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Abstract 

 

Through characterization of the solvent isotope effect on protein dynamics, 

we have examined determinants of the rate limitation to enzyme catalysis. A 

global conformational change in Ribonuclease A limits the overall rate of 

catalytic turnover. Here we show that this motion is sensitive to solvent 

deuterium content; the isotope effect is 2.2, a value equivalent to the isotope 

effect on the catalytic rate constant. We further demonstrate that the protein 

motion possesses a linear proton inventory plot, indicating that a single 

proton is transferred in the transition state. These results provide compelling 

evidence for close coupling between enzyme dynamics and function and 

demonstrate that characterization of the transition state for protein motion in 
atomic detail is experimentally accessible.  

In many enzyme-catalyzed reactions, evolution has optimized 

the chemical steps such that protein conformational changes occurring 

in the microsecond−millisecond time regime are rate limiting to 

catalysis.1,2 Motions on this time scale are clearly of central importance 

to enzymatic activity, and recent experiments have illuminated the 
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intimate connection between these conformational changes and 

catalytic turnover.3-6 However, the mechanistic details of these 

motions are not fully known. Knowledge of these structural 

rearrangements is essential for the successful de novo design of 

catalysts, for optimization of enzyme−inhibitor interactions, for re-

engineering existing catalysts, and for a basic understanding of the 

physical chemistry involved in enzyme function. Time-averaged 

structures typically provide details of the endpoints of an enzyme 

reaction through three-dimensional characterization of 

enzyme−substrate or product complexes. However, these structures 

provide no information on the rates of these motions or the energy 

landscape that defines the pathway of conformational motion. The 

height of the energy barrier that separates the interconverting 

conformations determines the rate at which enzyme motion occurs. 

For a full understanding of the relation between function and protein 

motion, it is essential to uncover the principal determinants of this 

transition state. Here we examine factors that determine the transition 

state for motion through the effects of D2O on protein conformational 

exchange rates.  

Characterization of the energy landscape that defines protein 

motion can be obtained using NMR spin-relaxation experiments to 

quantitate the kinetic and thermodynamic aspects of this motion.7,8 At 

its essence, a change between conformational states involves the 

breaking of interactions in one state and formation of new interactions 

in the final conformation. Changes in hydrogen bonding that occur in 

the transition state may be identified and characterized by 

measurement of the kinetic solvent isotope effect (KSIE) on the rate of 

enzyme motion. Ribonuclease A (RNase A) is an enzyme in which 

flexibility is important and rate limiting to catalysis; the slow step 

involves a protein conformational change that gates product release.9  

RNase A is an efficient catalyst, accelerating the cleavage of 

single-stranded RNA by 1011-fold over the uncatalyzed reaction.10 The 

rate-limiting conformational change that is responsible for product 

release involves several loop regions as well as residues at the active 

site. These loops include loop 4, which provides for specificity of purine 

binding 5‘ to the site of bond cleavage, and loop 1, which contains 

several flexible residues that are >20 Å from the enzyme active site. 

The motion of these protein regions is part of a pre-existing 

file:///C:/Users/olsons/Desktop/Desktop/author%20versions/dx.doi.org/10.1016/j.acalib.2009.06.017
http://epublications.marquette.edu/
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of the American Chemical Society, Vol 128, No. 24 (May 2006): pg. 7724-7725. DOI. This article is © American 
Chemical Society and permission has been granted for this version to appear in e-Publications@Marquette. American 
Chemical Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without 
the express permission from American Chemical Society. 

4 

 

equilibrium between the free and bound conformation, indicating that 

RNase A samples the catalytically relevant conformations even in the 

absence of substrate.11 Previously, we have characterized the 

millisecond dynamics in the E, ES, and EP complexes and have shown 

that the conformational dynamics are unchanged in these different 

RNase A/ligand complexes and that these motions are rate 

limiting.3,11,12  

These studies indicate that apo enzyme dynamics are 

functionally important as they reflect motions on the catalytic 

pathway. As expected for a rate-limiting conformational transition, the 

time scale of this motion at 298 K is ∼1700 s-1, the same as kcat and 

the product release rate.12 This dynamic process lies at the heart of 

RNase A enzymatic function, yet the types of interactions that 

determine the barrier separating these essential conformations are not 

known.  

To address these questions, we determined the effects of 

substitution of H2O with D2O on the rate of protein dynamics under 

solution conditions in which RNase A possesses maximal catalytic 

activity. Replacement of H2O by D2O is one of the least perturbing 

methods, in terms of affecting protein structure and stability, and 

allows detailed insight into reaction mechanisms. At pL (L = H or D) = 

6.4, the rate of the RNase A catalyzed transphosphorylation reaction 

experiences a KSIE Hkcat/Dkcat ∼ 2.0.13 This result indicates that a 

proton is relayed in the rate-determining transition state. Because RNA 

transphosphorylation chemistry is not rate limiting in the RNase A 

reaction, the observed isotope effect must be due to a decrease in the 

rate of conformational rearrangement of the enzyme. If the rate-

determining step to catalytic throughput is closely coupled to a protein 

conformational change, similar effects of deuterium substitution should 

be observed on the millisecond RNase A dynamics. Solution NMR 

CPMG−relaxation dispersion measurements7 were performed on RNase 

A in solutions of D2O and H2O to assess the affects on protein 

dynamics.  

These dynamic amino acid residues are located throughout the 

enzyme (Supporting Information), which highlights the global 

character of this conformational change. The CPMG dispersion data 

show a distinct dependence on the solvent deuterium content (Figure 

1). Dispersion curves for all residues are provided in the Supporting 
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Information. The conformational exchange rate, kex, determined for all 

residues at two magnetic fields and 4.8% D2O is 1810 ± 90 s-1. This 

value decreases to 830 ± 220 s-1 at 98% D2O. At intermediate values 

of D2O (33 and 52%), kex = 1370 ± 130 and 1300 ± 160 s-1, 

respectively. Identical behavior is observed for all exchanging 

residues, indicating a collective global process. This conformational 

motion in RNase A experiences a KSIE of 2.2 ± 0.2, which is within 

error of the effect on kcat of RNA cleavage. This suggests that motion in 

RNase A is closely coupled to and limits the overall rate of catalytic 

turnover. This result is contrasted with proton inventory studies of the 

nonphysiological hydrolysis of cyclic mononucleotides.15  

 

Figure 1 Relaxation dispersion data for the Cε position of Met29 at 18.8 T for 4.8% 

(orange), 52% (blue), and 98% (black) D2O. Dispersion curve fitting and statistical 
testing are as described previously.11 The fitted lines to the data points are the result 
of a global two-field fit to all residues. Experimental details are given as Supporting 
Information. 

Together, these multi-residue, multi-field dispersion data 

produce a linear proton inventory plot for the conformational motion 

(Figure 2).14 Least-squares fitting with eq 1 
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in which kn is the measured rate in n atom fraction D2O, k0 is the rate 

in pure H2O, and is the transition state fractionation factor, which is 

an equilibrium constant describing the preference of 2H at a protein 

site relative to that in solvent, yields = 0.44 ± 0.05. The linearity of 

this proton inventory data suggests that a single proton is being 

transferred in the rate-limiting transition state. In addition, within the 

uncertainties of the measurements, the populations of the 

interconverting RNase A conformers do not vary significantly with 

solvent deuterium content (Figure 2 inset and Table S1).  

 

Figure 2 The proton inventory data for all residues participating in global motional 
dynamics at n atom fraction of D2O. The data points and error bars represent results 
of the global, two-field fit of the relaxation dispersion data. The black line represents 
the fit to the data with eq 1, the blue lines are the 95% confidence intervals of the fit, 
and the red line depicts the theoretical curve for a two-proton transfer with identical 

fractionation factors and an overall isotope effect of 2.2. F-tests indicate eq 1 is 
statistically better than that for a two-proton mechanism. The inset shows the KSIE for 
the individual rate constants, k1 and k-1. 

These data indicate that multiple amino acid residues located 

throughout the protein structure experience the same solvent isotope 

effect. This strongly suggests that this motion in RNase A is a 

correlated process. The proton inventory data additionally provide 

evidence that a single proton is involved in this dynamic. An 

alternative explanation, where a number of more complicated multi-

proton transfers with many small additive effects in the reactant state 
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that can fortuitously offset the transition state contribution, is 

theoretically possible.16 In the absence of additional evidence to the 

contrary, the simplest, one-proton mechanism is the best explanation 

of the experimental data.  

This striking similarity of the solvent isotope effect for kcat and 

kex supports the notion that enzyme flexibility and enzyme activity are 

tightly coupled and that both the rate limitation to the enzyme reaction 

and conformational motion are the same process dependent upon the 

same number and type of proton transfers in the transition state. The 

magnitude of the isotope effect suggests that this proton is likely 

bridging the reacting groups in the transition state. This bridging 

proton could be a component of a water molecule in which the other 

nonbridging proton is not altered in the transition state, such that it 

has a fractionation factor of unity resulting in no net contribution of 

this second proton to the observed isotope effect. On the basis of the 

pH dependence of this conformational motion (not shown), we reason 

that this process involves the side chain of a histidine residue.  

The amazing ability of enzymes to increase the rate of chemical 

reactions results from a combination of many factors. Among these is 

the innate ability of enzymes to change shape as the reaction 

coordinate develops. Characterization of these motions, therefore, 

represents a necessary element for elucidation of enzyme-catalyzed 

reactions. The studies described here indicate that the rate of this 

conformational rearrangement for this highly efficient enzyme depends 

primarily on the transfer of a single proton.  
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