝑡

count of 𝑇𝐷𝑒
, median 𝑀(𝑇𝐷𝑒) = middle of {𝑇𝐷𝑒} series, and 

𝑃(𝑇𝐷𝑒) =
count of 𝑇𝐷𝑒

𝐷𝑇
 

Simulation model development 
This section provides additional information into how our simulation model was set up and verified. A 

daily sequence of events in our inventory system is shown in Figure A1 and closely follows past 

simulation studies addressing IRI (Kök and Shang [ 36] ; DeHoratius et al. [ 22] ). Figure A1 reveals 

important nonlinearities that underscore the necessity of using a discrete‐event simulation. 

In our model, the baseline demand values (μd, σd, and λd) represent an inventoried item having a 

medium sales velocity with demand and variability levels within the range of values from our empirical 

data. Demand order quantities follow a normal distribution with μd = 4.0, σd = 1, while demand orders’ 

interarrival times follow a Poisson distribution with mean λd = 3. Based upon previous simulation 

studies in DC contexts (Ballou 2005; Rabinovich [ 54] ), the replenishment lead time from an 

uncapacitated supply source is modeled as being normally distributed with a mean μleadtime = 5 days 

and a standard deviation 20% of the mean (σleadtime = 1 day). Lead‐time represents one day for order 

fulfilling and four days in transit. 

Initial physical inventory is set based on a managerial expectation of 10 days of inventory on hand. 

Inventory is continuously reviewed following the (𝑠, 𝑆) regime, with an order of size S minus the 

inventory position being placed at little s. Parameters little s and Δ are calculated based on demand 

and replenishment lead times characteristics ignoring IRI. Little s is calculated based upon a common 

reorder point formula. The Δ is set based upon expected replenishment lead times and a customer 

service target of a 99% order fill rate. Thus, the parameters little s and Δ are set at five and 10 days of 

inventory on hand, respectively. These values are within the range of values for little s and Δ in our 

empirical data set. 

We tested the simulation program written in Arena 5.0, following the prescriptions of Kelton et al. 

([ 34] ) and Sargent (2005). Model validation occurred through visual tracing, assessing output 

behavior, and comparing results with our empirical results. Random number seeds demonstrated low 

coefficient of variability across replications (<1%). Sensitivity analyses with model input parameters 

showed predictable patterns—for example, customer service levels decreased with longer lead times 

and smaller little s values. Evidence of “freezing” and “inflating” was also noticeable when higher IRI 

levels were induced. For each simulation factorial combination, we assessed the daily IRI time series 

and found a nonrandom walk ARIMA (0, 1, 1) pattern in most configurations at the 0.05 level. The 



typical range of values for daily IRI variability σIRI and IRI bias μIRI were 0.05–1.2 and −0.29 to 0.26, 

respectively. The results were consistent with our empirical data, indicating that our model structure 

replicates more realistically than previous studies on the underlying processes of IRI. Each scenario, 

with its customer service levels under the condition of SIR accuracy, is shown in Table A2, and the 

resultant correlations among our experimental factors, IRI parameters, and DC performance variables 

are shown in Table A3. 

Table A2. Planned supply chain configuration 

Little s (in days on hand) Δ (in days on hand) Channel r Service level (%) 

5 5 1 98.73 

5 5 2 98.74 

5 5 3 98.53 

5 10 1 99.04 

5 10 2 99.08 

5 10 3 99.08 

10 5 1 99.85 

10 5 2 99.92 

10 5 3 99.90 

10 10 1 99.85 

10 10 2 99.92 

10 10 3 99.95 

 

Table A3. Correlations among experimental factors, IRI parameters, and DC performance variables 
 

s Δ r PTD PTI σTD σTI f μIRI σIRI Service 
level 

μIRI 0.291 0.099 −0.012 0.000 −0.006 −0.010 0.016 −0.480 1 
  

σIRI 0.034 0.111 −0.008 0.040 0.234 0.112 0.473 0.546 0.030 1 
 

Service 
level 

0.847 0.085 −0.050 −0.012 −0.117 −0.049 −0.209 −0.123 0.207 −0.266 1 

Average 
inventory 
level 

0.462 0.776 −0.020 0.009 0.071 0.029 0.119 0.260 −0.115 0.295 0.421 

Notes : *p <.05, **p <.01. 

Footnotes 
1 This can be represented by the designation ARIMA (0, 1, 0). 
2 While use of a percentage measure is appropriate for our purpose, we note that it does induce a low, 

base level of variation: regular fluctuations in on‐hand inventory vary IRI even if d remains 
constant. However, because such background noise is common among cases, it is accounted for 
through our statistical analysis. 

3 To determine the number of replications, an approach based on Law and Kelton's (38, p.512) 

𝑛∗(𝛾) = min {𝑖 ≥ 𝑛: 𝑡𝑖−1,1−
𝛼

2
√𝑆2(𝑛) 𝑖⁄ |𝑋̅(𝑛)|⁄ ≤ 𝛾′} was used. The average variance and 

mean among the outcome variables for various scenarios were computed for 10 replications. 



Then, we incremented 𝑖 from 1 to 𝑛∗, at which point an error below 𝛾  =  . 05 was attained at 
𝛼 =  . 01 level. Law and Kelton ( 38) recommends at most 𝛾 =  . 15 and 𝛼 =  . 05. It was 
determined that while at least 10 replications were appropriate, using 35 replications would 
achieve an error below 2.5% (i.e., 𝛾 =  . 025). 

4 Unique items were announced as “discontinued” but continued to be monitored. 
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Figures 

 
Figure 1. The reorder interval of an inventory profile with inventory record inaccuracy ( IRI ). Note: SIR, system 
inventory record. 

 
Figure 2. Influence of dynamic inventory record inaccuracy ( IRI ) characteristics on distribution center (DC) 
operating performance. 

 
Figure 3. Example patterns of actual daily inventory record inaccuracy variations over 10 days. 

 
Figure 4. Impact of daily inventory record inaccuracy variation on service level over different conditions. 



 
Figure 5. A1 List of events in the simulation. 
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