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Electrostatic point charge fitting as an inverse problem:
Revealing the underlying ill-conditioning

Maxim V. Ivanov, Marat R. Talipov, and Qadir K. Timerghazina)
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(Received 27 August 2015; accepted 21 September 2015; published online 1 October 2015)

Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the
atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the
point charge values to a reference electrostatic potential, a procedure that suffers from numerical
instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this
ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse
problem and construct an analytical model with the point charges spherically arranged according to
Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical
model is contrasted to the atom-centered point-charge model that can be viewed as an irregular
quadrature poorly suited for the problem. This analysis shows that the numerical problems of the
point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of
LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related
to decreasing electrostatic contribution of the higher multipole moments, that are, in the case
of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered
model, this association breaks down beyond the first few eigenvectors related to the high-curvature
monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values.
Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting
without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC
model proposed here can reproduce multipole moments up to a given rank, it may provide a
promising alternative to including explicit multipole terms in a force field. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4932105]

I. INTRODUCTION

The atom-centered point charge (PC) model of molecular
electrostatics has been a mainstay of biomolecular simulations
for decades.1–14 While chemically intuitive and straightfor-
ward in technical implementation, this model does not provide
a sufficiently detailed description of the anisotropic features of
the molecular electrostatic potential (MEP), such as lone pairs,
π-systems, and σ-holes, which are mostly governed by higher-
order multipole terms.15,16 These anisotropic effects, however,
can be described within the PC approximation by moving
beyond the atom-centered paradigm, i.e., by adding non-
atom centered PCs/extended points.17–20 Although increasing
the number of PCs per atom improves the quality of the
electrostatic model, it also can exacerbate well-known ill-
conditioning and redundancy problems21–23 of the PC fitting
procedures, leading to numerically unstable solutions.3,24,25

These numerical instabilities are usually related to a
large variation of the PC values for atoms in the interior
of the molecule, so-called buried atom effect.3,4,26,27 The
buried atom (usually methyl and methylene carbons) charges
can dramatically change due to trivial changes in the PC
fitting problem (the probe grid sampling, spatial orientation
of the molecule, etc.) and/or have inconsistent values across
very similar molecules or even conformers of the same
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molecule.28,29 As the inclusion of non-atom centered PCs into
the model produces even more buried centers, it should also
increase the numerical instabilities of the PC fitting problem.

In fact, these numerical problems are rooted in the
mathematical nature of the PC derivation—the least squares
(LS) fitting to the reference MEP,1,2

χ2 (q) = |Φ − Aq|2 = |Φ|2 + gᵀ · q + qᵀHq, (1)
g = −2AᵀΦ, (2)
H = AᵀA, (3)

where the LS sum χ2 is the subject of minimization and the
solution satisfies normal equations,30

AᵀAq = AᵀΦ. (4)

Here, the elements of the LS matrix A correspond to the inverse
distance 1/ri j between the PC i and the grid point j; Φ is
T-dimensional vector of the reference values of MEP; q is
N-dimensional vector of the PC values; g is the gradient of the
function χ2 at the origin (q = 0); H is the Hessian matrix of
LS sum χ2.

While the ill-conditioning is common to many LS fitting
problems,31–33 numerical difficulties associated with PC fitting
are further compounded by commonly used total charge
constraint using Lagrange multiplier.21,22,34,35

One of the most widely used techniques to alleviate
the numerical instabilities of PC fitting is to add artificial
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restraints to the PC values of the buried atoms.3,6,36,37 Although
this method can be extended to models with off-center
PCs/extended points, one may wonder if it would be possible
to overcome these difficulties in a more elegant way, based on
better physical understanding of the problem.

For instance, an important insight can be gleaned from the
eigendecomposition of the LS sum Hessian matrix (Eq. (3)),

Hui = κiui. (5)

Indeed, the ill-conditioned nature of the LS matrix A can
be related to the significant differences in the eigenvalues
κi, i.e., the LS sum curvatures along the directions defined
by the eigenvectors ui.38,39 Because of the 2–3 order of
magnitude variation of the κi values, different sets of PCs
can produce essentially the same MEP, as these solutions
have the same positions along the high-curvature directions,
although the positions along the low-curvature directions could
be quite different.38 Importantly, the eigenvectors with the
largest curvatures usually correspond to the total charge and
dipole moment components of the molecule, while the lower-
curvature eigenvectors do not seem to be associated with
particular multipole moments.38,40

However, the exact physical origin of the correspondence
between the large curvature eigenvectors and the first terms of
the multipole expansion is unclear, along with the nature of the
low-curvature eigenvectors. Particularly, it is not clear if the
presence of the low-curvature modes of the H matrix and thus
the ill-conditioning of the LS problem is solely because of the
nature of the PC fitting problem or due to some numerical fac-
tors, e.g., an incomplete sampling of the reference MEP grid.

To address these questions, we here revisit the PC fitting
problem from the first principles. While the atom-centered
PC model traces back to the intuitive chemical concept of the
atomic charge, we consider a general PC model as a case of the
inverse problem, where one seeks to recover the source charge
distribution from its effect, i.e., electrostatic potential distribu-
tion. Based on the properties of the Coulomb law, we construct
a best-case electrostatic model for which the inverse problem
can be solved exactly, both in the continuous case and in the
case of a discrete (non-atom centered) PC approximation.

Using this model, we investigate the nature of the
eigenvectors ui and their eigenvalues κi, dissect the factors
responsible for the ill-conditioning of the LS fitting problem,
and discuss how these insights can be used to improve and
simplify the existing PC derivation procedures.

II. POINT CHARGE FITTING
AS AN INVERSE PROBLEM

A problem where given an effect (in this case, the MEP
Φ) defined in the region VΦ, its cause (a charge distribution ρ)
defined in the region Vρ needs to be determined belongs to a
general class of inverse problems and can be described by the
Fredholm integral equation of the first kind,41

Vρ

k(r,r′)ρ (r′) dr′ = Φ (r) , (6)

where kernel k(r,r′) specifies the evolution of the cause ρ(r′)
into the effectΦ(r) that in this case corresponds to the Coulomb

law,

k(r,r′) = 1
|r − r′| . (7)

The integral equation can also be represented as an
operator equation,

K ρ = Φ, (8)

where K : U → V is a linear operator defined on space
U = range(K∗) ∈ L2 of square integrable functions and takes
values in space V = range(K) ∈ L2; K∗ : V → U is adjoint of
K . This equation can be solved exactly if and only if Φ ∈ V .
However, in general it is not the case, so a function ρ that
minimizes the residual norm |Φ − K ρ| is considered as the LS
solution and thus satisfies the normal equation,41,42

K∗K ρ = K∗Φ. (9)

This LS solution can be obtained as the linear combination
of the basis vectors ui ∈ U,41

ρ = K†Φ =
∞
i=1

⟨Φ, vi⟩
µi

ui, (10)

where K† is the Moore-Penrose inverse, µi is a singular value,
vi and ui are left and right singular vectors, respectively, and
the inner product ⟨Φ, vi⟩ is defined as

⟨Φ, vi⟩ =

VΦ

Φ(r)vi(r)dr. (11)

The orthogonal bases {ui}∞i=1 and {vi}∞i=1 also form the
eigenbases of K∗K and KK∗ with eigenvalues µ2

i ,

K∗Kui = µ2
iui, (12)

KK∗vi = µ2
ivi. (13)

To obtain a numerical solution to the integral equation
(Eq. (6)), the regions over which the MEP and charge
distribution are defined are sampled using a numerical quad-
rature. Given N quadrature nodes over the charge distribution
and T nodes over the MEP region, the integral equation is
transformed into a system of T linear equations,

Kq = Φ, (14)

where the T × N matrix K is identical to the LS matrix A from
Eq. (1) and contains the kernel elements ki j, as this matrix
originates from the kernel k(r,r′) in the integral equation
(Eq. (6)). It will be further referred to as K in order to highlight
its mathematical origin.

Then, the PC value at the node i is the product of the
charge density ρi and the quadrature weight wi,

qi = ρiwi. (15)

Since the number of the reference values T is usually
larger than the number of the unknown PC values N , the
system of linear equations is overdetermined. Then, a solution
that minimizes the LS sum χ2 (q) (Eq. (1)) and satisfies
normal equations (Eq. (4)) is considered as the numerical
solution to the integral equation (Eq. (6)). This solution can be
obtained using singular value decomposition (SVD) of matrix
K,30,39,42
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q = K†Φ =
r
i=1

Φ · vi

µi
ui, (16)

where K† is the Moore-Penrose pseudoinverse; µi are singular
values of matrix K; vectors vi and ui are left and right singular
vectors. If the rank r of matrix K is less than the dimension of
q (r < N), then the matrix K is rank deficient.

Similarly to the continuous case (Eqs. (12) and (13)), the
orthogonal bases {vi}ri=0 and {ui}ri=0 form eigenbases for KKᵀ
and KᵀK,

KKᵀvi = µ2
ivi, (17)

KᵀKui = µ2
iui, (18)

where KᵀK is also a Hessian matrix (Eq. (5)) and µ2
i is

identical to its eigenvalue κi, which is the χ2 curvature along
the direction ui,43

µ2
i = κi. (19)

In many LS problems, PC fitting included, the singular
values vary in a wide range, revealing the underlying ill-
conditioning.21,22,31,32 As a singular value µi is a denominator
in the LS solution (Eq. (16)), the smaller the singular value, the
larger the effect of the corresponding singular vector ui on the
LS solution. Thus, even small variations along ui with small
singular value lead to a significant variations of the LS solution,
although these variations do not lead to significant change in
the quality of the fit χ2.38 To understand the origins of the ill-
conditioning in PC fitting, we next consider a system for which
the inverse electrostatic problem can be analytically solved.

III. THE TWO-SPHERE MODEL

The Coulomb kernel (Eq. (7)) can be conveniently
expanded in terms of spherical harmonics so the source r′
and the observation r coordinates are separated but share the
same origin,44,45

k(r,r′) = 1
|r − r′| =

∞
l=0

l
m=−l

4π
2l + 1

r l<
r l+1
>

Ylm(r′)Ylm(r), (20)

where r = r/r denotes the unit vector defined by the polar ϕ
and azimuthal θ angles; r< is the smaller and r> is the larger of
r and r ′; Ylm are orthogonal real-value spherical harmonics,46


S

Ylm(r)Yl′m′(r)dΩ = δll′δmm′, (21)

where dΩ is the differential of the solid angle.
Then, in the region beyond the divergence sphere where

the charge density vanishes, the MEP can be expanded in a
multipole series,44,45

Φ(r) =
∞
l=0

l
m=−l


4π

2l + 1
r−l−1Qmol

lmYlm(r), (22)

where a molecular multipole moment Qmol
lm

is given by

Qmol
lm =


4π

2l + 1


r l ρ(r)Ylm(r)d3r. (23)

The form of the kernel expansion (Eq. (20)) suggests that
if the radii r = R and r ′ = a are fixed, the kernel k(R,a) can
uniquely map a charge density over a spherical surface Sa to the
corresponding potential Φ(R) on a sphere SR and vice versa.
Thus, for a probe sphere SR with the radius R greater than
the radius of divergence sphere, the MEP can be reproduced
exactly by a sphere Sa with surface charge density σ(a) such
that the multipole moments of the sphere QSa

lm
are equivalent

to the multipole moments of the molecule Qmol
lm

,

QSa
lm
≡ Qmol

lm , (24)

where multipole moments of the sphere are

QSa
lm
=


4π

2l + 1
al


Sa

σ(a)Ylm(a)dΩ. (25)

In this case, original integral Eq. (6) is transformed into a
surface integral equation,

Sa

k(R,a)σ(a)dΩ = Φ(R), (26)

or, equivalently, in an operator form,

Kσ = Φ, (27)

where K : L2(Sa) → L2(SR) is a compact infinite-rank oper-
ator (Fig. 1(a)),

Kσ =

∞
l=0

l
m=−l

µl⟨σ,Y Sa
lm

⟩Y SR
lm

, (28)

where subscripts Sa and SR denote the spheres, on which the
corresponding spherical harmonics are defined; the projection
⟨σ,Y Sa

lm
⟩ is the inner product on the L2(Sa) space,

⟨σ,Y Sa
lm

⟩ =

Sa

σ(a)Y Sa
lm

(a)dΩ (29)

and for each degree l, there is a singular value µl in the form
of the distance-dependent factor from the MEP expansion
(Eq. (20)),

µl =
4π

2l + 1
al

Rl+1 . (30)

Accordingly, the spherical harmonics Y SR
lm

and Y Sa
lm

are
left and right singular vectors and thus the eigenfunctions of
the operators K∗K and KK∗, while the squares of the singular
values µl are their eigenvalues (Eqs. (12) and (13)). Since the

FIG. 1. Schematic representations of the probe SR and charged Sa spheres
in the continuous (a) and discrete (b) forms. Operators K (Eq. (27)) and K
(Eq. (39)) are represented schematically.
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singular values µl and spherical harmonics Y Sa
lm

and Y SR
lm

form
a singular system of the operator K , the solution to integral
equation (Eq. (26)) can be expressed as

σ = K†Φ =
∞
l=0

l
m=−l

⟨Φ,Y SR
lm

⟩
µl

Y Sa
lm

. (31)

According to the multipole expansion (Eq. (22)), the inner
product ⟨Φ,Y SR

lm
⟩ depends on the radius R of the probe sphere

and the multipole moments of the molecule,

⟨Φ,Y SR
lm

⟩ =

SR

Φ(R)Y SR
lm

(R)dΩ =


4π
2l + 1

1
Rl+1 Qmol

lm . (32)

The dependence on the radius R cancels out, so the charge
density depends only on the radius a of the sphere Sa and the
molecular multipole moments,

σ(a) =
∞
l=0

l
m=−l


2l + 1

4π
a−lY Sa

lm
(a)Qmol

lm , (33)

and the charged sphere Sa exactly reproduces the MEP Φ(R).

IV. ANALYTICAL LEBEDEV GRID
POINT CHARGE MODEL

We can construct an approximate discrete analog of the
two-sphere model (Eqs. (26)-(33), Fig. 1) using a quadrature
that exactly integrates spherical harmonics Ylm over a sphere
up to a given l (Eqs. (29) and (32)), e.g., the widely used47–49

Lebedev quadrature,50 that defines N quadrature nodes (Table
1 in the supplementary material51) with predetermined angular
coordinates θi, ϕi, and integration weights wi,

S

Ylm(θ,ϕ)dΩ =
N
i

Ylm(θi, ϕi)wi. (34)

Then, given the surface charge density σi, the corresponding
point charge is

qi = σiwi. (35)

Due to the orthogonality of the spherical harmonics
Ylm (Eq. (21)), the N-node Lebedev quadrature that exactly
integrates spherical harmonics over the sphere Sa up to l = 2n,

N
i

Y Sa
lm

(θi, ϕi)Y Sa
l′m′(θi, ϕi)wSa

i =
YSa
lm
· YSa

l′m′ = δll′δmm′,

(36)

defines an orthonormal basis of dimension dn = (n + 1)2,
YSa = { YSa

lm
, − l ≤ m ≤ l }nl=0, (37)

where the YSa
lm

vectors have N elements and are defined as

Y Sa
lmi
= Ylm(θi, ϕi)


wSa
i . (38)

Similarly, the probe sphere SR can be represented by a T-
node Lebedev grid that integrates spherical harmonics up
to l = 2t and defines an orthogonal basis YSR

of dimension
dt = (t + 1)2.

In this discrete representation, the operator K (Eq. (28))
then becomes a T × N matrix K,52

K σ = Φ, (39)

where the elements of K, σ, and Φ are

Ki j =


wSa
i w

SR
j /ri j, (40)

σi = σi


wSa
i , Φ j = Φ j


w

SR
j . (41)

Since usually the probe grid has more points than the
source grid, i.e., T > N , the matrix equation (Eq. (39)) is a LS
problem (Eq. (1)) that can be solved using SVD of the matrix
K (Eq. (16)), giving a discrete analog of Eq. (31),

σ =
n
l=0

l
m=−l

Φ · YSR
lm

µl
YSa
lm
, (42)

where YSR
lm

and YSa
lm

are left and right singular vectors, and
the corresponding singular values µl are the same as in the
continuous case (Eq. (30)).

Since we use the Lebedev quadrature, the dot product
Φ · YSR

lm
corresponds to exact numerical integration and gives

a result identical with the continuous case (Eq. (32)),

Φ · YSR
lm
=

T
j=0

Φ jY
SR
lm j

w j =


4π

2l + 1
1

Rl+1 Qmol
lm , (43)

so the solution to Eq. (39) depends only on the radius a and
the multipole moments Qmol

lm
,

σ =
n
l=0

l
m=−l


2l + 1

4π
a−lQmol

lm
YSa
lm
. (44)

The corresponding PC values qi can be obtained using the
quadrature weights wSa

i ,

qi = σiw
Sa
i = σi


wSa
i , (45)

or, in a vector form,

q =
n
l=0

l
m=−l


2l + 1

4π
a−lQmol

lm YSa
lm
⊙ wSa, (46)

where wSa is the vector of the quadrature weights for the
sphere Sa. Therefore, we can use Lebedev grid that shares the
origin with a molecule to construct an analytical PC model
that exactly reproduces molecular multipole values up to the
degree n.

From this model, we can see that the ill-conditioning of
the PC fitting due to the decay of the singular values is intrinsic
to the inverse electrostatic problem, as the singular values µl
decrease with increasing l (Eq. (30)). Indeed, the higher the
multipole moment, the smaller its contribution to the overall
electrostatic potential. Also, this contribution gets smaller as
we move the probe further away from the source, and the
singular values get smaller with the increasing radius of the
probe sphere R or decreasing radius of the source sphere a.

The ill-conditioning problems become even more severe
as we switch from modeling the MEP using the Lebedev
quadrature, which is best suited to reproduce the molecular
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FIG. 2. Cross-sectional representations of the quadratures used for two-
sphere model (a) (n = 1, N = 6 and t = 11, T = 194 for spheres Sa and
SR, respectively) as compared with the traditional atom-centered model (b).
Green circles correspond to the point charges; blue circles correspond to the
reference grid points.

multipoles, to an irregular atom-centered quadrature, as shown
on a numerical example below.

V. LEBEDEV GRID VS. ATOM-CENTERED MODEL:
A NUMERICAL EXAMPLE

First, we consider an electrostatic PC model of a methanol
molecule with PCs placed at the nodes of the Lebedev
quadrature over the sphere Sa (a = 2 a.u.) (Fig. 2(a)). In this
case, the PC values can be obtained analytically from the
reference multipole moments (Eq. (46)) or by numerical fitting
to the reference MEP over the probe sphere SR (R = 8 a.u.,
t = 11, T = 194),

σ =
r
i=1

Φ ·vi

µi
ui, (47)

where the PC value can be found as qj = σ j


wSa

j and the
maximum rank r is the number N of quadrature nodes/PCs
over the sphere Sa. The quality of the fit is measured using
the root mean square deviation (RMSD) calculated over the T

nodes of the probe grid,

RMSD =


χ2

T
. (48)

Naturally, the analytical PC values from Eq. (46) exactly
reproduce the molecular multipole moments up to the degree
n defined by the quadrature (Table I). For each degree l, there
are 2l + 1 values of order m, so overall (n + 1)2 multipole
moments are reproduced, which matches the dimension dn of
the corresponding basis YSa (Eq. (37)). As the dimension dn

increases, more multipole moments are reproduced and the
RMSD rapidly approaches zero (Fig. 4 in the supplementary
material51).

Since the dimension dn does not match the number of
quadrature nodes N (Table 1 in the supplementary mate-
rial51),53,54 we can obtain numerical solutions with Eq. (47) that
are equivalent to the analytical results (Eq. (46)) by setting the
rank r to the dimension of the grid, dn = (n + 1)2 (Table I).55

As the first dn multipole moments Qmol
lm

are reproduced
by the PC model, the first dn numerical singular values µi
exactly match the radius-dependent part (Eq. (30)) from the
inverse distance expansion (Fig. 3), and the corresponding
right singular vectors ui match the basis YSa (Fig. 4),

{ui}dni=1 = {YSa
lm
, − l ≤ m ≤ l}nl=0. (49)

If we do not restrict the rank r to the dimension of the grid
dn, numerical SVD of the LS matrix K (Eq. (47)) produces
N singular vectors/values. While this slightly improves the
RMSD (Table I), the additional N − dn singular vectors cannot
be described analytically (Fig. 4) as they go beyond the
dimension dn of the corresponding basis YSa. However, in
the fortuitous case of the quadrature with n = 1 and N = 6, the
remaining 6 − 4 = 2 vectors resemble the basis vectors Y2−2
and Y2−1, so the corresponding quadrupole moments Q2−2 and
Q2−1 are accurately reproduced, although the exact numerical
integration of the spherical harmonics Y2−2 and Y2−1 is not
provided by the 6-node Lebedev grid.

TABLE I. Effect of the rank r (Eq. (47)), degree n (Eq. (46)), and type of the charge constraint on the methanol multipole moments and the RMSD (kcal/mol)
within the Lebedev grid PC model (a = 2 a.u., n = 1,2, and N = 6,14) with probe sphere SR (R = 8 a.u., T = 194) and atom-centered PC model with vdW-type
grid.

PC model, probe grid Details Q0 Q10 Q11 Q1−1 Q20 Q21 Q2−1 Q22 Q2−2 RMSD

Sa(N = 6), SR(T = 194)
Eq. (46), n = 1 0.000 0.000 −0.325 −0.565 0.000 0.000 0.000 0.000 0.000 1.762
SVD, r = 4 0.000 0.000 −0.323 −0.562 0.000 0.000 0.000 0.000 0.000 1.762
SVD, r = 6 0.000 0.000 −0.323 −0.562 −0.881 0.000 0.000 −0.497 0.000 1.668

Sa(N = 14), SR(T = 194)
Eq. (46), n = 2 0.000 0.000 −0.325 −0.565 −0.887 0.000 0.000 −0.503 2.882 0.559
SVD, r = 9 0.000 0.000 −0.325 −0.566 −0.881 0.000 0.000 −0.497 2.865 0.559
SVD, r = 14 0.000 0.000 −0.325 −0.566 −0.881 0.000 0.000 −0.497 2.865 0.425

Atom-centered, vdW

SVD, r = 6 0.007 0.000 −0.335 −0.546 −1.020 0.001 0.001 0.110 2.761 2.457
tSVD, r = 5 0.009 0.000 −0.338 −0.543 −1.060 −0.002 0.000 0.219 2.688 2.625
tSVD, r = 4 0.003 0.001 −0.270 −0.377 0.574 −0.003 −0.003 0.225 −1.317 8.729
Lagrange, Q0= 0 0.000 0.000 −0.332 −0.543 −0.989 0.001 0.001 0.073 2.739 2.587
Elimination, Q0= 0 0.000 0.000 −0.332 −0.543 −0.989 0.001 0.001 0.073 2.739 2.587
SVD, Q0= 0 0.000 0.000 −0.331 −0.544 −1.010 0.001 0.001 0.097 2.756 2.597
Trivial, Q0= 0 0.000 0.000 −0.331 −0.544 −1.010 0.001 0.001 0.097 2.755 2.597

Reference 0.000 0.000 −0.325 −0.565 −0.887 0.000 0.000 −0.503 2.882 . . .
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FIG. 3. Normalized singular values µi/µ1 obtained using exact analytical
expression Eq. (30) (green circles) as compared with the numerical values
obtained from SVD of the LS matrix for the two-sphere model (red stars)
and for atom-centered model (black circles). Lebedev quadratures with n = 1,
N = 6 and t = 11,T = 194 were used for the charged Sa (a = 2 a.u.) and probe
SR (R = 8 a.u.) spheres, respectively.

Now, we can use the insights from the best-case sce-
nario spherical PC model based on the Lebedev quadrature
(Fig. 2(a)) to understand the traditional PC fitting problem
with atom-centered charges and the probe grid that follows
the solvent-accessible surface (van der Waals (vdW) grid,
Fig. 2(b)). From the point of view of the inverse electrostatic
model, the atom-centered PC fitting corresponds to a numerical
solution using an irregular and suboptimal integration grid to
represent the source charge distribution. This problem can be
treated by SVD of the LS matrix K,

q =
r
i=1

Φ · vi

µi
ui, (50)

where the maximum value of rank r is the number of atoms in
the molecule, i.e., r = 6 in the case of methanol.

We can see that even in this case, the singular vector
u1 with the largest singular value µ1 corresponds the total
charge (Fig. 4), which is reproduced with only a slight
numerical deviation (<0.01), a consequence of the molecular
charge density spillover beyond the solvent-accessible surface
defining the vdW grid.38,40

Although the other singular vectors do not exactly match
the corresponding spherical harmonics, the u2–u4 vectors can

TABLE II. Effect of the numerical rank r (SVD in Eq. (50)) and the total-
charge constraint on the values of atom-centered PCs of methanol and the
RMSD (kcal/mol).

qC qHg qHt qO qH RMSD

SVD, r = 6 0.215 −0.018 0.048 −0.592 0.371 2.457
tSVD, r = 5 −0.058 0.056 0.118 −0.532 0.370 2.625
tSVD, r = 4 0.007 0.089 −0.101 −0.070 −0.010 8.729
Lagrange, Q0= 0 0.276 −0.035 0.030 −0.603 0.367 2.587
Elimination, Q0= 0 0.276 −0.035 0.030 −0.603 0.367 2.587
SVD, Q0= 0 0.214 −0.019 0.047 −0.593 0.370 2.597
Trivial, Q0= 0 0.214 −0.019 0.047 −0.593 0.370 2.597

be roughly related to the three components of the dipole
moment (Fig. 4), and the corresponding singular values are
commensurate with the singular value µl (l = 1) obtained for
the Lebedev grid model (Fig. 3). The remaining singular values
µ5 and µ6 are significantly distorted from the singular value
µl (l = 2), so the components of the quadrupole moment are
not reproduced as precisely as the dipole moment components
(Table I).

Among all singular vectors {ui}6
i=1, the singular vector

u6 with the lowest singular value µ6, which is 100 times
smaller than µ1, is dominated by the contribution from the
methyl carbon atom (Fig. 4). Since such small singular values
cause numerical instabilities of the LS solution, one can use
a regularization technique such as truncated SVD (tSVD) that
reduces the rank r by removing the lowest-µi vector(s) from
the SVD expansion.39 Removal of u6 that decreases the rank to
r = 5 leads to dramatic change in the methyl group charges—
the carbon atom charge in particular, which drops from 0.22
to −0.06. Yet, these changes lead only to marginal changes in
the multipole moment and RMSD values, a typical example of
the buried atom effect (Tables I and II). This suggests a natural
way to impose a restraint on the buried atom charges without
introducing a restraining function into the LS sum χ2, an
addition that can negatively affect the electrostatic properties
of the PC model.22,56

Further removal of the singular vectors u5 and u6
(i.e., r = 4) leads to severe deterioration of the LS solution, as
the corresponding multipole moment strongly deviates from
the reference values and the RMSD significantly increases
(Tables I and II). Thus, it appears that the tSVD approach
should be applied only to the singular vectors that strongly
depend on the buried atoms, an important point that will be
discussed in detail elsewhere.

FIG. 4. The orthonormal bases of the right singular vectors: basis of spherical harmonics YSa (a), basis from the numerical SVD of the LS matrix in two-sphere
PC model (b), and atom-centered model (c).
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VI. THE TOTAL-CHARGE CONSTRAINT REVISITED

Commonly used PC fitting approaches also modify the
LS sum (Eq. (1)) by adding a Lagrange multiplier λ in order
to constrain the total charge to the correct value,21,34,35

χ2 (q) = |Φ −Kq|2 + λ(1ᵀ · q −Qmol
0 ), (51)

which increases the dimension of the Hessian matrix H = KᵀK
in the normal equation (Eq. (4)),



H 1
1ᵀ 0





q
λ


=



KᵀΦ
Qmol

0


, (52)

where 1 is an all-ones column-vector.
However, as we have seen, both in the case of the Lebedev

grid and the less-than-ideal atom-centered PC models, the
Hessian eigenvector with the largest curvature corresponds
to the total charge (Fig. 4 and also Ref. 38). Thus, in the case
of the two-sphere PC fitting, the total charge is reproduced
exactly (Q0 < 10−5), while in the atom-centered PC model,
the total charge only slightly deviates from the exact value
due the close proximity of the vdW grid and slight distortion
of the total-charge vector u1 from its analytical analog Y0
(Q0 = 0.003 for methanol, Table I).

Addition of the Lagrange multiplier leads to an extra
eigenvector u7 that appears in the eigenbasis of the Hessian
matrix (Table VIII in the supplementary material51). The
curvature along this vector is the smallest in the magnitude
(κ7 = −0.009) and the vector itself primarily depends on the
Lagrange multiplier λ, with only marginal contribution from
the PC values. At the same time, remaining eigenvectors
{u}6

i=1 preserve the structure of the original eigenbasis, with
negligible contribution from the Lagrange multiplier λ (Table
VIII in the supplementary material51). Thus, application of the
total charge constraint in addition to already strong restraint
(imposed by the eigenvector u1) appears to be redundant.
Moreover, addition of the Lagrange multiplier aggravates the
rank deficiency of already ill-conditioned LS problem.21,22

Alternatively, the total charge can be constrained by
incorporating condition on the proper total charge directly
into the LS sum,1,4,23 by eliminating one of the charges and
setting it to

qn = Qmol
0 −

N−1
i

qi, (53)

where n is the index of the eliminated charge. This reduces the
dimension of the LS problem by one

χ2 (q) =
T
j


Φ j −

Qmol
0

rn j
−

N−1
i

(
1

ri j
− 1

rn j

)
qi


2

(54)

and modifies the elements of the Hessian matrix,

Hkm =

T
j

(
1

rk j
− 1

rn j

) (
1

rmj
− 1

rn j

)
. (55)

Although the solution obtained with this approach is
numerically equivalent to the solution with Lagrange multi-
plier, regardless which atom has been eliminated (elimination,
Q0 = 0 in Tables I and II), the structure of the right singular

vectors becomes disrupted (Fig. 8 in the supplementary
material51), which prevents the application of the truncated
SVD to improve the numerical stability of the solution.

Given that even for the atom-centered PC/vdW probe
model the total charge value deviates only very slightly from
the reference value, it should be possible to correct for this
deviation without exacerbating the numerical instabilities of
the LS problem, e.g., using the total charge vector u1. To do
that, we convert the SVD solution (Eq. (50)) to a system of
linear equations,

q =
r
i=0

Φ · vi

µi
ci

ui = Uc, (56)

Uᵀq = c. (57)

Then, we replace u1 in Uᵀ by an all-ones vector 1 and set
the corresponding coefficient c1 in c to the exact value of the
molecular total charge Qmol

0 ,

Uᵀ
Q0

q = cQ0, (58)

where

Uᵀ
Q0
=


1 u2 · · · uN

ᵀ
, (59)

cQ0 =

Qmol

0 c2 · · · cN
ᵀ
. (60)

This approach does not introduce any redundant con-
straints, preserves the electrostatic properties of the uncon-
strained solution, and results only into minor changes in the
PC values (SVD, Q0 = 0 in Tables I and II) and is compatible
with truncated SVD. Also, the error in the total charge value
is small enough and can be corrected by simply distributing
the Q0 error correction across the atomic charges; this trivial
total charge correction gives result nearly identical to Eq. (58)
(trivial, Q0 = 0 in Tables I and II).

VII. CONCLUSIONS

To understand the origins of the ill-conditioning of the LS
PC fitting problem, we revisited the PC representation of the
MEP from the first principles, as an example of the inverse
problem.

Based on the properties of the Coulomb potential that can
be expanded in terms of spherical harmonics, we introduce a
model where the MEP of a molecule is exactly reproduced by
a charged sphere that has the same multipole moments Qlm

as the molecule. Using Lebedev quadrature, this continuous
model is converted into a discrete PC model, where the PC
values are evaluated analytically from the multipole moments
Qlm up to the maximum value determined by the quadrature.

In this context, the traditional atom-centered PC model
can be viewed as an irregular numerical quadrature, poorly
suited to reproduce the multipolar expansion of the MEP. As
such, this quadrature only allows integration of the monopole
and, approximately, dipole terms. The corresponding large-
curvature—or “stiff”32,33—Hessian eigenvectors ui can still
be related to the corresponding multipoles Qlm. This explains
previously observed correspondence between the highest-
curvature Hessian eigenvectors and the total charge and the
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dipole moment components;38,40 this correspondence quickly
breaks down for the higher multipole moments.

This consideration then reveals the origins of the ill-
conditioning of the PC fitting due to the presence of low-
curvature—or “sloppy”32,33—vectors ui. The intrinsic ill-
conditioning arises even in the case of the ideal spherical
model: since the higher-rank multipole moments Qlm have
smaller contribution to the MEP, the singular values µl decay
as l increases. The ill-conditioning is further exacerbated in
the numerical treatment of the Lebedev grid model because
the number of PCs does not match the dimension of the
basis formed by Lebedev quadrature. The remaining singular
values/curvatures are even lower in magnitude and do not
correspond to particular multipole moments Qlm. The same
rank-deficiency problems apply to the atom-centered PC grids.
However, in that case, most of the eigenvectors do not have a
direct correspondence to the multipole moments, which leads
to even wider spread-out of the singular values/curvatures.

These insights can suggest several ways to alleviate the
ill-conditioning of the problem. For instance, the buried atom
problem can be addressed by truncating the sloppy singular
vectors with dominant contribution from these atom, instead
of introducing additional restraining functions3,6,36,37 that can
negatively affect the overall electrostatic properties of the
molecule.22,56 Also, slight deviations of the total charge of
the fitted PC solution can be fixed by adjusting the stiff total-
charge vector u1 and the corresponding coordinate Qmol

0 , rather
than introducing a Lagrange multiplier that increases the rank-
deficiency of the Hessian matrix.21,22

The results presented here can help further application of
the PC model in biomolecular simulations. Although the force
fields using point charges may not be as accurate as the force
fields that explicitly include multipoles and/or polarization
effects, the simplicity and computational efficiency of the
PC model has ensured its continued survival.18 In fact,
representation of multipoles using the Lebedev grid PC
model can provide an alternative to the multipole moment
expansion;57 it also can be used to extend recently proposed
distributed charge model.19,20

VIII. COMPUTATIONAL DETAILS

MEP and multipole moments were calculated at the
B3LYP/aug-cc-pVDZ level58–61 as implemented in Q-Chem
package.62 For atom-centered PC fitting, the reference
MEP was generated as the cubic grid with linear density
2.8 points/Å, followed by the removal of the points outside
of 1.0-2.0 van der Waals radii range around each atom (vdW
grid). For the two-sphere PC model, the Lebedev quadrature
rules were used as implemented in PyQuante package.63,64

Charge fitting procedures were implemented in the in-house
developed fftoolbox Python library.65 SVD was performed
using numpy library.66 Spherical harmonics were accessed
from scipy library.67
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